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Abstract. While symmetries are well understood for Boolean formulas
and successfully exploited in practical SAT solving, less is known about
symmetries in quantified Boolean formulas (QBF). There are some works
introducing adaptions of propositional symmetry breaking techniques,
with a theory covering only very specific parts of QBF symmetries. We
present a general framework that gives a concise characterization of sym-
metries of QBF. Our framework naturally incorporates the duality of
universal and existential symmetries resulting in a general basis for QBF
symmetry breaking.

1 Introduction

Mathematicians are generally advised [1] to exploit the symmetry in a given
problem for solving it. In automated reasoning, however, symmetries are often
exploited by destroying them. In this context, to destroy a symmetry means to
enrich the given problem by additional constraints which tell the solver that
certain parts of the search space are equivalent, so that it investigates only one
of them. Such symmetry breaking techniques have been studied for a long time.
They are particularly well developed in SAT [2] and CSP [3]. In CSP [4] it has
been observed that it is appropriate to distinguish two kinds of symmetries:
those of the problem itself and those of the solution set. In the present paper,
we apply this idea to Quantified Boolean Formulas (QBF) [5].

Solving times (in sec)
w/o SB with SB

n QRes LD QRes LD
10 0.3 0.5 0.4 0.4
20 160 0.5 0.4 0.4
40 > 3600 0.5 0.4 0.4
80 > 3600 0.7 0.4 0.4

160 > 3600 2.2 0.5 0.4
320 > 3600 12.3 0.6 0.5
640 > 3600 36.8 1.0 0.8

1280 > 3600 241.1 22.6 19.7
2560 > 3600 > 3600 215.7 155.2
5120 > 3600 > 3600 1873.2 1042.6

Symmetry breaking for QBF has already
been studied more than ten years ago [6–
9], and it can have a dramatic effect on the
performance of QBF solvers. As an extreme
example, the instances of the KBKF bench-
mark set [10] are highly symmetric. For some
problem sizes n, we applied the two config-
urations QRes (standard Q-resolution) and
LD (long-distance resolution) of the solver
DepQBF [11] to this benchmark set. For LD
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it is known that it performs exponentially better than QRes on the KBKF formu-
las [12]. The table on the previous page shows the runtimes of DepQBF without
and with symmetry breaking (SB). In particular, we enriched the formulas with
symmetry breaking formulas over the existential variables. While QRes-DepQBF
only solves two formulas without symmetry breaking, with symmetry breaking
it even outperforms LD-DepQBF. Also for the LD configuration, the symmetry
breaking formulas are beneficial. While this is an extreme example, symmetries
appear not only in crafted formulas. In fact, we found that about 60% of the
benchmarks used in the PCNF track of QBFEval [13] have nontrivial symmetries
that could be exploited.

In this paper, we develop an explicit, uniform, and general theory for sym-
metries of QBFs. The theory is developed from scratch, and we include detailed
proofs of all theorems. The pioneering work on QBF symmetries [6–9] largely
consisted in translating symmetry breaking techniques well-known from SAT to
QBF. This is not trivial, as universal quantifiers require special treatment. Since
then, however, research on QBF symmetry breaking almost stagnated. We be-
lieve that more work is necessary. For example, we have observed that universal
symmetry breakers as introduced in [8] fail to work correctly in modern clause-
and-cube-learning QBF solvers when compactly provided as cubes. Although the
encoding of the symmetry breaker for universal variables is provably correct in
theory, it turns out to be incompatible with pruning techniques like pure literal
elimination for which already the compatibility with learning is not obvious [14].
The cubes obtained from symmetry breaking are conceptually different than the
learned cubes, because they do not encode a (partial) satisfying assignment of
the clauses. As the pruning techniques usually only consider the clausal part of
the formula, it can happen that they are wrongly applied in the presence of cubes
stemming from a symmetry breaking formula over universal variables, affecting
the correctness of the solving result.

We hope that the theory developed in this paper will help to resuscitate
the interest in symmetries for QBF, lead to a better understanding of the inter-
play between symmetry breaking and modern optimization techniques, provide a
starting point for translating recent progress made in SAT and CSP to the QBF
world, and produce special symmetry breaking formulas that better exploit the
unique features of QBF. Potential applications of our framework are the develop-
ment of novel symmetry breaking formulas based on different orderings then the
currently considered lexicographic ordering, the transfer of recent improvements
in static symmetry breaking for SAT to QBF, as well as the establishment of
dynamic symmetry breaking.

2 Quantified Boolean Formulas

Let X = {x1, . . . , xn} be a finite set of propositional variables and BF(X) be a
set of Boolean formulas over X. The elements of BF(X) are well-formed formulas
built from the variables of X, truth constants > (true) and ⊥ (false), as well as
logical connectives according to a certain grammar. For most of the paper, we will
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not need to be specific about the structure of the elements of BF(X). We assume
a well-defined semantics for the logical connectives, i.e., for every φ ∈ BF(X)
and every assignment σ : X → {>,⊥} there is a designated value [φ]σ ∈ {>,⊥}
associated to φ and σ. In particular, we use ∧ (conjunction), ∨ (disjunction), ↔
(equivalence), → (implication), ⊕ (xor), and ¬ (negation) with their standard
semantics for combining and negating formulas. Two formulas φ, ψ ∈ BF(X) are
equivalent if for every assignment σ : X → {>,⊥} we have [φ]σ = [ψ]σ. We use
lowercase Greek letters for Boolean formulas and assignments.

If f : BF(X) → BF(X) is a function and σ : X → {>,⊥} is an assignment,
the assignment f(σ) : X → {>,⊥} is defined through f(σ)(x) = [f(x)]σ (x ∈ X).
A partial assignment is a function σ : Y → {>,⊥} with Y ⊆ X. If σ is such
a partial assignment and φ ∈ BF(X), then [φ]σ shall refer to an element of
BF(X \ Y ) such that for every assignment τ : X → {>,⊥} with τ |Y = σ we
have [[φ]σ]τ = [φ]τ . For example, [φ]σ could be the formula obtained from φ by
replacing every variable y ∈ Y by the truth value σ(y) and then simplifying.

We use uppercase Greek letters to denote quantified Boolean formulas (QBFs).
A QBF has the form Φ = P.φ where φ ∈ BF(X) is a Boolean formula and P is a
quantifier prefix for X, i.e., P = Q1x1Q2x2 . . . Qnxn for Q1, . . . , Qn ∈ {∀,∃}. We
only consider closed formulas, i.e., each element of X appears in the prefix. For
a fixed prefix P = Q1x1Q2x2 . . . Qnxn, two variables xi, xj are said to belong to
the same quantifier block if Qmin(i,j) = · · · = Qmax(i,j).

Every QBF is either true or false. The truth value is defined recursively as
follows: ∀xP.φ is true iff both P.[φ]{x=>} and P.[φ]{x=⊥} are true, and ∃xP.φ
is true iff P.[φ]{x=>} or P.[φ]{x=⊥} is true. For example, ∀x1∃x2.(x1 ↔ x2) is
true and ∃x1∀x2.(x1 ↔ x2) is false. The semantics of a QBF P.φ can also be
described as a game for two players [15]: In the ith move, the truth value of xi is
chosen by the existential player if Qi = ∃ and by the universal player if Qi = ∀.
The existential player wins if the resulting formula is true and the universal
player wins if the resulting formula is false. In this interpretation, a QBF is true
if there is a winning strategy for the existential player and it is false if there is
a winning strategy for the universal player.

Strategies can be described as trees. Let P = Q1x1Q2x2 . . . Qnxn be a prefix.
An existential strategy for P is a tree of height n+ 1 where every node at level
k ∈ {1, . . . , n} has one child if Qk = ∃ and two children if Qk = ∀. In the case
Qk = ∀, the two edges to the children are labeled by > and ⊥, respectively. In
the case Qk = ∃, the edge to the only child is labeled by either > or ⊥. Universal
strategies are defined analogously, the only difference being that the roles of the
quantifiers are exchanged, i.e., nodes at level k have two successors if Qk = ∃
(one labeled ⊥ and one labeled >) and one successor if Qk = ∀ (labeled either
⊥ or >). Here are the four existential strategies and the two universal strategies
for the prefix ∀x1∃x2:

⊥ >

> >

⊥ >

⊥ >

⊥ >

> ⊥

⊥ >

⊥ ⊥

>

> ⊥

⊥

> ⊥
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We write S∃(P ) for the set of all existential strategies and S∀(P ) for the set of
all universal strategies. As shown in the following lemma, the set of paths of a
given existential strategy for prefix P is never disjoint from the set of paths of a
given universal strategy. Unless otherwise stated, by a path, we mean a complete
path starting at the root and ending at a leaf, together with the corresponding
truth value labels.

Lemma 1 If P is a prefix and s ∈ S∃(P ), t ∈ S∀(P ), then s and t have a path
in common.

Proof. A common path can be constructed by induction on the length of the
prefix. There is nothing to show for prefixes of length 0. Suppose the claim holds
for all prefixes of length n and consider a prefix P ′ = P Qn+1xn+1 of length n+1.
Let s ∈ S∃(P ′), t ∈ S∀(P ′) be arbitrary. By chopping off the leafs of s and t,
we obtain elements of S∃(P ) and S∀(P ), respectively, and these share a common
path σ0 by induction hypothesis. If Qn+1 = ∃, then σ0 has a unique continuation
in s, with an edge labeled either > or ⊥, and σ0 has two continuations in t, one
labeled > and one labeled ⊥, so the continuation of σ0 in s must also appear
in t. If Qn+1 = ∀, the argumentation is analogous. ut

Every path in a strategy for a prefix P corresponds to an assignment σ : X →
{>,⊥}. An existential strategy for QBF P.φ is a winning strategy (for the ex-
istential player) if all its paths are assignments for which φ is true. A universal
strategy is a winning strategy (for the universal player) if all its paths are assign-
ments for which φ is false. For a QBF P.φ and an existential strategy s ∈ S∃(P ),
we define [P.φ]s =

∧
σ[φ]σ, where σ ranges over all the assignments correspond-

ing to a path of s. (Recall that our assignments are total unless otherwise stated,
and our paths go from the root to a leaf unless otherwise stated.) Then we have
[P.φ]s = > if and only if s is an existential winning strategy. For a universal
strategy t ∈ S∀(P ), we define [P.φ]t =

∨
τ [φ]τ , where τ ranges over all the as-

signments corresponding to a path of t. Then [P.φ]s = ⊥ if and only if t is a
universal winning strategy.

The definitions made in the previous paragraph are consistent with the in-
terpretation of QBFs introduced earlier: a QBF is true if and only if there is
an existential winning strategy, and it is false if and only if there is a universal
winning strategy. Lemma 1 ensures that a QBF is either true or false. As another
consequence of Lemma 1, observe that for every QBF P.φ we have(

∃ s ∈ S∃(P ) : [P.φ]s = >
)
⇐⇒

(
∀ t ∈ S∀(P ) : [P.φ]t = >

)
and

(
∀ s ∈ S∃(P ) : [P.φ]s = ⊥

)
⇐⇒

(
∃ t ∈ S∀(P ) : [P.φ]t = ⊥

)
.

We will also need the following property, the proof of which is straightforward.

Lemma 2 Let P be a prefix for X, and let φ, ψ ∈ BF(X). Then for all s ∈
S∃(P ) we have [P.(φ ∧ ψ)]s = [P.φ]s ∧ [P.ψ]s, and for all t ∈ S∀(P ) we have
[P.(φ ∨ ψ)]t = [P.φ]t ∨ [P.ψ]t.
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3 Groups and Group Actions

Symmetries can be described using groups and group actions [16]. Recall that
a group is a set G together with an associative binary operation G × G → G,
(g, h) 7→ gh. A group has a neutral element and every element has an inverse
in G. A typical example for a group is the set Z of integers together with ad-
dition. Another example is the group of permutations. For any fixed n ∈ N, a
permutation is a bijective function π : {1, . . . , n} → {1, . . . , n}. The set of all
such functions together with composition forms a group, called the symmetric
group and denoted by Sn.

A (nonempty) subset H of a group G is called a subgroup of G if it is closed
under the group operation and taking inverses. For example, the set 2Z of all
even integers is a subgroup of Z, and the set {id,

(
1 2 3
1 3 2

)
} is a subgroup of S3.

In general, a subset E of G is not a subgroup. However, for every subset E
we can consider the intersection of all subgroups of G containing E. This is a
subgroup and it is denoted by 〈E〉. The elements of E are called generators of
the subgroup. For example, we have 2Z = 〈2〉, but also 2Z = 〈4, 6〉. A set of
generators for S3 is {

(
1 2 3
2 3 1

)
,
(
1 2 3
2 1 3

)
}.

If G is a group and S is a set then a group action is a map G × S → S,
(g, x) 7→ g(x) which is compatible with the group operation, i.e., for all g, h ∈ G
and x ∈ S we have (gh)(x) = g(h(x)) and e(x) = x, where e is the neutral
element of G. Note that when we have a group action, every element g ∈ G can
be interpreted as a bijective function g : S → S.

For example, for G = Sn and S = {1, . . . , n} we have a group action by the
definition of the elements of Sn. Alternatively, we can let Sn act on a set of
tuples of length n, say on S = {�,©,4}n, via permutation of the indices, i.e.,
π(x1, . . . , xn) = (xπ(1), . . . , xπ(n)). For example, for g =

(
1 2 3
1 3 2

)
we would have

g(�,©,�) = (�,�,©), g(4,4,�) = g(4,�,4), g(©,4,4) = (©,4,4),
etc. As one more example, we can consider the group G = Sn × Sm consisting
of all pairs of permutations. The operation for this group is defined component-
wise, i.e., (π, σ)(π′, σ′) = (ππ′, σσ′). We can let G act on a set of two dimensional
arrays with shape n ×m, say on S = {�,©,4}n×m, by letting the first com-
ponent of a group element permute the row index and the second component
permute the column index. For example, for g = (

(
1 2 3
1 3 2

)
,
(
1 2 3
2 3 1

)
) we then have

g(
� © 4
� 4 �
© © �

) =

© 4 �
© � ©
4 � �

.

If we have a group action G× S → S, we can define an equivalence relation on
S via x ∼ y ⇐⇒ ∃ g ∈ G : x = g(y). The axioms of groups and group actions
ensure that ∼ is indeed an equivalence relation. The equivalence classes are called
the orbits of the group action. For example, for the action of S3 on {�,©,4}3
discussed above, there are some orbits of size 1 (e.g., {(©,©,©)}), some orbits
of size 3 (e.g., {(�,�,4), (�,4,�), (4,�,�)}), and there is one orbit of size 6
({(�,©,4), (�,4,©), (©,4,�), (©,�,4), (4,©,�), (4,�,©)}).
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4 Syntactic Symmetries

In previous work [9], symmetries are characterized as permutations of literals
with certain properties like being closed under negation, taking into account the
order of the quantifiers, and, when extended to full formulas, always mapping
a QBF to itself. As we will argue in the following, this point of view on QBF
symmetries covers only a part of the full theory. We use group actions to describe
symmetries of QBFs. Two kinds of group actions are of interest. On the one
hand, we consider transformations that map formulas to formulas, i.e., a group
action G × BF(X) → BF(X). On the other hand, we consider transformations
that map strategies to strategies, i.e., a group action G × S∃(P ) → S∃(P ) or
G×S∀(P )→ S∀(P ). In both cases, we consider groups G which preserve the set
of winning strategies for a given QBF P.φ.

Let us first consider group actions G × BF(X) → BF(X). In this case, we
need to impose a technical restriction introduced in the following definition.

Definition 3 Let P be a prefix for X. A bijective function f : BF(X)→ BF(X)
is called admissible (w.r.t. P ) if

1. for every assignment σ : X → {>,⊥} and every formula φ ∈ BF(X) we have
[φ]f(σ) = [f(φ)]σ;

2. for every variable x ∈ X the formula f(x) only contains variables that belong
to the same quantifier block of P as x.

The first condition ensures that an admissible function f preserves propositional
satisfiability. In particular, it implies that for any φ, ψ ∈ BF(X), the formulas
f(¬φ) and ¬f(φ) are equivalent, as are f(φ ◦ ψ) and f(φ) ◦ f(ψ) for every
binary connective ◦. It follows that the inverse of an admissible function is again
admissible. It also follows that an admissible function f is essentially determined
by its values for the variables. Note that according to Definition 3 variables can
be mapped to arbitrary formulas. The second condition may be replaced by a less
restricted version, but for simplicity we use the conservative version of above.

Example 4 Let X = {x, y, a, b} and P = ∀x∀y∃a∃b. There is an admissible
function f with f(x) = ¬x, f(y) = y, f(a) = b, f(b) = a. For such a function,
we may have f(x∨ (a→ y)) = ¬x∨ (b→ y). A function g with g(x) = b cannot
be admissible, because of the second condition. By the first condition, a function
h with h(x) = x and h(y) = ¬x cannot be admissible.

Next we show that admissible functions not only preserve satisfiability of Boolean
formulas, but also the truth of QBFs.

Theorem 5 Let P be a prefix for X and f : BF(X) → BF(X) be admissible
for P . For any φ ∈ BF(X) the formula P.φ is true if and only if P.f(φ) is true.

Proof. Since the inverse of an admissible function is admissible, it suffices to show
“⇒”. To do so, we proceed by induction on the number of quantifier blocks in P .

There is nothing to show when P is empty. Suppose the claim is true for all
prefixes with k quantifier blocks, and consider a prefix P = Qx1Qx2 · · ·QxiP ′
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for some i ∈ {1, . . . , n}, Q ∈ {∀,∃}, and a prefix P ′ for xi+1, . . . , xn with at
most k quantifier blocks whose top quantifier is not Q. By the admissibility, we
may view f as a pair of functions f1 : BF({x1, . . . , xi})→ BF({x1, . . . , xi}) and
f2 : BF({xi+1, . . . , xn}) → BF({xi+1, . . . , xn}), where f2 is admissible for P ′.
Let s ∈ S∃(P ) be a winning strategy for P.φ. We construct a winning strategy
t ∈ S∃(P ) for P.f(φ).

Case 1: Q = ∃. In this case, the upper i levels of s and t consist of single paths.
Let σ : {x1, . . . , xi} → {>,⊥} be the assignment corresponding to the upper i
levels of s. The subtree sσ of s rooted at the end of σ (level i+ 1) is a winning
strategy for P ′.[φ]σ. By induction hypothesis, P ′.f2([φ]σ) has a winning strategy.
Let t have an initial path corresponding to the assignment τ = f−11 (σ) followed
by a winning strategy of P ′.f2([φ]σ). (Since f1 is invertible and independent of
xi+1, . . . , xn, the assignment τ is well-defined.) Then t is a winning strategy of
P.f(φ). To see this, let ρ be an arbitrary path of t. We show that [f(φ)]ρ = >.
Indeed,

[f(φ)]ρ

t starts with τ

↓
= [[f(φ)]τ ]ρ

Def. of τ

↓
= [[f(φ)]f−1

1 (σ)]ρ

Def. of f1, f2

↓
= [[f1(f2(φ))]f−1

1 (σ)]ρ

=
↑

f1 admissible

[[f−11 (f1(f2(φ)))]σ]ρ = [[f2(φ)]σ]ρ =
↑

f2 admissible

[f2([φ]σ)]ρ =
↑

choice of t

>.

Case 2: Q = ∀. In this case, the upper i levels of both s and t form complete
binary trees in which every path corresponds to an assignment for the variables
x1, . . . , xi. Let τ : {x1, . . . , xi} → {>,⊥} be such an assignment, and let σ =
f1(τ). Let sσ be the subtree of s rooted at σ. This is a winning strategy for
the formula P ′.[φ]σ obtained from P.φ by instantiating the variables x1, . . . , xi
according to σ and dropping the corresponding part of the prefix. By induction
hypothesis, P ′.f2([φ]σ) has a winning strategy. Pick one and use it as the subtree
of t rooted at τ . The same calculation as in Case 1 shows that t is a winning
strategy for P.f(φ). ut

Example 6 Consider the true QBF Φ = P.φ = ∀x∀y∃a∃b.((x↔ a) ∧ (y ↔ b)).
If f is an admissible function with f(x) = y, f(y) = x, f(a) = b, f(b) = a, then
obviously, P.f(φ) is true as well. If g is a non-admissible function with g(x) = b,
g(b) = x, then P.g(φ) is false.

Next we introduce the concept of a syntactic symmetry group. The attribute
‘syntactic’ shall emphasize that this group acts on formulas, in contrast to the
‘semantic’ symmetry group introduced later, which acts on strategies. Our dis-
tinction between syntactic and semantic symmetries corresponds to the distinc-
tion between the problem and solution symmetries made in CSP [4].

Definition 7 Let P.φ be a QBF and let G×BF(X)→ BF(X) be a group action
such that every g ∈ G is admissible w.r.t. P . We call G a syntactic symmetry
group for P.φ if φ and g(φ) are equivalent (i.e. φ↔ g(φ) is a tautology) for all
g ∈ G.
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It should be noticed that being a ‘symmetry group’ is strictly speaking not a
property of the group itself but rather a property of the action of G on BF(X).
The elements of a symmetry group are called symmetries. In general, we call a
group action admissible if every g ∈ G is admissible. Definition 7 implies that
when G is a syntactic symmetry group for P.φ, then for every element g ∈ G the
QBF P.g(φ) has the same set of winning strategies as P.φ. Note that this is not
already a consequence of Thm. 5, which only said that P.g(φ) is true if and only
if P.φ is true, which does not imply that they have the same winning strategies.

Example 8 Consider the QBF Φ = P.φ = ∀x∀y∃a∃b.((x ↔ a) ∧ (y ↔ b)). A
syntactic symmetry group for Φ is G = {id, f}, where f is an admissible function
with f(x) = y, f(y) = x, f(a) = b, f(b) = a.

Symmetries are often restricted to functions which map variables to liter-
als [9]. But this restriction is not necessary. Also the admissible function g de-
fined by g(x) = x, g(y) = x⊕ y, g(a) = a, g(b) = a⊕ b is a syntactic symmetry
for Φ.

5 Semantic Symmetries

In SAT, considering syntactic symmetries is enough, because the solutions of
Boolean formulas are variable assignments. As introduced in Section 2, the solu-
tions of QBFs are tree-shaped strategies. In order to be able to permute certain
subtrees of a strategy while keeping others untouched, we introduce semantic
symmetry groups. For the definition of semantic symmetry groups, no techni-
cal requirement like the admissibility is needed. Every permutation of strategies
that maps winning strategies to winning strategies is fine.

Definition 9 Let Φ = P.φ be a QBF and let G be a group acting on S∃(P ) (or
on S∀(P )). We call G a semantic symmetry group for Φ if for all g ∈ G and all
s ∈ S∃(P ) (or all s ∈ S∀(P )) we have [Φ]s = [Φ]g(s).

A single syntactic symmetry can give rise to several distinct semantic symme-
tries, as shown in the following example.

Example 10 Consider again Φ = P.φ = ∀x∀y∃a∃b.((x ↔ a) ∧ (y ↔ b)). The
function f of the previous example, which exchanges x with y and a with b in
the formula, can be translated to a semantic symmetry f̃ :

f̃
( ⊥ >

⊥ > ⊥ >

α γ ε η

β δ ζ ϑ

)
=

⊥ >

⊥ > ⊥ >

β ζ δ ϑ

α ε γ η

This symmetry exchanges the labels of level 3 and level 4 and swaps the existential
parts of the two paths in the middle. Regardless of the choice of α, . . . , η ∈
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{⊥,>}, the strategy on the left is winning if and only if the strategy on the right
is winning, so f̃ maps winning strategies to winning strategies.

Some further semantic symmetries can be constructed from f . For example,
in order to be a winning strategy, it is necessary that α = β = ⊥. So we can take
a function that just flips α and β but does not touch the rest of the tree. For the
same reason, also a function that just flips η and ϑ but does not affect the rest
of the tree is a semantic symmetry. The composition of these two functions and
the function f̃ described before (in an arbitrary order) yields a symmetry that
exchanges γ with ζ and δ with ε but keeps α, β, η, ϑ fixed. Also this function is a
semantic symmetry.

The construction described in the example above works in general. Recall that
for an assignment σ : X → {>,⊥} and a function f : BF(X) → BF(X), the
assignment f(σ) : X → {>,⊥} is defined by f(σ)(x) = [f(x)]σ for x ∈ X.

Lemma 11 Let P be a prefix for X and g be an element of a group acting
admissibly on BF(X). Then there is a function f : S∃(P )→ S∃(P ) such that for
all s ∈ S∃(P ) we have that σ is a path of f(s) if and only if g(σ) is a path of s.

Proof. Since g is an admissible function, it acts independently on variables be-
longing to different quantifier blocks. Therefore it suffices to consider the case
where P consists of a single quantifier block. If all quantifiers are existential,
then s consists of a single path, so the claim is obvious. If there are only univer-
sal quantifiers, then s consists of a complete binary tree containing all possible
paths, so the claim is obvious as well. ut

Starting from a syntactic symmetry group Gsyn, we can consider all the semantic
symmetries that can be obtained from it like in the example above. All these se-
mantic symmetries form a semantic symmetry group, which we call the semantic
symmetry group associated to Gsyn.

Definition 12 Let P be a prefix for X and let Gsyn × BF(X) → BF(X) be an
admissible group action. Let Gsem be the set of all bijective functions f : S∃(P )→
S∃(P ) such that for all s ∈ S∃(P ) and every path σ of f(s) there exists a g ∈ Gsyn

such that g(σ) is a path of s. This Gsem is called the associated group of Gsyn.

Again, it would be formally more accurate but less convenient to say that the
action of Gsem on S∃(P ) is associated to the action of Gsyn on BF(X).

Theorem 13 If Gsyn is a syntactic symmetry group for a QBF Φ, then the
associated group Gsem of Gsyn is a semantic symmetry group for Φ.

Proof. Let Φ = P.φ. Obviously, Gsem is a group. To show that it is a symmetry
group, let s ∈ S∃(P ) be a winning strategy for Φ, and let gsem ∈ Gsem. We
show that gsem(s) is again a winning strategy. Let σ be a path of gsem(s). By
Definition 12, there exists a gsyn ∈ Gsyn such that gsyn(σ) is a path of s. Since
s is a winning strategy, [φ]gsyn(σ) = >, and since gsyn is admissible, [φ]gsyn(σ) =
[gsyn(φ)]σ. Since gsyn is a symmetry, [gsyn(φ)]σ = [φ]σ, so reading backwards we
have [φ]σ = [gsyn(φ)]σ = [gsyn(φ)]σ = [φ]gsyn(σ) = >. Hence every path of gsem(s)
is a satisfying assignment for φ, so gsem(s) is a winning strategy. ut
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The distinction between a syntactic and a semantic symmetry group is imma-
terial when the prefix consists of a single quantifier block. In particular, SAT
problems can be viewed as QBFs in which all quantifiers are ∃. For such formu-
las, each tree in S∃(P ) consists of a single path, so in this case the requirement
∀ s ∈ S∃(P ) : [Φ]s = [Φ]g(s) from Definition 9 boils down to the requirement that
[φ]σ = [φ]f(σ) should hold for all assignments σ : X → {>,⊥}. This reflects the
condition of Definition 7 that φ and f(φ) are equivalent.

As we have seen in Example 10, there is more diversity for prefixes with
several quantifier blocks. In such cases, a single element of a syntactic symmetry
group can give rise to a lot of elements of the associated semantic symmetry
group. In fact, the associated semantic symmetry group is very versatile. For
example, when there are two strategies s, s′ ∈ S∃(P ) and some element f of
an associated semantic symmetry group Gsem such that f(s) = s′, then there
is also an element h ∈ Gsem with h(s) = s′, h(s′) = s and h(r) = r for all
r ∈ S∃(P )\{s, s′}. The next lemma is a generalization of this observation which
indicates that Gsem contains elements that exchange subtrees across strategies.

Lemma 14 Let P = Q1x1 . . . Qnxn be a prefix and Gsyn × BF(X) → BF(X)
be an admissible group action. Let Gsem be the associated group of Gsyn. Let
s ∈ S∃(P ) and let σ be a path of s. Let i ∈ {1, . . . , n} be such that [xj ]σ = [g(xj)]σ
for all g ∈ Gsyn and all j < i.

Further, let f ∈ Gsem and s′ = f(s). Let σ′ be a path of s′ such that the first
i − 1 edges of σ′ agree with the first i − 1 edges of σ. By the choice of i such
a σ′ exists. Let t, t′ ∈ S∃(Qixi . . . Qnxn) be the subtrees of s, s′ rooted at the ith
node of σ, σ′, respectively, and let s′′ ∈ S∃(P ) be the strategy obtained from s by
replacing t by t′, as illustrated in the picture below. Then there exists h ∈ Gsem

with h(s) = s′′.

s′

t′

σ′

s

t

σ

s′′

t′

σ′

f h

Proof. Define h : S∃(P ) → S∃(P ) by h(s) = s′′, h(s′′) = s, and h(r) = r for all
r ∈ S∃(P ) \ {s, s′′}. Obviously, h is a bijective function from S∃(P ) to S∃(P ).
To show that h belongs to Gsem, we must show that for every r ∈ S∃(P ) and
every path ρ of h(r) there exists g ∈ Gsyn such that g(ρ) is a path of r. For
r ∈ S∃(P ) \ {s, s′′} we have h(r) = r, so there is nothing to show.

Consider the case r = s. Let ρ be a path of h(r) = s′′. If ρ does not end in
the subtree t′, then the same path ρ also appears in r and we can take g = id.
Now suppose that ρ does end in the subtree t′. Then ρ is also a path of s′ = f(s),
because all paths of s and s′ ending in t or t′ agree above the ith node. Since
f ∈ Gsem, there exists g ∈ Gsyn such that g(ρ) is a path of s.
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Finally, consider the case r = s′′. Let ρ be a path of h(r) = s. If ρ does not
end in the subtree t, then the same path ρ also appears in r and we can take
g = id. Now suppose that ρ does end in the subtree t. Then the first i− 1 edges
of ρ agree with those of σ. Since s = f−1(s′), there exists g ∈ Gsyn such that
g(ρ) is a path of s′. By assumption on Gsyn, the element g fixes first i− 1 edges
of ρ, so g(ρ) ends in t′ and is therefore a path of s′′, as required. ut

6 Existential Symmetry Breakers

The action of a syntactic symmetry group of a QBF P.φ splits BF(X) into
orbits. For all the formulas ψ in the orbit of φ, the QBF P.ψ has exactly the
same winning strategies as P.φ. For finding a winning strategy, we therefore have
the freedom of exchanging φ with any other formula in its orbit.

The action of a semantic symmetry group on S∃(P ) splits S∃(P ) into orbits.
In this case, every orbit either contains only winning strategies for P.φ or no
winning strategies for P.φ at all:

•an orbit containing only
winning strategies

•an orbit containing no
winning strategies

Instead of checking all elements of S∃(P ), it is sufficient to check one element
per orbit. If a winning strategy exists, then any such sample contains one.

To avoid inspecting strategies that belong to the same orbit symmetry break-
ing introduces a formula ψ ∈ BF(X) which is such that P.ψ has at least one
winning strategy in every orbit. Such a formula is called a symmetry breaker.
The key observation is that instead of solving P.φ, we can solve P.(φ∧ψ). Every
winning strategy for the latter will be a winning strategy for the former, and if
the former has at least one winning strategy, then so does the latter. By further-
more allowing transformations of φ via a syntactic symmetry group, we get the
following definition.

Definition 15 Let P be a prefix for X, let Gsyn be a group acting admissibly
on BF(X) and let Gsem be a group action on S∃(P ). A formula ψ ∈ BF(X)
is called an existential symmetry breaker for P (w.r.t. the actions of Gsyn and
Gsem) if for every s ∈ S∃(P ) there exist gsyn ∈ Gsyn and gsem ∈ Gsem such that
[P.gsyn(ψ)]gsem(s) = >.

Example 16 Consider the formula Φ = P.φ = ∀x∃y∃z.(y ↔ z). All the el-
ements of S∃(P ) have the form depicted on the right. As syntac-
tic symmetries, we have the admissible functions f, g : BF(X) →
BF(X) defined by f(x) = x, f(y) = z, f(z) = y, and g(x) = x,
g(y) = ¬y, g(z) = ¬z, respectively, so we can take Gsyn = 〈f, g〉 as
a syntactic symmetry group.

⊥ >

α γ

β δ
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According to [8, 9] the formula ¬y is a symmetry breaker for P.φ. When
considering Gsyn together with Gsem = {id} (what would be sufficient for SAT),
the complications for QBF become obvious. The orbit of ¬y is O = {y, z,¬y,¬z}.
Now consider the strategy with α = >, β = ⊥, γ = ⊥, δ = >. For any ψ ∈ O,
this strategy does not satisfy P.ψ, because ψ is true on one branch, but false on
the other. Using semantic symmetries can overcome this problem.

Semantic symmetries can act differently on different paths. Let f1 : S∃(P )→
S∃(P ) be the function which exchanges α, β and leaves γ, δ fixed, let g1 : S∃(P )→
S∃(P ) be the function which replaces α, β by ¬α,¬β and leaves γ, δ fixed, and
let f2, g2 : S∃(P ) → S∃(P ) be defined like f1, g1 but with the roles of α, β and
γ, δ exchanged. The group Gsem = 〈f1, g1, f2, g2〉 is a semantic symmetry group
for Φ. This group splits S∃(P ) into four orbits: one orbit consists of all strategies
with α = β, γ = δ, one consists of those with α = β, γ 6= δ, one consists of those
with α 6= β, γ = δ, and on consists of those with α 6= β, γ 6= δ.

Taking Gsyn = {id} together with this group Gsem, the formula ¬y is a sym-
metry breaker, because each orbit contains one element with α = γ = ⊥.

The following theorem is the main property of symmetry breakers.

Theorem 17 Let Φ = P.φ be a QBF. Let Gsyn be a syntactic symmetry group
and Gsem be a semantic symmetry group acting on S∃(P ). Let ψ be an existential
symmetry breaker for Gsyn and Gsem. Then P.φ is true iff P.(φ ∧ ψ) is true.

Proof. The direction “⇐” is obvious (by Lemma 2). We show “⇒”. Let s ∈
S∃(P ) be such that [Φ]s = >. Since Φ is true, such an s exists. Let gsyn ∈ Gsyn and
gsem ∈ Gsem be such that [P.gsyn(ψ)]gsem(s) = >. Since ψ is an existential sym-
metry breaker, such elements exist. Since Gsyn and Gsem are symmetry groups,
[P.gsyn(φ)]gsem(s) = [P.φ]s = >. Lemma 2 implies [P.(gsyn(φ)∧ gsyn(ψ))]gsem(s) =
>. By the compatibility with logical operations (admissibility),

[P.gsyn(φ ∧ ψ)]gsem(s) = [P.(gsyn(φ) ∧ gsyn(ψ))]gsem(s) = >.

Now by Thm. 5 applied with g−1syn to P.gsyn(φ ∧ ψ), it follows that there exists
s′ such that [P.(φ ∧ ψ)]s′ = >, as claimed. ut

As a corollary, we may remark that for an existential symmetry breaker ψ for the
prefix P the formula P.ψ is always true. To see this, choose φ = > and observe
that any groups Gsyn and Gsem are symmetry groups for φ. By the theorem,
P.(φ ∧ ψ) is true, so P.ψ is true.

7 Universal Symmetry Breakers

An inherent property of reasoning about QBFs is the duality between “exis-
tential” and “universal” reasoning [17], i.e., the duality between proving and
refuting a QBF. For showing that a QBF is true, an existential strategy has to
be found that is an existential winning strategy. An existential symmetry breaker
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tightens the pool of existential strategies among which the existential winning
strategy can be found (in case there is one).

If the given QBF is false, then a universal strategy has to be found that is
a universal winning strategy. In this case, an existential symmetry breaker is
not useful. Recall that a universal winning strategy is a tree in which all paths
are falsifying assignments. Using an existential symmetry breaker as in Thm. 17
tends to increase the number of such paths and thus increases the number of
potential candidates. To aid the search for a universal winning strategy, it would
be better to increase the number of paths corresponding to satisfying assign-
ments, because this reduces the search space for universal winning strategies.
For getting symmetry breakers serving this purpose, we can use a theory that is
analogous to the theory of the previous section.

Definition 18 Let P be a prefix for X, let Gsyn be a group acting admissibly
on BF(X) and let Gsem be a group action on S∀(P ). A formula ψ ∈ BF(X)
is called a universal symmetry breaker for P (w.r.t. the actions of Gsyn and
Gsem) if for every t ∈ S∀(P ) there exist gsyn ∈ Gsyn and gsem ∈ Gsem such that
[P.gsyn(ψ)]gsem(t) = ⊥.

No change is needed for the definition of syntactic symmetry groups. A semantic
symmetry group for Φ = P.φ is now a group acting on S∀(P ) in such a way that
[P.φ]t = [P.φ]g(t) for all g ∈ G and all t ∈ S∀(P ). With these adaptions, we have
the following analog of Thm. 17.

Theorem 19 Let Φ = P.φ be a QBF. Let Gsyn be a syntactic symmetry group
and Gsem be a semantic symmetry group acting on S∀(P ). Let ψ be a universal
symmetry breaker for Gsyn and Gsem. Then P.φ is false iff P.(φ ∨ ψ) is false.

The proof is obtained from the proof of Thm. 17 by replacing S∃(P ) by S∀(P ),
every ∧ by ∨, every > by ⊥, and “existential” by “universal”.

We have seen before that for an existential symmetry breaker ψ∃ the QBF
P.ψ∃ is necessarily true. Likewise, for a universal symmetry breaker ψ∀, the QBF
P.ψ∀ is necessarily false. This has the important consequence that existential and
universal symmetry breakers can be used in combination, even if they are not
defined with respect to the same group actions.

Theorem 20 Let Φ = P.φ be a QBF. Let G∃syn and G∀syn be syntactic symme-

try groups of Φ, let G∃sem be a semantic symmetry group of Φ acting on S∃(P )
and let G∀sem be a semantic symmetry group of Φ acting on S∀(P ). Let ψ∃ be
an existential symmetry breaker for G∃syn and G∃sem, and let ψ∀ be a universal

symmetry breaker for G∀syn and G∀sem. Then P.φ is true iff P.((φ ∨ ψ∀) ∧ ψ∃) is
true iff P.((φ ∧ ψ∃) ∨ ψ∀) is true.
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Proof. For the first equivalence, we have

P.φ is true
Thm. 19
⇐⇒ P.(φ ∨ ψ∀) is true

Def.
⇐⇒ ∃ s ∈ S∃(P ) : [P.(φ ∨ ψ∀)]s = >

⇐⇒ ∃ s ∈ S∃(P ) : [P.(φ ∨ ψ∀)]s ∧ [P.ψ∃]s︸ ︷︷ ︸
=>

= >

Lem. 2
⇐⇒ ∃ s ∈ S∃(P ) : [P.((φ ∨ ψ∀) ∧ ψ∃)]s = >
Def.
⇐⇒ P.((φ ∨ ψ∀) ∧ ψ∃) is true.

The proof of the second equivalence is analogous. ut

Next we relate existential symmetry breakers to universal symmetry breakers.
Observe that when P is a prefix and P̃ is the prefix obtained from P by changing
all quantifiers, i.e., replacing each ∃ by ∀ and each ∀ by ∃, then S∃(P ) = S∀(P̃ ).
For any formula φ ∈ BF(X) and any s ∈ S∃(P ) = S∀(P̃ ) we have ¬[P.φ]s =
[P̃ .¬φ]s. Therefore, if Gsyn is a group acting admissibly on BF(X) and Gsem is

a group acting on S∃(P ) = S∀(P̃ ), we have

ψ is an existential symmetry breaker for Gsyn and Gsem

⇐⇒ ∀ s ∈ S∃(P ) ∃ gsyn ∈ Gsyn, gsem ∈ Gsem : [P.gsyn(ψ)]gsem(s) = >
⇐⇒ ∀ s ∈ S∀(P̃ ) ∃ gsyn ∈ Gsyn, gsem ∈ Gsem : [P̃ .¬gsyn(ψ)]gsem(s) = ⊥
⇐⇒ ∀ s ∈ S∀(P̃ ) ∃ gsyn ∈ Gsyn, gsem ∈ Gsem : [P̃ .gsyn(¬ψ)]gsem(s) = ⊥
⇐⇒ ¬ψ is a universal symmetry breaker for Gsyn and Gsem,

where admissibility of gsyn is used in the third step. We have thus proven the fol-
lowing theorem, which captures Property 2 of the symmetry breaker introduced
in [8] by relating existential and universal symmetry breakers.

Theorem 21 Let P be a prefix for X and let P̃ be the prefix obtained from P by
flipping all the quantifiers. Let Gsyn be a group acting admissibly on BF(X) and

let Gsem be a group acting on S∃(P ) = S∀(P̃ ). Then ψ ∈ BF(X) is an existential
symmetry breaker for Gsyn and Gsem if and only if ¬ψ is a universal symmetry
breaker for Gsyn and Gsem.

8 Construction of Symmetry Breakers

Because of Thm. 21, it suffices to discuss the construction of existential symme-
try breakers. A universal symmetry breaker is obtained in a dual manner. Given
a symmetry group, the basic idea is similar as for SAT (see also the French
thesis of Jabbour [9] for a detailed discussion on lifting SAT symmetry breaking
techniques to QBF). First an order on S∃(P ) is imposed, so that every orbit con-
tains an element which is minimal with respect to the order. Then we construct
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a formula ψ∃ for which (at least) the minimal elements of the orbits are winning
strategies. Any such formula is an existential symmetry breaker. One way of
constructing an existential symmetry breaker is given in the following theorem,
which generalizes the symmetry breaking technique by Crawford et al. [18]. We
give a formal proof that we obtain indeed a QBF symmetry breaker and con-
clude with lifting a CNF encoding used in recent SAT solving technology [19] to
QBF.

Theorem 22 Let P = Q1x1 . . . Qnxn be a prefix for X, let Gsyn be a group
acting admissibly on BF(X), and let Gsem be the associated group of Gsyn. Then

ψ =

n∧
i = 1

Qi = ∃

∧
g∈Gsyn

((∧
j<i

(xj ↔ g(xj))
)
→
(
xi → g(xi)

))

is an existential symmetry breaker for Gsyn and Gsem.

Proof. All elements of S∃(P ) are trees with the same shape. Fix a numbering
of the edge positions in these trees which is such that whenever two edges are
connected by a path, the edge closer to the root has the smaller index. (One
possibility is breadth first search order.) For any two distinct strategies s1, s2 ∈
S∃(P ), there is then a minimal k such that the labels of the kth edges of s1, s2
differ. Define s1 < s2 if the label is ⊥ for s1 and > for s2, and s1 > s2 otherwise.

Let s ∈ S∃(P ). We need to show that there are gsyn ∈ Gsyn and gsem ∈
Gsem such that [gsyn(ψ)]gsem(s) = >. Let gsyn = id and let gsem be such that
s̃ := gsem(s) is as small as possible in the order defined above. We show that
[ψ]s̃ = >. Assume otherwise. Then there exists i ∈ {1, . . . , n} with Qi = ∃ and
g ∈ Gsyn and a path σ in s̃ with [xj ]σ = [g(xj)]σ for all j < i and [xi]σ = >
and [g(xi)]σ = ⊥. By Lemma 11, the element g ∈ Gsyn can be translated into an
element f ∈ Gsem which maps s̃ to a strategy f(s̃) which contains a path that
agrees with σ on the upper i−1 edges but not on the ith. By Lemma 14, applied
to the subgroup H ⊆ Gsyn consisting of all h ∈ Gsyn with [xj ]σ = [h(xj)]σ for
all j < i, we may assume that f(s̃) and s̃ only differ in edges that belong to the
subtree rooted at the ith node of σ. As all these edges have higher indices, we
have s̃ < s, in contradiction to the minimality assumption on s. ut

Note that we do not need to know the group Gsem explicitly. It is only used
implicitly in the proof.

In nontrivial applications, Gsyn will have a lot of elements. It is not necessary
(and not advisable) to use them all, although Thm. 22 would allow us to do so.
In general, if a formula ψ1∧ψ2 is an existential symmetry breaker, then so are ψ1

and ψ2, so we are free to use only parts of the large conjunctions. A reasonable
choice is to pick a set E of generators for Gsyn and let the inner conjunction run
over (some of) the elements of E.

The formula ψ of Thm. 22 can be efficiently encoded as conjunctive normal
form (CNF), adopting the propositional encoding of [19, 2]: let g ∈ Gsyn and let
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{yg0 , . . . , y
g
n−1} be a set of fresh variables. First, we define a set Ig of clauses that

represent all implications xi → g(xi) of ψ from Thm. 17,

Ig = {(¬ygi−1 ∨ ¬xi ∨ g(xi)) | 1 ≤ i ≤ n,Qi = ∃}.

When xi is existentially quantified, by using Tseitin variables ygi−1 we can recycle
the implications xi → g(xi) in the encoding of the equivalences xj ↔ g(xj) that
appear in the outer implication:

Eg = {(ygj ∨ ¬y
g
j−1 ∨ ¬xj) ∧ (yj ∨ ¬yj−1 ∨ g(xj)) | 1 ≤ j < n,Qj = ∃}.

If variable xj is universally quantified, the recycling is not possible, so we use

Ug = {(ygj ∨¬y
g
j−1∨¬xj∨¬g(xj))∧(ygj ∨¬y

g
j−1∨xj∨g(xj)) | 1 ≤ j < n,Qj = ∀}

instead. The CNF encoding of ψ is then the conjunction of yg0 and all the clauses
in Ig, Eg, and Ug, for all desired g ∈ Gsyn. The prefix P has to be extended by
additional quantifiers which bind the Tseitin variables ygi . As explained in [20],
the position of such a new variable in the prefix has to be behind the quantifiers
of the variables occurring in its definition. The encoding of universal symmetry
breakers works similarly and results in a formula in disjunctive normal form
(DNF), i.e., a disjunction of cubes (where a cube is a conjunction of literals). In
this case the auxiliary variables are universally quantified. The obtained cubes
could be used by solvers that simultaneously reason on the CNF and DNF rep-
resentation of a formula (e.g., [21, 22]) or by solvers that operate on formulas of
arbitrary structure (e.g., [23, 24, 22]). The practical evaluation of this approach
is a separate topic which we leave to future work.

Besides the practical evaluation of the discussed symmetry breakers in con-
nection with recent QBF solving technologies there are many more promising
directions for future work. Also different orderings than the lexicographic order
applied in Thm. 22 could be used [25] for the construction of novel symmetry
breakers. Recent improvements of static symmetry breaking [19] for SAT could
be lifted to QBF and applied in combination with recent preprocessing tech-
niques. Also dynamic symmetry breaking during the solving could be beneficial,
for example in the form of symmetric explanation learning [26].

An other interesting direction would be the relaxation of the quantifier or-
dering. Our symmetry framework assumes a fixed quantifier prefix with a strict
ordering. In recent works it has been shown that relaxing this order by the means
of dependency schemes is beneficial for QBF solving both in theory and in prac-
tice [27, 28]. In a similar way as proof systems have been parameterized with
dependency schemes, our symmetry framework can also be parameterized with
dependency schemes. It can be expected that a more relaxed notion of quanti-
fier dependencies induces more symmetries resulting in more powerful symmetry
breakers.
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