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Let Fi(y,t) = x°F(x,y,t) and Fy(x,t) = [YOIF(x,y, t).
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In fact, our F(x,y,t) is not algebraic.
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Its only asymptotic solutions are and 3 , so F(1,1,t) cannot

be algebraic.
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Not clear from here whether F(1,1,1t) is algebraic or not.
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In particular, if L is irreducible and has a logarithmic
singularity, then L has no algebraic solutions.

L is called completely reducible if it can be written as IcIm of
irreducible operators.
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Indeed, 5 # 0 because for M = lcIm(L;, [, [4,15,15) we have
M-F(I,T,t) =M -5 #0

This proves that F(1,1,1t) is transcendental (if L is correct).
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Same game.
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We also believe [t2"] [qu*]]F(x,y,t) ~c4*"n B forac #0.

Guessing with 98000 terms of F(1,1,t) didn’t find anything.

We are tempted to conjecture that F(x,y,t) is not D-finite.
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