## SYMMETRY BREAKING FOR QUANTIFIED BOOLEAN FORMULAS



Manuel Kauers · JKU Martina Seidl · JKU







ullet The square is a certain subset of the plane  $\mathbb{R}^2$ 

- The square is a certain subset of the plane  $\mathbb{R}^2$
- A symmetry of the square is a bijective function  $f\colon \mathbb{R}^2\to \mathbb{R}^2$  which preserves the square

- The square is a certain subset of the plane  $\mathbb{R}^2$
- A symmetry of the square is a bijective function  $f\colon \mathbb{R}^2\to \mathbb{R}^2$  which preserves the square
- Symmetries form a group with composition

- The square is a certain subset of the plane  $\mathbb{R}^2$
- A symmetry of the square is a bijective function  $f\colon \mathbb{R}^2\to \mathbb{R}^2$  which preserves the square
- Symmetries form a group with composition
- We may restrict ourselves to a subgroup of "easy" symmetries, for example, linear transformations

- The square is a certain subset of the plane  $\mathbb{R}^2$
- A symmetry of the square is a bijective function  $f\colon \mathbb{R}^2\to \mathbb{R}^2$  which preserves the square
- Symmetries form a group with composition
- We may restrict ourselves to a subgroup of "easy" symmetries, for example, linear transformations
- Any such a subgroup splits the square into orbits

- The square is a certain subset of the plane  $\mathbb{R}^2$
- A symmetry of the square is a bijective function  $f\colon \mathbb{R}^2\to \mathbb{R}^2$  which preserves the square
- Symmetries form a group with composition
- We may restrict ourselves to a subgroup of "easy" symmetries, for example, linear transformations
- Any such a subgroup splits the square into orbits
- An orbit is a set of points which can be mapped to one another by a symmetry













0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1  $\odot$ 0  $\bigcirc$ 0  $\bigcirc$ 0 () () ()  $\bigcirc$ 0 1 1 1  $\bigcirc$  $\bigcirc$  $\bigcirc$ 1  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ (1)

(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)Ļ () () () 0 0 0 0 ٩ 0 1 1 1 1 0 1 1 1 1  $\bigcirc$ ٩ ¢ 1  $\bigcirc$ 0  $\bigcirc$ 1  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ (1) $\bigcirc$ (1) $\bigcirc$ 

• A symmetry of a set of bit strings is a bijection  $\{0,1\}^n \rightarrow \{0,1\}^n$  which maps the set to itself

- A symmetry of a set of bit strings is a bijection  $\{0,1\}^n \to \{0,1\}^n$  which maps the set to itself
- Symmetries form a group with composition

- A symmetry of a set of bit strings is a bijection  $\{0,1\}^n \to \{0,1\}^n$  which maps the set to itself
- Symmetries form a group with composition
- We may restrict ourselves to a subgroup of "easy" symmetries, for example, only permuting or flipping coordinates

- A symmetry of a set of bit strings is a bijection  $\{0,1\}^n \to \{0,1\}^n$  which maps the set to itself
- Symmetries form a group with composition
- We may restrict ourselves to a subgroup of "easy" symmetries, for example, only permuting or flipping coordinates
- Any such a subgroup splits the set into orbits

- A symmetry of a set of bit strings is a bijection  $\{0,1\}^n \to \{0,1\}^n$  which maps the set to itself
- Symmetries form a group with composition
- We may restrict ourselves to a subgroup of "easy" symmetries, for example, only permuting or flipping coordinates
- Any such a subgroup splits the set into orbits
- An orbit is a set of bit strings which can be mapped to one another by a symmetry

0 0 0 0 0 0 0 0  $\bigcirc$ 0  $\bigcirc$ 0 0 0 ٢ 1 1 0  $\bigcirc$  $\bigcirc$ ¢ (1)1 1 1 1 0 ( )1 0 ٩ ٢ 1 1 ٩ 0 0 1 1 ( $\bigcirc$ (1)٥ (1)1  $\bigcirc$ 1  $\bigcirc$ 1 (1) $\bigcirc$  $\bigcirc$ (1) $\bigcirc$  $\bigcirc$  $\bigcirc$ (1) $\bigcirc$ 1  $\bigcirc$ 1 (1)(1)

(1)(1)1 (1)1 (1)(1)(1)(1)(1) $\odot$ (0  $\bigcirc$ ٢ ٢  $\bigcirc$ 1 1 1 (1) $\bigcirc$ ٢ 1  $\bigcirc$ (1)1  $\bigcirc$ 1 0 (1) $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 1 1 1 (1)٢  $\bigcirc$ 

0 0 0 0 0  $\bigcirc$ 0 0 0 0 0 0  $\bigcirc$ 0 0 0  $\bigcirc$ 1 1 0  $\bigcirc$ 0 0 0 0 (1)1 1 1 1 0 ( )1 0 ٩ ٢ 1 1 ٩ 0 0 1 1 ((1)(1)٥ (1)1  $\bigcirc$  $\bigcirc$ 1  $\bigcirc$ ٢ 1 (1) $\bigcirc$  $\bigcirc$ (1) $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ (1)(0)(1)1  $\bigcirc$ 1 (1)(1)

(1)(1)1 (1)1 (1)(1)(1)(1)(1) $\odot$  $\bigcirc$ 0  $\bigcirc$ ٢ ٢  $\bigcirc$ 1 1 1 (1) $\bigcirc$ ٢ 1  $\bigcirc$ (1)1  $\bigcirc$  $\bigcirc$ 0 (1) $\bigcirc$  $\bigcirc$ 1  $\bigcirc$  $\bigcirc$  $\bigcirc$ 1 1 1 (1)٢  $\bigcirc$ 

0 0 0 0 0  $\bigcirc$ 0 0 0 0  $\bigcirc$ 0 0 0 ٢ 1 1 1 0  $\bigcirc$  $\bigcirc$ ¢ (1)1 1 1 (1)0 ( )1 0 ٢ ٢ 1 1 ٩ 0 0 1 1 ( $\bigcirc$ (1)٥ (1)1  $\bigcirc$ 1  $\bigcirc$ ٢ 1 (1)0  $\bigcirc$ (1) $\bigcirc$  $\bigcirc$  $\bigcirc$ (1) $\bigcirc$ 1  $\bigcirc$ 1 (1) $\bigcirc$ (1)

(1)(1)(1)(1)(1)1 (1)(1)(1)(1)(1) $\odot$ 0  $\bigcirc$  $\bigcirc$ 0 0  $\bigcirc$ 1 1  $\bigcirc$ 1 (1) $\bigcirc$  $\bigcirc$ 1  $\bigcirc$ (1)1  $\bigcirc$  $\bigcirc$ 0  $(\mathbf{0})$ (1) $\bigcirc$  $\bigcirc$ 1  $\bigcirc$  $\bigcirc$  $\bigcirc$ (0)1 (1)٢  $\bigcirc$ (1)

0 0 0 0 0 0 0 0 0 0  $\bigcirc$ 0 0 0 ٢ 1 1 0  $\bigcirc$  $\bigcirc$ ¢ (1)1 1 1 1 0 ( )1 0 ٩ ٢ 1 1 ٩ 0 0 1 1 ((1)٥ (1)1  $\bigcirc$ 1  $\bigcirc$ ٢ (1) $\bigcirc$  $\bigcirc$ (1) $\bigcirc$  $\bigcirc$  $\bigcirc$ (1) $\bigcirc$ 1  $\bigcirc$ 1 (1)(1)

(1)(1)(1)(1)1 (1)(1)(1)(1)(1)(1) $\odot$  $\bigcirc$ 0  $\bigcirc$ ٢ ٢ 1 1  $\bigcirc$ 1 (1) $\bigcirc$ ٢ 1  $\bigcirc$ (1)1  $\bigcirc$  $\bigcirc$  $\bigcirc$ 0  $\bigcirc$ (1) $\bigcirc$  $\bigcirc$ 1  $\bigcirc$  $\bigcirc$  $\bigcirc$ 1 1 (1)(1)٢  $\bigcirc$  $\bigcirc$ 

0 0 0 0 0 0 0 0 0 0  $\bigcirc$ 0 0 0 ٢ 1 1 0  $\bigcirc$  $\bigcirc$ ¢ (1)1 1 1 1 0 ( )1 0 ٩ ٢ 1 1 ٩ 0 0 1 1 ((1)٥ (1)1  $\bigcirc$ 1  $\bigcirc$ ٢ (1) $\bigcirc$  $\bigcirc$ (1) $\bigcirc$  $\bigcirc$  $\bigcirc$ (1) $\bigcirc$ 1  $\bigcirc$ 1 (1)(1)

(1)(1)(1)(1)1 (1)(1)(1)(1)(1)(1)(1) $\odot$  $\bigcirc$ 0  $\bigcirc$ ٢ ٢ (1)1 1  $\bigcirc$ (1)(1) $\bigcirc$ ٢ 1  $\bigcirc$  $\bigcirc$ (1)1  $\bigcirc$ 0  $\bigcirc$ 0  $\bigcirc$ (1) $\bigcirc$  $\bigcirc$ 1  $\bigcirc$  $\bigcirc$  $\bigcirc$ 1 1 1  $(\mathbf{0})$ (1)٢  $\bigcirc$ (1)

0 0 0 0 0 0 0 0  $\bigcirc$ 0  $\bigcirc$ 0 0 0 ٢ 1 1 0  $\bigcirc$  $\bigcirc$ ¢ (1)1 1 1 1 0 ( )1 0 ٩ ٢ 1 1 ٩ 0 0 1 1 ( $\bigcirc$ (1)٥ (1)1  $\bigcirc$ 1  $\bigcirc$ 1 (1) $\bigcirc$  $\bigcirc$ (1) $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 1  $\bigcirc$ 1 (1)(1)

(1)(1)1 (1)1 (1)(1)(1)(1)(1) $\odot$ (0  $\bigcirc$ ٢ ٢  $\bigcirc$ 1 1 1 (1) $\bigcirc$ ٢ 1  $\bigcirc$ (1)1  $\bigcirc$ 1 0 (1) $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 1 1 1 (1)٢  $\bigcirc$ 

0 0 0 0 0 0 0 0 0 0  $\bigcirc$ 0 0 0 ٢ 1 0  $\bigcirc$  $\bigcirc$ 0 (1)1 1 1 (1)1 0 ( )0 ٩ ٢ 1 1 ٩ 0 0 1 (٥ (1)1  $\bigcirc$ 1  $\bigcirc$ ٢ 1 (1) $\bigcirc$ (1) $\bigcirc$ (1) $\bigcirc$  $\bigcirc$ (1) $\bigcirc$ 1  $\bigcirc$ 1 (1) $\bigcirc$ (1)

(1)(1)(1)(1)(1)1 (1)(1)(1)(1)(1) $\odot$ 0  $\bigcirc$ ٢  $\bigcirc$  $\bigcirc$ 1 1  $\bigcirc$ 1 (1) $\bigcirc$ ٢  $\bigcirc$ (1)1  $\bigcirc$ 1 0  $\bigcirc$ (1)(1) $\bigcirc$  $\bigcirc$  $\bigcirc$  $\bigcirc$ 1 (1) $\bigcirc$ (1)٢  $\bigcirc$ 1

• Let  $\Sigma$  be a set of (unquantified) Boolean formulas, and  $\varphi\in \Sigma.$ 

- Let  $\Sigma$  be a set of (unquantified) Boolean formulas, and  $\varphi\in \Sigma.$
- A symmetry of  $\varphi$  is a bijection  $\Sigma\to\Sigma$  which maps  $\varphi$  to an equivalent formula

- Let  $\Sigma$  be a set of (unquantified) Boolean formulas, and  $\varphi\in \Sigma.$
- A symmetry of  $\varphi$  is a bijection  $\Sigma\to\Sigma$  which maps  $\varphi$  to an equivalent formula
- Symmetries form a group with composition

- Let  $\Sigma$  be a set of (unquantified) Boolean formulas, and  $\varphi\in \Sigma.$
- A symmetry of  $\varphi$  is a bijection  $\Sigma\to\Sigma$  which maps  $\varphi$  to an equivalent formula
- Symmetries form a group with composition
- We may restrict ourselves to a subgroup of "easy" symmetries, for example, only permuting or flipping literals

- Let  $\Sigma$  be a set of (unquantified) Boolean formulas, and  $\varphi\in \Sigma.$
- A symmetry of  $\varphi$  is a bijection  $\Sigma\to\Sigma$  which maps  $\varphi$  to an equivalent formula
- Symmetries form a group with composition
- We may restrict ourselves to a subgroup of "easy" symmetries, for example, only permuting or flipping literals
- Any such subgroup splits  $\boldsymbol{\Sigma}$  into orbits

- Let  $\Sigma$  be a set of (unquantified) Boolean formulas, and  $\varphi\in \Sigma.$
- A symmetry of  $\varphi$  is a bijection  $\Sigma\to\Sigma$  which maps  $\varphi$  to an equivalent formula
- Symmetries form a group with composition
- We may restrict ourselves to a subgroup of "easy" symmetries, for example, only permuting or flipping literals
- Any such subgroup splits  $\boldsymbol{\Sigma}$  into orbits
- All formulas in the orbit containing  $\varphi$  are equivalent to  $\varphi$

- Let G be a group of Boolean isomorphisms  $\Sigma\to\Sigma$ 

- Let G be a group of Boolean isomorphisms  $\Sigma\to\Sigma$
- A formula  $\psi \in \Sigma$  is a (syntactic) symmetry breaker for G if

 $\forall \ \sigma \in \{0,1\}^n \ \exists \ g \in G : [ \ g(\psi) ]_{\sigma} = \top$ 

- Let G be a group of Boolean isomorphisms  $\Sigma\to\Sigma$
- A formula  $\psi \in \Sigma$  is a (syntactic) symmetry breaker for G if

$$\forall \ \sigma \in \{0,1\}^n \ \exists \ g \in G : [g(\psi)]_{\sigma} = \top$$

• Key fact: if G is a symmetry group for  $\phi \in \Sigma$  and  $\psi$  is a symmetry breaker for G then  $\phi$  has a solution if and only if  $\phi \land \psi$  has a solution.

• Let G be a group of bijective functions  $\{0,1\}^n \to \{0,1\}^n$ 

- Let G be a group of bijective functions  $\{0,1\}^n \to \{0,1\}^n$
- A formula  $\psi \in \Sigma$  is a (semantic) symmetry breaker for G if

 $\forall \ \sigma \in \{0,1\}^n \ \exists \ g \in G : [\psi]_{g(\sigma)} = \top$ 

- Let G be a group of bijective functions  $\{0,1\}^n \to \{0,1\}^n$
- A formula  $\psi \in \Sigma$  is a (semantic) symmetry breaker for G if

$$\forall \ \sigma \in \{0,1\}^n \ \exists \ g \in G : [\psi]_{g(\sigma)} = \top$$

• Key fact: if G is a symmetry group of the solution set of  $\phi \in \Sigma$  and  $\psi$  is a symmetry breaker for G then  $\phi$  has a solution if and only if  $\phi \land \psi$  has a solution.



every  $\sigma \in \{0,1\}^n$  is a solution of at least one formula in the orbit of  $\psi$ 





every orbit of  $\{0,1\}^n$ contains at least one solution of  $\psi$ 

$$\phi(x_1, x_2, x_3, x_4, x_5)$$

$$0 - 1 - 0 - 0 - 1$$

$$\phi(x_1, x_4, x_3, x_2, x_5)$$

$$\phi(x_1, x_4, \overline{x_3}, x_2, x_5)$$

$$0 - 0 - 1 - 1 - 1$$

• Idea: impose an order on the bit strings and take a formula which kills all non-minimal elements of each orbit.

- Idea: impose an order on the bit strings and take a formula which kills all non-minimal elements of each orbit.
- Then the minimal elements of each orbit survive, and all we need is at least one survivor per orbit.

$$\psi = \bigwedge_{g \in G} \left( (x_1, \dots, x_n) \le (g(x_1), \dots, g(x_n)) \right)$$

- Idea: impose an order on the bit strings and take a formula which kills all non-minimal elements of each orbit.
- Then the minimal elements of each orbit survive, and all we need is at least one survivor per orbit.

$$\psi = \bigwedge_{g \in G} \bigwedge_{i=1}^{n} \Bigl(\bigwedge_{j < i} (x_j = g(x_j)) \to (x_i \leq g(x_i)) \Bigr)$$

- Idea: impose an order on the bit strings and take a formula which kills all non-minimal elements of each orbit.
- Then the minimal elements of each orbit survive, and all we need is at least one survivor per orbit.

$$\psi = \bigwedge_{g \in G} \bigwedge_{i=1}^{n} \Bigl(\bigwedge_{j < i} (x_j = g(x_j)) \to (x_i \le g(x_i)) \Bigr)$$

 Observe that we use a "syntactic" group but a "semantic" justification.

• Consider the formula  $\phi = (x \lor y) \land (y \lor z) \land (z \lor x)$ 

- Consider the formula  $\varphi = (x \vee y) \wedge (y \vee z) \wedge (z \vee x)$
- Consider the symmetry group  $G = \{ id, \frac{\gamma}{x}, \frac{\gamma}{z}, \frac{\gamma}{x}, \frac{\gamma}{z} \}$

- Consider the formula  $\varphi = (x \vee y) \wedge (y \vee z) \wedge (z \vee x)$
- Consider the symmetry group  $G = \{id, \frac{7}{x}, \frac{y}{z}, \frac{z}{x}, \frac{y}{z}\}$



- Consider the formula  $\varphi = (x \lor y) \land (y \lor z) \land (z \lor x)$
- Consider the symmetry group  $G = \{ id, \frac{z}{x}, \frac{z}{z}, \frac{z}{x}, \frac{z}{z} \}$



+  $\psi = (x \rightarrow y) \land (y \rightarrow z)$  is a symmetry breaker for G

- Consider the formula  $\varphi = (x \lor y) \land (y \lor z) \land (z \lor x)$
- Consider the symmetry group  $G = \{ id, \frac{z}{x}, \frac{z}{z}, \frac{z}{x}, \frac{z}{z} \}$



+  $\psi = (x \rightarrow y) \land (y \rightarrow z)$  is a symmetry breaker for G

- Consider the formula  $\varphi = (x \lor y) \land (y \lor z) \land (z \lor x)$
- Consider the symmetry group  $G = \{ id, \chi = \frac{\gamma}{x}, \chi = \frac{\gamma}{x}, \chi = \frac{\gamma}{x} \}$



- $\psi = (x \rightarrow y) \land (y \rightarrow z)$  is a symmetry breaker for G
- Instead of solving  $\phi$ , we can solve  $\phi \wedge \psi$ .

# What about QBF?

# $\exists x_1, x_2 \forall x_3, x_4 \exists x_5, x_6. \phi(x_1, x_2, x_3, x_4, x_5, x_6)$

 $\exists x_1, x_2 \forall x_3, x_4 \exists x_5, x_6. \phi(x_1, x_2, x_3, x_4, x_5, x_6)$ 



 $\exists \mathbf{x}_1, \mathbf{x}_2 \forall \mathbf{x}_3, \mathbf{x}_4 \exists \mathbf{x}_5, \mathbf{x}_6. \mathbf{\varphi}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6)$ 





 $\exists x_1, x_2 \forall x_3, x_4 \exists x_5, x_6. \varphi(x_1, x_2, x_3, x_4, x_5, x_6)$ 



 $\exists x_1, x_2 \forall x_3, \mathbf{x}_4 \exists x_5, x_6. \phi(x_1, x_2, x_3, \mathbf{x}_4, x_5, x_6)$ 



 $\exists x_1, x_2 \forall x_3, x_4 \exists x_5, x_6. \varphi(x_1, x_2, x_3, x_4, x_5, x_6)$ 



 $\exists x_1, x_2 \forall x_3, x_4 \exists x_5, \mathbf{x_6}, \phi(x_1, x_2, x_3, x_4, x_5, \mathbf{x_6})$ 



 $\exists x_1, x_2 \forall x_3, x_4 \exists x_5, x_6. \phi(x_1, x_2, x_3, x_4, x_5, x_6)$ 



















 $\exists x_1, x_2 \forall x_3, x_4 \exists x_5, x_6. \phi(x_1, x_2, x_3, x_4, x_5, x_6)$ 



Given a quantifier prefix P, we write  $\mathbb{S}(P)$  for the corresponding set of tree assignments.

bijectively map (unquantified) formulas to (unquantified) formulas

- bijectively map (unquantified) formulas to (unquantified) formulas
- must respect logical connectives:

 $f(\varphi_1 \land \varphi_2) = f(\varphi_1) \land f(\varphi_2)$ , etc.

- bijectively map (unquantified) formulas to (unquantified) formulas
- must respect logical connectives:  $f(\varphi_1 \land \varphi_2) = f(\varphi_1) \land f(\varphi_2)$ , etc.
- must respect quantifier blocks:  $f(x_i)$  must only contain variables in the same block as  $x_i$

- bijectively map (unquantified) formulas to (unquantified) formulas
- must respect logical connectives:  $f(\varphi_1 \land \varphi_2) = f(\varphi_1) \land f(\varphi_2)$ , etc.
- must respect quantifier blocks:  $f(x_i)$  must only contain variables in the same block as  $x_i$

## Semantic symmetries

- bijectively map (unquantified) formulas to (unquantified) formulas
- must respect logical connectives:  $f(\phi_1 \land \phi_2) = f(\phi_1) \land f(\phi_2)$ , etc.
- must respect quantifier blocks:  $f(x_i)$  must only contain variables in the same block as  $x_i$

### Semantic symmetries

• bijectively map tree assignments to tree assignments

- bijectively map (unquantified) formulas to (unquantified) formulas
- must respect logical connectives:  $f(\phi_1 \land \phi_2) = f(\phi_1) \land f(\phi_2)$ , etc.
- must respect quantifier blocks:  $f(x_i)$  must only contain variables in the same block as  $x_i$

### Semantic symmetries

- bijectively map tree assignments to tree assignments
- in principle no restrictions

• Let P be a quantifier prefix

- Let P be a quantifier prefix
- Let  $G_{\text{syn}}$  be a group of isomorphisms  $\Sigma \to \Sigma$  respecting P

- Let P be a quantifier prefix
- Let  $G_{\text{syn}}$  be a group of isomorphisms  $\Sigma \to \Sigma$  respecting P
- Let  $G_{\mathsf{sem}}$  be a group of bijections  $\mathbb{S}(\mathsf{P}) \to \mathbb{S}(\mathsf{P})$

- Let P be a quantifier prefix
- Let  $G_{\text{syn}}$  be a group of isomorphisms  $\Sigma \to \Sigma$  respecting P
- Let  $G_{\text{sem}}$  be a group of bijections  $\mathbb{S}(P) \to \mathbb{S}(P)$
- $\psi \in \Sigma$  is a symmetry breaker for  $G_{\text{syn}}$  and  $G_{\text{sem}}$  if

 $\forall \ t \in \mathbb{S}(\mathsf{P}) \ \exists \ g_{\mathsf{syn}} \in G_{\mathsf{syn}} \ \exists \ g_{\mathsf{sem}} \in G_{\mathsf{sem}} : [ \ \mathsf{P}.g_{\mathsf{syn}}(\psi) ]_{g_{\mathsf{sem}}(t)} = \top$ 

- Let P be a quantifier prefix
- Let  $G_{\text{syn}}$  be a group of isomorphisms  $\Sigma \to \Sigma$  respecting P
- Let  $G_{\text{sem}}$  be a group of bijections  $\mathbb{S}(P) \to \mathbb{S}(P)$
- $\psi \in \Sigma$  is a symmetry breaker for  $G_{\text{syn}}$  and  $G_{\text{sem}}$  if

 $\forall \ t \in \mathbb{S}(\mathsf{P}) \ \exists \ g_{\mathsf{syn}} \in \mathsf{G}_{\mathsf{syn}} \ \exists \ g_{\mathsf{sem}} \in \mathsf{G}_{\mathsf{sem}} : [ \ \mathsf{P}.g_{\mathsf{syn}}(\psi) ]_{g_{\mathsf{sem}}(t)} = \top$ 

• Key fact: If  $G_{syn}$  is a syntactic symmetry group for P. $\phi$  and  $G_{sem}$  is a semantic symmetry group for P. $\phi$  and  $\psi$  is a symmetry breaker for  $G_{syn}$  and  $G_{sem}$ , then P. $\phi$  has a solution in  $\mathbb{S}(P)$  if and only if P. $(\phi \land \psi)$  does.

What does permutation of variables mean semantically?

 $\exists x_1, x_2 \forall x_3, x_4 \exists x_5, x_6 : \phi(x_1, x_2, x_3, x_4, x_5, x_6)$ 



What does permutation of variables mean semantically?

 $\exists x_1, x_2 \forall x_3, x_4 \exists x_5, x_6 : \phi(x_2, x_1, x_4, x_3, x_6, x_5)$ 



Unlike in SAT, there is no longer a 1:1 correspondence.

• Let  $P = Q_1 x_1 \cdots Q_n x_n$  be a quantifier prefix

- Let  $\mathsf{P} = Q_1 x_1 \cdots Q_n x_n$  be a quantifier prefix
- $\bullet$  Let  $G_{\text{syn}}$  be a group of permutations of literals respecting P

- $\bullet \ \mbox{Let} \ \mbox{P} = Q_1 x_1 \cdots Q_n x_n$  be a quantifier prefix
- $\bullet$  Let  $G_{\text{syn}}$  be a group of permutations of literals respecting P
- Let  $G_{sem}$  be the group of all bijective maps  $f\colon \mathbb{S}(P)\to \mathbb{S}(P)$  such that

$$\forall \; t \in \mathbb{S}(P) \; \forall \; \tau \in f(t) \; \exists \; g \in G_{\text{syn}} : g(\tau) \in t$$

- Let  $\mathsf{P}=Q_1x_1\cdots Q_nx_n$  be a quantifier prefix
- $\bullet$  Let  $G_{\text{syn}}$  be a group of permutations of literals respecting P
- Let  $G_{sem}$  be the group of all bijective maps  $f\colon \mathbb{S}(P)\to \mathbb{S}(P)$  such that

$$\forall \ t \in \mathbb{S}(P) \ \forall \ \tau \in f(t) \ \exists \ g \in G_{\text{syn}} : g(\tau) \in t$$



- Let  $P = Q_1 x_1 \cdots Q_n x_n$  be a quantifier prefix
- Let  $G_{syn}$  be a group of permutations of literals respecting P
- Let  $G_{sem}$  be the group of all bijective maps  $f\colon \mathbb{S}(P)\to \mathbb{S}(P)$  such that

$$\forall \ t \in \mathbb{S}(P) \ \forall \ \tau \in f(t) \ \exists \ g \in G_{\mathsf{syn}} : g(\tau) \in t$$



- Let  $P = Q_1 x_1 \cdots Q_n x_n$  be a quantifier prefix
- Let  $G_{syn}$  be a group of permutations of literals respecting P
- Let  $G_{sem}$  be the group of all bijective maps  $f\colon \mathbb{S}(P)\to \mathbb{S}(P)$  such that

$$\forall \ t \in \mathbb{S}(P) \ \forall \ \tau \in f(t) \ \exists \ g \in G_{\mathsf{syn}} : g(\tau) \in t$$



- Let  $P = Q_1 x_1 \cdots Q_n x_n$  be a quantifier prefix
- Let  $G_{syn}$  be a group of permutations of literals respecting P
- Let  $G_{sem}$  be the group of all bijective maps  $f\colon \mathbb{S}(P)\to \mathbb{S}(P)$  such that

$$\forall \ t \in \mathbb{S}(P) \ \forall \ \tau \in f(t) \ \exists \ g \in G_{\text{syn}} : g(\tau) \in t$$



- Let  $P = Q_1 x_1 \cdots Q_n x_n$  be a quantifier prefix
- $\bullet\,$  Let  $G_{\text{syn}}$  be a group of permutations of literals respecting P
- Let  $G_{sem}$  be the group of all bijective maps  $f\colon \mathbb{S}(P)\to \mathbb{S}(P)$  such that

$$\forall \; t \in \mathbb{S}(P) \; \forall \; \tau \in f(t) \; \exists \; g \in G_{\text{syn}} : g(\tau) \in t$$



• Then G<sub>sem</sub> is called the associated group for G<sub>syn</sub>.

- Let  $P=Q_1x_1\cdots Q_nx_n$  be a quantifier prefix
- $\bullet\,$  Let  $G_{syn}$  be a group of permutations of literals respecting P
- Let  $G_{sem}$  be the associated group of  $G_{syn}$ .

- Let  $P=Q_1x_1\cdots Q_nx_n$  be a quantifier prefix
- Let G<sub>syn</sub> be a group of permutations of literals respecting P
- Let G<sub>sem</sub> be the associated group of G<sub>syn</sub>.
- Then

$$\psi = \bigwedge_{g \in G_{\text{syn}}} \bigwedge_{\substack{i=1 \\ Q_i = \exists}}^n \left( \bigwedge_{j < i} (x_j = g(x_j)) \to (x_i \leq g(x_i)) \right)$$

is a symmetry breaker for  $G_{syn}$  and  $G_{sem}$ .

- Let  $P = Q_1 x_1 \cdots Q_n x_n$  be a quantifier prefix
- Let G<sub>syn</sub> be a group of permutations of literals respecting P
- Let  $G_{sem}$  be the associated group of  $G_{syn}$ .
- Then

$$\psi = \bigwedge_{g \in G_{\text{syn}}} \bigwedge_{\substack{i=1 \\ Q_i = \exists}}^n \left( \bigwedge_{j < i} (x_j = g(x_j)) \to (x_i \leq g(x_i)) \right)$$

is a symmetry breaker for  $G_{\text{syn}}$  and  $G_{\text{sem}}.$ 

• Observe that only  $G_{syn}$  appears in the formula. The group  $G_{sem}$  is only used for the justification.

## What about the universal quantifiers?

• The symmetry breaker above only affects variables bound by  $\exists$ 

- $\bullet\,$  The symmetry breaker above only affects variables bound by  $\exists\,$
- We can handle variables bound by  $\forall$  using duality

- $\bullet\,$  The symmetry breaker above only affects variables bound by  $\exists\,$
- We can handle variables bound by  $\forall$  using duality
- A dual assignment for  $\Phi=\text{P.}\varphi$  is an assignment for  $\neg\Phi$

- $\bullet\,$  The symmetry breaker above only affects variables bound by  $\exists\,$
- $\bullet\,$  We can handle variables bound by  $\forall$  using duality
- A dual assignment for  $\Phi = P.\varphi$  is an assignment for  $\neg \Phi$
- As negation toggles quantifiers, the tree shapes are different

- The symmetry breaker above only affects variables bound by  $\exists$
- We can handle variables bound by  $\forall$  using duality
- A dual assignment for  $\Phi=P.\varphi$  is an assignment for  $\neg\Phi$
- As negation toggles quantifiers, the tree shapes are different
   ∃ x<sub>1</sub>, x<sub>2</sub> ∀ x<sub>3</sub>, x<sub>4</sub> ∃ x<sub>5</sub>, x<sub>6</sub>.φ(x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, x<sub>4</sub>, x<sub>5</sub>, x<sub>6</sub>)

- The symmetry breaker above only affects variables bound by  $\exists$
- We can handle variables bound by  $\forall$  using duality
- A dual assignment for  $\Phi = P.\phi$  is an assignment for  $\neg \Phi$
- As negation toggles quantifiers, the tree shapes are different

 $\exists x_1, x_2 \forall x_3, x_4 \exists x_5, x_6.\varphi(x_1, x_2, x_3, x_4, x_5, x_6)$ 



- The symmetry breaker above only affects variables bound by  $\exists$
- We can handle variables bound by  $\forall$  using duality
- A dual assignment for  $\Phi = P.\varphi$  is an assignment for  $\neg \Phi$
- As negation toggles quantifiers, the tree shapes are different

 $\exists x_1, x_2 \forall x_3, x_4 \exists x_5, x_6. \phi(x_1, x_2, x_3, x_4, x_5, x_6)$ 



- The symmetry breaker above only affects variables bound by  $\exists$
- We can handle variables bound by  $\forall$  using duality
- A dual assignment for  $\Phi = P.\phi$  is an assignment for  $\neg \Phi$
- As negation toggles quantifiers, the tree shapes are different

 $\exists x_1, x_2 \forall x_3, x_4 \exists x_5, x_6. \varphi(x_1, x_2, x_3, x_4, x_5, x_6)$ 



 $\bullet\,$  Write  $\mathbb{S}_{\exists}(\mathsf{P})=\mathbb{S}(\mathsf{P})$  for the set of tree assignments for prefix  $\mathsf{P}$ 

- Write  $\mathbb{S}_{\exists}(P) = \mathbb{S}(P)$  for the set of tree assignments for prefix P

 $\bullet\,$  Write  $\mathbb{S}_\forall(P)$  for the dual tree assignments for prefix P

- + Write  $\mathbb{S}_{\exists}(P) = \mathbb{S}(P)$  for the set of tree assignments for prefix P
- $\bullet\,$  Write  $\mathbb{S}_\forall(P)$  for the dual tree assignments for prefix P
- Let  $G_{\mathsf{syn}}^\forall$  be a group of isomorphisms  $\Sigma\to\Sigma$  respecting P

- + Write  $\mathbb{S}_{\exists}(P) = \mathbb{S}(P)$  for the set of tree assignments for prefix P
- $\bullet$  Write  $\mathbb{S}_\forall(P)$  for the dual tree assignments for prefix P
- Let  $G_{\mathsf{syn}}^\forall$  be a group of isomorphisms  $\Sigma\to\Sigma$  respecting P
- Let  $G_{\mathsf{sem}}^\forall$  be a group of bijections  $\mathbb{S}_\forall(\mathsf{P})\to\mathbb{S}_\forall(\mathsf{P})$

- + Write  $\mathbb{S}_{\exists}(P) = \mathbb{S}(P)$  for the set of tree assignments for prefix P
- $\bullet\,$  Write  $\mathbb{S}_\forall(\mathsf{P})$  for the dual tree assignments for prefix  $\mathsf{P}$
- Let  $G_{\mathsf{syn}}^\forall$  be a group of isomorphisms  $\Sigma\to\Sigma$  respecting P
- Let  $G_{\mathsf{sem}}^\forall$  be a group of bijections  $\mathbb{S}_\forall(\mathsf{P})\to\mathbb{S}_\forall(\mathsf{P})$
- $\psi\in\Sigma$  is a universal symmetry breaker for  $G_{\mathsf{syn}}^\forall$  and  $G_{\mathsf{sem}}^\forall$  if

$$\forall \ t \in \mathbb{S}_{\forall}(\mathsf{P}) \ \exists \ g_{\mathsf{syn}} {\in} \mathsf{G}_{\mathsf{syn}}^{\forall} \ \exists \ g_{\mathsf{sem}} {\in} \mathsf{G}_{\mathsf{sem}}^{\forall} : \left[\mathsf{P}.g_{\mathsf{syn}}(\psi)\right]_{g_{\mathsf{sem}}(t)} {=} \bot$$

- Write  $\mathbb{S}_\exists(P)=\mathbb{S}(P)$  for the set of tree assignments for prefix P
- $\bullet$  Write  $\mathbb{S}_\forall(\mathsf{P})$  for the dual tree assignments for prefix  $\mathsf{P}$
- Let  $G_{\mathsf{syn}}^\forall$  be a group of isomorphisms  $\Sigma\to\Sigma$  respecting P
- Let  $G_{\mathsf{sem}}^\forall$  be a group of bijections  $\mathbb{S}_\forall(\mathsf{P})\to\mathbb{S}_\forall(\mathsf{P})$
- $\psi\in\Sigma$  is a universal symmetry breaker for  $G_{\mathsf{syn}}^\forall$  and  $G_{\mathsf{sem}}^\forall$  if

$$\forall \ t \in \mathbb{S}_{\forall}(\mathsf{P}) \ \exists \ g_{\mathsf{syn}} {\in} \mathsf{G}_{\mathsf{syn}}^{\forall} \ \exists \ g_{\mathsf{sem}} {\in} \mathsf{G}_{\mathsf{sem}}^{\forall} : [\mathsf{P.}g_{\mathsf{syn}}(\psi)]_{g_{\mathsf{sem}}(t)} {=} \bot$$

 Symmetry breakers as previously defined will now be called existential symmetry breakers

- Write  $\mathbb{S}_\exists(P)=\mathbb{S}(P)$  for the set of tree assignments for prefix P
- $\bullet$  Write  $\mathbb{S}_\forall(\mathsf{P})$  for the dual tree assignments for prefix  $\mathsf{P}$
- Let  $G_{\mathsf{syn}}^\forall$  be a group of isomorphisms  $\Sigma\to\Sigma$  respecting P
- Let  $G_{\mathsf{sem}}^\forall$  be a group of bijections  $\mathbb{S}_\forall(\mathsf{P})\to\mathbb{S}_\forall(\mathsf{P})$
- $\psi\in\Sigma$  is a universal symmetry breaker for  $G_{\mathsf{syn}}^\forall$  and  $G_{\mathsf{sem}}^\forall$  if

$$\forall \ t \in \mathbb{S}_{\forall}(\mathsf{P}) \ \exists \ g_{\mathsf{syn}} {\in} \mathsf{G}_{\mathsf{syn}}^{\forall} \ \exists \ g_{\mathsf{sem}} {\in} \mathsf{G}_{\mathsf{sem}}^{\forall} : [\mathsf{P.}g_{\mathsf{syn}}(\psi)]_{g_{\mathsf{sem}}(t)} = \bot$$

- Symmetry breakers as previously defined will now be called existential symmetry breakers
- ψ is an existential symmetry breaker iff ¬ψ is a universal symmetry breaker (w.r.t. suitably chosen groups)

• Let  $\Phi = P.\phi$  be a QBF

- Let  $\Phi=\text{P.}\varphi$  be a QBF
- $\bullet$  Let  $\mathsf{G}_{\mathsf{syn}}^\exists$  and  $\mathsf{G}_{\mathsf{syn}}^\forall$  be two syntactic symmetry groups for  $\Phi$

- Let  $\Phi=\text{P.}\varphi$  be a QBF
- $\bullet$  Let  $\mathsf{G}_{\mathsf{syn}}^\exists$  and  $\mathsf{G}_{\mathsf{syn}}^\forall$  be two syntactic symmetry groups for  $\Phi$
- Let  $G^{\exists}_{\mathsf{sem}}$  be a symmetry group for  $\Phi$  acting on  $\mathbb{S}_{\exists}(\mathsf{P})$

- Let  $\Phi = P.\phi$  be a QBF
- $\bullet$  Let  $\mathsf{G}_{\mathsf{syn}}^\exists$  and  $\mathsf{G}_{\mathsf{syn}}^\forall$  be two syntactic symmetry groups for  $\Phi$
- Let  $G_{\text{sem}}^\exists$  be a symmetry group for  $\Phi$  acting on  $\mathbb{S}_\exists(\mathsf{P})$
- Let  $G_{\text{sem}}^\forall$  be a symmetry group for  $\Phi$  acting on  $\mathbb{S}_\forall(\mathsf{P})$

- Let  $\Phi = P.\Phi$  be a QBF
- Let  $\mathsf{G}_{\mathsf{syn}}^\exists$  and  $\mathsf{G}_{\mathsf{syn}}^\forall$  be two syntactic symmetry groups for  $\Phi$
- Let  $\mathsf{G}_{\mathsf{sem}}^\exists$  be a symmetry group for  $\Phi$  acting on  $\mathbb{S}_\exists(\mathsf{P})$
- Let  $\mathsf{G}_{\mathsf{sem}}^\forall$  be a symmetry group for  $\Phi$  acting on  $\mathbb{S}_\forall(\mathsf{P})$
- Let  $\psi_\exists\in\Sigma$  be an existential symmetry breaker for  $G_{\mathsf{syn}}^\exists$  ,  $G_{\mathsf{sem}}^\exists$

- Let  $\Phi = P.\Phi$  be a QBF
- Let  $\mathsf{G}_{\mathsf{syn}}^\exists$  and  $\mathsf{G}_{\mathsf{syn}}^\forall$  be two syntactic symmetry groups for  $\Phi$
- Let  $\mathsf{G}_{\mathsf{sem}}^\exists$  be a symmetry group for  $\Phi$  acting on  $\mathbb{S}_\exists(\mathsf{P})$
- Let  $\mathsf{G}_{\mathsf{sem}}^\forall$  be a symmetry group for  $\Phi$  acting on  $\mathbb{S}_\forall(\mathsf{P})$
- Let  $\psi_\exists\in\Sigma$  be an existential symmetry breaker for  $G_{\text{syn}}^\exists$  ,  $G_{\text{sem}}^\exists$
- Let  $\psi_\forall \in \Sigma$  be universal symmetry breaker for  $G_{\text{syn}}^\forall,\,G_{\text{sem}}^\forall$

- Let  $\Phi = P.\Phi$  be a QBF
- Let  $\mathsf{G}_{\mathsf{syn}}^\exists$  and  $\mathsf{G}_{\mathsf{syn}}^\forall$  be two syntactic symmetry groups for  $\Phi$
- Let  $G_{sem}^{\exists}$  be a symmetry group for  $\Phi$  acting on  $\mathbb{S}_{\exists}(P)$
- Let  $\mathsf{G}_{\mathsf{sem}}^\forall$  be a symmetry group for  $\Phi$  acting on  $\mathbb{S}_\forall(\mathsf{P})$
- Let  $\psi_\exists\in\Sigma$  be an existential symmetry breaker for  $G_{\text{syn}}^\exists,\,G_{\text{sem}}^\exists$
- Let  $\psi_{\forall} \in \Sigma$  be universal symmetry breaker for  $G_{\mathsf{syn}}^{\forall}$ ,  $G_{\mathsf{sem}}^{\forall}$
- Then

 $\begin{array}{rcl} \text{P.}\varphi \text{ is true } & \Longleftrightarrow & \text{P.}((\varphi \land \psi_\exists) \lor \psi_\forall) \text{ is true} \\ & \Longleftrightarrow & \text{P.}((\varphi \lor \psi_\forall) \land \psi_\exists) \text{ is true} \end{array}$ 

• For QBF, unlike for SAT, syntactic and semantic symmetries are not equivalent

- For QBF, unlike for SAT, syntactic and semantic symmetries are not equivalent
- For QBF, every syntactic symmetry gives rise to many semantic symmetries

- For QBF, unlike for SAT, syntactic and semantic symmetries are not equivalent
- For QBF, every syntactic symmetry gives rise to many semantic symmetries
- The formula

$$\psi = \bigwedge_{g \in G_{\text{syn}}} \bigwedge_{\substack{i=1 \\ Q_i = \exists}}^n \left( \bigwedge_{j < i} (x_j = g(x_j)) \to (x_i \leq g(x_i)) \right)$$

is an existential symmetry breaker

- For QBF, unlike for SAT, syntactic and semantic symmetries are not equivalent
- For QBF, every syntactic symmetry gives rise to many semantic symmetries
- The formula

$$\psi = \bigwedge_{g \in G_{\text{syn}}} \bigwedge_{\substack{i=1 \\ Q_i = \exists}}^n \left( \bigwedge_{j < i} (x_j = g(x_j)) \to (x_i \leq g(x_i)) \right)$$

is an existential symmetry breaker

- If  $\psi$  is an existential symmetry breaker, then  $\neg\psi$  is a universal symmetry breaker

- For QBF, unlike for SAT, syntactic and semantic symmetries are not equivalent
- For QBF, every syntactic symmetry gives rise to many semantic symmetries
- The formula

$$\psi = \bigwedge_{g \in G_{\text{syn}}} \bigwedge_{\substack{i=1 \\ Q_i = \exists}}^n \left( \bigwedge_{j < i} (x_j = g(x_j)) \to (x_i \leq g(x_i)) \right)$$

is an existential symmetry breaker

- If  $\psi$  is an existential symmetry breaker, then  $\neg\psi$  is a universal symmetry breaker
- Existential and universal symmetry breakers can be applied simultaneously