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Abstract. Inspired by a recent article by Anthony Zaleski and Doron Zeilberger, we investigate the
question of determining the largest k for which there exist Boolean formulas in disjunctive normal form

(DNF) with n variables, which are tautologies, whose conjunctions have distinct sets of variables, and

such that all the conjunctions have at least k literals. Using a SAT solver, we answer the question for
some sizes which Zaleski and Zeilberger left open. We also determine the corresponding numbers for

DNFs obeying certain symmetries.

1. Problem Statement

We consider Boolean formulas with n variables x1, . . . , xn. A literal is a variable or a negated variable,
e.g., x3 or x̄7. A cube is a conjunction of literals, e.g., x3 ∧ x̄7. The length of a cube is the number of
distinct literals appearing in it. A formula in disjunctive normal form (DNF) is a disjunction of cubes,
e.g., (x3 ∧ x̄7)∨ (x5 ∧ x̄6 ∧x7). Such a DNF is called a tautology if it evaluates to true for all assignments
of the variables. For example x3 ∨ x5 ∨ (x̄3 ∧ x̄5) is a tautology. This formula consists of two cubes of
length 1 and one cube of length 2.

Work of Erdös [5] on covering systems for integers has recently led Zaleski and Zeilberger [9] to consider
DNFs in which all cubes have distinct supports. In a sense, these are natural Boolean analogs of the
covering systems studied by Erdös. The support of a cube is the set of variables occurring in it. For
example the support of the cube x3 is the singleton set {x3}, the support of the cube x̄5 is the singleton set
{x5}, while the support of the cube x̄3∧x5 is the set {x3, x5}. This implies that the DNF x3∨x̄5∨(x̄3∧x5)
has distinct supports. On the other hand the Hamlet question x1 ∨ x̄1 does not have distinct supports.

Zaleski and Zeilberger call the formulas with distinct supports distinct DNFs. They want to know, for any
given n, what is the largest k such that there is a distinct DNF tautology with n variables only consisting
of cubes of length at least k. Using a greedy algorithm, they searched for distinct DNF tautologies with
a prescribed number of variables and a prescribed minimal cube length. The largest minimal cube length
for which they found formulas can be found in Table 1. A priori, these numbers are only lower bounds
for the optimal values of k. However, Boole’s inequality from probability theory implies that the optimal
k must satisfy the inequality

∑n
i=k

(
n
i

)
2−i ≥ 1, which gives rise to upper bounds [9]. The numbers given

in Table 1 turn out to match the upper bounds except for n = 10 and n = 14 (indicated by question
marks), where they are off by one.

As a variant of the problem, Zaleski and Zeilberger also wanted to know, for any given n, what is the
largest k such that there is a distinct DNF tautology with n variables only consisting of cubes of length
exactly k. In this case, it follows from Boole’s inequality that such a k must satisfy

(
n
k

)
2−k ≥ 1, which

again gives an upper bound. With their greedy approach, they determined the lower bounds stated in
Table 2. Again, mismatches with the upper bound are indicated by a question mark. It is clear that
there is no solution for n = 3 and k = 1, so in this case the upper bound is too pessimistic and k = 0 is
the right value.

For n = 5 and n = 9 the computations reported in the present paper imply that the values 2 and 5
are also correct. We were not able to confirm the entry for n = 10 in Table 1 with about one year of
computation time (more precisely: about 15 days of parallel computation time on 24 processors). We
did not attempt to confirm the entries for n = 14 in the first or n = 13 in Table 2.

We add two refinements to the problem. First, we introduce an additional parameter u which binds the
lengths of the cubes from above. For any particular choice n, u, we want to know the largest k such that
there is a distinct DNF tautology with n variables only consisting of cubes of length at least k and at
most u. The special case u = n corresponds to the first variant of Zaleski and Zeilberger and the special
case u = k corresponds to the second variant. Studying also the intermediate cases gives a broader picture
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
k 0 1 1 2 3 4 4 5 6 6? 7 8 9 9?

Table 1. Smallest k such that there is a distinct DNF tautology with n variables only
consisting of cubes of length at least k.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
k 0 0 0? 2 2? 3 4 5 5? 6 7 8 8? 9

Table 2. Smallest k such that there is a distinct DNF tautology with n variables only
consisting of cubes of length exactly k.

of the situation. They can be naturally translated back to refinements of Erdös’ original problem, where
they correspond to variants with upper and lower bounds imposed on the moduli.

Our second refinement concerns symmetries. Letting permutations act on the indices of the variables, we
say that a DNF is invariant under a certain subgroup G of the symmetric group Sn if every g ∈ G maps
the DNF to itself. For example, the DNF (x1 ∧ x̄2 ∧ x3) ∨ (x2 ∧ x̄3 ∧ x4) ∨ (x3 ∧ x̄4 ∧ x1) ∨ (x4 ∧ x̄1 ∧ x3)
is invariant under the cyclic group C4. For the cyclic group Cn, the dihedral group Dn, the alternating
group An, and the full symmetric group Sn (see [1] for definitions of those groups), and for various choices
of n and u, we have determined the largest k such that there is a distinct DNF tautology with n variables
consisting of cubes of lengths at least k and at most u which are invariant under the given group.

2. SAT Encoding

Our results were obtained with the help of a SAT solver [3, 7], using a rather straightforward encoding
of the problem. For each cube, we introduced one Boolean variable that indicates whether or not this
cube is going to be a part of the DNF we are looking for. Note that this creates

∑u
i=k

(
n
i

)
2i variables, a

quantity that grows quickly when n or u − k increase. For example, in the case n = u = 10 and k = 7,
where we were unable to complete the computation, we were dealing with 33024 variables.

In order to enforce that the DNF is a tautology, we specify for every assignment a clause saying that
at least one of the cubes that becomes true under this assignment must be selected. In order to enforce
that the DNF is distinct, we have to specify clauses which encode the requirement that for every possible
support, at most one of the cubes having this support can be selected. There are many ways to encode a
constraint of the form “at most one”, and their pros and cons are discussed extensively in the literature [4,
6]. For our purpose, the so-called binary encoding seemed to work well.

For example, for n = 4 and k = u = 2, we have the 24 cubes x̄1 ∧ x̄2, x̄1 ∧ x2, . . . , x3 ∧ x̄4, x3 ∧ x4.
Denote the corresponding Boolean variables by c1, . . . , c24, respectively. Then the clauses

(c̄1 ∨ t̄1) ∧ (c̄1 ∨ t̄2) ∧ (c̄2 ∨ t̄1) ∧ (c̄2 ∨ t2) ∧ (c̄3 ∨ t1) ∧ (c̄3 ∨ t̄2) ∧ (c̄4 ∨ t1) ∧ (c̄4 ∨ t2) ∧
(c̄5 ∨ t̄3) ∧ (c̄5 ∨ t̄4) ∧ (c̄6 ∨ t̄3) ∧ (c̄6 ∨ t4) ∧ (c̄7 ∨ t3) ∧ (c̄7 ∨ t̄4) ∧ (c̄8 ∨ t3) ∧ (c̄8 ∨ t4) ∧
· · · · · · · · ·
(c̄21 ∨ t̄11) ∧ (c̄21 ∨ t̄12) ∧ (c̄22 ∨ t̄11) ∧ (c̄22 ∨ t12) ∧ (c̄23 ∨ t11) ∧ (c̄23 ∨ t̄12) ∧ (c̄24 ∨ t11) ∧ (c̄24 ∨ t12)

with the additional auxiliary variables t1, . . . , t12 encode the condition that we must select at most one
from x̄1 ∧ x̄2, x̄1 ∧ x2, x1 ∧ x̄2, x1 ∧ x2, at most one from x̄1 ∧ x̄3, x̄1 ∧ x3, x1 ∧ x̄3, x1 ∧ x3, and so forth.
Next, the 16 clauses

(c1 ∨ c5 ∨ c9 ∨ c13 ∨ c17 ∨ c21) ∧ (c1 ∨ c5 ∨ c10 ∨ c13 ∨ c18 ∨ c22) ∧ · · · · · · ∧ (c4 ∨ c8 ∨ c12 ∨ c16 ∨ c20 ∨ c24)

enforce that for each of the 16 assignments σ : {x1, . . . , x4} → {0, 1} we select at least one cube it makes
true, so that the selected cubes form a tautology.

In order to enforce invariance under a certain group, we chose a set of generators and added for each
cube c and each generator g a clause that says “if c is selected, then also g(c)”. For example, the clause

(c̄1 ∨ c13)

enforces that when the cube x̄1 ∧ x̄2 is selected, then the cube x̄2 ∧ x̄3 is selected as well.

The encoding as described so far is sufficient for proving existence or non-existence of a distinct DNF
tautology for any prescribed n, u, k, and any prescribed group. In order to speed up the computations
in practice, we may add some further constraints. One idea is to add clauses which forbid to select two
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n
2 3 4 5 6 7 8 9 10

2 1 1 2 2 2 2 2 2 2
3 1 2 2 3 3 3 3 3
4 2 3 3 4 4 4 4
5 3 4 4 5 5 5

u 6 4 4 5 5 6
7 4 5 6 6
8 5 6 6
9 6 6 ?

10 6 ?

Table 3. Smallest k such that there is a distinct DNF tautology with n variables only
consisting of cubes of length at least k and at most u.

cubes where one is strictly contained in the other. This is clearly a valid restriction, because when there
is a solution that has two cubes that are contained in one another, we can discard the smaller one from
it and obtain another solution. However, it turns out that this particular idea floods the formula with
too many additional clauses and slows down the computation rather than speeding it up.

It is more efficient to break the symmetry of the problem, a standard technique in the context of SAT
solving [8]. Clearly, when there is a distinct DNF for certain n, u, k and a certain group, then permuting
all the variables x1, . . . , xn in some way will yield another solution. Also replacing a certain variable xi by
its negation x̄i (and canceling double negation introduced by that) turns a solution into a new solution.
Since we dropped the idea to forbid cubes that are contained in other cubes, we can restrict the search
to a solution containing a cube of length k, and because we are free to permute and negate variables, we
may assume this cube to be x1 ∧ x2 ∧ · · · ∧ xk. Continuing the example above, this means that we can
add the clause

c4

consisting of the variable corresponding to this cube. Adding this clause to the formula allows for an
appreciable amount of simplification (called unit propagation [3] in SAT jargon). We are left with the
freedom to permute the variables x1, . . . , xk and the variables xk+1, . . . , xn. (We can not freely permute
all the variables x1, . . . , xn because our assumption that x1∧· · ·∧xk is part of the solution restricts us to
permutations that map this cube to itself.) By the freedom to permute x1, . . . , xk, it is fair to enforce an
assumption that the variables are indexed in such a way that when a cube with support x1, . . . , xk−1, xk+1

is selected, there is some i such that x1, . . . , xi appear negated in it and the remaining variables do not.
This assumption may still leave some degrees of freedom, which can be used to make a similar restriction
as to which cubes with support x1, . . . , xk−1, xk+2 may be selected. The freedom to permute the variables
xk+1, . . . , xn is exploited by restricting the search to DNFs such that for every i = k + 1, . . . , n− 1, the
cube x1 ∧ · · · ∧ xk−1 ∧ xi+1 is only selected when x1 ∧ · · · ∧ xk−1 ∧ xi is also selected. The corresponding
clauses in the running example are

c̄5 ∧ c̄7 ∧ c̄9 ∧ c̄11 ∧ (c8 ∨ c̄12).

3. Results

We have written a Python script that produces the SAT instances described in the previous section, and
we have used Biere’s award-winning SAT solver Treengeling [2] to solve them. Our script is available on
the website of the first author. We chose Treengeling because it is currently one of the best SAT solvers
that support parallel computation. We used the out-of-the-box settings of Treengeling, and we did not
try other SAT solvers.

The results are summarized in Tables 3 and 4, in which n appears increasing towards the right and u
grows downwards. Entries with u > n are left blank because they are equivalent to u = n.

By Boole’s inequality, the maximal k for a particular choice of n and u must satisfy the inequality∑u
i=k

(
n
i

)
2−i ≥ 1. An entry in the table is boxed when it does not match this bound. For the entries

marked with a question mark, we have not been able to prove that the k we found is really optimal, but
the long and unsuccessful search is at least some indication that the bound is not reached in these cases.
For (n, u) ∈ {(5, 3), (9, 6), (10, 8)}, the SAT solver is able to show that distinct DNF tautologies with
k = 3, k = 6, k = 7, respectively, do not exist, although their existence would not be in conflict with the
bound.
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n
2 3 4 5 6 7 8 9 10

2 1 1 1 1 1 1 1 1 1
3 1 2 2 2 3 3 3 3
4 2 2 3 3 4 4 4
5 2 3 4 4 5 5

u 6 3 4 5 5 6
7 4 5 6 6
8 5 6 6?
9 6 6?
10 6?

n
2 3 4 5 6 7 8 9 10 11 12 13 14

2 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 2 2 2 2 2 2 2 2 2 2 2
4 2 2 3 3 3 3 3 3 3 3 3
5 2 3 3 4 4 4 4 4 4 4
6 3 3 4 4 5 5 5 5 5
7 3 4 4 5 5 6 6 6

u 8 4 4 5 5 6 6 7
9 4 5 5 6 6 7
10 5 5 6 6 7
11 5 6 6 7
12 6 6 7
13 6 7
14 7

Table 4. Smallest k such that there is a distinct DNF tautology with n variables only
consisting of cubes of length at least k and at most u. Left: with respect to the symmetry
groups Cn or Dn; Right: with respect to the symmetry groups Sn or An.

Table 3 refers to the situation without symmetries. Table 4 contains our results about distinct DNF
tautologies invariant under certain groups. We have investigated the cyclic group Cn, the dihedral
group Dn, the alternating group An, and the full symmetric group Sn. The table on the left lists the
numbers for Cn and Dn, which turn out to be identical, apparently because Dn is only slightly larger
than Cn. Boxed entries highlight the differences to Table 3. The question marks refer to the search
for Cn, which for three entries did not terminate in a reasonable amount of time. Interestingly, it follows
from Table 3 that the entry for (n, u) = (10, 8) is correct, but while the SAT solver was able to prove
this in the (seemingly harder) case without invariant constraints, it did not succeed with the constraints
for Cn. The computations for all entries terminated in presence of the constraints for Dn.

The table on the right lists the numbers for An and Sn, which also turn out to be the same, apparently
because An is only slightly smaller than Sn. For these groups, the invariant constraints make the problem
easier, so that we were able to cover slightly larger values of n and u. All given numbers have been proved
to be optimal. Note that a regular pattern emerges:

Conjecture. k = min(u− 1, bn/2c).
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