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• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:
Yes, because we understand the idea and don’t see any bug.
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Answers:
Yes, because we proved its correctness by computer algebra.
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• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:
Yes, because we constructed a proof by computer algebra and
checked it with a proof checker.
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Questions:

• Are these circuits correct?

• Are these circuits really correct?

• Are these circuits really really correct?

• Are these circuits really really really correct?

Answers:
We don’t know yet, because the proof checker we used is not formally
verified.
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Are they really correct?
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• Every circuit implements a certain function {0, 1}n → {0, 1}m

• A circuit is “correct” if it corresponds the right function

• The behaviour of a gate is described by a polynomial equation
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• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4
◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.
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• The ideal generated by these polynomial contains all the
polynomial relations implied by the circuit. The ideal is radical
and has dimension zero.

• The polynomials form a Gröbner bases for any lexicographic
order such that xi < xj whenever there is a gate that has xi
as input and xj as output.

• Taking Q as ground field, a multiplier circuit is correct iff its
ideal contains the polynomial

(2n−1∑
k=0

2kAk

)(2n−1∑
k=0

2kBk

)
−

(22n−1∑
k=0

2kCk

)
• Correctness thus reduces to ideal membership test.
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• The polynomials form a Gröbner bases for any lexicographic
order such that xi < xj whenever there is a gate that has xi
as input and xj as output.

• Taking Q as ground field, a multiplier circuit is correct iff its
ideal contains the polynomial

(2n−1∑
k=0

2kAk

)(2n−1∑
k=0

2kBk

)
−

(22n−1∑
k=0

2kCk

)
• Correctness thus reduces to ideal membership test.

8



• The ideal generated by these polynomial contains all the
polynomial relations implied by the circuit. The ideal is radical
and has dimension zero.
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If there is circuit which we know to be correct, we can also check
whether another circuit implements the same function:

A0 A1 A2 A3

C0 C1 C2 C3 C ′
0 C

′
1 C

′
2 C

′
3

The circuits are equivalent iff
n∑

k=0

2k(Ck − C ′
k) ∈ I.
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• In theory, all this has been known for some time.

• In practice, for nontrivial circuits, it’s not as easy at it seems.

• As we get the Gröbner basis for free, we “just” have to
compute a normal form.

• For real world circuits (e.g., 64bit multipliers), this can be
difficult.

• Some special purpose improvements we use in our code:

◦ We divide the circuit into “slices” and do one reduction per
slice. This prevents some bad choices during the reduction.
[FMCAD’16]

◦ We preprocess the Gröbner bases by eliminating some variables
that only occur “locally”. This prevents some amount of
expression swell. [DATE’18]
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Are they really really correct?

11



• Can we trust the computer algebra system and/or the
implementation of our own improvements?

• Can we construct a checkable proof object rather than a
yes/no answer?

• Recall: g ∈ 〈f1, . . . , fm〉 ⇐⇒ g = p1f1 + · · ·+ pmfm for
certain polynomials pi.

• These cofactors p1, . . . , pm can serve as certificate of the
ideal membership.

• Again, this is well-known in theory, but not so easy in
practice: the cofactors can be quite large.
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• Translate the defining properties of ideals into a formal proof
system:

∀ p, q ∈ I : p+ q ∈ I  
p q

p+ q

∀ p ∈ K[X] ∀ q ∈ I : pq ∈ I  
q

pq

• We construct a formal proof by tracing the reduction process

...
* : -b+1-a, a, -a*b+a-a^2;

+ : -a*b+a-a^2, a^2-a, -a*b;

+ : -a*b, -c+a*b, -c;

* : -c, -1, c;
...
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Observations: (for n-bit multipliers)

• Suppose that an ideal membership testing takes time X

• Then proof generation costs ≈ 100X

• Verifying that the proof is correct costs ≈ X/100

• Proof length seems to grow like O(n2)

• Theoretical upper bound for resolution proof size O(n7 logn)
[Beame et al. 2017]
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Are they really really really correct?

15



• Since the proof format is rather low-level, it doesn’t take
much to write a checker.

• We have written two checkers: one based on Python and
Singular and another one purely in C.

• But who will check the checkers? So far we have not made
any efforts in this direction.

• Also the script which turns the given circuit into polynomials
might require verification.

• No matter what we do: there is no absolute certainty, but we
are reasonably sure that the circuits are correct.
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