
MAKING MANY MORE MATRIX
MULTIPLICATION METHODS

Manuel Kauers · Institute for Algebra · JKU

Joint work with Marijn Heule (Texas) and Martina Seidl (Linz)



(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

c1,1 =

M1 +M4 −M5 +M7

a1,1·b1,1 + a1,2·b2,1
c1,2 =

M3 +M5

a1,1·b1,2 + a1,2·b2,2
c2,1 =

M2 +M4

a2,1·b1,1 + a2,2·b2,1
c2,2 =

M1 −M2 +M3 +M6

a2,1·b1,2 + a2,2·b2,2

1



(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

c1,1 =M1 +M4 −M5 +M7

a1,1·b1,1 + a1,2·b2,1

c1,2 =M3 +M5

a1,1·b1,2 + a1,2·b2,2

c2,1 =M2 +M4

a2,1·b1,1 + a2,2·b2,1

c2,2 =M1 −M2 +M3 +M6

a2,1·b1,2 + a2,2·b2,2

1



(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=
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. . . where

M1 = (a1,1 + a2,2)·(b1,1 + b2,2)
M2 = (a2,1 + a2,2)·b1,1
M3 = a1,1·(b1,2 − b2,2)
M4 = a2,2·(b2,1 − b1,1)
M5 = (a1,1 + a1,2)·b2,2
M6 = (a2,1 − a1,1)·(b1,1 + b1,2)
M7 = (a1,2 − a2,2)·(b2,1 + b2,2)
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• This scheme needs 7 multiplications instead of 8.

• Recursive application allows to multiply n× n matrices with

O(nlog2 7) operations in the ground ring.

• Let ω be the smallest number so that n× n matrices can be
multiplied using O(nω) operations in the ground domain.

• Then 2 ≤ ω < 3. What is the exact value?
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• Strassen 1969: ω ≤ log2 7 ≤ 2.807

• Pan 1978: ω ≤ 2.796
• Bini et al. 1979: ω ≤ 2.7799
• Schönhage 1981: ω ≤ 2.522
• Romani 1982: ω ≤ 2.517
• Coppersmith/Winograd 1981: ω ≤ 2.496
• Strassen 1986: ω ≤ 2.479
• Coppersmith/Winograd 1990: ω ≤ 2.376
• Stothers 2010: ω ≤ 2.374
• Williams 2011: ω ≤ 2.3728642
• Le Gall 2014: ω ≤ 2.3728639
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• Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

• Want: a matrix multiplication algorithm that beats Strassen’s
algorithm for matrices of moderate size.

• Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

• Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

• Answer: Nobody knows.
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Question: What’s the minimal number of multiplications needed to
multiply two 3× 3 matrices?

• naive algorithm: 27

• padd with zeros, use Strassen twice, cleanup: 25

• best known upper bound: 23 (Laderman 1976)

• best known lower bound: 19 (Bläser 2003)

• maximal number of multiplications allowed if we want to beat
Strassen: 21 (because log3 21 < log2 7 < log3 22).
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• While Strassen’s scheme is essentially the only way to do the
2× 2 case with 7 multiplications, there are several distinct
schemes for 3× 3 matrices using 23 multiplications.

• In fact, there are infinitely many such schemes due to Johnson
and McLoughlin, but they involve fractional coefficients and
therefore do not work for every coefficient ring.

• If we insist in integer coefficients, there have so far (and to
our knowledge) been only three other schemes for 3× 3
matrices and 23 multiplications.

• Using altogether about 35 years of computation time, we
found more than 13000 new schemes for 3× 3 and 23, and we
expect that there are many others.

• Unfortunately we found no scheme with only 22
multiplications
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How to search for a matrix multiplication scheme?
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How to search for a matrix multiplication scheme?

Make an ansatz

M1 = (α
(1)
1,1a1,1 + α

(1)
1,2a1,2 + · · · )(β

(1)
1,1b1,1 + · · · )

M2 = (α
(2)
1,1a1,1 + α

(2)
1,2a1,2 + · · · )(β

(2)
1,1b1,1 + · · · )

...

c1,1 = γ
(1)
1,1M1 + γ

(2)
1,1M2 + · · ·

...

Set ci,j =
∑
k ai,kbk,j for all i, j and compare coefficients.
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How to search for a matrix multiplication scheme?

This gives the Brent equations (e.g., for 3×3 with 23multiplications)

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• 36 = 729 cubic equations

• 23 · 9 · 3 = 621 variables

Laderman claims that he solved this system by hand,
but he doesn’t say exactly how.

Idea: Solve this system in Z2.

Reading α
(q)
i,j

, β
(q)
k,l

, γ
(q)
m,n

as boolean variables and + as XOR, the
problem becomes a SAT problem.
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23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Modern SAT solvers are extremely powerful, but this formula hap-
pens to be very hard for them nevertheless. We need to support
them in various ways (no time to explain how exactly.)

With the appropriate assistance, and by using our large computers,
we are able to find several solutions per minute.

Are all these solutions new? What does it to be a new solution?
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Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle
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The symmetry group turns out to be S3 × GL(n)3.
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For Z2, this group has almost 1030 elements. For comparison: the
whole search space has size 2621 ≈ 10187.
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Lifting: How to get back from Z2 to Z?

Remember the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n
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Remember the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• Suppose we know a solution in Z2.

• Assume it came from a solution with coefficients 0,±1 ∈ Z.

• Then each 0 ∈ Z2 was 0 ∈ Z and each 1 ∈ Z2 was ±1 ∈ Z.

• Plug the 0s of the Z2-solution into the Brent equations.

• For each remaining variable x, add a new equation x2 − 1.

• Solve the resulting nonlinear system over Q.
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• For each remaining variable x, add a new equation x2 − 1.

• Solve the resulting nonlinear system over Q.
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• Can every Z2-solution be lifted to a Z-solution in this way?

• No, and we found some which don’t admit a lifting.

• But they are very rare. In almost all cases, the lifting succeeds.
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Clustering: Turning each solution into many additional ones.

Suppose we have a solution of the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• If we forget the values of

γ
(q)
m,n

,

we can recover them by
solving a linear system.

• This computation often gives nontrivial affine spaces of
solutions, i.e., more general schemes involving free parameters.

• In fact, for every q ∈ {1, . . . , 23} we can independently set

replace all α
(q)
i,j

or all β
(q)
k,l

or all γ
(q)
m,n

by unknowns.

• Playing the game repeatedly with various choices, we
introduce more and more free parameters into the schemes.
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• We found several families with up to 17 parameters and with
coefficients in Z.

• Gröbner bases computations can be used to check that these
parameters are really independent.

• For comparison: The schemes of Johnson and McLoughlin
had only 3 parameters and coefficients in Q.
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So what?

• Okay, so there are many more matrix multiplication methods
for 3× 3 matrices with 23 coefficient multiplications than
previously known.

• In fact, we have shown that the dimension of the algebraic set
defined by the Brent equation is much larger than was
previously known.

• But none of this has any immediate implications on the
complexity of matrix multiplication, neither theoretically nor
practically.

• In particular, it remains open whether there is a multiplication
method for 3× 3 matrices with 22 coefficient multiplications.
If you find one, let us know.
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Check out our website for browsing through
the schemes and families we found:

http://www.algebra.uni-linz.ac.at/research/matrix-multiplication/
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