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(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

c1,1 =

M1 +M4 −M5 +M7

a1,1·b1,1 + a1,2·b2,1
c1,2 =

M3 +M5

a1,1·b1,2 + a1,2·b2,2
c2,1 =

M2 +M4

a2,1·b1,1 + a2,2·b2,1
c2,2 =

M1 −M2 +M3 +M6

a2,1·b1,2 + a2,2·b2,2
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)(
b1,1 b1,2
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)
=
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c1,1 c1,2
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)
. . . where

M1 = (a1,1 + a2,2)·(b1,1 + b2,2)
M2 = (a2,1 + a2,2)·b1,1
M3 = a1,1·(b1,2 − b2,2)
M4 = a2,2·(b2,1 − b1,1)
M5 = (a1,1 + a1,2)·b2,2
M6 = (a2,1 − a1,1)·(b1,1 + b1,2)
M7 = (a1,2 − a2,2)·(b2,1 + b2,2)
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• This scheme needs 7 multiplications instead of 8.

• Recursive application allows to multiply n× n matrices with

O(nlog2 7) operations in the ground ring.

• Let ω be the smallest number so that n× n matrices can be
multiplied using O(nω) operations in the ground domain.

• Then 2 ≤ ω < 3. What is the exact value?
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• Strassen 1969: ω ≤ log2 7 ≤ 2.807

• Pan 1978: ω ≤ 2.796
• Bini et al. 1979: ω ≤ 2.7799
• Schönhage 1981: ω ≤ 2.522
• Romani 1982: ω ≤ 2.517
• Coppersmith/Winograd 1981: ω ≤ 2.496
• Strassen 1986: ω ≤ 2.479
• Coppersmith/Winograd 1990: ω ≤ 2.376
• Stothers 2010: ω ≤ 2.374
• Williams 2011: ω ≤ 2.3728642
• Le Gall 2014: ω ≤ 2.3728639
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• Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

• Want: a matrix multiplication algorithm that beats Strassen’s
algorithm for matrices of moderate size.

• Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

• Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

• Answer: Nobody knows.
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Question: What’s the minimal number of multiplications needed to
multiply two 3× 3 matrices?

• naive algorithm: 27

• padd with zeros, use Strassen twice, cleanup: 25

• best known upper bound: 23 (Laderman 1976)

• best known lower bound: 19 (Bläser 2003)

• maximal number of multiplications allowed if we want to beat
Strassen: 21 (because log3 21 < log2 7 < log3 22).
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Laderman’s scheme from 1976:a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 =

c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3



where . . .

c1,1 = −M6 +M14 +M19

c2,1 =M2 +M3 +M4 +M6 +M14 +M16 +M17

c3,1 =M6 +M7 −M8 +M11 +M12 +M13 −M14

c1,2 =M1 −M4 +M5 −M6 −M12 +M14 +M15

c2,2 =M2 +M4 −M5 +M6 +M20

c3,2 =M12 +M13 −M14 −M15 +M22

c1,3 = −M6 −M7 +M9 +M10 +M14 +M16 +M18

c2,3 =M14 +M16 +M17 +M18 +M21

c3,3 =M6 +M7 −M8 −M9 +M23
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c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3


where . . .

M1 = (−a1,1 + a1,2 + a1,3 − a2,1 + a2,2 + a3,2 + a3,3)·b2,2
M2 = (a1,1 + a2,1)·(b1,2 + b2,2)
M3 = a2,2·(b1,1 − b1,2 + b2,1 − b2,2 − b2,3 + b3,1 − b3,3)
M4 = (−a1,1 − a2,1 + a2,2)·(−b1,1 + b1,2 + b2,2)
M5 = (−a2,1 + a2,2)·(−b1,1 + b1,2)
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M8 = (a1,1 + a3,1)·(−b1,3 + b2,3)
M9 = (a3,1 + a3,2)·(b1,1 − b1,3)

5



Laderman’s scheme from 1976:a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 =

c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3


where . . .

M10 = (a1,1 + a1,2 − a1,3 − a2,2 + a2,3 + a3,1 + a3,2)·b2,3
M11 = (a3,2)·(−b1,1 + b1,3 + b2,1 − b2,2 − b2,3 − b3,1 + b3,2)
M12 = (a1,3 + a3,2 + a3,3)·(b2,2 + b3,1 − b3,2)
M13 = (a1,3 + a3,3)·(−b2,2 + b3,2)
M14 = a1,3·b3,1
M15 = (−a3,2 − a3,3)·(−b3,1 + b3,2)
M16 = (a1,3 + a2,2 − a2,3)·(b2,3 − b3,1 + b3,3)
M17 = (−a1,3 + a2,3)·(b2,3 + b3,3)
M18 = (a2,2 − a2,3)·(b3,1 − b3,3)

5



Laderman’s scheme from 1976:a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 =

c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3


where . . .

M19 = a1,2·b2,1
M20 = a2,3·b3,2
M21 = a2,1·b1,3
M22 = a3,1·b1,2
M23 = a3,3·b3,3

5



• While Strassen’s scheme is essentially the only way to do the
2× 2 case with 7 multiplications, there are several distinct
schemes for 3× 3 matrices using 23 multiplications.

• In fact, there are infinitely many such schemes due to Johnson
and McLoughlin, but they involve fractional coefficients and
therefore do not work for every coefficient ring.

• If we insist in integer coefficients, there have so far (and to
our knowledge) been only three other schemes for 3× 3
matrices and 23 multiplications.

• Using altogether about 35 years of computation time, we
found more than 13000 new schemes for 3× 3 and 23, and we
expect that there are many others.

• Unfortunately we found no scheme with only 22
multiplications
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How to search for a matrix multiplication scheme?
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How to search for a matrix multiplication scheme?

Make an ansatz

M1 = (α
(1)
1,1a1,1 + α

(1)
1,2a1,2 + · · · )(β

(1)
1,1b1,1 + · · · )

M2 = (α
(2)
1,1a1,1 + α

(2)
1,2a1,2 + · · · )(β

(2)
1,1b1,1 + · · · )

...

c1,1 = γ
(1)
1,1M1 + γ

(2)
1,1M2 + · · ·

...

Set ci,j =
∑
k ai,kbk,j for all i, j and compare coefficients.
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How to search for a matrix multiplication scheme?

This gives the Brent equations (e.g., for 3×3 with 23multiplications)

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• 36 = 729 cubic equations

• 23 · 9 · 3 = 621 variables

Laderman claims that he solved this system by hand,
but he doesn’t say exactly how.
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problem becomes a SAT problem.
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Problem: SAT solvers don’t like XOR. They want CNF as input.

a+ b = 1 ⇐⇒ (ā∨ b̄)∧ (a∨ b)

a+ b+ c = 1 ⇐⇒ (ā∨ b̄∨ c)∧ (ā∨ c̄∨ b)

∧ (b̄∨ c̄∨ a)∧ (a∨ b∨ c)

a+ b+ c+ d = 1 ⇐⇒ (ā∨ b̄∨ c̄∨ d̄)∧ (ā∨ b̄∨ c∨ d)

∧ (ā∨ c̄∨ b∨ d)∧ (ā∨ d̄∨ b∨ c)

∧ (b̄∨ c̄∨ a∨ d)∧ (b̄∨ d̄∨ a∨ c)

∧ (c̄∨ d̄∨ a∨ b)∧ (a∨ b∨ c∨ d).

Expanding a 23-term sum into CNF like this gives a million clauses.
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SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0↓
a+ b+ c = T1

→ CNF

d+ e+ f = T2

→ CNF

g+ h+ i = T3

→ CNF

T1 + T2 + T3 = 0

→ CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

9



SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0

↓
a+ b+ c = T1

→ CNF

d+ e+ f = T2

→ CNF

g+ h+ i = T3

→ CNF

T1 + T2 + T3 = 0

→ CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

9



SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0↓
a+ b+ c = T1

→ CNF

d+ e+ f = T2

→ CNF

g+ h+ i = T3

→ CNF

T1 + T2 + T3 = 0

→ CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

9



SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0↓
a+ b+ c = T1 → CNF

d+ e+ f = T2 → CNF

g+ h+ i = T3 → CNF

T1 + T2 + T3 = 0 → CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

9



SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0↓
a+ b+ c = T1 → CNF

d+ e+ f = T2 → CNF

g+ h+ i = T3 → CNF

T1 + T2 + T3 = 0 → CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

9



• Even these simplified SAT instances are very difficult to solve.

• State of the art solvers are not able to solve them.

• We help them by making the problem a bit harder, e.g., by

◦ replacing the XOR-conditions
∑

q xq = 0 by “zero or two of
the xq shall be true”,

◦ instantiating some of the variables α
(q)
i,j , β

(q)
i,j , γ

(q)
i,j by the

values they have in known schemes,

◦ forcing some of the products α
(q)
i,j β

(q)
k,lγ

(q)
m,n to zero or one, in

accordance with an educated guess.

• We use the SAT solver yalsat, which uses a different paradigm
than the common state of the art but happens to perform
better on our problems than the state of the art solvers.
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Each index of a variable in a term

α
(q)
i,j β

(q)
k,lγ

(q)
m,n

has a natural index mate in another variable.

Not all combinations are equally likely to appear in a solution.

• Almost all terms with three mismatches (i.e., i 6= m and j 6= k
and l 6= n) are zero. We randomly select half of them and set
them to zero.

• Every term with no mismatch (i.e., i = m and j = k and
l = n) must be one for at least one q. Typically, each such
term appears for exactly one q.

• Since there are 27 such terms and 23 q’s, there must be 19
q’s with one term and 4 q’s with two terms. We randomly
enforce such an assignment.
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• For many random choices of such additional constraints, we
gave the SAT solver a few minutes to find a solution.

• Usually it did not find any, but there were also many cases in
which a solution was found.

• Are all these solutions really new? What does it mean for a
solution to be new?
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Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle
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Taking also into account that we can reorder the sums in the Brent
equations, the symmetry group is in fact S23 × S3 × GL(n)3.

For Z2, this group has almost 1030 elements. For comparison: the
whole search space has size 2621 ≈ 10187.
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Symmetries can also be used to simplify the solutions, which was
useful for producing new solutions from known ones.

•known
schemes

• • •

• • new
schemes

solve filter simplify

lift cluster

There are two post processing steps:

• lifting: introduce signs so that the schemes work not only for
Z2 but also for Z (and thus for any coefficient ring)

• clustering: extract parameterized families from the schemes.
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Lifting.

Remember the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Suppose we know a solution in Z2.

Assume it came from a solution in Z with coefficients in {−1, 0,+1}.

Then each 0 ∈ Z2 was 0 ∈ Z and each 1 ∈ Z2 was −1 ∈ Z or +1 ∈ Z.

Plug the 0s of the Z2-solution into the Brent equations.

Find variables that can be set to 1 w.l.o.g. and set them to 1.

For each of the remaining variables, add a new equation x2 − 1.

Solve the resulting nonlinear system over Q.
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Find variables that can be set to 1 w.l.o.g. and set them to 1.

For each of the remaining variables, add a new equation x2 − 1.

Solve the resulting nonlinear system over Q.
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Lifting.

Toy example: consider the system

a1b1c1+a1b3c2+a3b2c1+a3b1c3 = 0 a1b1c1+a2b1c1+a3b2c1+a3b3c2 = 0

a1b1c1+a2b2c1+a3b2c1+a2b3c2 = 0 a1b1c2+a2b1c1+a3b1c2+a3b3c2 = 0

a1b2c2+a2b1c2+a3b2c2+a2b1c3 = 0 a1b3c2+a2b2c1+a3b3c1+a3b1c3 = 0

a2b1c1+a3b3c1+a3b1c2+a3b1c3 = 0 a2b2c1+a2b1c3+a2b2c3+a3b2c2 = 0

A solution is

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1, 1, 1, 0, 1, 0, 0) ∈ Z92.

Because of (−1)xy = 1(−x)y, we may set a1 = c1 = 1 w.l.o.g.

Adding a23− 1 = b
2
1− 1 = b

2
2− 1 = 0 and solving gives the solution

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1,−1, 1, 0, 1, 0, 0) ∈ Z9.
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Lifting.

Can every Z2-solution be lifted to a Z-solution in this way?

No, and we found some which don’t admit a lifting.

But they are very rare. In almost all cases, the lifting succeeds.
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Symmetries can also be used to simplify the solutions, which was
useful for producing new solutions from known ones.

•known
schemes

• • • • • new
schemes

solve filter simplify lift cluster

There are two post processing steps:

• lifting: introduce signs so that the schemes work not only for
Z2 but also for Z (and thus for any coefficient ring)

• clustering: extract parameterized families from the schemes.
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Clustering.

Suppose we have a solution to the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n
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23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• If we forget the values of α
(q)
i,j

,

γ
(q)
m,n

,

we can recover them by
solving a linear system.

• This computation often gives nontrivial affine spaces of
solutions, i.e., more general schemes involving free parameters.

• In fact, for every q ∈ {1, . . . , 23} we can independently set

replace all α
(q)
i,j

or all β
(q)
k,l

or all γ
(q)
m,n

by unknowns.

• Playing the game repeatedly with various choices, we
introduce more and more free parameters into the schemes.
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• We found several families with up to 17 parameters and with
coefficients in Z.

• Gröbner bases computations can be used to check that these
parameters are really independent.

• For comparison: The schemes of Johnson and McLoughlin
had only 3 parameters and coefficients in Q.
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So what?

• Okay, so there are many more matrix multiplication methods
for 3× 3 matrices with 23 coefficient multiplications than
previously known.

• In fact, we have shown that the dimension of the algebraic set
defined by the Brent equation is much larger than was
previously known.

• But none of this has any immediate implications on the
complexity of matrix multiplication, neither theoretically nor
practically.

• In particular, it remains open whether there is a multiplication
method for 3× 3 matrices with 22 coefficient multiplications.
If you find one, let us know.
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Check out our website for browsing through
the schemes and families we found:

http://www.algebra.uni-linz.ac.at/research/matrix-multiplication/
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