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Why You Should Remove Zeros From Data Before Guessing
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Abstract

A common advice in automated guessing is that when the input is a sequence like 2, 0, 0, 7, 0, 0, 17, . . . ,
one should remove the zeros before passing the data to the guesser. On this poster, we explain why this
approach is sound, and which problem may arise if one does not take this step.

1 Introduction

Guessing is a well-known and popular technique in experimental mathematics [6, 2, 4]. The task is to
derive from the given first few terms of an infinite sequence a plausible hypothesis about relations that
the sequence may satisfy. In this poster, we have a closer look at what happens when the sequence under
consideration is interlaced with zeros.

For example, consider a sequence (an) starting with the 16 terms

2, 0, 0, 7, 0, 0, 17, 0, 0, 29, 0, 0, 41, 0, 0, 53, . . .

In order to find a recurrence, we may set up an equation template
∑3

j=0

∑2
i=0 ci,jn

ian+j with 12 unde-
termined coefficients ci,j , instantiate it with n = 0, 1, 2, . . . , 12, and produce a linear system in the ci,j ’s.
Note that we cannot instantiate at n ≥ 13, because it would require knowing the values of a16 and beyond.
Anyhow, the resulting linear system is

2 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 7 . . . 0
7 21 63 0 . . . 153
...

...
...

...
. . .

...
41 492 5904 0 . . . 7632





c0,0

c0,1

c0,2

c1,0
...

c3,2


= 0,

and since it has more equations than variables, it is generically not expected to have a nonzero solution.
The fact that it has the solution (3701376,−121173, 62423, 0, 0, 0, 0, 0, 0,−1057536,−31575,−50387) would
typically be interpreted as evidence in favor of the dubious hypothesis that (an) satisfies the recurrence

(50387n2 + 31575n + 1057536)an+3 − (62423n2 + 121173n− 3701376)an = 0.
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On the other hand, if we remove the zeros from the sequence, that is we consider the sequence (ān) starting
with

2, 7, 17, 29, 41, 53, . . . ,

and if we make an ansatz for a recurrence of order 1 and degree 2, we are led to the underdetermined
system 

2 0 0 7 0 0
7 7 7 17 17 17
17 34 68 29 58 116
29 87 261 41 123 369
41 164 656 53 212 848





c0,0

c0,1

c0,2

c1,0

c1,1

c1,2

 = 0

with 6 variables and 5 equations, and we cannot expect its solution to tell us anything about the infinite
sequence. Typical implementations of guessing [3, 5] raise an error when the number of variables exceeds
the number of equations. On this poster, we propose a slightly refined condition that also catches the
situation encountered in the previous example, and we show that no relations can be missed by deleting
zeros. For simplicity, we analyze phenomenon from the perspective of the linear algebra guessing approach
sketched above, but the effects are not specific to this particular approach and appear also when, for
example, Hermite/Pade approximation [1] is used applied instead of linear algebra.

2 Can we lose anything by removing the zeros?

Let m ∈ N, consider a sequence (an) with an 6= 0 ⇒ m | n, and let (ān) be defined by ān = amn. In that
situation, common wisdom suggests removing the zeros and working with ān instead.

Clearly, any recurrence of order r and degree d for (ān) = (amn) can be translated into a recurrence
of order mr and degree d for (an). In order to be sure that no relations are lost when considering (ān)
instead of (an), we need the following converse.

Proposition 1. Let m ∈ N, and (an) ∈ KN be a sequence such that an = 0 whenever n is not divisible
by m. Assume that (an) satisfies a recurrence relation of order r and degree d, i.e., there exists polynomials
f0, . . . , fr ∈ K[n] with degree d, not all zero, such that for all n ∈ N,

r∑
i=0

fi(n)an+i = 0. (1)

Let (ān) be the sequence defined, for all n ∈ N, by ān = amn. Then there exists k ∈ {0, . . . ,m − 1} such
that:

• the sequence (ān) satisfies the recurrence relation of order r̄ := br/mc and degree d

r̄∑
i=0

fmi+k(mn + k)ān+i = 0; (2)

• the sequence (an) satisfies the recurrence relation of order mr̄ = m br/mc and degree d

r̄∑
i=0

fmi+k(n− k)an+mi = 0. (3)
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Proof. At least one of f0, . . . , fr is non-zero, say fs, and let k be the remainder of dividing s by m. Consider
the relation of Eq. (1) at index mn + k, for n ∈ N. Reordering the terms fi(mn)amn−k+i according to the
remainder of i modulo m yields∑

0≤i≤r
imodm=k

fi(mn + k)amn+k+i +
∑

0≤i≤r
imodm6=k

fi(mn + k)amn+k+i = 0.

Since all amn+k+i in the second summand are zero, that sum is zero. The first summand can be rewritten,
with the change of variable i← i+k

m , as

0 =

br/mc∑
i=0

fi(mn + k)am(n+i) =

r̄∑
i=0

fi(mn + k)ān+i

which is the wanted relation (2) for (ān).
From the above, the recurrence (3) is satisfied for all n which are divisible by m. If n is not divisible

by m, all involved values an+mi are zero, and the recurrence (3) is again satisfied. So the sequence (an)
satisfies recurrence (3) as a whole.

Besides recurrence equations of a sequence (an), we can also guess polynomial equations of the cor-
responding formal power series a(x) =

∑∞
n=0 anx

n. From the first N coefficients of such a series, we

can create N linear equations for the unknown coefficients in an ansatz
∑r

i=0

∑d
j=0 ci,jx

ja(x)i = 0 for a
polynomial equation. If (an) and (ān) are related as before, then ā(x) =

∑∞
n=0 ānx

n and a(x) are related
through a(x) = ā(xm), and we can ask how the polynomial equations of these series are related to one
another. The answer is as follows.

Proposition 2. Assume that a(x) satisfies a polynomial relation with degree d in t and r in a(x), then:

• ā(x) satisfies a polynomial relation P̄ (x, ā(x)) = 0 with degree bd/mc in x and r in ā(x);

• a(x) satisfies the polynomial relation P̄ (xm, a(x)) = 0 with degree m bd/mc in xm and r in a(x).

3 Refined Confidence Conditions

In general, if we want to guess a recurrence of order r̄ and degree d for an arbitrary sequence (ān), then
from the first N̄ terms of the sequence we can get N̄ − r̄ linear equations, and since there are (r̄+ 1)(d+ 1)
variables in the ansatz, we need to have at least N̄ ≥ (r̄ + 1)(d + 2) in order to ensure that the system is
overdetermined.

Now let m ∈ N and consider the sequence (an) defined by amn = ān and an = 0 if n - m. As
shown in the previous section, (an) satisfies a recurrence of order r = mr̄ and degree d if and only if
(ān) satisfies a recurrence of order r̄ and degree d. But if we search directly for the recurrence of (an),
we have N = mN̄ terms at our disposal, from which we can generate N − r = m(N̄ − r̄) equations for
the (r + 1)(d + 1) = (mr̄ + 1)(d + 2) variables, and we encounter an overdetermined system as soon as
N̄ ≥ 1

m(mr̄ + 1)(d + 2).
The two bounds are not exactly the same. For example, for m = 3, r̄ = 2, d = 2, N̄ = 6, we have

N̄ ≥ 1
m(mr̄ + 1)(d + 2) but not N̄ ≥ (r̄ + 1)(d + 2). This is the situation we observed in the introduction.

On the other hand, we have seen in Prop. 1 that the two guessing problems are essentially equivalent.
At first glance, this seems to suggest that instead of removing zeros, we should rather add zeros, because
this can turn a setting corresponding to an underdetermined system into a setting for an overdetermined
system. But of course, these overdetermined systems will not be generic, and they will have “fake” solutions
like in the example.
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A more sensible course of action is to take into account this defect of genericity when counting how
many values are needed for guessing a relation for (an). Namely, in order to guess a recurrence of order r
and degree d for (an), one should ensure to have at least N terms, for some N such that

N ≥ m
(⌊ r

m

⌋
+ 1
)(

d + 2
)
.

Similarly, if a(x) = ā(xm) and we want to guess a polynomial equation of order r and degree d for a(x),
without removing zeros, one should use at least N terms, for some N such that

N ≥ m
(
r + 1

)(⌊ d

m

⌋
+ 1

)
.

4 What about differential equations?

Interestingly, the case of differential equations is slightly different. If a power power series a(x) =∑∞
n=0 anx

n satisfies a certain linear differential equation
∑r

i=0

∑d
j=0 ci,jx

ja(i)(x) = 0, then neither re-
moving nor adding zeros may be a good idea (unless we write the differential equation in terms of the
Euler derivation rather than the standard derivation, but this is cheating because it changes the degree).
As shown by the following example, there is no immediate counterpart of Propositions 1 and 2.

Example 3. Consider the formal power series cos(x) = 1 − x2

2 + x4

24 + . . . . It satisfies the differential
equation

cos′′(x) + cos(x) = 0

of order 2 and degree 0. However, a(x) = cos(x2) does not satisfy any differential equation with degree 0
or 1, the smallest equations have order 2 and degree 3, or order 3 and degree 2:

xa′′(x)− a′(x) + 4x3a(x) = a(3)(x) + 4x2a′(x) + 12xa(x) = 0.

Removing the zeros in the data of cos(x) also leads to a larger equation for b(x) = cos(
√
x), at its smallest

annihilating equation has order 2 and degree 1:

4xb′′(x) + 2b′(x) + b(x) = 0.
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