THE GUESS-AND-PROVE PARADIGM IN ACTION
MANUEL KAUERS *

ABSTRACT. We give some explicit examples of how computer algebra techniques (or more accurately:
computer algebra systems) can be used to solve problems by first guessing a solution and then proving
its correctness.

1. INTRODUCTION

Modern computer algebra systems offer a lot of useful and nontrivial functionality to their users. Not
in all cases is it obvious how to take advantage of these possibilities. In the recent years, we have seen
an increasing number of papers about results which rely on an essential use of computer algebra. In
such papers the relevant computations are often described only on a conceptual level, with the main
goal being to justify that the computations performed really allow to draw the conclusions drawn. Some
readers of such papers have difficulties to translate these conceptual descriptions into actual sessions of
computer algebra systems, and wonder what exactly they need to type in order to perform the described
computations.

In the present paper, we want to address this question by giving some examples. Of course, there is hardly
any need for examples when the computer algebra system provides a command that exactly serves the
required purpose. For example, commands for factoring polynomials are so easy to use that there is not
much more to say about it beyond the examples given in the documentation. Of course the technology
behind these commands is highly nontrivial, but this is not our concern here; see, e.g., Chapter 8 of [28]
for some recent developments in this direction.

We shall focus here on some applications of computer algebra that involve the combination of several fea-
tures, or of functions whose purpose may not be immediately obvious from their specification. Obviously,
our choice is highly biased and in no way representative. As a common pattern, our examples follow
the principle of guess and prove, which was already propagated by Polya [32], and which has recently
seen some exciting applications in computer algebra, especially in the context of enumerating restricted
lattice walks (see [2] and the references given there for lots of examples). The basic idea is to split the
work into two phases. In the first phase, the guessing step, we use non-rigorous computations in order
to construct a plausible conjecture for the final result or some intermediate auxiliary data. In a second
step, the proving step, we use rigorous computations to prove that the conjectures are indeed correct.

Once again, this paper is not meant as a general introduction to computer algebra, nor as an introduction
to a certain computer algebra systems. Instead, we hope that the examples given in this paper may
serve as inspirations to readers who are already using computer algebra, and who would like to use it
more effectively. For a general introduction to computer algebra, readers are referred to the standard
textbooks [8, 36]. For introduction to particular computer algebra systems, readers should consult the
respective documentation. As we do not want to give a preference to any particular system and therefore
include example sessions for Mathematica, Maple, and Sage.

2. EXPRESSIONS

The usual idea behind automated guessing is to generate lots of necessary conditions on the shape of a
hypothetical solution, and then find objects satisfying these conditions. If the conditions are sufficiently
overconstrained, it is likely that only solutions of the original problem satisfy them.

A very simple application of this idea is polynomial interpolation. If a given problem has a solution f(z)
and if the problem is such that we can compute for every specific choice of x the value f(x), and if we
suspect that f(z) is a polynomial, then we can compute f(1), f(2),...,f(100) and interpolate. If the
degree of the interpolating polynomial is significantly smaller than 100, this is a strong indication that
this polynomial is the answer to the problem.

* Supported by the Austrian FWF grants Y464-N18 and F5004.
1

2 MANUEL KAUERS

Example 1. Consider the sequence f(n) which is recursively defined by f(0) = —10, f(1) = —4, and
fn) = 450f(n — 1)2 +450f(n — 2)f(n — 1) — 225f(n — 2)% — 9476 f (n — 2) — 12428 f(n — 1) — 298444
675f(n —2) — 1654

form > 2. Is this a polynomial sequence? We can guess a candidate by computing the first few terms of
the sequence using the recurrence and then interpolating them. In Sage, this can be done as follows.

|/ =[-10,—4] |

for n in range(2, 20) : f.append((450 % f[n — 1]° 4+ 450 * f[n — 2] * f[n — 1] — 225 * f[n — 2]> — 9476 * f[n — 2] —
12428 * fln — 1] — 298444) /(675 * f[n — 2] — 1654))

|n=22[n').gen() |

’crt(f,[n — i for 4 in range(len(f))]) ‘

5xn> —7xn’>+8xn—10

Generically we would have expected a polynomial of degree 20, and with very ugly coefficients. The fact
that we got a low degree polynomial with very short coefficients suggests that this polynomial is not a
computational artifact but has in fact some significance for the sequence f. In fact, it is equal to f not
only for n = 0,...,19 (as it is by construction) but also for all n > 20. To prove this, we just need to
plug the polynomial into the recurrence and simplify.

= |

—f(n) + (450 % f(n — 1)® +450 % f(n — 2) * f(n — 1) — 225 % f(n — 2)° — 9476 * f(n — 2) — 12428 % f(n — 1) —
298444) /(675 * f(n — 2) — 1654)

0

In order to guess non-polynomial expressions, we may be able to use linear algebra.

Example 2. A while ago, we have posed a Monthly problem [11] to show that

ng 2F3k+1 1
=i+11-5
Z F3k+ZF23k 2(f)

where F,, is the nth Fibonacci number and i = v/—1. The problem is easy to solve once we observe that
the truncated series admits a closed form. In order to find it, we may first suspect that such a form may
have a similar form as the summand expression, say a rational function in Fu, Fauy 1, Fo.gr, Fo3eyq.

F,, —2F,
Writing f(n) = > "7 _, %, we seek constants cg, . ..,cy such that
f(n) _ coF3n + ClF3n+1 4+ coFy.3n + 63F2.3n+1
CaF3n + c5F3n 11 + cgFo3n + crFo3n g
for all n € N. By clearing the denominator and evaluating the equation for n = 0,...,10, we obtain an

overdetermined linear system for the unknown coefficients c;, the solutions of which give rise to candidate

closed forms for the sum.

inj1j:= F = Fibonacci;

2= f[n_Integer] := Sum[(F[3*] — 2F[3* 4+ 1])/(F[3*] + I F[2 x 3*]), {k, 0, n}]

mf3:= Solve[Table[(c[4]F[3™] + c[5]F[3™ + 1] + ¢[6]F[2 * 3™] + ¢[7]F[2 * 3" + 1]) f[n] == (c[0]F[3"] +
c[1]F[3™ + 1] + ¢[2]F[2 * 3"] + ¢[3]F[2 * 3" + 1]), {n, 0, 10}]]

outfzi= {{c[2] = Ic[0] + I c[1],¢[3] = —Ic[1],c[4] — (1 + I)c[0] — ¢[1],¢[5] — —c[0] + I ¢[1],c[6] — (=1 + I)c[0] —
(1 —2D)c[1],¢[7) = —Ic[0] + (1 — I)c[1]}}

We obtain a solution space of dimension two. Specific elements are obtained by setting the free parameters
c[0] and c[1] to specific numbers. One possible choice is

= (c[0]F[3™] + c[1]F[3™ + 1]+ c[2] F[2* 3™+ c[3] F[2% 3™ +1]) /(c[4] F[3™] + c[5] F[3™ + 1] + c[6] F[2
3" + c[7|F[2 * 3™ +1]) /. First[%] /. {c[0] — 1,¢c[1] — 0}

(1+ IFibonacci[3"] — (1 — I)Fibonacci[2 - 3"] — Fibonacci[l 4+ 3"] — I Fibonacci[l + 2 - 3"]

Outle]= Fibonacci[3"] + I Fibonacci[2 - 37]

How can we prove that this guess is correct? If e(n) denotes this expression, it suffices to show that
e(n)—e(n—1) is equivalent to the summand expression, and to compare one initial value. The difference of

THE GUESS-AND-PROVE PARADIGM IN ACTION 3

e(n)—e(n—1) is a rational function in Fibonacci expressions with exponential argument. A convenient way

of showing that it is identically zero is via Binet’s formula, using in addition the fact that (71)311 = —1 for

alln € N. To avoid fractional arguments, we compare e(n+ 1) —e(n) to the shifted summand expression.

infsl:= e[n_] = %;

infel:= e[n + 1] — e[n] — ((F[3"] — 2F[3" + 1])/(F[3"]+ I F[2%3"]) /. n > n+ 1) /. Fibonacci[u_. +
3% — i(GoldenRatio“+"3w — (=1)"*¥/GoldenRatio“*"*") // Together

\/g
outfe]= 0
nf7):= e[0] == ((F[3"] — 2F[3™ +1])/(F[3"]+ I F[2%3™]) /. n — 0)
out[7]= True

At this point we have guessed-and-proved the formula

i ng- - 2F3k-+1 _ (1 + I)an - (1 - I)F2.3n - F3n+1 - 7;F2.3n+1

0 F3k, + ’Z:F2,3k - F3n +’I:F2.3n
forn € N. Now the limit can easily be computed by hand. Also Mathematica is able do it, if we replace
3" by a fresh variable m.
mfgl= Limit[e[n] /. 3" — m, m — Infinity]
(1+2I)—5

2
infg):= Clear[F, f, e]

Out[8]=

Using the representation as linear combination of exponentials, many formulas about Fibonacci numbers
can be proved automatically. Relations among certain quantities satisfying more complicated recurrence
equations can also be proven automatically. For a class of sequences defined by nonlinear recurrences, an
algorithm was given by the author [10]. With the corresponding Mathematica package [12], all the steps
carried out in the example above can be condensed into a single command.

Other tools are needed to find other types of expressions. For example, formulas for determinants tend
to involve nested products, and such expressions can be guessed using a package of Krattenthaler [24] for
Mathematica, or more recent code by Hebisch and Rubey [9] for FriCAS.

Example 3. For every n € N, consider the determinant of the matriz A = ((a;;))} ;=1 with a;; = %
It is easy to compute these determinants for the first few values of n. Krattenthaler’s package can find a
product representation for this data.

Inf10]:= << Rate.m

Inf11]:= Table[Det[Table[l/(z +7), {’L 1,n},{j5,1, n}]], {n,1,10}]
11
outf1tj= {3, 7 73305 733360000 » G7ITIEIIEI0006* T73TEIE00393430800000 709TO6TTFTIBTHAATEIITTI00GT0
1 1
1702142622508202833251304734720000000 50019370356486058711268515056654483456000000000 7

1
§5370008982409267088335 152017 8498671 2482596 782080000000000 1
in[12]:= Rate@@%

‘ﬁ“ (1+142)(2 + i2)
zﬁl 11 a3 +2i2)?
; 36
outfizj= {21=1 5 }
We have thus obtained the conjecture
1 1 _1
i i " n—1 k—1
3 1 nvz2| 2 1 (1 (z+1)(i+2)>
. . . o . 2
: : . : 2 P 36 % 4(2i + 3)
n+1 n+2 2n

We will see later how to prove this conjecture.

3. EQUATIONS

Instead of trying to match expressions against data, we can also search for functional equations (e.g.,
differential or recurrence equations) which are consistent with the given data. There are a lot of tools
for doing so, and they are very popular. There are implementations for Maple [33], Mathematica [13],
Sage [17], or FriCAS [9]. Let us see an example session in Maple.

4 MANUEL KAUERS

Example 4. Suppose we want to find out whether the solutions of the differential equation
24f(x) — (24x + 8) f'(x) + (2723 + 212% — Tz — 1) f"(x) = 0

are algebraic functions. One way of doing so is by calling the dsolve command of Maple. It will have no
trouble finding the desired solutions. Although there are algorithms which for any given linear differential
equation with polynomial equations can determine the algebraic solutions, no computer algebra systems
currently has a complete implementation of such an algorithm. Even the powerful solver of Maple will
overlook algebraic solutions when the differential equation is too large.
When this happens, we can try the guess-and-prove approach. We can first compute series solutions of the
differential equation and then use suitable commands of the gfun package to guess an algebraic equation
for this solution. To keep the expressions small, let’s illustrate this with the differential equation above,
even though this equation is small enough that Maple can solve it directly.
with(gfun) :
deq:= 24 x f(x) — (24 x & + 8) x diff (f(z), z) + (27 * 2° + 21 x 2 — Tx z — 1) x diff (f (), z, z) :
Order := 10 : dsolve({deq, f(0) = 1234, D(f)(0) = 5678}, f(x), series);
1345 + 2345z + 67602° — 338002° + 1960402 — 12506002° + 84973202° — 603330002"
+ 4424082002° — 3324737000z° + O(z'°)

seriestoalgeq(%, f(z));

[—367386752° — 216363502 — 4082075 + (13140x + 4380) f(z) — f(z)?, 09]

The command seriestoalgeq has found the minimal polynomial of an algebraic function which fits to the
first few terms of a series solution of the differential equation. In order to prove that this guess is correct,
we can use another command of gfun to construct a differential equation for the algebraic function defined
by this minimal polynomial. If the guess is right, this differential equation must match the equation we
started with. (More precisely, it must be contained as a right factor.)

diffeqtohomdiffeq(algeqtodiffeq(%[1], f(x)), f(x));
2
{—105120f(x) + (35040 + 105120x)%f(m) + (—1182602° — 919802 + 30660z + 4380)% (x),

£(0) = RootOf(_Z* — 4380_Z + 4082075), D(f)(0) = 5RootOf (_Z* — 4380_Z + 4082075) — 4380}

normal(%][1]/deq);
—4380

This proves that the differential equation satisfied by the guessed algebraic function is a constant multiple
of the given differential equation. Therefore, the two differential equations have the same solutions, and
in particular the guessed algebraic function is a solution of the original differential equation.

In the example above, the guessing part is hidden in the command seriestoalgeq, which takes a truncated
series and returns, a small algebraic equation which fits to the given terms, if there is one. This command
is part of the gfun package. The same package also provides the commands which are used in the proving
part. These algorithms apply to the class of D-finite functions. A function is D-finite if it satisfies a linear
differential equation with polynomial coefficients. As the solution of a differential equation is uniquely
determined by the first few initial terms of its series expansion, we can use the differential equation
together with the initial values as a finite data structure for representing the function. The commands
provided by the gfun package make it possible to perform various operations on this representation.
See [34, 33, 35, 18, 15] for the relevant theory.

The theory also applies to sequences satisfying recurrence equations, as well as functions or sequences
in several variables. For problems involving several variables, it is more natural to work with linear
operators instead of functional equations. These operators live in certain non-commutative algebras, and
the set of all operators that map a particular function to zero forms a left ideal in that algebra, called
the annihilating ideal. A multivariate D-finite function is uniquely determined by its annihilating ideal
and finitely many initial values. Computations with such ideals of operators can be performed with the
Maple package mgfun [6], the Mathematica package HolonomicFunctions.m [19, 20], or with the Sage
package ore_algebra [17].

An important technique in the multivariate case is creative telescoping [37, 31, 18, 21, 5, 16], which can
be used for finding recurrence equations satisfied by definite sums and integrals. As an illustration of this
technique, we will show how to prove the determinant evaluation conjectured in Example 3. The proof
relies on an approach for proving determinant evaluations proposed by Zeilberger [38]. This technique
was used in our proof of the qTSPP conjecture [22] and for other examples [23]. The observation is that

THE GUESS-AND-PROVE PARADIGM IN ACTION 5

in order to prove det((ai,;));'j=1 = by, it suffices to exhibit a certificate sequence ¢,y with the following
three properties:

e cpp=1foraln>1
o > i _iaipcnr=0foralll <i<n
e > GnkCnk = by/by_1 for all n > 1 (taking by = 1).

These properties together with the initial value a1 1 = by imply the determinant identity. (See [38, 22, 23]
for a justification.)

Example 5. First we have to guess a certificate ¢, . To generate data, we can compute some of these

terms. Observe that (¢ 1,...,Cnn) 5 the last row of % -1,

’ from ore_algebra import * ‘

’ A = lambda n : matrix(QQ, [[1/(i + j)for j in range(1,n + 1)] for ¢ in range(1,n + 1)]) ‘

’ data = [list(A(n).det()/A(n — 1).det() * A(n).inverse()[n — 1]) + [0] * (20 — n) for n in range(1,21)] ‘

’ n,k=ZZ['n',k'].gens() ‘

’ Alg.(Sn, Sk) = OreAlgebra(ZZn, k]) ‘

’ guess(data, Alg, order = 1).groebner_basis() ‘

(K> +3%xk+2)«Sk+n”—k>+2%n—2xk,
(4xn° —dxnxk+10%n—6%xk+6)«Sn+n’+nxk+4xn+2xk+4]

’ annC = Alg.ideal([g.map_coefficients(lambda p : p(n — 1,k — 1)) for g in _]) ‘

| annC |

Left Ideal (k* + k)« Sk+n”> — k>, (dxn”® —dsxnxk+6xn—2xk+2)«Sn+n’>+nxk+n+k) of
Multivariate Ore algebra in Sn, Sk over Fraction Field of Multivariate Polynomial Ring in n, k over
Integer Ring

We are lucky that a small system of operators has been found. Its solution is uniquely determined up to a
constant multiplicative factor. If we want, we can express the solution in terms of binomial expressions.
This requires a little bit of fiddling, and is not really necessary. In any case, one possible expression is

o =207 () ("))

The multiplicative factor 2 is chosen so as to match the data computed before:

’ ¢ =lambda n,k : 2 * (—1)"(n + k) * binomial(n — 1, k — 1) * binomial(n + k — 1, k) /binomial(2 * n, n) ‘

’ [[e(n, k) for k in range(1,21)] for n in range(1,21)] == data ‘

True

To complete the proof of the determinant identity, it remains to prove that the guessed sequence cy j
has the three required properties. While it is fairly easy to see that c,, = 1 is true for n > 1, the
other properties are less obvious. In order to prove them, we use creative telescoping. The mathematical
reasoning behind these steps are not self-evident, the reader not familiar with creative telescoping may
want to consult one of the many tutorials on this work (e.g., [31, 18])

6 MANUEL KAUERS

i k= 22[7 0] K] gens() |

’ Alg2.(Si,Sn, Sk) = OreAlgebra(Z Z[i, n, k]) ‘

’ annC = Alg2.ideal(list(annC.gens()) + [Si — 1]) ‘

’annAik = Alg2.ideal([(14+i+ k)« Sk — (i + k), (1 +i+ k) xSt — (i + k), Sn — 1]) ‘

’ annAik.symmetric_product(annC).ct(Sk — 1)[0] ‘

[(—4%isn—4%n®> —2%i—6%xn—2)«Sn+isxn—n>+i—n,(i>—n>+2xi+1)%Si—i°—i

|annAnk = Alg2.ideal([(1+ n + k) « Sk — (n+ k), (1 + n+ k) « Sn — (n + k), Si — 1)) \

’ annAnk.symmetric_product(annC').ct(Sk — 1)[0] ‘

[(—16 % n® — 16 xn — 4) * Sn +n” +n, Si — 1]

The first of these two outputs says that the sum f(n,i) := > ;_, @i kCkn satisfies the recurrence equations
I+i—-n)A+i+n)f(n,i+1)=i(i+1)f(n,i), 2(1+i+n)(1+2n)f(n+1,i)=({—n)(1+n)f(n,i),

from which it can be shown that f(n,i) =0 for 1 <i<n.

The second output says that the sum f(n) := Y ;_, ankCkn satisfies the recurrence
42n+1)2f(n+1) = n(n+1)f(n).

As this recurrence is also satisfied by by, /b,—1, we have completed the proof.

4. NUMBERS

Besides expressions and functional equations for sequences or power series, we can also guess information
about numbers. The two main techniques for doing so are the general LLL-algorithm [25, 28] and the
more specialized PSLQ-algorithm [7].

Example 6. The equation arctan(z) = (2% + 1) arctan(2 —) has a unique real solution. No algorithm
1s known for solving such transcendental equations in terms of closed form numbers, but we can still try
guess-and-prove.

Digits := 50; alpha := fsolve(arctan(z) — (z* + 1) * arctan(2 — z));

Digits := 50
alpha := 1.7320508075688772935274463415058723669428052538104

with(IntegerRelations);
[LLL, LinearDependency, PSLQ)]
PSLQ([1, alpha, alpha®, alpha®]);
[-3,0,1,0]

This output suggests that —3 + 0 + a2 + 00> = 0, i.e., a = /3. To prove that this is indeed the right
answer, it suffices to plug it into the equation and rely on Maple’s simplifier.

simplify (subs(z = sqrt(3), arctan(z) — (z° + 1) * arctan(2 — z)));
0

THE GUESS-AND-PROVE PARADIGM IN ACTION 7

One of the most spectacular results obtained along these lines is the BBP formula for 7, which was
accidentally discovered during a search for integer relations among infinite series. This formula was
totally unexpected, but once it was discovered, its proof was not very difficult: it is equivalent to a linear
combination of certain rational integrals which a computer algebra system can easily evaluate. See [1]
for further details on this story.

Guessing is often easier than proving, especially for problems about numbers. We frequently encounter
such situations when we want to determine the asymptotic behaviour of certain combinatorial sequences.
We know that these sequences behave asymptotically like c¢pn® for certain constants ¢, p, a, but while p
and « are reasonably easy to determine, but we do not know how to compute ¢ (unless the methods of
Pemantle and Wilson apply [29, 30]). Still, we can often guess the right value of c. We can compute p and
a from a recurrence for the sequence (which itself may be guessed), then use them to compute a numerical
approximation of ¢ to high precision, and finally recover the exact value from the approximation. We
conclude by giving one example computation of this sort. See [4, 3, 26, 27] for more.

Example 7. The sequence f(n) is defined by f(0) =1, f(1) =5, and
36(n+1)2n+1)2n+3)f(n) —10(n+2)2n+3)2n+5)f(n+ 1)+ (n+2)(n+3)(n+4)f(n+2) =0

for n > 0. We want to know the asymptotic behaviour of this sequence. Using a package written by the
author [14], we can compute formal asymptotic solutions of the recurrence.
In[13l= << Asymptotics.m
Asymptotics Package by Manuel Kauers RISC Linz V 0.11 (2012-07-19)
nfi4=rec =36 (14+n)*(14+2*n)*(34+2*xn)* f[n] —10%«(24+n)*(834+2*n)*(5+2*n)* f[1+
nl+2+n)*(3+n)*x(4+n)=*f[2+n];
inf15]:= Asymptotics[rec, f[n]]
4™ 36"
Out[15]= {E’ ?}
This output means that for n — oo our sequence f(n) should agree with a certain linear combination of
4"n=3 and 36"n~3. Since the latter dominates the former, we expect f(n) ~ ¢36"n=3 for some constant c.
We can determine the constant numerically by evaluating the quotient f(n)/(36"n=2) for large indices n.
inf16]:= f[n_Integer] := Which[n == 0,1,n == 1,5, True, f[n] = (—2* (18 * (—1 4+ n) * (—3 + 2 *n) *
(—14+2+«n)xf[-2+n]—5*xn*x(—1+2*n)*x(1+2*n)* f[—1+n]))/(n*x(1+n)*(2+n))]
inf171= u[n_Integer] := f[n]/(36"n %)
inf18]:= N [u[1000], 50]
out18]= 1.5134596447757720515220774543079292467924679843816
inf191:= N [1[2000], 50]
out[19]= 1.5163678166038235873110260313758186940468202585729
inf201:= N [u[3000], 50]
out20]= 1.5173389381113803705216478071872594483911360060059

Okay, this seems to converge. But the convergence is pretty slow. Despite using several thousand terms,
we hardly get two decimal digits of accuracy. This won’t be enough to recover the exact value. We can
considerably improve the performance by taking the first few terms of the asymptotic expansions into
account. These can also be computed with the Asymptotics package.

1= Asymptotics[rec, f[n], Order — 2]
4n(1+ 11729 _ﬁ) 36n(1+ 21089 _E)

Out[21]:{ 20;415;12 32n 2043871,2 32n }
inf22].= expansion[n_] = Last[Asymptotics[rec, f[n], Order — 30]];
inp3:= u[n_Integer] := f[n]/expansion[n]

inf24]:= N [1[1000], 50]
outf24]= 1.5192837835151164923743986348238747332464688780494
in25]:= N [u[2000], 50]
outf25]= 1.5192837835151164923743986348238747332464688780494
in26l:= N [1[3000], 50]
outf26]= 1.5192837835151164923743986348238747332464688780494

This is more useful; it looks like we can trust at least the first 50 digits. To recover the exact value from
the approximation, we can use Mathematica’s builtin LLL engine. The following commands produce the
coefficient list of a conjectured minimal polynomial of degree at most three.

7= ¢ = Y%;

8 MANUEL KAUERS

inp28l:= Most[First[LatticeReduce|
Transpose[Append[IdentityMatrix[4], Floor[10°° * ¢'Range[0, 3]]]]]]]
out[28)= {—466510788517, 1274558997045, —396763651656, —158001503235 }

That does not look convincing. Probably the limit is not a cubic algebraic number. We could next try to
see if the limit can be written as a product of rational powers of small primes.
inf291:= Most[First[LatticeReduce[
Transpose[Append[IdentityMatrix[5], Floor[10°® x Log[{c, 2, 3, 5, 7}]]111]]
out29]= {1913619642, 5397440880, 2649112157, —1504537155, —2585144737}

These can hardly be the right exponents. Maybe we have to allow some other constants to appear in the
expression, such as e or .
inf301-= Most[First[LatticeReduce[
Transpose[Append[IdentityMatrix[7], Floor[10°° % Log[{c, 2, 3, 5, 7, E, Pi}]]]]]]]
outfzl- {2,5,—6,0,0,0,2}

This looks much better! It suggests that ¢*2°3 572 =~ 1, so0 ¢ ~ \/%ﬂ. By construction, this number

matches the numerical approzimation to at least 50 decimal digits. It continues to match if we increase
the precision, which adds further evidence that this is the correct number.

inf31].= N [u[3000] — 27/Sqrt[32]/ P4, 50]
outpsrj= —1.5916384284863134212136886738764800892681026709034 10~
inf321:= N [u[5000] — 27 /Sqrt[32]/Pi, 50]
outf3z- —2.1061302299467352839632639627253057878450758432551 10~ °°
in331= N [u[7000] — 27/Sqrt[32]/ P4, 50]
outf331= —6.2096552325227282669338997935809208070195638383563 10~ *°

We have no doubt that indeed f(n) ~ \/%W 36"n =3 (n — o), but we do not know of any (semi-)automatic

method that could help us prove that the guessed multiplicative constant is correct.

REFERENCES
1

David H. Bailey, Peter B. Borwein, and Simon Plouffe. On the rapid computation of various polylogarithmic constants.

Mathematics of Computation, 66:903-913, 1997.

[2] Alin Bostan. Calcul formel pour la combinatoire des marches. Habilitation a Diriger des Recherches, Universite Paris
13, 2017.

[3] Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, and Lucien Pech. Hypergeometric expressions for

generating functions of walks with small steps in the quarter plane. European Journal of Combinatorics, 61:242-275,

2017.

[4] Alin Bostan and Manuel Kauers. Automatic classification of restricted lattice walks. In Proceedings of FPSAC’09,
pages 201-215, 2009.
[5] Frédéric Chyzak. The ABC of Creative Telescoping — Algorithms, Bounds, Complezity. Habilitation & diriger des

recherches. University Paris-Sud 11, 2014.
[6] Frédéric Chyzak. The mgfun package. ttps://specfun.inria.fr/chyzak/mgfun.html, 2016.
[7] Helaman R. P. Ferguson and David H. Bailey. A polynomial time, numerically stable integer relation algorithm.
Technical Report RNR-91-032, RNR, 1992.
[8] Keith O. Geddes, Stephen R. Czapor, and George Labahn. Algorithms for Computer Algebra. Kluwer, 1992.
[9] Waldemar Hebisch and Martin Rubey. Extended Rate, more GFUN. Journal of Symbolic Computation, 46(8):889-903,
2011.
[10] Manuel Kauers. Algorithms for Nonlinear Higher Order Difference Equations. PhD thesis, Johannes Kepler Universitét
Linz, 2005.
[11] Manuel Kauers. Problem 11258. The American Mathematical Monthly, 113(10):939, December 2006.
[12] Manuel Kauers. SumCracker: A package for manipulating symbolic sums and related objects. Journal of Symbolic
Computation, 41(9):1039-1057, 2006.
[13] Manuel Kauers. Guessing handbook. Technical Report 09-07, RISC-Linz, 2009.
[14] Manuel Kauers. A Mathematica package for computing asymptotic expansions of solutions of p-finite recurrence equa-
tions. Technical Report 11-04, RISC-Linz, 2011.
[15] Manuel Kauers. The holonomic toolkit. In Computer Algebra in Quantum Field Theory: Integration, Summation and
Special Functions, Texts and Monographs in Symbolic Computation, pages 119-144. Springer, 2013.
[16] Manuel Kauers. Computer algebra. In Handbook of Enumerative Combinatorics, pages 975-1046. Taylor and Francis,
2015.
[17] Manuel Kauers, Maximilian Jaroschek, and Fredrik Johansson. Ore polynomials in Sage. In Computer Algebra and
Polynomials, LNCS 8942, pages 105-125. Springer, 2014.
[18] Manuel Kauers and Peter Paule. The Concrete Tetrahedron. Springer, 2011.
[19] Christoph Koutschan. Advanced Applications of the Holonomic Systems Approach. PhD thesis, Johannes Kepler Uni-
versity, 2009.

20]

(21]

(22]
23]
[24]
25]
[26]
27]

(28]
(29]

(30]
(31]
32]
(33]

(34]
(35]

(36]
(37]
(38]

THE GUESS-AND-PROVE PARADIGM IN ACTION 9

Christoph Koutschan. HolonomicFunctions (User’s Guide). Technical Report 10-01, RISC Report Series, University of
Linz, Austria, January 2010.

Christoph Koutschan. Creative telescoping for holonomic functions. In Computer Algebra in Quantum Field Theory:
Integration, Summation and Special Functions, Texts and Monographs in Symbolic Computation, pages 171-194.
Springer, 2013.

Christoph Koutschan, Manuel Kauers, and Doron Zeilberger. Proof of George Andrews’ and David Robbins’ g-TSPP-
conjecture. Proceedings of the National Academy of Sciences, 108(6):2196-2199, 2011.

Christoph Koutschan and Thotsaporn Thanatipanonda. Advanced computer algebra for determinants. Annals of Com-
binatorics, 17(3):509-523, 2013.

Christian Krattenthaler. RATE: A Mathematica guessing machine. Available at

http://mat.univie.ac.at/ kratt/rate/rate.html, 1997.

Arjen K. Lenstra, Hendrik W. Lenstra, and Léaszlé Lovész. Factoring polynomials with rational coefficients. Annals of
Mathematics, 126:515-534, 1982.

Stephen Melczer and Marni Mishna. Asymptotic lattice path enumeration using diagonals. Algorithmica, 74(4):782-811,
2016.

Stephen Melczer and Marc Wilson. Asymptotics of lattice walks via analytic combinatorics in several variables. In
Proceedings of FPSAC 2016, pages 863-874, 2016.

Phong Q. Nguyen and Brigitte Vallée. The LLL Algorithm. Springer, 2010.

Robin Pemantle and Mark C. Wilson. Twenty combinatorial examples of asymptotics derived from multivariate gen-
erating functions. STAM Review, 50(2):199-272, 2008.

Robin Pemantle and Mark C. Wilson. Analytic Combinatorics in Several Variables. Cambridge, 2013.

Marko Petkovsek, Herbert Wilf, and Doron Zeilberger. A = B. AK Peters, Ltd., 1997.

George Polya. Guessing and proving. The Two-Year College Mathematics Journal, 9(1):21-27, 1978.

Bruno Salvy and Paul Zimmermann. Gfun: a Maple package for the manipulation of generating and holonomic functions
in one variable. ACM Transactions on Mathematical Software, 20(2):163-177, 1994.

Richard P. Stanley. Differentiably finite power series. FEuropean Journal of Combinatorics, 1:175-188, 1980.

Richard P. Stanley. Enumerative Combinatorics, Volume 2. Cambridge Studies in Advanced Mathematics 62. Cam-
bridge University Press, 1999.

Joachim von zur Gathen and Jirgen Gerhard. Modern Computer Algebra. Cambridge University Press, 1999.

Doron Zeilberger. The method of creative telescoping. Journal of Symbolic Computation, 11:195-204, 1991.

Doron Zeilberger. The holonomic ansatz II: Automatic discovery(!) and proof(!!) of holonomic determinant evaluations.
Annals of Combinatorics, 11(2):241-247, 2007.

MANUEL KAUERS, INSTITUTE FOR ALGEBRA, J. KEPLER UNIVERSITY LINZ, AUSTRIA

E-mail address: manuel .kauers@jku.at

