
CHECKING CIRCUITS FOR INTEGER
MULTIPLICATION USING GRÖBNER BASES

Manuel Kauers · Institute for Algebra · JKU · Linz, Austria.

Joint work with Armin Biere and Daniela Ritirc

75535076191×60413859474

1

1

10000011011×10011010001

1

1

A1 A0 B1 B0

C3 C2 C1 C0

•• •• •• ••

1

1

M

pi,j

AiBj

HAFAFAHA

HAFAFAFA

HAFAFAFA

C7 C6 C5 C4 C3 C2 C1 C0

p00p01p10p11p20p21p30p31

p02p12p22p32

p03p13p23p33

2

M

pi,j

AiBj

HAFAFAHA

HAFAFAFA

HAFAFAFA

C7 C6 C5 C4 C3 C2 C1 C0

p00p01p10p02p11p20p12p21p30p22p31

p03p13p23p32

p33

3

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:
Yes, because we understand the idea and don’t see any bug.

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:
Yes, because we proved its correctness by computer algebra.

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:
Yes, because we constructed a proof by computer algebra and
checked it with a proof checker.

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:

4

Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:
We don’t know yet, because the proof checker we used is not formally
verified.

4

Are they really correct?

5

• Every circuit implements a certain function {0, 1}n → {0, 1}m

• A circuit is “correct” if it corresponds the right function

• The behaviour of a gate is described by a polynomial equation

x y

z

z = xy

x y

z

z = x+ y− 2xy

x y

z

z = x+ y− xy

6

• Every circuit implements a certain function {0, 1}n → {0, 1}m

• A circuit is “correct” if it corresponds the right function

• The behaviour of a gate is described by a polynomial equation

x y

z

z = xy

x y

z

z = x+ y− 2xy

x y

z

z = x+ y− xy

6

• Every circuit implements a certain function {0, 1}n → {0, 1}m

• A circuit is “correct” if it corresponds the right function

• The behaviour of a gate is described by a polynomial equation

x y

z

z = xy

x y

z

z = x+ y− 2xy

x y

z

z = x+ y− xy

6

• Every circuit implements a certain function {0, 1}n → {0, 1}m

• A circuit is “correct” if it corresponds the right function

• The behaviour of a gate is described by a polynomial equation

x y

z

z = xy

x y

z

z = x+ y− 2xy

x y

z

z = x+ y− xy

6

• Every circuit implements a certain function {0, 1}n → {0, 1}m

• A circuit is “correct” if it corresponds the right function

• The behaviour of a gate is described by a polynomial equation

x y

z

z = xy

x y

z

z = x+ y− 2xy

x y

z

z = x+ y− xy

6

• Every circuit implements a certain function {0, 1}n → {0, 1}m

• A circuit is “correct” if it corresponds the right function

• The behaviour of a gate is described by a polynomial equation

x y

z

z = xy

x y

z

z = x+ y− 2xy

x y

z

z = x+ y− xy

6

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4
◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4
◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4
◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4
◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4
◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4
◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2

◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4
◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2

◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4
◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4

◦

C3 − L3L4 = 0

C3 = L3L4
◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4

◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4

◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4
◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦ C0 −A0B0 = 0

C0 = A0B0

◦ L1 −A0B1 = 0

L1 = A0B1

◦ L2 −A1B0 = 0

L2 = A1B0

◦ L3 −A1B1 = 0

L3 = A1B1

◦ C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2

◦ L4 − L1L2 = 0

L4 = L1L2

◦ C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4

◦ C3 − L3L4 = 0

C3 = L3L4

◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

L1L2

L3

L4

◦ C0 −A0B0

= 0C0 = A0B0

◦ L1 −A0B1

= 0L1 = A0B1

◦ L2 −A1B0

= 0L2 = A1B0

◦ L3 −A1B1

= 0L3 = A1B1

◦ C1 − L1 − L2 + 2L1L2

= 0C1 = L1 + L2 − 2L1L2

◦ L4 − L1L2

= 0L4 = L1L2

◦ C2 − L3 − L4 + 2L3L4

= 0C2 = L3 + L4 − 2L3L4

◦ C3 − L3L4

= 0C3 = L3L4

◦ A0(A0 − 1)

= 0

◦ A1(A1 − 1)

= 0

◦ B0(B0 − 1)

= 0

◦ B1(B1 − 1)

= 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.

7

• The ideal generated by these polynomial contains all the
polynomial relations implied by the circuit. The ideal is radical
and has dimension zero.

• The polynomials form a Gröbner bases for any lexicographic
order such that xi < xj whenever there is a gate that has xi
as input and xj as output.

• Taking Q as ground field, a multiplier circuit is correct iff its
ideal contains the polynomial

(2n−1∑
k=0

2kAk

)(2n−1∑
k=0

2kBk

)
−

(22n−1∑
k=0

2kCk

)
• Correctness thus reduces to ideal membership test.

8

• The ideal generated by these polynomial contains all the
polynomial relations implied by the circuit. The ideal is radical
and has dimension zero.

• The polynomials form a Gröbner bases for any lexicographic
order such that xi < xj whenever there is a gate that has xi
as input and xj as output.

• Taking Q as ground field, a multiplier circuit is correct iff its
ideal contains the polynomial

(2n−1∑
k=0

2kAk

)(2n−1∑
k=0

2kBk

)
−

(22n−1∑
k=0

2kCk

)
• Correctness thus reduces to ideal membership test.

8

• The ideal generated by these polynomial contains all the
polynomial relations implied by the circuit. The ideal is radical
and has dimension zero.

• The polynomials form a Gröbner bases for any lexicographic
order such that xi < xj whenever there is a gate that has xi
as input and xj as output.

• Taking Q as ground field, a multiplier circuit is correct iff its
ideal contains the polynomial

(2n−1∑
k=0

2kAk

)(2n−1∑
k=0

2kBk

)
−

(22n−1∑
k=0

2kCk

)

• Correctness thus reduces to ideal membership test.

8

• The ideal generated by these polynomial contains all the
polynomial relations implied by the circuit. The ideal is radical
and has dimension zero.

• The polynomials form a Gröbner bases for any lexicographic
order such that xi < xj whenever there is a gate that has xi
as input and xj as output.

• Taking Q as ground field, a multiplier circuit is correct iff its
ideal contains the polynomial

(2n−1∑
k=0

2kAk

)(2n−1∑
k=0

2kBk

)
−

(22n−1∑
k=0

2kCk

)
• Correctness thus reduces to ideal membership test.

8

If there is circuit which we know to be correct, we can also check
whether another circuit implements the same function:

A0 A1 A2 A3

C0 C1 C2 C3 C ′
0 C

′
1 C

′
2 C

′
3

The circuits are equivalent iff
n∑

k=0

2k(Ck − C ′
k) ∈ I.

9

If there is circuit which we know to be correct, we can also check
whether another circuit implements the same function:

A0 A1 A2 A3

C0 C1 C2 C3 C ′
0 C

′
1 C

′
2 C

′
3

The circuits are equivalent iff
n∑

k=0

2k(Ck − C ′
k) ∈ I.

9

If there is circuit which we know to be correct, we can also check
whether another circuit implements the same function:

A0 A1 A2 A3

C0 C1 C2 C3 C ′
0 C

′
1 C

′
2 C

′
3

The circuits are equivalent iff
n∑

k=0

2k(Ck − C ′
k) ∈ I.

9

• In theory, all this has been known for some time.

• In practice, for nontrivial circuits, it’s not as easy at it seems.

• As we get the Gröbner basis for free, we “just” have to
compute a normal form.

• For real world circuits (e.g., 64bit multipliers), this can be
difficult.

• Some special purpose improvements we use in our code:

◦ We divide the circuit into “slices” and do one reduction per
slice. This prevents some bad choices during the reduction.
[FMCAD’16]

◦ We preprocess the Gröbner bases by eliminating some variables
that only occur “locally”. This prevents some amount of
expression swell. [DATE’18]

10

• In theory, all this has been known for some time.

• In practice, for nontrivial circuits, it’s not as easy at it seems.

• As we get the Gröbner basis for free, we “just” have to
compute a normal form.

• For real world circuits (e.g., 64bit multipliers), this can be
difficult.

• Some special purpose improvements we use in our code:

◦ We divide the circuit into “slices” and do one reduction per
slice. This prevents some bad choices during the reduction.
[FMCAD’16]

◦ We preprocess the Gröbner bases by eliminating some variables
that only occur “locally”. This prevents some amount of
expression swell. [DATE’18]

10

• In theory, all this has been known for some time.

• In practice, for nontrivial circuits, it’s not as easy at it seems.

• As we get the Gröbner basis for free, we “just” have to
compute a normal form.

• For real world circuits (e.g., 64bit multipliers), this can be
difficult.

• Some special purpose improvements we use in our code:

◦ We divide the circuit into “slices” and do one reduction per
slice. This prevents some bad choices during the reduction.
[FMCAD’16]

◦ We preprocess the Gröbner bases by eliminating some variables
that only occur “locally”. This prevents some amount of
expression swell. [DATE’18]

10

• In theory, all this has been known for some time.

• In practice, for nontrivial circuits, it’s not as easy at it seems.

• As we get the Gröbner basis for free, we “just” have to
compute a normal form.

• For real world circuits (e.g., 64bit multipliers), this can be
difficult.

• Some special purpose improvements we use in our code:

◦ We divide the circuit into “slices” and do one reduction per
slice. This prevents some bad choices during the reduction.
[FMCAD’16]

◦ We preprocess the Gröbner bases by eliminating some variables
that only occur “locally”. This prevents some amount of
expression swell. [DATE’18]

10

• In theory, all this has been known for some time.

• In practice, for nontrivial circuits, it’s not as easy at it seems.

• As we get the Gröbner basis for free, we “just” have to
compute a normal form.

• For real world circuits (e.g., 64bit multipliers), this can be
difficult.

• Some special purpose improvements we use in our code:

◦ We divide the circuit into “slices” and do one reduction per
slice. This prevents some bad choices during the reduction.
[FMCAD’16]

◦ We preprocess the Gröbner bases by eliminating some variables
that only occur “locally”. This prevents some amount of
expression swell. [DATE’18]

10

Are they really really correct?

11

• Can we trust the computer algebra system and/or the
implementation of our own improvements?

• Can we construct a checkable proof object rather than a
yes/no answer?

• Recall: g ∈ 〈f1, . . . , fm〉 ⇐⇒ g = p1f1 + · · ·+ pmfm for
certain polynomials pi.

• These cofactors p1, . . . , pm can serve as certificate of the
ideal membership.

• Again, this is well-known in theory, but not so easy in
practice: the cofactors can be quite large.

12

• Can we trust the computer algebra system and/or the
implementation of our own improvements?

• Can we construct a checkable proof object rather than a
yes/no answer?

• Recall: g ∈ 〈f1, . . . , fm〉 ⇐⇒ g = p1f1 + · · ·+ pmfm for
certain polynomials pi.

• These cofactors p1, . . . , pm can serve as certificate of the
ideal membership.

• Again, this is well-known in theory, but not so easy in
practice: the cofactors can be quite large.

12

• Can we trust the computer algebra system and/or the
implementation of our own improvements?

• Can we construct a checkable proof object rather than a
yes/no answer?

• Recall: g ∈ 〈f1, . . . , fm〉 ⇐⇒ g = p1f1 + · · ·+ pmfm for
certain polynomials pi.

• These cofactors p1, . . . , pm can serve as certificate of the
ideal membership.

• Again, this is well-known in theory, but not so easy in
practice: the cofactors can be quite large.

12

• Can we trust the computer algebra system and/or the
implementation of our own improvements?

• Can we construct a checkable proof object rather than a
yes/no answer?

• Recall: g ∈ 〈f1, . . . , fm〉 ⇐⇒ g = p1f1 + · · ·+ pmfm for
certain polynomials pi.

• These cofactors p1, . . . , pm can serve as certificate of the
ideal membership.

• Again, this is well-known in theory, but not so easy in
practice: the cofactors can be quite large.

12

• Can we trust the computer algebra system and/or the
implementation of our own improvements?

• Can we construct a checkable proof object rather than a
yes/no answer?

• Recall: g ∈ 〈f1, . . . , fm〉 ⇐⇒ g = p1f1 + · · ·+ pmfm for
certain polynomials pi.

• These cofactors p1, . . . , pm can serve as certificate of the
ideal membership.

• Again, this is well-known in theory, but not so easy in
practice: the cofactors can be quite large.

12

• Translate the defining properties of ideals into a formal proof
system:

∀ p, q ∈ I : p+ q ∈ I
p q

p+ q

∀ p ∈ K[X] ∀ q ∈ I : pq ∈ I
q

pq

• We construct a formal proof by tracing the reduction process

...
* : -b+1-a, a, -a*b+a-a^2;

+ : -a*b+a-a^2, a^2-a, -a*b;

+ : -a*b, -c+a*b, -c;

* : -c, -1, c;
...

13

• Translate the defining properties of ideals into a formal proof
system:

∀ p, q ∈ I : p+ q ∈ I

p q

p+ q

∀ p ∈ K[X] ∀ q ∈ I : pq ∈ I
q

pq

• We construct a formal proof by tracing the reduction process

...
* : -b+1-a, a, -a*b+a-a^2;

+ : -a*b+a-a^2, a^2-a, -a*b;

+ : -a*b, -c+a*b, -c;

* : -c, -1, c;
...

13

• Translate the defining properties of ideals into a formal proof
system:

∀ p, q ∈ I : p+ q ∈ I

p q

p+ q

∀ p ∈ K[X] ∀ q ∈ I : pq ∈ I

q

pq

• We construct a formal proof by tracing the reduction process

...
* : -b+1-a, a, -a*b+a-a^2;

+ : -a*b+a-a^2, a^2-a, -a*b;

+ : -a*b, -c+a*b, -c;

* : -c, -1, c;
...

13

• Translate the defining properties of ideals into a formal proof
system:

∀ p, q ∈ I : p+ q ∈ I
p q

p+ q

∀ p ∈ K[X] ∀ q ∈ I : pq ∈ I
q

pq

• We construct a formal proof by tracing the reduction process

...
* : -b+1-a, a, -a*b+a-a^2;

+ : -a*b+a-a^2, a^2-a, -a*b;

+ : -a*b, -c+a*b, -c;

* : -c, -1, c;
...

13

• Translate the defining properties of ideals into a formal proof
system:

∀ p, q ∈ I : p+ q ∈ I
p q

p+ q

∀ p ∈ K[X] ∀ q ∈ I : pq ∈ I
q

pq

• We construct a formal proof by tracing the reduction process

...
* : -b+1-a, a, -a*b+a-a^2;

+ : -a*b+a-a^2, a^2-a, -a*b;

+ : -a*b, -c+a*b, -c;

* : -c, -1, c;
...

13

Observations: (for n-bit multipliers)

• Suppose that an ideal membership testing takes time X

• Then proof generation costs ≈ 100X

• Verifying that the proof is correct costs ≈ X/100

• Proof length seems to grow like O(n2)

• Theoretical upper bound for resolution proof size O(n7 logn)
[Beame et al. 2017]

14

Observations: (for n-bit multipliers)

• Suppose that an ideal membership testing takes time X

• Then proof generation costs ≈ 100X

• Verifying that the proof is correct costs ≈ X/100

• Proof length seems to grow like O(n2)

• Theoretical upper bound for resolution proof size O(n7 logn)
[Beame et al. 2017]

14

Observations: (for n-bit multipliers)

• Suppose that an ideal membership testing takes time X

• Then proof generation costs ≈ 100X

• Verifying that the proof is correct costs ≈ X/100

• Proof length seems to grow like O(n2)

• Theoretical upper bound for resolution proof size O(n7 logn)
[Beame et al. 2017]

14

Observations: (for n-bit multipliers)

• Suppose that an ideal membership testing takes time X

• Then proof generation costs ≈ 100X

• Verifying that the proof is correct costs ≈ X/100

• Proof length seems to grow like O(n2)

• Theoretical upper bound for resolution proof size O(n7 logn)
[Beame et al. 2017]

14

Observations: (for n-bit multipliers)

• Suppose that an ideal membership testing takes time X

• Then proof generation costs ≈ 100X

• Verifying that the proof is correct costs ≈ X/100

• Proof length seems to grow like O(n2)

• Theoretical upper bound for resolution proof size O(n7 logn)
[Beame et al. 2017]

14

Observations: (for n-bit multipliers)

• Suppose that an ideal membership testing takes time X

• Then proof generation costs ≈ 100X

• Verifying that the proof is correct costs ≈ X/100

• Proof length seems to grow like O(n2)

• Theoretical upper bound for resolution proof size O(n7 logn)
[Beame et al. 2017]

14

Are they really really really correct?

15

• Since the proof format is rather low-level, it doesn’t take
much to write a checker.

• We have written two checkers: one based on Python and
Singular and another one purely in C.

• But who will check the checkers? So far we have not made
any efforts in this direction.

• Also the script which turns the given circuit into polynomials
might require verification.

• No matter what we do: there is no absolute certainty, but we
are reasonably sure that the circuits are correct.

16

• Since the proof format is rather low-level, it doesn’t take
much to write a checker.

• We have written two checkers: one based on Python and
Singular and another one purely in C.

• But who will check the checkers? So far we have not made
any efforts in this direction.

• Also the script which turns the given circuit into polynomials
might require verification.

• No matter what we do: there is no absolute certainty, but we
are reasonably sure that the circuits are correct.

16

• Since the proof format is rather low-level, it doesn’t take
much to write a checker.

• We have written two checkers: one based on Python and
Singular and another one purely in C.

• But who will check the checkers? So far we have not made
any efforts in this direction.

• Also the script which turns the given circuit into polynomials
might require verification.

• No matter what we do: there is no absolute certainty, but we
are reasonably sure that the circuits are correct.

16

• Since the proof format is rather low-level, it doesn’t take
much to write a checker.

• We have written two checkers: one based on Python and
Singular and another one purely in C.

• But who will check the checkers? So far we have not made
any efforts in this direction.

• Also the script which turns the given circuit into polynomials
might require verification.

• No matter what we do: there is no absolute certainty, but we
are reasonably sure that the circuits are correct.

16

• Since the proof format is rather low-level, it doesn’t take
much to write a checker.

• We have written two checkers: one based on Python and
Singular and another one purely in C.

• But who will check the checkers? So far we have not made
any efforts in this direction.

• Also the script which turns the given circuit into polynomials
might require verification.

• No matter what we do: there is no absolute certainty, but we
are reasonably sure that the circuits are correct.

16

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	0.31:
	0.32:
	0.33:
	0.34:
	0.35:
	0.36:
	0.37:
	0.38:
	0.39:
	0.40:
	0.41:
	0.42:
	0.43:
	0.44:
	0.45:
	0.46:
	0.47:
	0.48:
	0.49:
	0.50:
	0.51:
	0.52:
	0.53:
	0.54:
	0.55:
	0.56:
	0.57:
	0.58:
	0.59:
	0.60:
	0.61:
	0.62:
	0.63:
	0.64:
	0.65:
	0.66:
	0.67:
	0.68:
	0.69:
	0.70:
	0.71:
	0.72:
	0.73:
	0.74:
	0.75:
	0.76:
	0.77:
	0.78:
	0.79:
	0.80:
	0.81:
	0.82:
	0.83:
	0.84:
	0.85:
	0.86:
	0.87:
	0.88:
	0.89:
	0.90:
	0.91:
	0.92:
	0.93:
	0.94:
	0.95:
	0.96:
	0.97:
	0.98:
	0.99:
	0.100:
	0.101:
	0.102:
	0.103:
	0.104:
	0.105:
	0.106:
	0.107:
	0.108:
	0.109:
	0.110:
	0.111:
	0.112:
	0.113:
	0.114:
	0.115:
	0.116:
	0.117:
	0.118:
	0.119:
	0.120:
	0.121:
	0.122:
	0.123:
	0.124:
	0.125:
	0.126:
	0.127:
	0.128:
	0.129:
	0.130:
	0.131:
	0.132:
	0.133:
	0.134:
	0.135:
	0.136:
	0.137:
	0.138:
	0.139:
	0.140:
	0.141:
	0.142:
	0.143:
	0.144:
	0.145:
	0.146:
	0.147:
	0.148:
	0.149:
	0.150:
	0.151:
	0.152:
	0.153:
	0.154:
	0.155:
	0.156:
	0.157:
	0.158:
	0.159:
	0.160:
	0.161:
	0.162:
	0.163:
	0.164:
	0.165:
	0.166:
	0.167:
	0.168:
	0.169:
	0.170:
	0.171:
	0.172:
	0.173:
	0.174:
	0.175:
	0.176:
	0.177:
	0.178:
	0.179:
	0.180:
	0.181:
	0.182:
	0.183:
	0.184:
	0.185:
	0.186:
	0.187:
	0.188:
	0.189:
	0.190:
	0.191:
	0.192:
	0.193:
	0.194:
	0.195:
	0.196:
	0.197:
	0.198:
	0.199:
	0.200:
	0.201:
	0.202:
	0.203:
	0.204:
	0.205:
	0.206:
	0.207:
	0.208:
	0.209:
	0.210:
	0.211:
	0.212:
	0.213:
	0.214:
	0.215:
	0.216:
	0.217:
	0.218:
	0.219:
	0.220:
	0.221:
	0.222:
	0.223:
	0.224:
	0.225:
	0.226:
	0.227:
	0.228:
	0.229:
	0.230:
	0.231:
	0.232:
	0.233:
	0.234:
	0.235:
	0.236:
	0.237:
	0.238:
	0.239:
	0.240:
	0.241:
	0.242:
	0.243:
	0.244:
	0.245:
	0.246:
	0.247:
	0.248:
	0.249:
	0.250:
	0.251:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	1.31:
	1.32:
	1.33:
	1.34:
	1.35:
	1.36:
	1.37:
	1.38:
	1.39:
	1.40:
	1.41:
	1.42:
	1.43:
	1.44:
	1.45:
	1.46:
	1.47:
	1.48:
	1.49:
	1.50:
	1.51:
	1.52:
	1.53:
	1.54:
	1.55:
	1.56:
	1.57:
	1.58:
	1.59:
	1.60:
	1.61:
	1.62:
	1.63:
	1.64:
	1.65:
	1.66:
	1.67:
	1.68:
	1.69:
	1.70:
	1.71:
	1.72:
	1.73:
	1.74:
	1.75:
	1.76:
	1.77:
	1.78:
	1.79:
	1.80:
	1.81:
	1.82:
	1.83:
	1.84:
	1.85:
	1.86:
	1.87:
	1.88:
	1.89:
	1.90:
	1.91:
	1.92:
	1.93:
	1.94:
	1.95:
	1.96:
	1.97:
	1.98:
	1.99:
	1.100:
	1.101:
	1.102:
	1.103:
	1.104:
	1.105:
	1.106:
	1.107:
	1.108:
	1.109:
	1.110:
	1.111:
	1.112:
	1.113:
	1.114:
	1.115:
	1.116:
	1.117:
	1.118:
	1.119:
	1.120:
	1.121:
	1.122:
	1.123:
	1.124:
	1.125:
	1.126:
	1.127:
	1.128:
	1.129:
	1.130:
	1.131:
	1.132:
	1.133:
	1.134:
	1.135:
	1.136:
	1.137:
	1.138:
	1.139:
	1.140:
	1.141:
	1.142:
	1.143:
	1.144:
	1.145:
	1.146:
	1.147:
	1.148:
	1.149:
	1.150:
	1.151:
	1.152:
	1.153:
	1.154:
	1.155:
	1.156:
	1.157:
	1.158:
	1.159:
	1.160:
	1.161:
	1.162:
	1.163:
	1.164:
	1.165:
	1.166:
	1.167:
	1.168:
	1.169:
	1.170:
	1.171:
	1.172:
	1.173:
	1.174:
	1.175:
	1.176:
	1.177:
	1.178:
	1.179:
	1.180:
	1.181:
	1.182:
	1.183:
	1.184:
	1.185:
	1.186:
	1.187:
	1.188:
	1.189:
	1.190:
	1.191:
	1.192:
	1.193:
	1.194:
	1.195:
	1.196:
	1.197:
	1.198:
	1.199:
	1.200:
	1.201:
	1.202:
	1.203:
	1.204:
	1.205:
	1.206:
	1.207:
	1.208:
	1.209:
	1.210:
	1.211:
	1.212:
	1.213:
	1.214:
	1.215:
	1.216:
	1.217:
	1.218:
	1.219:
	1.220:
	1.221:
	1.222:
	1.223:
	1.224:
	1.225:
	1.226:
	1.227:
	1.228:
	1.229:
	1.230:
	1.231:
	1.232:
	1.233:
	1.234:
	1.235:
	1.236:
	1.237:
	1.238:
	1.239:
	1.240:
	1.241:
	1.242:
	1.243:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	2.23:
	2.24:
	2.25:
	2.26:
	2.27:
	2.28:
	2.29:
	2.30:
	2.31:
	2.32:
	2.33:
	2.34:
	2.35:
	2.36:
	2.37:
	2.38:
	2.39:
	2.40:
	2.41:
	2.42:
	2.43:
	2.44:
	2.45:
	2.46:
	2.47:
	2.48:
	2.49:
	2.50:
	2.51:
	2.52:
	2.53:
	2.54:
	2.55:
	2.56:
	2.57:
	2.58:
	2.59:
	2.60:
	2.61:
	2.62:
	2.63:
	2.64:
	2.65:
	2.66:
	2.67:
	2.68:
	2.69:
	2.70:
	2.71:
	2.72:
	2.73:
	2.74:
	2.75:
	2.76:
	2.77:
	2.78:
	2.79:
	2.80:
	2.81:
	2.82:
	2.83:
	anm2:

