
MAKING MANY MORE MATRIX
MULTIPLICATION METHODS

Manuel Kauers · Institute for Algebra · JKU

Joint work with Marijn Heule (Texas) and Martina Seidl (Linz)



(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

c1,1 =

M1 +M4 −M5 +M7

a1,1·b1,1 + a1,2·b2,1
c1,2 =

M3 +M5

a1,1·b1,2 + a1,2·b2,2
c2,1 =

M2 +M4

a2,1·b1,1 + a2,2·b2,1
c2,2 =

M1 −M2 +M3 +M6

a2,1·b1,2 + a2,2·b2,2

1



(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

c1,1 =M1 +M4 −M5 +M7

a1,1·b1,1 + a1,2·b2,1

c1,2 =M3 +M5

a1,1·b1,2 + a1,2·b2,2

c2,1 =M2 +M4

a2,1·b1,1 + a2,2·b2,1

c2,2 =M1 −M2 +M3 +M6

a2,1·b1,2 + a2,2·b2,2

1



(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)
. . . where

M1 = (a1,1 + a2,2)·(b1,1 + b2,2)
M2 = (a2,1 + a2,2)·b1,1
M3 = a1,1·(b1,2 − b2,2)
M4 = a2,2·(b2,1 − b1,1)
M5 = (a1,1 + a1,2)·b2,2
M6 = (a2,1 − a1,1)·(b1,1 + b1,2)
M7 = (a1,2 − a2,2)·(b2,1 + b2,2)

1



(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

• This scheme needs 7 multiplications instead of 8.

• Recursive application allows to multiply n× n matrices with

O(nlog2 7) operations in the ground ring.

• Let ω be the smallest number so that n× n matrices can be
multiplied using O(nω) operations in the ground domain.

• Then 2 ≤ ω < 3. What is the exact value?

1



(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

• This scheme needs 7 multiplications instead of 8.

• Recursive application allows to multiply n× n matrices with

O(nlog2 7) operations in the ground ring.

• Let ω be the smallest number so that n× n matrices can be
multiplied using O(nω) operations in the ground domain.

• Then 2 ≤ ω < 3. What is the exact value?

1



(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

• This scheme needs 7 multiplications instead of 8.

• Recursive application allows to multiply n× n matrices with

O(nlog2 7) operations in the ground ring.

• Let ω be the smallest number so that n× n matrices can be
multiplied using O(nω) operations in the ground domain.

• Then 2 ≤ ω < 3. What is the exact value?

1



(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

• This scheme needs 7 multiplications instead of 8.

• Recursive application allows to multiply n× n matrices with

O(nlog2 7) operations in the ground ring.

• Let ω be the smallest number so that n× n matrices can be
multiplied using O(nω) operations in the ground domain.

• Then 2 ≤ ω < 3. What is the exact value?

1



• Strassen 1969: ω ≤ log2 7 ≤ 2.807

• Pan 1978: ω ≤ 2.796
• Bini et al. 1979: ω ≤ 2.7799
• Schönhage 1981: ω ≤ 2.522
• Romani 1982: ω ≤ 2.517
• Coppersmith/Winograd 1981: ω ≤ 2.496
• Strassen 1986: ω ≤ 2.479
• Coppersmith/Winograd 1990: ω ≤ 2.376
• Stothers 2010: ω ≤ 2.374
• Williams 2011: ω ≤ 2.3728642
• Le Gall 2014: ω ≤ 2.3728639

2



• Strassen 1969: ω ≤ log2 7 ≤ 2.807
• Pan 1978: ω ≤ 2.796
• Bini et al. 1979: ω ≤ 2.7799
• Schönhage 1981: ω ≤ 2.522
• Romani 1982: ω ≤ 2.517
• Coppersmith/Winograd 1981: ω ≤ 2.496
• Strassen 1986: ω ≤ 2.479
• Coppersmith/Winograd 1990: ω ≤ 2.376

• Stothers 2010: ω ≤ 2.374
• Williams 2011: ω ≤ 2.3728642
• Le Gall 2014: ω ≤ 2.3728639

2



• Strassen 1969: ω ≤ log2 7 ≤ 2.807
• Pan 1978: ω ≤ 2.796
• Bini et al. 1979: ω ≤ 2.7799
• Schönhage 1981: ω ≤ 2.522
• Romani 1982: ω ≤ 2.517
• Coppersmith/Winograd 1981: ω ≤ 2.496
• Strassen 1986: ω ≤ 2.479
• Coppersmith/Winograd 1990: ω ≤ 2.376
• Stothers 2010: ω ≤ 2.374
• Williams 2011: ω ≤ 2.3728642
• Le Gall 2014: ω ≤ 2.3728639

2



• Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

• Want: a matrix multiplication algorithm that beats Strassen’s
algorithm for matrices of moderate size.

• Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

• Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

• Answer: Nobody knows.

3



• Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

• Want: a matrix multiplication algorithm that beats Strassen’s
algorithm for matrices of moderate size.

• Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

• Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

• Answer: Nobody knows.

3



• Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

• Want: a matrix multiplication algorithm that beats Strassen’s
algorithm for matrices of moderate size.

• Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

• Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

• Answer: Nobody knows.

3



• Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

• Want: a matrix multiplication algorithm that beats Strassen’s
algorithm for matrices of moderate size.

• Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

• Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

• Answer: Nobody knows.

3



• Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

• Want: a matrix multiplication algorithm that beats Strassen’s
algorithm for matrices of moderate size.

• Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

• Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

• Answer: Nobody knows.

3



Question: What’s the minimal number of multiplications needed to
multiply two 3× 3 matrices?

• naive algorithm: 27

• padd with zeros, use Strassen twice, cleanup: 25

• best known upper bound: 23 (Laderman 1976)

• best known lower bound: 19 (Bläser 2003)

• maximal number of multiplications allowed if we want to beat
Strassen: 21 (because log3 21 < log2 7 < log3 22).

4



Question: What’s the minimal number of multiplications needed to
multiply two 3× 3 matrices?

• naive algorithm: 27

• padd with zeros, use Strassen twice, cleanup: 25

• best known upper bound: 23 (Laderman 1976)

• best known lower bound: 19 (Bläser 2003)

• maximal number of multiplications allowed if we want to beat
Strassen: 21 (because log3 21 < log2 7 < log3 22).

4



Question: What’s the minimal number of multiplications needed to
multiply two 3× 3 matrices?

• naive algorithm: 27

• padd with zeros, use Strassen twice, cleanup: 25

• best known upper bound: 23 (Laderman 1976)

• best known lower bound: 19 (Bläser 2003)

• maximal number of multiplications allowed if we want to beat
Strassen: 21 (because log3 21 < log2 7 < log3 22).

4



Question: What’s the minimal number of multiplications needed to
multiply two 3× 3 matrices?

• naive algorithm: 27

• padd with zeros, use Strassen twice, cleanup: 25

• best known upper bound: 23 (Laderman 1976)

• best known lower bound: 19 (Bläser 2003)

• maximal number of multiplications allowed if we want to beat
Strassen: 21 (because log3 21 < log2 7 < log3 22).

4



Question: What’s the minimal number of multiplications needed to
multiply two 3× 3 matrices?

• naive algorithm: 27

• padd with zeros, use Strassen twice, cleanup: 25

• best known upper bound: 23 (Laderman 1976)

• best known lower bound: 19 (Bläser 2003)

• maximal number of multiplications allowed if we want to beat
Strassen: 21 (because log3 21 < log2 7 < log3 22).

4



Question: What’s the minimal number of multiplications needed to
multiply two 3× 3 matrices?

• naive algorithm: 27

• padd with zeros, use Strassen twice, cleanup: 25

• best known upper bound: 23 (Laderman 1976)

• best known lower bound: 19 (Bläser 2003)

• maximal number of multiplications allowed if we want to beat
Strassen: 21 (because log3 21 < log2 7 < log3 22).

4



Laderman’s scheme from 1976:a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 =

c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3



where . . .

c1,1 = −M6 +M14 +M19

c2,1 =M2 +M3 +M4 +M6 +M14 +M16 +M17

c3,1 =M6 +M7 −M8 +M11 +M12 +M13 −M14

c1,2 =M1 −M4 +M5 −M6 −M12 +M14 +M15

c2,2 =M2 +M4 −M5 +M6 +M20

c3,2 =M12 +M13 −M14 −M15 +M22

c1,3 = −M6 −M7 +M9 +M10 +M14 +M16 +M18

c2,3 =M14 +M16 +M17 +M18 +M21

c3,3 =M6 +M7 −M8 −M9 +M23

5



Laderman’s scheme from 1976:a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 =

c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3


where . . .

M1 = (−a1,1 + a1,2 + a1,3 − a2,1 + a2,2 + a3,2 + a3,3)·b2,2
M2 = (a1,1 + a2,1)·(b1,2 + b2,2)
M3 = a2,2·(b1,1 − b1,2 + b2,1 − b2,2 − b2,3 + b3,1 − b3,3)
M4 = (−a1,1 − a2,1 + a2,2)·(−b1,1 + b1,2 + b2,2)
M5 = (−a2,1 + a2,2)·(−b1,1 + b1,2)
M6 = −a1,1·b1,1
M7 = (a1,1 + a3,1 + a3,2)·(b1,1 − b1,3 + b2,3)
M8 = (a1,1 + a3,1)·(−b1,3 + b2,3)
M9 = (a3,1 + a3,2)·(b1,1 − b1,3)

5



Laderman’s scheme from 1976:a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 =

c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3


where . . .

M10 = (a1,1 + a1,2 − a1,3 − a2,2 + a2,3 + a3,1 + a3,2)·b2,3
M11 = (a3,2)·(−b1,1 + b1,3 + b2,1 − b2,2 − b2,3 − b3,1 + b3,2)
M12 = (a1,3 + a3,2 + a3,3)·(b2,2 + b3,1 − b3,2)
M13 = (a1,3 + a3,3)·(−b2,2 + b3,2)
M14 = a1,3·b3,1
M15 = (−a3,2 − a3,3)·(−b3,1 + b3,2)
M16 = (a1,3 + a2,2 − a2,3)·(b2,3 − b3,1 + b3,3)
M17 = (−a1,3 + a2,3)·(b2,3 + b3,3)
M18 = (a2,2 − a2,3)·(b3,1 − b3,3)

5



Laderman’s scheme from 1976:a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 =

c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3


where . . .

M19 = a1,2·b2,1
M20 = a2,3·b3,2
M21 = a2,1·b1,3
M22 = a3,1·b1,2
M23 = a3,3·b3,3

5



• While Strassen’s scheme is essentially the only way to do the
2× 2 case with 7 multiplications, there are several distinct
schemes for 3× 3 matrices using 23 multiplications.

• In fact, there are infinitely many such schemes due to Johnson
and McLoughlin, but they involve fractional coefficients and
therefore do not work for every coefficient ring.

• If we insist in integer coefficients, there have so far (and to
our knowledge) been only three other schemes for 3× 3
matrices and 23 multiplications.

• Using altogether about 35 years of computation time, we
found more than 13000 new schemes for 3× 3 and 23, and we
expect that there are many others.

• Unfortunately we found no scheme with only 22
multiplications

6



• While Strassen’s scheme is essentially the only way to do the
2× 2 case with 7 multiplications, there are several distinct
schemes for 3× 3 matrices using 23 multiplications.

• In fact, there are infinitely many such schemes due to Johnson
and McLoughlin, but they involve fractional coefficients and
therefore do not work for every coefficient ring.

• If we insist in integer coefficients, there have so far (and to
our knowledge) been only three other schemes for 3× 3
matrices and 23 multiplications.

• Using altogether about 35 years of computation time, we
found more than 13000 new schemes for 3× 3 and 23, and we
expect that there are many others.

• Unfortunately we found no scheme with only 22
multiplications

6



• While Strassen’s scheme is essentially the only way to do the
2× 2 case with 7 multiplications, there are several distinct
schemes for 3× 3 matrices using 23 multiplications.

• In fact, there are infinitely many such schemes due to Johnson
and McLoughlin, but they involve fractional coefficients and
therefore do not work for every coefficient ring.

• If we insist in integer coefficients, there have so far (and to
our knowledge) been only three other schemes for 3× 3
matrices and 23 multiplications.

• Using altogether about 35 years of computation time, we
found more than 13000 new schemes for 3× 3 and 23, and we
expect that there are many others.

• Unfortunately we found no scheme with only 22
multiplications

6



• While Strassen’s scheme is essentially the only way to do the
2× 2 case with 7 multiplications, there are several distinct
schemes for 3× 3 matrices using 23 multiplications.

• In fact, there are infinitely many such schemes due to Johnson
and McLoughlin, but they involve fractional coefficients and
therefore do not work for every coefficient ring.

• If we insist in integer coefficients, there have so far (and to
our knowledge) been only three other schemes for 3× 3
matrices and 23 multiplications.

• Using altogether about 35 years of computation time, we
found more than 13000 new schemes for 3× 3 and 23, and we
expect that there are many others.

• Unfortunately we found no scheme with only 22
multiplications

6



• While Strassen’s scheme is essentially the only way to do the
2× 2 case with 7 multiplications, there are several distinct
schemes for 3× 3 matrices using 23 multiplications.

• In fact, there are infinitely many such schemes due to Johnson
and McLoughlin, but they involve fractional coefficients and
therefore do not work for every coefficient ring.

• If we insist in integer coefficients, there have so far (and to
our knowledge) been only three other schemes for 3× 3
matrices and 23 multiplications.

• Using altogether about 35 years of computation time, we
found more than 13000 new schemes for 3× 3 and 23, and we
expect that there are many others.

• Unfortunately we found no scheme with only 22
multiplications

6



How to search for a matrix multiplication scheme?

7



How to search for a matrix multiplication scheme?

Make an ansatz

M1 = (α
(1)
1,1a1,1 + α

(1)
1,2a1,2 + · · · )(β

(1)
1,1b1,1 + · · · )

M2 = (α
(2)
1,1a1,1 + α

(2)
1,2a1,2 + · · · )(β

(2)
1,1b1,1 + · · · )

...

c1,1 = γ
(1)
1,1M1 + γ

(2)
1,1M2 + · · ·

...

Set ci,j =
∑
k ai,kbk,j for all i, j and compare coefficients.

7



How to search for a matrix multiplication scheme?

Make an ansatz

M1 = (α
(1)
1,1a1,1 + α

(1)
1,2a1,2 + · · · )(β

(1)
1,1b1,1 + · · · )

M2 = (α
(2)
1,1a1,1 + α

(2)
1,2a1,2 + · · · )(β

(2)
1,1b1,1 + · · · )

...

c1,1 = γ
(1)
1,1M1 + γ

(2)
1,1M2 + · · ·

...

Set ci,j =
∑
k ai,kbk,j for all i, j and compare coefficients.

7



How to search for a matrix multiplication scheme?

This gives the Brent equations (e.g., for 3×3 with 23multiplications)

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• 36 = 729 cubic equations

• 23 · 9 · 3 = 621 variables

Laderman claims that he solved this system by hand,
but he doesn’t say exactly how.

7



How to search for a matrix multiplication scheme?

This gives the Brent equations (e.g., for 3×3 with 23multiplications)

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• 36 = 729 cubic equations

• 23 · 9 · 3 = 621 variables

Laderman claims that he solved this system by hand,
but he doesn’t say exactly how.

7



How to search for a matrix multiplication scheme?

This gives the Brent equations (e.g., for 3×3 with 23multiplications)

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• 36 = 729 cubic equations

• 23 · 9 · 3 = 621 variables

Laderman claims that he solved this system by hand,
but he doesn’t say exactly how.

7



How to search for a matrix multiplication scheme?

This gives the Brent equations (e.g., for 3×3 with 23multiplications)

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Solve this system in Z2.

Reading α
(q)
i,j

, β
(q)
k,l

, γ
(q)
m,n

as boolean variables and + as XOR, the
problem becomes a SAT problem.

7



How to search for a matrix multiplication scheme?

This gives the Brent equations (e.g., for 3×3 with 23multiplications)

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Solve this system in Z2.

Reading α
(q)
i,j

, β
(q)
k,l

, γ
(q)
m,n

as boolean variables and + as XOR, the
problem becomes a SAT problem.

7



Problem: SAT solvers don’t like XOR. They want CNF as input.

a+ b = 1 ⇐⇒ (ā∨ b̄)∧ (a∨ b)

a+ b+ c = 1 ⇐⇒ (ā∨ b̄∨ c)∧ (ā∨ c̄∨ b)

∧ (b̄∨ c̄∨ a)∧ (a∨ b∨ c)

a+ b+ c+ d = 1 ⇐⇒ (ā∨ b̄∨ c̄∨ d̄)∧ (ā∨ b̄∨ c∨ d)

∧ (ā∨ c̄∨ b∨ d)∧ (ā∨ d̄∨ b∨ c)

∧ (b̄∨ c̄∨ a∨ d)∧ (b̄∨ d̄∨ a∨ c)

∧ (c̄∨ d̄∨ a∨ b)∧ (a∨ b∨ c∨ d).

Expanding a 23-term sum into CNF like this gives a million clauses.

8



Problem: SAT solvers don’t like XOR. They want CNF as input.

a+ b = 1 ⇐⇒ (ā∨ b̄)∧ (a∨ b)

a+ b+ c = 1 ⇐⇒ (ā∨ b̄∨ c)∧ (ā∨ c̄∨ b)

∧ (b̄∨ c̄∨ a)∧ (a∨ b∨ c)

a+ b+ c+ d = 1 ⇐⇒ (ā∨ b̄∨ c̄∨ d̄)∧ (ā∨ b̄∨ c∨ d)

∧ (ā∨ c̄∨ b∨ d)∧ (ā∨ d̄∨ b∨ c)

∧ (b̄∨ c̄∨ a∨ d)∧ (b̄∨ d̄∨ a∨ c)

∧ (c̄∨ d̄∨ a∨ b)∧ (a∨ b∨ c∨ d).

Expanding a 23-term sum into CNF like this gives a million clauses.

8



Problem: SAT solvers don’t like XOR. They want CNF as input.

a+ b = 1 ⇐⇒ (ā∨ b̄)∧ (a∨ b)

a+ b+ c = 1 ⇐⇒ (ā∨ b̄∨ c)∧ (ā∨ c̄∨ b)

∧ (b̄∨ c̄∨ a)∧ (a∨ b∨ c)

a+ b+ c+ d = 1 ⇐⇒ (ā∨ b̄∨ c̄∨ d̄)∧ (ā∨ b̄∨ c∨ d)

∧ (ā∨ c̄∨ b∨ d)∧ (ā∨ d̄∨ b∨ c)

∧ (b̄∨ c̄∨ a∨ d)∧ (b̄∨ d̄∨ a∨ c)

∧ (c̄∨ d̄∨ a∨ b)∧ (a∨ b∨ c∨ d).

Expanding a 23-term sum into CNF like this gives a million clauses.

8



Problem: SAT solvers don’t like XOR. They want CNF as input.

a+ b = 1 ⇐⇒ (ā∨ b̄)∧ (a∨ b)

a+ b+ c = 1 ⇐⇒ (ā∨ b̄∨ c)∧ (ā∨ c̄∨ b)

∧ (b̄∨ c̄∨ a)∧ (a∨ b∨ c)

a+ b+ c+ d = 1 ⇐⇒ (ā∨ b̄∨ c̄∨ d̄)∧ (ā∨ b̄∨ c∨ d)

∧ (ā∨ c̄∨ b∨ d)∧ (ā∨ d̄∨ b∨ c)

∧ (b̄∨ c̄∨ a∨ d)∧ (b̄∨ d̄∨ a∨ c)

∧ (c̄∨ d̄∨ a∨ b)∧ (a∨ b∨ c∨ d).

Expanding a 23-term sum into CNF like this gives a million clauses.

8



Problem: SAT solvers don’t like XOR. They want CNF as input.

a+ b = 1 ⇐⇒ (ā∨ b̄)∧ (a∨ b)

a+ b+ c = 1 ⇐⇒ (ā∨ b̄∨ c)∧ (ā∨ c̄∨ b)

∧ (b̄∨ c̄∨ a)∧ (a∨ b∨ c)

a+ b+ c+ d = 1 ⇐⇒ (ā∨ b̄∨ c̄∨ d̄)∧ (ā∨ b̄∨ c∨ d)

∧ (ā∨ c̄∨ b∨ d)∧ (ā∨ d̄∨ b∨ c)

∧ (b̄∨ c̄∨ a∨ d)∧ (b̄∨ d̄∨ a∨ c)

∧ (c̄∨ d̄∨ a∨ b)∧ (a∨ b∨ c∨ d).

Expanding a 23-term sum into CNF like this gives a million clauses.

8



SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0↓
a+ b+ c = T1

→ CNF

d+ e+ f = T2

→ CNF

g+ h+ i = T3

→ CNF

T1 + T2 + T3 = 0

→ CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

9



SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0

↓
a+ b+ c = T1

→ CNF

d+ e+ f = T2

→ CNF

g+ h+ i = T3

→ CNF

T1 + T2 + T3 = 0

→ CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

9



SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0↓
a+ b+ c = T1

→ CNF

d+ e+ f = T2

→ CNF

g+ h+ i = T3

→ CNF

T1 + T2 + T3 = 0

→ CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

9



SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0↓
a+ b+ c = T1 → CNF

d+ e+ f = T2 → CNF

g+ h+ i = T3 → CNF

T1 + T2 + T3 = 0 → CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

9



SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0↓
a+ b+ c = T1 → CNF

d+ e+ f = T2 → CNF

g+ h+ i = T3 → CNF

T1 + T2 + T3 = 0 → CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

9



• Even these simplified SAT instances are very difficult to solve.

• State of the art solvers are not able to solve them.

• We help them by making the problem a bit harder, e.g., by

◦ replacing the XOR-conditions
∑

q xq = 0 by “zero or two of
the xq shall be true”,

◦ instantiating some of the variables α
(q)
i,j , β

(q)
i,j , γ

(q)
i,j by the

values they have in known schemes,

◦ forcing some of the products α
(q)
i,j β

(q)
k,lγ

(q)
m,n to zero or one, in

accordance with an educated guess.

• We use the SAT solver yalsat, which uses a different paradigm
than the common state of the art but happens to perform
better on our problems than the state of the art solvers.

10



• Even these simplified SAT instances are very difficult to solve.

• State of the art solvers are not able to solve them.

• We help them by making the problem a bit harder, e.g., by

◦ replacing the XOR-conditions
∑

q xq = 0 by “zero or two of
the xq shall be true”,

◦ instantiating some of the variables α
(q)
i,j , β

(q)
i,j , γ

(q)
i,j by the

values they have in known schemes,

◦ forcing some of the products α
(q)
i,j β

(q)
k,lγ

(q)
m,n to zero or one, in

accordance with an educated guess.

• We use the SAT solver yalsat, which uses a different paradigm
than the common state of the art but happens to perform
better on our problems than the state of the art solvers.

10



• Even these simplified SAT instances are very difficult to solve.

• State of the art solvers are not able to solve them.

• We help them by making the problem a bit harder, e.g., by

◦ replacing the XOR-conditions
∑

q xq = 0 by “zero or two of
the xq shall be true”,

◦ instantiating some of the variables α
(q)
i,j , β

(q)
i,j , γ

(q)
i,j by the

values they have in known schemes,

◦ forcing some of the products α
(q)
i,j β

(q)
k,lγ

(q)
m,n to zero or one, in

accordance with an educated guess.

• We use the SAT solver yalsat, which uses a different paradigm
than the common state of the art but happens to perform
better on our problems than the state of the art solvers.

10



• Even these simplified SAT instances are very difficult to solve.

• State of the art solvers are not able to solve them.

• We help them by making the problem a bit harder, e.g., by

◦ replacing the XOR-conditions
∑

q xq = 0 by “zero or two of
the xq shall be true”,

◦ instantiating some of the variables α
(q)
i,j , β

(q)
i,j , γ

(q)
i,j by the

values they have in known schemes,

◦ forcing some of the products α
(q)
i,j β

(q)
k,lγ

(q)
m,n to zero or one, in

accordance with an educated guess.

• We use the SAT solver yalsat, which uses a different paradigm
than the common state of the art but happens to perform
better on our problems than the state of the art solvers.

10



• Even these simplified SAT instances are very difficult to solve.

• State of the art solvers are not able to solve them.

• We help them by making the problem a bit harder, e.g., by

◦ replacing the XOR-conditions
∑

q xq = 0 by “zero or two of
the xq shall be true”,

◦ instantiating some of the variables α
(q)
i,j , β

(q)
i,j , γ

(q)
i,j by the

values they have in known schemes,

◦ forcing some of the products α
(q)
i,j β

(q)
k,lγ

(q)
m,n to zero or one, in

accordance with an educated guess.

• We use the SAT solver yalsat, which uses a different paradigm
than the common state of the art but happens to perform
better on our problems than the state of the art solvers.

10



• Even these simplified SAT instances are very difficult to solve.

• State of the art solvers are not able to solve them.

• We help them by making the problem a bit harder, e.g., by

◦ replacing the XOR-conditions
∑

q xq = 0 by “zero or two of
the xq shall be true”,

◦ instantiating some of the variables α
(q)
i,j , β

(q)
i,j , γ

(q)
i,j by the

values they have in known schemes,

◦ forcing some of the products α
(q)
i,j β

(q)
k,lγ

(q)
m,n to zero or one, in

accordance with an educated guess.

• We use the SAT solver yalsat, which uses a different paradigm
than the common state of the art but happens to perform
better on our problems than the state of the art solvers.

10



• Even these simplified SAT instances are very difficult to solve.

• State of the art solvers are not able to solve them.

• We help them by making the problem a bit harder, e.g., by

◦ replacing the XOR-conditions
∑

q xq = 0 by “zero or two of
the xq shall be true”,

◦ instantiating some of the variables α
(q)
i,j , β

(q)
i,j , γ

(q)
i,j by the

values they have in known schemes,

◦ forcing some of the products α
(q)
i,j β

(q)
k,lγ

(q)
m,n to zero or one, in

accordance with an educated guess.

• We use the SAT solver yalsat, which uses a different paradigm
than the common state of the art but happens to perform
better on our problems than the state of the art solvers.

10



• Even these simplified SAT instances are very difficult to solve.

• State of the art solvers are not able to solve them.

• We help them by making the problem a bit harder, e.g., by

◦ replacing the XOR-conditions
∑

q xq = 0 by “zero or two of
the xq shall be true”,

◦ instantiating some of the variables α
(q)
i,j , β

(q)
i,j , γ

(q)
i,j by the

values they have in known schemes,

◦ forcing some of the products α
(q)
i,j β

(q)
k,lγ

(q)
m,n to zero or one, in

accordance with an educated guess.

• We use the SAT solver yalsat, which uses a different paradigm
than the common state of the art but happens to perform
better on our problems than the state of the art solvers.

10



Each index of a variable in a term

α
(q)
i,j β

(q)
k,lγ

(q)
m,n

has a natural index mate in another variable.

Not all combinations are equally likely to appear in a solution.

• Almost all terms with three mismatches (i.e., i 6= m and j 6= k
and l 6= n) are zero. We randomly select half of them and set
them to zero.

• Every term with no mismatch (i.e., i = m and j = k and
l = n) must be one for at least one q. Typically, each such
term appears for exactly one q.

• Since there are 27 such terms and 23 q’s, there must be 19
q’s with one term and 4 q’s with two terms. We randomly
enforce such an assignment.

11



Each index of a variable in a term

α
(q)
i,j β

(q)
k,lγ

(q)
m,n

has a natural index mate in another variable.

Not all combinations are equally likely to appear in a solution.

• Almost all terms with three mismatches (i.e., i 6= m and j 6= k
and l 6= n) are zero. We randomly select half of them and set
them to zero.

• Every term with no mismatch (i.e., i = m and j = k and
l = n) must be one for at least one q. Typically, each such
term appears for exactly one q.

• Since there are 27 such terms and 23 q’s, there must be 19
q’s with one term and 4 q’s with two terms. We randomly
enforce such an assignment.

11



Each index of a variable in a term

α
(q)
i,j β

(q)
k,lγ

(q)
m,n

has a natural index mate in another variable.

Not all combinations are equally likely to appear in a solution.

• Almost all terms with three mismatches (i.e., i 6= m and j 6= k
and l 6= n) are zero. We randomly select half of them and set
them to zero.

• Every term with no mismatch (i.e., i = m and j = k and
l = n) must be one for at least one q. Typically, each such
term appears for exactly one q.

• Since there are 27 such terms and 23 q’s, there must be 19
q’s with one term and 4 q’s with two terms. We randomly
enforce such an assignment.

11



Each index of a variable in a term

α
(q)
i,j β

(q)
k,lγ

(q)
m,n

has a natural index mate in another variable.

Not all combinations are equally likely to appear in a solution.

• Almost all terms with three mismatches (i.e., i 6= m and j 6= k
and l 6= n) are zero. We randomly select half of them and set
them to zero.

• Every term with no mismatch (i.e., i = m and j = k and
l = n) must be one for at least one q. Typically, each such
term appears for exactly one q.

• Since there are 27 such terms and 23 q’s, there must be 19
q’s with one term and 4 q’s with two terms. We randomly
enforce such an assignment.

11



Each index of a variable in a term

α
(q)
i,j β

(q)
k,lγ

(q)
m,n

has a natural index mate in another variable.

Not all combinations are equally likely to appear in a solution.

• Almost all terms with three mismatches (i.e., i 6= m and j 6= k
and l 6= n) are zero. We randomly select half of them and set
them to zero.

• Every term with no mismatch (i.e., i = m and j = k and
l = n) must be one for at least one q. Typically, each such
term appears for exactly one q.

• Since there are 27 such terms and 23 q’s, there must be 19
q’s with one term and 4 q’s with two terms. We randomly
enforce such an assignment.

11



Each index of a variable in a term

α
(q)
i,j β

(q)
k,lγ

(q)
m,n

has a natural index mate in another variable.

Not all combinations are equally likely to appear in a solution.

• Almost all terms with three mismatches (i.e., i 6= m and j 6= k
and l 6= n) are zero. We randomly select half of them and set
them to zero.

• Every term with no mismatch (i.e., i = m and j = k and
l = n) must be one for at least one q. Typically, each such
term appears for exactly one q.

• Since there are 27 such terms and 23 q’s, there must be 19
q’s with one term and 4 q’s with two terms. We randomly
enforce such an assignment.

11



Each index of a variable in a term

α
(q)
i,j β

(q)
k,lγ

(q)
m,n

has a natural index mate in another variable.

Not all combinations are equally likely to appear in a solution.

• Almost all terms with three mismatches (i.e., i 6= m and j 6= k
and l 6= n) are zero. We randomly select half of them and set
them to zero.

• Every term with no mismatch (i.e., i = m and j = k and
l = n) must be one for at least one q. Typically, each such
term appears for exactly one q.

• Since there are 27 such terms and 23 q’s, there must be 19
q’s with one term and 4 q’s with two terms. We randomly
enforce such an assignment.

11



Each index of a variable in a term

α
(q)
i,j β

(q)
k,lγ

(q)
m,n

has a natural index mate in another variable.

Not all combinations are equally likely to appear in a solution.

• Almost all terms with three mismatches (i.e., i 6= m and j 6= k
and l 6= n) are zero. We randomly select half of them and set
them to zero.

• Every term with no mismatch (i.e., i = m and j = k and
l = n) must be one for at least one q. Typically, each such
term appears for exactly one q.

• Since there are 27 such terms and 23 q’s, there must be 19
q’s with one term and 4 q’s with two terms. We randomly
enforce such an assignment.

11



• For many random choices of such additional constraints, we
gave the SAT solver a few minutes to find a solution.

• Usually it did not find any, but there were also many cases in
which a solution was found.

• Are all these solutions really new? What does it mean for a
solution to be new?

12



• For many random choices of such additional constraints, we
gave the SAT solver a few minutes to find a solution.

• Usually it did not find any, but there were also many cases in
which a solution was found.

• Are all these solutions really new? What does it mean for a
solution to be new?

12



• For many random choices of such additional constraints, we
gave the SAT solver a few minutes to find a solution.

• Usually it did not find any, but there were also many cases in
which a solution was found.

• Are all these solutions really new? What does it mean for a
solution to be new?

12



Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

13



Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

13



Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

13



Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

13



Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

13



Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

13



Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

The symmetry group turns out to be S3 × GL(n)3.

13



Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

Taking also into account that we can reorder the sums in the Brent
equations, the symmetry group is in fact S23 × S3 × GL(n)3.

13



Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

Taking also into account that we can reorder the sums in the Brent
equations, the symmetry group is in fact S23 × S3 × GL(n)3.

For Z2, this group has almost 1030 elements. For comparison: the
whole search space has size 2621 ≈ 10187.

13



Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

Taking also into account that we can reorder the sums in the Brent
equations, the symmetry group is in fact S23 × S3 × GL(n)3.

Group elements can map solutions into other solutions. A solution
is new when it cannot be mapped to one we have seen before.

The 13000 new schemes announced earlier are new in this sense.

13



Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

Taking also into account that we can reorder the sums in the Brent
equations, the symmetry group is in fact S23 × S3 × GL(n)3.

Group elements can map solutions into other solutions. A solution
is new when it cannot be mapped to one we have seen before.

The 13000 new schemes announced earlier are new in this sense.

13



Symmetries can also be used to simplify the solutions, which was
useful for producing new solutions from known ones.

•known
schemes

• • •

• • new
schemes

solve filter simplify

lift cluster

There are two post processing steps:

• lifting: introduce signs so that the schemes work not only for
Z2 but also for Z (and thus for any coefficient ring)

• clustering: extract parameterized families from the schemes.

14



Symmetries can also be used to simplify the solutions, which was
useful for producing new solutions from known ones.

•known
schemes

• • •

• • new
schemes

solve filter simplify

lift cluster

There are two post processing steps:

• lifting: introduce signs so that the schemes work not only for
Z2 but also for Z (and thus for any coefficient ring)

• clustering: extract parameterized families from the schemes.

14



Symmetries can also be used to simplify the solutions, which was
useful for producing new solutions from known ones.

•known
schemes

• • •

• • new
schemes

solve filter simplify

lift cluster

There are two post processing steps:

• lifting: introduce signs so that the schemes work not only for
Z2 but also for Z (and thus for any coefficient ring)

• clustering: extract parameterized families from the schemes.

14



Symmetries can also be used to simplify the solutions, which was
useful for producing new solutions from known ones.

•known
schemes

• • • •

• new
schemes

solve filter simplify lift

cluster

There are two post processing steps:

• lifting: introduce signs so that the schemes work not only for
Z2 but also for Z (and thus for any coefficient ring)

• clustering: extract parameterized families from the schemes.

14



Symmetries can also be used to simplify the solutions, which was
useful for producing new solutions from known ones.

•known
schemes

• • • • • new
schemes

solve filter simplify lift cluster

There are two post processing steps:

• lifting: introduce signs so that the schemes work not only for
Z2 but also for Z (and thus for any coefficient ring)

• clustering: extract parameterized families from the schemes.

14



Symmetries can also be used to simplify the solutions, which was
useful for producing new solutions from known ones.

•known
schemes

• • • • • new
schemes

solve filter simplify lift cluster

There are two post processing steps:

• lifting: introduce signs so that the schemes work not only for
Z2 but also for Z (and thus for any coefficient ring)

• clustering: extract parameterized families from the schemes.

14



Lifting.

Remember the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Suppose we know a solution in Z2.

Assume it came from a solution in Z with coefficients in {−1, 0,+1}.

Then each 0 ∈ Z2 was 0 ∈ Z and each 1 ∈ Z2 was −1 ∈ Z or +1 ∈ Z.

Plug the 0s of the Z2-solution into the Brent equations.

Find variables that can be set to 1 w.l.o.g. and set them to 1.

For each of the remaining variables, add a new equation x2 − 1.

Solve the resulting nonlinear system over Q.

15



Lifting.

Remember the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Suppose we know a solution in Z2.

Assume it came from a solution in Z with coefficients in {−1, 0,+1}.

Then each 0 ∈ Z2 was 0 ∈ Z and each 1 ∈ Z2 was −1 ∈ Z or +1 ∈ Z.

Plug the 0s of the Z2-solution into the Brent equations.

Find variables that can be set to 1 w.l.o.g. and set them to 1.

For each of the remaining variables, add a new equation x2 − 1.

Solve the resulting nonlinear system over Q.

15



Lifting.

Remember the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Suppose we know a solution in Z2.

Assume it came from a solution in Z with coefficients in {−1, 0,+1}.

Then each 0 ∈ Z2 was 0 ∈ Z and each 1 ∈ Z2 was −1 ∈ Z or +1 ∈ Z.

Plug the 0s of the Z2-solution into the Brent equations.

Find variables that can be set to 1 w.l.o.g. and set them to 1.

For each of the remaining variables, add a new equation x2 − 1.

Solve the resulting nonlinear system over Q.

15



Lifting.

Remember the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Suppose we know a solution in Z2.

Assume it came from a solution in Z with coefficients in {−1, 0,+1}.

Then each 0 ∈ Z2 was 0 ∈ Z and each 1 ∈ Z2 was −1 ∈ Z or +1 ∈ Z.

Plug the 0s of the Z2-solution into the Brent equations.

Find variables that can be set to 1 w.l.o.g. and set them to 1.

For each of the remaining variables, add a new equation x2 − 1.

Solve the resulting nonlinear system over Q.

15



Lifting.

Remember the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Suppose we know a solution in Z2.

Assume it came from a solution in Z with coefficients in {−1, 0,+1}.

Then each 0 ∈ Z2 was 0 ∈ Z and each 1 ∈ Z2 was −1 ∈ Z or +1 ∈ Z.

Plug the 0s of the Z2-solution into the Brent equations.

Find variables that can be set to 1 w.l.o.g. and set them to 1.

For each of the remaining variables, add a new equation x2 − 1.

Solve the resulting nonlinear system over Q.

15



Lifting.

Remember the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Suppose we know a solution in Z2.

Assume it came from a solution in Z with coefficients in {−1, 0,+1}.

Then each 0 ∈ Z2 was 0 ∈ Z and each 1 ∈ Z2 was −1 ∈ Z or +1 ∈ Z.

Plug the 0s of the Z2-solution into the Brent equations.

Find variables that can be set to 1 w.l.o.g. and set them to 1.

For each of the remaining variables, add a new equation x2 − 1.

Solve the resulting nonlinear system over Q.

15



Lifting.

Remember the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Suppose we know a solution in Z2.

Assume it came from a solution in Z with coefficients in {−1, 0,+1}.

Then each 0 ∈ Z2 was 0 ∈ Z and each 1 ∈ Z2 was −1 ∈ Z or +1 ∈ Z.

Plug the 0s of the Z2-solution into the Brent equations.

Find variables that can be set to 1 w.l.o.g. and set them to 1.

For each of the remaining variables, add a new equation x2 − 1.

Solve the resulting nonlinear system over Q.

15



Lifting.

Remember the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Suppose we know a solution in Z2.

Assume it came from a solution in Z with coefficients in {−1, 0,+1}.

Then each 0 ∈ Z2 was 0 ∈ Z and each 1 ∈ Z2 was −1 ∈ Z or +1 ∈ Z.

Plug the 0s of the Z2-solution into the Brent equations.

Find variables that can be set to 1 w.l.o.g. and set them to 1.

For each of the remaining variables, add a new equation x2 − 1.

Solve the resulting nonlinear system over Q.

15



Lifting.

Toy example: consider the system

a1b1c1+a1b3c2+a3b2c1+a3b1c3 = 0 a1b1c1+a2b1c1+a3b2c1+a3b3c2 = 0

a1b1c1+a2b2c1+a3b2c1+a2b3c2 = 0 a1b1c2+a2b1c1+a3b1c2+a3b3c2 = 0

a1b2c2+a2b1c2+a3b2c2+a2b1c3 = 0 a1b3c2+a2b2c1+a3b3c1+a3b1c3 = 0

a2b1c1+a3b3c1+a3b1c2+a3b1c3 = 0 a2b2c1+a2b1c3+a2b2c3+a3b2c2 = 0

A solution is

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1, 1, 1, 0, 1, 0, 0) ∈ Z92.

Because of (−1)xy = 1(−x)y, we may set a1 = c1 = 1 w.l.o.g.

Adding a23− 1 = b
2
1− 1 = b

2
2− 1 = 0 and solving gives the solution

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1,−1, 1, 0, 1, 0, 0) ∈ Z9.

15



Lifting.

Toy example: consider the system

a1b1c1+a1b3c2+a3b2c1+a3b1c3 = 0 a1b1c1+a2b1c1+a3b2c1+a3b3c2 = 0

a1b1c1+a2b2c1+a3b2c1+a2b3c2 = 0 a1b1c2+a2b1c1+a3b1c2+a3b3c2 = 0

a1b2c2+a2b1c2+a3b2c2+a2b1c3 = 0 a1b3c2+a2b2c1+a3b3c1+a3b1c3 = 0

a2b1c1+a3b3c1+a3b1c2+a3b1c3 = 0 a2b2c1+a2b1c3+a2b2c3+a3b2c2 = 0

A solution is

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1, 1, 1, 0, 1, 0, 0) ∈ Z92.

Because of (−1)xy = 1(−x)y, we may set a1 = c1 = 1 w.l.o.g.

Adding a23− 1 = b
2
1− 1 = b

2
2− 1 = 0 and solving gives the solution

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1,−1, 1, 0, 1, 0, 0) ∈ Z9.

15



Lifting.

Toy example: consider the system

a1b1c1+a1b3c2+a3b2c1+a3b1c3 = 0 a1b1c1+a2b1c1+a3b2c1+a3b3c2 = 0

a1b1c1+a2b2c1+a3b2c1+a2b3c2 = 0 a1b1c2+a2b1c1+a3b1c2+a3b3c2 = 0

a1b2c2+a2b1c2+a3b2c2+a2b1c3 = 0 a1b3c2+a2b2c1+a3b3c1+a3b1c3 = 0

a2b1c1+a3b3c1+a3b1c2+a3b1c3 = 0 a2b2c1+a2b1c3+a2b2c3+a3b2c2 = 0

A solution is

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1, 1, 1, 0, 1, 0, 0) ∈ Z92.

Because of (−1)xy = 1(−x)y, we may set a1 = c1 = 1 w.l.o.g.

Adding a23− 1 = b
2
1− 1 = b

2
2− 1 = 0 and solving gives the solution

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1,−1, 1, 0, 1, 0, 0) ∈ Z9.

15



Lifting.

Toy example: consider the system

a1b1c1+a1b3c2+a3b2c1+a3b1c3 = 0 a1b1c1+a2b1c1+a3b2c1+a3b3c2 = 0

a1b1c1+a2b2c1+a3b2c1+a2b3c2 = 0 a1b1c2+a2b1c1+a3b1c2+a3b3c2 = 0

a1b2c2+a2b1c2+a3b2c2+a2b1c3 = 0 a1b3c2+a2b2c1+a3b3c1+a3b1c3 = 0

a2b1c1+a3b3c1+a3b1c2+a3b1c3 = 0 a2b2c1+a2b1c3+a2b2c3+a3b2c2 = 0

A solution is

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1, 1, 1, 0, 1, 0, 0) ∈ Z92.

Because of (−1)xy = 1(−x)y, we may set a1 = c1 = 1 w.l.o.g.

Adding a23− 1 = b
2
1− 1 = b

2
2− 1 = 0 and solving gives the solution

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1,−1, 1, 0, 1, 0, 0) ∈ Z9.

15



Lifting.

Toy example: consider the system

a1b1c1+a1b3c2+a3b2c1+a3b1c3 = 0 a1b1c1+a2b1c1+a3b2c1+a3b3c2 = 0

a1b1c1+a2b2c1+a3b2c1+a2b3c2 = 0 a1b1c2+a2b1c1+a3b1c2+a3b3c2 = 0

a1b2c2+a2b1c2+a3b2c2+a2b1c3 = 0 a1b3c2+a2b2c1+a3b3c1+a3b1c3 = 0

a2b1c1+a3b3c1+a3b1c2+a3b1c3 = 0 a2b2c1+a2b1c3+a2b2c3+a3b2c2 = 0

A solution is

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1, 1, 1, 0, 1, 0, 0) ∈ Z92.

Because of (−1)xy = 1(−x)y, we may set a1 = c1 = 1 w.l.o.g.

Adding a23− 1 = b
2
1− 1 = b

2
2− 1 = 0 and solving gives the solution

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1,−1, 1, 0, 1, 0, 0) ∈ Z9.

15



Lifting.

Toy example: consider the system

a1b1c1+a1b3c2+a3b2c1+a3b1c3 = 0 a1b1c1+a2b1c1+a3b2c1+a3b3c2 = 0

a1b1c1+a2b2c1+a3b2c1+a2b3c2 = 0 a1b1c2+a2b1c1+a3b1c2+a3b3c2 = 0

a1b2c2+a2b1c2+a3b2c2+a2b1c3 = 0 a1b3c2+a2b2c1+a3b3c1+a3b1c3 = 0

a2b1c1+a3b3c1+a3b1c2+a3b1c3 = 0 a2b2c1+a2b1c3+a2b2c3+a3b2c2 = 0

A solution is

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1, 1, 1, 0, 1, 0, 0) ∈ Z92.

Because of (−1)xy = 1(−x)y, we may set a1 = c1 = 1 w.l.o.g.

Adding a23− 1 = b
2
1− 1 = b

2
2− 1 = 0 and solving gives the solution

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1,−1, 1, 0, 1, 0, 0) ∈ Z9.

15



Lifting.

Toy example: consider the system

a1b1c1+a1b3c2+a3b2c1+a3b1c3 = 0 a1b1c1+a2b1c1+a3b2c1+a3b3c2 = 0

a1b1c1+a2b2c1+a3b2c1+a2b3c2 = 0 a1b1c2+a2b1c1+a3b1c2+a3b3c2 = 0

a1b2c2+a2b1c2+a3b2c2+a2b1c3 = 0 a1b3c2+a2b2c1+a3b3c1+a3b1c3 = 0

a2b1c1+a3b3c1+a3b1c2+a3b1c3 = 0 a2b2c1+a2b1c3+a2b2c3+a3b2c2 = 0

A solution is

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1, 1, 1, 0, 1, 0, 0) ∈ Z92.

Because of (−1)xy = 1(−x)y, we may set a1 = c1 = 1 w.l.o.g.

Adding a23− 1 = b
2
1− 1 = b

2
2− 1 = 0 and solving gives the solution

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1,−1, 1, 0, 1, 0, 0) ∈ Z9.

15



Lifting.

Toy example: consider the system

a1b1c1+a1b3c2+a3b2c1+a3b1c3 = 0 a1b1c1+a2b1c1+a3b2c1+a3b3c2 = 0

a1b1c1+a2b2c1+a3b2c1+a2b3c2 = 0 a1b1c2+a2b1c1+a3b1c2+a3b3c2 = 0

a1b2c2+a2b1c2+a3b2c2+a2b1c3 = 0 a1b3c2+a2b2c1+a3b3c1+a3b1c3 = 0

a2b1c1+a3b3c1+a3b1c2+a3b1c3 = 0 a2b2c1+a2b1c3+a2b2c3+a3b2c2 = 0

A solution is

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1, 1, 1, 0, 1, 0, 0) ∈ Z92.

Because of (−1)xy = 1(−x)y, we may set a1 = c1 = 1 w.l.o.g.

Adding a23− 1 = b
2
1− 1 = b

2
2− 1 = 0 and solving gives the solution

(a1, a2, a3, b1, b2, b3, c1, c2, c3) = (1, 0, 1,−1, 1, 0, 1, 0, 0) ∈ Z9.

15



Lifting.

Can every Z2-solution be lifted to a Z-solution in this way?

No, and we found some which don’t admit a lifting.

But they are very rare. In almost all cases, the lifting succeeds.

15



Lifting.

Can every Z2-solution be lifted to a Z-solution in this way?

No, and we found some which don’t admit a lifting.

But they are very rare. In almost all cases, the lifting succeeds.

15



Lifting.

Can every Z2-solution be lifted to a Z-solution in this way?

No, and we found some which don’t admit a lifting.

But they are very rare. In almost all cases, the lifting succeeds.

15



Symmetries can also be used to simplify the solutions, which was
useful for producing new solutions from known ones.

•known
schemes

• • • • • new
schemes

solve filter simplify lift cluster

There are two post processing steps:

• lifting: introduce signs so that the schemes work not only for
Z2 but also for Z (and thus for any coefficient ring)

• clustering: extract parameterized families from the schemes.

16



Symmetries can also be used to simplify the solutions, which was
useful for producing new solutions from known ones.

•known
schemes

• • • • • new
schemes

solve filter simplify lift cluster

There are two post processing steps:

• lifting: introduce signs so that the schemes work not only for
Z2 but also for Z (and thus for any coefficient ring)

• clustering: extract parameterized families from the schemes.

16



Clustering.

Suppose we have a solution to the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

17



Clustering.

Suppose we have a solution to the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• If we forget the values of α
(q)
i,j

,

γ
(q)
m,n

,

we can recover them by
solving a linear system.

• This computation often gives nontrivial affine spaces of
solutions, i.e., more general schemes involving free parameters.

• In fact, for every q ∈ {1, . . . , 23} we can independently set

replace all α
(q)
i,j

or all β
(q)
k,l

or all γ
(q)
m,n

by unknowns.

• Playing the game repeatedly with various choices, we
introduce more and more free parameters into the schemes.

17



Clustering.

Suppose we have a solution to the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• If we forget the values of β
(q)
k,l

,

γ
(q)
m,n

,

we can recover them by
solving a linear system.

• This computation often gives nontrivial affine spaces of
solutions, i.e., more general schemes involving free parameters.

• In fact, for every q ∈ {1, . . . , 23} we can independently set

replace all α
(q)
i,j

or all β
(q)
k,l

or all γ
(q)
m,n

by unknowns.

• Playing the game repeatedly with various choices, we
introduce more and more free parameters into the schemes.

17



Clustering.

Suppose we have a solution to the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• If we forget the values of γ
(q)
m,n

, we can recover them by
solving a linear system.

• This computation often gives nontrivial affine spaces of
solutions, i.e., more general schemes involving free parameters.

• In fact, for every q ∈ {1, . . . , 23} we can independently set

replace all α
(q)
i,j

or all β
(q)
k,l

or all γ
(q)
m,n

by unknowns.

• Playing the game repeatedly with various choices, we
introduce more and more free parameters into the schemes.

17



Clustering.

Suppose we have a solution to the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• If we forget the values of γ
(q)
m,n

, we can recover them by
solving a linear system.

• This computation often gives nontrivial affine spaces of
solutions, i.e., more general schemes involving free parameters.

• In fact, for every q ∈ {1, . . . , 23} we can independently set

replace all α
(q)
i,j

or all β
(q)
k,l

or all γ
(q)
m,n

by unknowns.

• Playing the game repeatedly with various choices, we
introduce more and more free parameters into the schemes.

17



Clustering.

Suppose we have a solution to the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• If we forget the values of γ
(q)
m,n

, we can recover them by
solving a linear system.

• This computation often gives nontrivial affine spaces of
solutions, i.e., more general schemes involving free parameters.

• In fact, for every q ∈ {1, . . . , 23} we can independently set

replace all α
(q)
i,j

or all β
(q)
k,l

or all γ
(q)
m,n

by unknowns.

• Playing the game repeatedly with various choices, we
introduce more and more free parameters into the schemes.

17



Clustering.

Suppose we have a solution to the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• If we forget the values of γ
(q)
m,n

, we can recover them by
solving a linear system.

• This computation often gives nontrivial affine spaces of
solutions, i.e., more general schemes involving free parameters.

• In fact, for every q ∈ {1, . . . , 23} we can independently set

replace all α
(q)
i,j

or all β
(q)
k,l

or all γ
(q)
m,n

by unknowns.

• Playing the game repeatedly with various choices, we
introduce more and more free parameters into the schemes.

17



Clustering.

Suppose we have a solution to the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• If we forget the values of γ
(q)
m,n

, we can recover them by
solving a linear system.

• This computation often gives nontrivial affine spaces of
solutions, i.e., more general schemes involving free parameters.

• In fact, for every q ∈ {1, . . . , 23} we can independently set

replace all α
(q)
i,j

or all β
(q)
k,l

or all γ
(q)
m,n

by unknowns.

• Playing the game repeatedly with various choices, we
introduce more and more free parameters into the schemes.

17



Clustering.

Suppose we have a solution to the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• We found several families with up to 17 parameters and with
coefficients in Z.

• Gröbner bases computations can be used to check that these
parameters are really independent.

• For comparison: The schemes of Johnson and McLoughlin
had only 3 parameters and coefficients in Q.

17



Clustering.

Suppose we have a solution to the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• We found several families with up to 17 parameters and with
coefficients in Z.

• Gröbner bases computations can be used to check that these
parameters are really independent.

• For comparison: The schemes of Johnson and McLoughlin
had only 3 parameters and coefficients in Q.

17



Clustering.

Suppose we have a solution to the Brent equations:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

23∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• We found several families with up to 17 parameters and with
coefficients in Z.

• Gröbner bases computations can be used to check that these
parameters are really independent.

• For comparison: The schemes of Johnson and McLoughlin
had only 3 parameters and coefficients in Q.

17



So what?

• Okay, so there are many more matrix multiplication methods
for 3× 3 matrices with 23 coefficient multiplications than
previously known.

• In fact, we have shown that the dimension of the algebraic set
defined by the Brent equation is much larger than was
previously known.

• But none of this has any immediate implications on the
complexity of matrix multiplication, neither theoretically nor
practically.

• In particular, it remains open whether there is a multiplication
method for 3× 3 matrices with 22 coefficient multiplications.
If you find one, let us know.

18



So what?

• Okay, so there are many more matrix multiplication methods
for 3× 3 matrices with 23 coefficient multiplications than
previously known.

• In fact, we have shown that the dimension of the algebraic set
defined by the Brent equation is much larger than was
previously known.

• But none of this has any immediate implications on the
complexity of matrix multiplication, neither theoretically nor
practically.

• In particular, it remains open whether there is a multiplication
method for 3× 3 matrices with 22 coefficient multiplications.
If you find one, let us know.

18



So what?

• Okay, so there are many more matrix multiplication methods
for 3× 3 matrices with 23 coefficient multiplications than
previously known.

• In fact, we have shown that the dimension of the algebraic set
defined by the Brent equation is much larger than was
previously known.

• But none of this has any immediate implications on the
complexity of matrix multiplication, neither theoretically nor
practically.

• In particular, it remains open whether there is a multiplication
method for 3× 3 matrices with 22 coefficient multiplications.
If you find one, let us know.

18



So what?

• Okay, so there are many more matrix multiplication methods
for 3× 3 matrices with 23 coefficient multiplications than
previously known.

• In fact, we have shown that the dimension of the algebraic set
defined by the Brent equation is much larger than was
previously known.

• But none of this has any immediate implications on the
complexity of matrix multiplication, neither theoretically nor
practically.

• In particular, it remains open whether there is a multiplication
method for 3× 3 matrices with 22 coefficient multiplications.
If you find one, let us know.

18



So what?

• Okay, so there are many more matrix multiplication methods
for 3× 3 matrices with 23 coefficient multiplications than
previously known.

• In fact, we have shown that the dimension of the algebraic set
defined by the Brent equation is much larger than was
previously known.

• But none of this has any immediate implications on the
complexity of matrix multiplication, neither theoretically nor
practically.

• In particular, it remains open whether there is a multiplication
method for 3× 3 matrices with 22 coefficient multiplications.
If you find one, let us know.

18



So what?

• Okay, so there are many more matrix multiplication methods
for 3× 3 matrices with 23 coefficient multiplications than
previously known.

• In fact, we have shown that the dimension of the algebraic set
defined by the Brent equation is much larger than was
previously known.

• But none of this has any immediate implications on the
complexity of matrix multiplication, neither theoretically nor
practically.

• In particular, it remains open whether there is a multiplication
method for 3× 3 matrices with 22 coefficient multiplications.
If you find one, let us know.

18



Check out our website for browsing through
the schemes and families we found:

http://www.algebra.uni-linz.ac.at/research/matrix-multiplication/

19


