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Abstract

We exploit symmetries to give short proofs for two prominent formula families of QBF proof complexity
theory. On the one hand, we employ symmetry breakers. On the other hand, we enrich the (relatively weak)
QBF resolution calculus Q-Res with the symmetry rule and obtain separations to powerful QBF calculi.
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1. Introduction

A Quantified Boolean Formula (QBF) is a formula
of the form P.φ, where φ is a propositional formula,
say in the variables x1, . . . , xn, and P is a quantifier
prefix P = Q1x1Q2x2 · · ·Qnxn with Qi ∈ {∀,∃}.
From QBF proof complexity theory, it is known
that the shortest proof of certain QBFs may have
exponential size in a resolution-based calculus [7, 4].
We consider here two families of QBFs (cf. Sec-
tion 2) which play a prominent role in QBF proof
complexity for separating various calculi. We make
the observation that short proofs can be obtained
if we take into account the symmetries of the for-
mulas. In Section 3, we do so by using symmetry
breakers. In Section 4, we enrich the oldest vari-
ant of the resolution calculus for QBF, Q-Res [6],
by a symmetry rule, generalizing an idea reported
in [8, 9] for SAT. In both cases, it turns out that
the proof sizes for both families of formulas shrinks
from exponential to linear. As consequences, we
obtain separation results between Q-Res with the
symmetry rule and powerful proof systems like IR-
calc [4] and LQU+ [2] (cf. Section 5).

Let us recall some basic facts and fix some nota-
tion. We only consider QBFs P.φ where φ is in
conjunctive normal form (CNF), i.e., φ is a con-
junction of clauses, each clause being a disjunction
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of literals, each literal being a variable or a negated
variable, i.e., if x is a variable, x and x̄ are literals.
We also view clauses as sets of literals. The pre-
fix P = Q1x1 . . . Qnxn imposes an order <P on its
variables: xi <P xj if i < j. The Q-Res calculus [6]
applies the following rules on a QBF P.φ:

A Any non-tautological clause of φ can be de-
rived.

R From the already derived clauses C ∨ x and
C ′ ∨ x̄ with existentially quantified variable x
and C,C ′ such that C ∪ C ′ is not a tautology,
the clause C ∨ C ′ can be derived.

U Let C ∨ l be an already derived clause where l
is a universal literal, l̄ 6∈ C and all existential
literals k ∈ C are such that k <P l. Then the
clause C can be derived.

In the following, we will not mention the appli-
cation of the axiom rule A explicitly. We write

C1, C2
R−→ C and D1

U−→ D for the applica-
tion of R and U. A refutation of a QBF P.φ is
the consecutive application of the resolution rule R
and the universal reduction rule U until the empty
clause is derived. Q-Res is sound and complete [6].

Finally, let us recall the notion of (syntactic) sym-
metries for QBFs [5]. A bijective map σ from the set
{x1, . . . , xn, x̄1, . . . , x̄n} of literals to itself is called
admissible for a prefix P = Q1x1 . . . Qnxn if for
all x ∈ {x1, . . . , xn} we have σ(x) = σ(x̄) and x,
σ(x) belong to the same quantifier block, i.e., for
all i, j ∈ {1, . . . , n} we have σ(xi) ∈ {xj , x̄j} only
if Qmin(i,j) = Qmin(i,j)+1 = · · · = Qmax(i,j). An ad-
missible function σ is called a symmetry for a QBF
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P.φ if applying σ to all literals in φ maps φ to itself
(up to reordering clauses and literals).

2. Formula Families

We consider the following two families of formulas.

Definition 1 ([6]). For n ∈ N, the formula
KBKFn is defined by the prefix

∃x1y1∀a1∃x2y2∀a2 . . . ∃xnyn∀an∃z1 . . . zn

and the following clauses:

• C1 = (x̄1 ∨ ȳ1)

• for j = 1, . . . , n− 1:

C2j = (xj ∨ āj ∨ x̄j+1 ∨ ȳj+1)
C2j+1 = (yj ∨ aj ∨ x̄j+1 ∨ ȳj+1).

• C2n = (xn ∨ ān ∨ z̄1 ∨ . . . ∨ z̄n),
C2n+1 = (yn ∨ an ∨ z̄1 ∨ . . . ∨ z̄n)

• for j = 1, . . . , n:

B2j−1 = (aj ∨ zj) and B2j = (āj ∨ zj).

For every n ∈ N, the formula KBKFn is false, and
it is known [6, 4, 3] that any Q-Res refutation needs
a number of steps which is at least exponential in n.

Definition 2 ([4]). For n ∈ N with n > 1, the
formula QUPARITYn is defined by the prefix

∃x1 . . . xn∀a1a2∃y2 . . . yn

and the following clauses:

• A2 = (x̄1 ∨ x̄2 ∨ ȳ2 ∨ a1 ∨ a2)
B2 = (x̄1 ∨ x2 ∨ y2 ∨ a1 ∨ a2)
C2 = (x1 ∨ x̄2 ∨ y2 ∨ a1 ∨ a2)
D2 = (x1 ∨ x2 ∨ ȳ2 ∨ a1 ∨ a2)

• for j = 3, . . . , n:

Aj = (ȳj−1 ∨ x̄j ∨ ȳj ∨ a1 ∨ a2)
Bj = (ȳj−1 ∨ xj ∨ yj ∨ a1 ∨ a2)
Cj = (yj−1 ∨ x̄j ∨ yj ∨ a1 ∨ a2)
Dj = (yj−1 ∨ xj ∨ ȳj ∨ a1 ∨ a2)

• E1 = (a1 ∨ a2 ∨ yn) and E2 = (ā1 ∨ ā2 ∨ ȳn)

• for i = 2, . . . , n, A′i, B
′
i, C
′
i, D

′
i are obtained

from Ai, Bi, Ci, Di by replacing a1 ∨ a2 by
ā1 ∨ ā2.

QUPARITYn is a variant of the QPARITYn fam-
ily [4] which encodes ∃x1 . . . xn∀z.z 6= x1⊕· · ·⊕xn,
where ⊕ stands for exclusive or. Obviously all these
formulas are false. Refuting QPARITYn needs an
exponential number of steps in the calculus Q-Res,
but not in the stronger calculus LQU+. We use
QUPARITYn instead of QPARITYn because for
this family, also LQU+ needs exponentially many
steps [4]. This will be used in Section 5.

3. Symmetry Breakers

A symmetry breaker for P.φ is a certain Boolean
formula ψ over the variables of P such that when
P.φ is true, so is P.(φ ∧ ψ). Typically, ψ is cho-
sen in such a manner that P.(φ ∧ ψ) has fewer
symmetries than P.φ, hence the name symmetry
breaker. A detailed discussion on symmetry break-
ers for QBF can be found in [5]. Given the prefix
P = Q1x1 · · ·Qnxn and a set S of symmetries for
QBF P.φ, it was shown in [1, 5] that

ψ =

n∧
i=1

Qi=∃

∧
σ∈S

((∧
j<i

(xj ↔ σ(xj))
)
→ (xi → σ(xi))

)

is a symmetry breaker for any QBF P.φ.

For the formulas KBKFn (Def. 1), we have for every
i = 1, . . . , n the symmetry σi = (xi yi)(x̄i ȳi)(ai āi)
which exchanges the variables xi, yi, the literals
x̄i, ȳi, and the literals ai, āi. Therefore,

ψn = (x̄1 ∨ y1) ∧ · · · ∧ (x̄n ∨ yn)

is a symmetry breaker for KBKFn.

Proposition 1. For n ∈ N, write KBKFn as
Pn.φn and let ψn be the symmetry breaker from
above. Then Pn.(φn ∧ ψn) has a refutation proof
with no more than 4n steps.

The proof proceeds as follows.

• C1, (x̄1 ∨ y1)
R−→ U0 := x̄1.

• for j = 1, . . . , n− 1, do

C2j , Uj−1
R−→ Ũj := (

∨j
i=1 āi∨x̄j+1∨ȳj+1).

Ũj , (x̄j+1∨yj+1)
R−→ Uj := (

∨j
i=1 āi∨x̄j+1).

Then Un−1 = (ā1 ∨ · · · ∨ ān−1 ∨ x̄n).

• C2n, Un−1
R−→ V0 := (

∨n
i=1 āi∨z̄1∨· · ·∨z̄n).
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• for j = 1, . . . , n, do

Vj−1, B2j
R−→ Vj := (

∨n
i=1 āi ∨

∨n
i=j+1 z̄i).

Then W0 := Vn = (ā1 ∨ · · · ∨ ān).

• for j = 1, . . . , n, do

Wj−1
U−→ Wj := (āj+1 ∨ · · · ∨ ān).

Wn is the empty clause.

For the formulas QUPARITYn, the argument is
similar. In this case, we have the symmetries
σ1 = (x1 x2)(x̄1 x̄2) and

σi = (xi x̄i)(a1 ā1)(a2 ā2)(yi ȳi) · · · (yn ȳn)

for every i = 2, . . . , n. There are some further sym-
metries which we will not need. The symmetries
σ1, . . . , σn give rise to the symmetry breaker

ψn = (x̄1 ∨ x2) ∧ x̄2 ∧ · · · ∧ x̄n

for QUPARITYn.

Proposition 2. For n ∈ N with n > 1, write
QUPARITYn as Pn.φn, and let ψn be the symme-
try breaker from above. Then Pn.(φn ∧ ψn) has a
refutation proof with no more than 2n+ 1 steps.

The proof proceeds as follows.

• D2, (x̄1 ∨ x2)
R−→ U1 := (x2 ∨ ȳ2 ∨ a1 ∨ a2).

• U1, x̄2
R−→ U2 := (ȳ2 ∨ a1 ∨ a2).

• for j = 3, . . . , n, do

Dj , x̄j
R−→ D̃j := (yj−1 ∨ ȳj ∨ a1 ∨ a2).

• for j = 3, . . . , n, do

Uj−1, D̃j
R−→ Uj := (ȳj ∨ a1 ∨ a2).

• Un = (ȳn ∨ a1 ∨ a2), E1
R−→ (a1 ∨ a2).

• (a1 ∨ a2)
U−→ a2

U−→ empty clause.

4. The Symmetry Rule

As an alternative to using symmetry breakers, we
can enrich the calculus Q-Res as introduced in Sec-
tion 1 to the calculus Q-Res+S by adding the fol-
lowing rule, which allows us to exploit symmetries
of the input formula P.φ within the proof.

S From an already derived clause C and a sym-
metry σ of P.φ, the clause σ(C) can be derived.

Several variants of this rule have been proposed for
SAT in [8, 9], but to our knowledge it has not yet
been considered in the context of QBF. However, it
is easy to see that the rule also works for QBF.

Proposition 3. Let P.φ be a QBF, and suppose
that C is a clause which can be derived from φ using
the rules S, R, U. Then it can also be derived using
only the rules R, U.

Proof. Suppose otherwise. Then there are clauses
which can be derived with S, R, U but not with
R, U alone. Let C be such a clause, and consider
a derivation of C with a minimal number of ap-
plications of S. The rule S is used at least once
during the derivation. Consider its earliest appli-
cation, suppose this application derives σ(D) from
the clause D. If we can show that σ(D) can also be
derived using only R and U, then we can eliminate
this first application of S in the derivation of C and
obtain a contradiction to the assumed minimality.

To show that σ(D) can be derived using only R
and U, observe first that D was derived only using
R and U. For an admissible function σ, we have
σ(x) = σ(x̄) for every variable x. Therefore, if a
clause E can be derived by R from two clauses E1

and E2, we can derive σ(E) by R from σ(E1) and
σ(E2). Furthermore, an admissible function can-
not permute literals across quantifier blocks, which
implies that if F can be derived by U from F1,
then σ(F ) can be derived by U from σ(F1). Fi-
nally, when σ is a symmetry of φ and G is a clause
of φ, then also σ(G) is a clause of φ. By combining
these three observations, it follows that applying σ
to all clauses appearing in the derivation of D yields
a derivation of σ(D). This completes the proof. �

According to the previous proposition, with S we
cannot derive any clause that we cannot also derive
without. Therefore, soundness of Q-Res+S follows
from soundness of Q-Res. Next, we illustrate that
Q-Res+S allows for shorter proofs than Q-Res. For

the application of S, we write C, σ
S−→ D.

Proposition 4. For every n ∈ N, the formula
KBKFn can be refuted by no more than 5n applica-
tions of S, R, U.

We proceed as follows by using the symmetries of
the form σi = (xi yi)(x̄i ȳi)(ai āi) for i = 1, . . . , n.

• set Un+1 = C2n+1.
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• for j = n, . . . , 1, do

Uj+1, B2j−1
R−→ Uj := (yn ∨

∨n
i=j ai ∨∨j−1

i=1 z̄i).

• set Wn := U1 = (yn ∨ a1 ∨ · · · ∨ an).

• for j = n, . . . , 2, do

Wj
U−→ Vj := (yj ∨

∨j−1
i=1 ai).

Vj , σj
S−→ V ′j := (xj ∨

∨j−1
i=1 ai).

V ′j , C2j−1
R−→ V ′′j := (yj−1 ∨ ȳj ∨

∨j−1
i=1 ai).

V ′′j , Vj
R−→ Wj−1 := (yj−1 ∨

∨j−1
i=1 ai).

• W1 = (y1 ∨ a1)
U−→ V1 = y1.

• V1, σ1
S−→ V ′1 := x1.

• V ′1 , C1
R−→ V ′′1 := ȳ1.

• V ′′1 , V1
R−→ empty clause.

Proposition 5. For every n ∈ N with n > 1, the
formula QUPARITYn can be refuted by no more
than 3n+ 2 applications of S, R, U.

Recall from Section 4 that QUPARITYn has the
symmetries σ1 = (x1 x2)(x̄1 x̄2) and σi =
(xi x̄i)(a1 ā1)(a2 ā2)(yi ȳi) · · · (yn ȳn) for i > 1.

• Dn, E1
R−→ Un := (yn−1 ∨ xn ∨ a1 ∨ a2).

• for j = n− 1, . . . , 3, do

Dj , Uj+1
R−→ Uj := (yj−1∨

∨n
i=j xi∨a1∨a2).

• D2, U3
R−→ U2 := (

∨n
i=1 xi ∨ a1 ∨ a2).

• U2
U−→

∨n
i=1 xi ∨ a1

U−→ Vn :=
∨n
i=1 xi.

• for j = n, . . . , 2, do

Vj , σj
S−→ Wj := (x1 ∨ · · · ∨ xj−1 ∨ x̄j).

Vj , Wj
R−→ Vj−1 := (x1 ∨ · · · ∨ xj−1).

• V1 = x1, σ1
S−→ W1 := x2.

• W1, σ2
S−→ W2 := x̄2.

• W1, W2
R−→ empty clause.

5. Consequences

From recent results, it is known that plain Q-Res
is rather weak (for a fine-grained comparison of
QBF proof systems see [4]). Both, the expansion-
based proof system IR-calc and the CDCL-based
proof system LQU+ are strictly stronger than Q-
Res. The addition of the symmetry rule changes
the situation. While the QUPARITYn formulas are
hard for LQU+ and the KBKFn formulas are hard
for IR-calc, we have shown that both are easy for
Q-Res+S. Now one may ask if Q-Res+S is strictly
stronger than IR-calc or LQU+. The answer is
clearly “no”. For KBKFn, the application of the
symmetry rule can be hindered by introducing n
universally quantified variables bi which are placed
between xi and yi in the prefix, and changing each
clause C2j to C2j ∨ bj . For this modified formula,
LQU+ can still find a short proof, but Q-Res+S can
only apply R and U, hence it falls back to Q-Res
which does not exhibit short proofs for KBKFn. In
a similar way, QUPARITYn can be modified such
that these formulas remain simple for IR-calc, but
become hard for Q-Res+S.

Proposition 6. Q-Res+S and IR-calc are incom-
parable, and so are Q-Res+S and LQU+.

For the future, the effects of adding S to more pow-
erful proof systems than Q-Res remain to be inves-
tigated.
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