
Factorization of C-finite Sequences

Manuel Kauers and Doron Zeilberger

Dedicated to Sergei A. Abramov on the occassion of his 70th birthday
Abstract We discuss how to decide whether a given C-finite sequence can be written
nontrivially as a product of two other C-finite sequences.

1 Introduction

It is well known that when (an)
∞
n=0 and (bn)

∞
n=0 are two sequences that satisfy some

linear recurrences with constant coefficients, then the product sequence (anbn)
∞
n=0

also satisfies such a recurrence. Sequences satisfying linear recurrences with con-
stant coefficients are called C-finite [17, 8, 19], and the fact just refered to is one
of several closure properties that this class of sequences enjoys. In this paper, we
will consider the inverse problem: given a C-finite sequence (cn)

∞
n=0, can we write

it in a nontrivial way as the product of two other C-finite sequences? This question
is of interest in its own right, but it is also useful in some applications in combina-
torics. For example, the celebrated solution by Kasteleyn, and Temperley-Fisher, of
the dimer problem [3, 7] as well as the even more celebrated Onsager solution of
the two-dimensional Ising model [10] can be (re)discovered using an algorithm for
factorization of C-finite sequences.

A C-finite sequence is uniquely determined by a recurrence and a choice of suf-
ficiently many initial values. The prototypical example of a C-finite sequence is the
Fibonacci sequence (Fn)

∞
n=0 defined by

Manuel Kauers
Institute for Algebra, Johannes Kepler Universty, Linz, Austria. e-mail: manuel.kauers@jku.
at

Doron Zeilberger
Department of Mathematics, Rutgers University, New Brunswick NJ, USA. e-mail: DoronZeil@
gmail.com

1

2 Manuel Kauers and Doron Zeilberger

Fn+2−Fn+1−Fn = 0, F0 = 0,F1 = 1.

Whether a C-finite sequence (cn)
∞
n=0 admits a factorization depends in general on

both the recurrence as well as the initial values. For example, the sequence (3n +
4n +6n +8n)∞

n=0, which satisfies the recurrence

cn+4−21cn+3 +158cn+2−504cn+1 +576cn = 0,

can be factored as 3n + 4n + 6n + 8n = (1+ 2n)(3n + 4n), while the sequence 3n +
4n +6n−8n, which satisfies the same recurrence, cannot be factored.

We shall consider a variant of the factorization problem that does not depend
on initial values but only on the recurrence equations. Linear recurrences may be
viewed as polynomials p= p0+ p1x+ · · ·+ pdxd ∈ k[x] acting on sequences (an)

∞
n=0

via
p · (an)

∞
n=0 := (p0an + p1an+1 + · · ·+ pdan+d)

∞
n=0.

For every fixed p ∈ k[x], denote by V (p) the set of all sequences (an)
∞
n=0 with p ·

(an)
∞
n=0 = (0)∞

n=0, i.e., the solution space of the recurrence equation encoded by p.
This is a vector space of dimension deg(p). For any two operators p,q ∈ k[x]\{0}
there exists a unique monic polynomial r ∈ k[x] such that V (r) is the vector space
generated by all sequences (anbn)

∞
n=0 with (an)

∞
n=0 ∈V (p) and (bn)

∞
n=0 ∈V (q), i.e.,

V (r) =V (p)⊗V (q). We write r = p⊗q.
Our problem shall be to decide, for a given monic polynomial r ∈ k[x], whether

there exist p,q ∈ k[x] such that r = p⊗ q. In principle, it is known how to do this.
Singer [12] gives a general algorithm for the analogous problem for linear differ-
ential operators with rational function coefficients; the problem is further discussed
in [6]. Because of their high cost, these algorithms are mainly of theoretical inter-
est. For the special case of differential operators of order 3 or 4 (still with rational
function coefficients), van Hoeij [16, 15] combines several observations to an algo-
rithm which handle these cases efficiently. For the recurrence case, Cha [1] gives an
algorithm for operators of order 3 with rational function coefficients.

Also the case of recurrence equations with constant coefficients has already been
considered. Everest et al. give an algorithm [2] based on a structure theorem of
Ritt [11]. This algorithm relies on Ge’s algorithm [4], which is efficient in theory but
according to our experience rather costly in concrete examples. An alternative algo-
rithm for the case of constant coefficients and arbitrary order was recently sketched
by the second author [19]. This description, however, only considers the “generic
case”. The present paper is a continuation of this work in which we give a complete
algorithm which also handles “degenerate” cases. Our algorithm is efficient in the
sense that it does not depend on Ge’s algorithm or on Gröbner basis computations,
but it is inefficient in the sense that it requires a search that may take exponential
time in the worst case.

Factorization of C-finite Sequences 3

2 Preliminaries

To fix notation, let us recall the basic facts about C-finite sequences. Let k be an
algebraically closed field.

Definition 1 1. A sequence (an)
∞
n=0 is called C-finite, if there exist p0, . . . , pd ∈ k

with p0 6= 0 6= pd such that for all n ∈ N we have p0an + · · ·+ pdan+d = 0.
2. In this case, the polynomial p = p0 + p1x+ · · ·+ pdxd is called a characteristic

polynomial for (an)
∞
n=0.

3. For p ∈ k[x], the set V (p) denotes the set of all C-finite sequences whose charac-
teristic polynomial is p. It is called the solution space of p.

Theorem 2. [13, 8] Let p = (x− φ1)
e1 · · ·(x− φm)

em ∈ k[x] for pairwise distinct
φ1, . . . ,φm ∈ k \{0}. Then V (p) is the k-vector space generated by the sequences

φ
n
1 , . . . , ne1−1

φ
n
1 ,

φ
n
2 , . . . , ne2−1

φ
n
2 ,

. ,

φ
n
m, . . . , nem−1

φ
n
m.

It is an immediate consequence of this theorem that for any two polynomials
p,q ∈ k[x] we have V (gcd(p,q)) = V (p)∩V (q) and V (lcm(p,q)) = V (p)+V (q).
The latter says in particular that when (an)

∞
n=0 and (bn)

∞
n=0 are C-finite, then so is

their sum (an + bn)
∞
n=0. A similar result holds for the product: write p = ∏

m
i=1(x−

φi)
ei and q = ∏

`
j=1(x−ψ j)

ε j and define

r := p⊗q := lcmm
i=1 lcm`

j=1(x−φiψ j)
ei+ε j−1. (1)

Then r is a characteristic polynomial for the product sequence (anbn)
∞
n=0. Note that

deg(p)+deg(q)≤ deg(r)≤ deg(p)deg(q) for every p,q ∈ k[x] of degree at least 2.
Note also that p⊗q = q⊗ p for every p,q ∈ k[x].

Our goal is to recover p and q from a given r. The problem is thus to decide
whether the roots of a given polynomial r are precisely the pairwise products of the
roots of two other polynomials p and q. Besides the interpretation as a factoriza-
tion of C-finite sequences, this problem can also be viewed as the factorization of
algebraic numbers: given some algebraic number α , specified by its minimal poly-
nomial r, can we write α = βγ where β ,γ are some other algebraic numbers with
respective minimal polynomials p and q.

Trivial decompositions are easy to find: For each r we obviously have r = r⊗(x−
1). Moreover, for every nonzero φ we have (x−φ)⊗(x−φ−1) = (x−1), so we can
“decompose” r into r⊗ (x−φ) and x−φ−1. In order for a decomposition r = p⊗q
to be interesting, we have to require that both p and q have at least degree 2.

Even so, a factorization is in general not unique. Obviously, if r = p⊗ q is a
factorization, then for any nonzero φ also r =

(
p⊗ (x− φ)

)
⊗
(
(x− φ−1)⊗ q

)
.

Translated to sequences, this ambiguity corresponds to the facts that for every φ 6= 0,

4 Manuel Kauers and Doron Zeilberger

both (φ n)∞
n=0 and (φ−n)∞

n=0 are C-finite, and that a sequence (an)
∞
n=0 is C-finite

iff for all φ 6= 0 the sequence (anφ n)∞
n=0 is C-finite. But there is even more non-

uniqueness: the polynomial

r = (x−2)(x+2)(x−3)(x+3)

admits the two distinct factorizations

r = (x−1)(x+1)⊗ (x−2)(x+3)
= (x−1)(x+1)⊗ (x−2)(x−3)

which cannot be obtained from one another by introducing factors (x−φ) and (x−
φ−1). Our goal will be to compute a finite list of factorizations from which all others
can be obtained by introducing factors (x−φ)⊗ (x−φ−1).

There is a naive but very expensive algorithm which does this job when r is
squarefree: For some choice n,m of degrees, make an ansatz p= (x−φ1) · · ·(x−φn)
and q = (x−ψ1) · · ·(x−ψm) with variables φ1, . . . ,φn,ψ1, . . . ,ψm. Equate the coef-
ficients of r−∏

n
i=1 ∏

m
j=1(x−φiψ j) with respect to x to zero and solve the resulting

system of algebraic equations for φ1, . . . ,φn,ψ1, . . . ,ψm. After trying all possible de-
gree combinations n≥m≥ 2 with n+m≤ deg(r)≤ nm, either a decomposition has
been found, or there is none.

3 The Generic Case

Typically, when p and q are square-free polynomials and φ1, . . . ,φn 6= 0 are the roots
of p and ψ1, . . . ,ψm 6= 0 are the roots of q, then the products φiψ j for i = 1, . . . ,n,
j = 1, . . . ,m will all be pairwise distinct. In this case, r = p⊗q will have exactly nm
roots, and the factorization problem consists in recovering φ1, . . . ,φn and ψ1, . . . ,ψm
from the (known) roots ρ1, . . . ,ρnm of r.

As observed in [19], a necessary condition for r to admit a factorization into
two polynomials of respective degrees n and m is then that there is a bijection
π : {1, . . . ,n}×{1, . . . ,m}→ {1, . . . ,nm} such that for all j1, j2 we have

ρπ(1, j1)

ρπ(1, j2)
=

ρπ(2, j1)

ρπ(2, j2)
= · · ·=

ρπ(n, j1)

ρπ(n, j2)

and for all i1, i2 we have

ρπ(i1,1)

ρπ(i2,1)
=

ρπ(i1,2)

ρπ(i2,2)
= · · ·=

ρπ(i1,m)

ρπ(i2,m)
.

The explanation is simply that when a factorization exists, then the roots ρ` of r are
precisely the products φiψ j, and if we define π so that it maps each pair (i, j) to the
corresponding root index `, then the quotients

Factorization of C-finite Sequences 5

ρπ(i, j1)

ρπ(i, j2)
=

φiψ j1
φiψ j2

=
ψ j1
ψ j2

do not depend on i and the quotients

ρπ(i1, j)

ρπ(i2, j)
=

φi1ψ j

φi2ψ j
=

φi1
φi2

do not depend on j.
In fact, the existence of such a bijection π is also sufficient for the existence of a

factorization: choose φ1 6= 0 arbitrarily and set ψ1 := ρπ(1,1)/φ1 and

φi := φ1
ρπ(i,1)

ρπ(1,1)
(i = 2, . . . ,n)

and
ψ j := ψ1

ρπ(1, j)

ρπ(1,1)
(j = 2, . . . ,m).

Then we have ρπ(i, j) = φiψ j for all i, j, and therefore for p = (x− φ1) · · ·(x− φn)
and q = (x−ψ1) · · ·(x−ψm) we have r = p⊗ q. Note that p and q are squarefree,
because if we have, say, φi1 = φi2 for some i1, i2, then ρπ(i1,1) = ρπ(i2,1), and then
π(i1,1) = π(i2,1), and then i1 = i2.

Example 1. 1. Consider r = (x−4)(x−6)(x+6)(x+9), i.e., ρ1 = 4, ρ2 = 6, ρ3 =
−6, ρ4 =−9. A possible choice for π : {1,2}×{1,2} → {1,2,3,4} is given by
the table

π 1 2
1 1 2
2 3 4

(to be read like, e.g., π(2,1) = 3), because

ρπ(1,2)

ρπ(1,1)
=

ρ2

ρ1
=

6
4
=
−9
−6

=
ρ4

ρ3
=

ρπ(2,2)

ρπ(2,1)

and
ρπ(2,1)

ρπ(1,1)
=

ρ3

ρ1
=
−6
4

=
−9
6

=
ρ4

ρ2
=

ρπ(2,2)

ρπ(1,2)
.

Take φ1 = 15 (for no particular reason), ψ1 =
4
15 , φ2 = 15 6

4 = 45
2 , ψ2 =

4
15

(−6)
4 =

− 2
5 . Then

(x−15)(x− 45
2)⊗ (x− 4

15)(x+
2
5)

= (x−15 4
15)(x+15 2

5)(x−
45
2

4
15)(x+

45
2

2
5)

= (x−4)(x+6)(x−6)(x+9),

as required.

6 Manuel Kauers and Doron Zeilberger

In this example, no other factorizations exist except for those that are obtained by
replacing p and q by p⊗ (x−ξ) and (x−ξ−1)⊗q for some ξ 6= 0. This degree
of freedom is reflected by the arbitrary choice of φ1.

2. The polynomial (x− 1)(x− 2)(x− 3)(x− 4) cannot be written as p⊗ q for two
quadratic polynomials p and q, because 1

2 6=
3
4 , 1

2 6=
4
3 , 1

3 6=
2
4 , 1

3 6=
4
2 , 1

4 6=
2
3 ,

1
4 6=

3
2 .

3. Consider r = (x− 2)(x+ 2)(x− 3)(x+ 3), i.e., ρ1 = 2, ρ2 = −2, ρ3 = 3, ρ4 =
−3. We have seen that in this case there are two distinct factorizations. They
correspond to the two bijections π,π ′ : {1,2}×{1,2}→ {1,2,3,4} defined via

(1,1) (1,2) (2,1) (2,2)
π 1 2 3 4
π ′ 1 2 4 3

4 Product Clashes

Again let p,q ∈ k[x] be two square-free polynomials, and write φ1, . . . ,φn for the
roots of p and ψ1, . . . ,ψm for the roots of q. Generically, the degree of p⊗q is equal
to deg(p)deg(q). It cannot be larger than this, and it is smaller if and only if there
are two index pairs (i, j) 6= (i′, j′) with φiψ j = φi′ψ j′ . In this case, we say that p and
q have a product clash. Recall from equation (1) that p⊗ q is formed as the least
common multiple of the factors x−φiψ j, not as their product.

Product clashes appear naturally in the computation of p⊗ p. For example, for
p = (x−φ1)(x−φ2) we have

p⊗ p = lcm(x−φ1φ1,x−φ1φ2,x−φ2φ1,x−φ2φ2)

= (x−φ1φ1)(x−φ1φ2)(x−φ2φ2),

because φ1φ2 = φ2φ1 is a clash. More generally, if p is a square-free polynomial of
degree d ≥ 2, then deg(p⊗ p)≤ 1

2 d(d +1)< d2.
As an example that does not come from a product of the form p⊗ p, consider

p = (x−1)(x−2)(x−4) and q = (x− 1
2)(x−

1
4). Here we have the clashes 1 · 1

2 =

2 · 1
4 and 2 · 1

2 = 4 · 1
4 , so that p⊗q = (x− 1

2)(x−
1
4)(x−1)(x−2) only has degree 4.

In order to include product clashes into the framework of the previous section,
we need to relax the requirement that π be injective. We still want it to be surjective,
because every root of r must be produced by the product φψ of some root φ of p and
some root ψ of q. If the φi and the ψ j are defined according to the formulas above,
it can now happen that φi1 = φi2 for some i1 6= i2. We therefore adjust the definition
of p and q to p = lcm(x−φ1, . . . ,x−φn), q = lcm(x−ψ1, . . . ,x−ψm). Then p and
q are squarefree and for the set of roots of p⊗q we obtain

{φiψ j : i = 1, . . . ,n; j = 1, . . . ,m}= {ρ1, . . . ,ρ`},

as desired.

Factorization of C-finite Sequences 7

Example 2. 1. To find the factorization (x− φ 2
1)(x− φ1φ2)(x− φ 2

2) = (x− φ1)(x−
φ2)⊗ (x−φ1)(x−φ2), set ρ1 = φ 2

1 , ρ2 = φ1φ2, ρ3 = φ 2
2 . Then a suitable choice

for π : {1,2}×{1,2}→ {1,2,3} is given by

π 1 2
1 1 2
2 2 3

because
ρπ(1,1)

ρπ(1,2)
=

ρ1

ρ2
=

φ1

φ2
=

ρ2

ρ3
=

ρπ(2,1)

ρπ(2,2)

and
ρπ(1,1)

ρπ(2,1)
=

ρ1

ρ2
=

φ1

φ2
=

ρ2

ρ3
=

ρπ(1,2)

ρπ(2,2)
.

2. Consider r = (x− 1
2)(x−

1
4)(x−1)(x−2), i.e., ρ1 =

1
2 , ρ2 =

1
4 , ρ3 = 1, ρ4 = 2.

A possible choice for π : {1,2}×{1,2,3}→ {1,2,3,4} is

π 1 2 3
1 1 3 4
2 2 1 3

because {ρπ(1,1)

ρπ(1,2)
,

ρπ(2,1)

ρπ(2,2)

}
=
{

ρ1

ρ3
,

ρ2

ρ1

}
=
{1

2

}
{ρπ(1,1)

ρπ(1,3)
,

ρπ(2,1)

ρπ(2,3)

}
=
{

ρ1

ρ4
,

ρ2

ρ3

}
=
{1

4

}
{ρπ(1,2)

ρπ(1,3)
,

ρπ(2,2)

ρπ(2,3)

}
=
{

ρ3

ρ4
,

ρ1

ρ3

}
=
{1

2

}
and {ρπ(1,1)

ρπ(2,1)
,

ρπ(1,2)

ρπ(2,2)
,

ρπ(1,3)

ρπ(2,3)

}
=
{

ρ1

ρ2
,

ρ3

ρ1
,

ρ4

ρ3

}
=
{

2
}

5 Searching for Assignments

We now turn to the question how for a given r = (x−ρ1) · · ·(x−ρ`) ∈ k[x] we can
find a map π as required. Of course, since ` is finite, there are only finitely many
possible choices for n and m such that n+m ≤ ` ≤ nm, and for each choice n,m
there are only finitely many functions π : {1, . . . ,n}×{1, . . . ,m} → {1, . . . , `}. We
can simply try them all. But going through all these (nm)` many functions one by
one would take very long.

In order to improve the efficiency of the search, we can exploit the fact that for
most partial functions π it is easy to see that they cannot be extended to a total
function with the required properties. We can further reduce the search space by

8 Manuel Kauers and Doron Zeilberger

taking into account that the order of the roots of the factors is irrelevant, i.e., we
can restrict the search to functions π with π(1,1) ≤ π(2,1) ≤ ·· · ≤ π(n,1) and
π(1,1) ≤ π(1,2) ≤ ·· · ≤ π(1,m). Furthermore, because of surjectivity, the root ρ1
must be reached, and we can choose to set π(1,1) = 1 without loss of generality.
Next, discard all functions with π(i, j1) = π(i, j2) for some i, j1, j2 with j1 6= j2 or
with π(i1, j) = π(i2, j) for some i1, i2, j with i1 6= i2, because these just signal some
roots of a factor of r several times without providing any additional information. So
we can in fact enforce 1 = π(1,1)< π(2,1)< · · ·< π(n,1) and π(1,1)< π(1,2)<
· · · < π(1,m). Next, π is a solution iff π> : {1, . . . ,m} × {1, . . . ,n} → {1, . . . , `}
with π>(i, j) = π(j, i) is a solution. We can therefore restrict the search to functions
where n≤ m.

The following algorithm takes these observations into account. It maintains an as-
signment table M which encodes a function π : {1, . . . ,n}×{1, . . . ,m}→ {1, . . . , `}
with

ρπ(1, j1)

ρπ(1, j2)
=

ρπ(2, j1)

ρπ(2, j2)
= · · ·=

ρπ(n, j1)

ρπ(n, j2)

for all i, j1, j2 and
ρπ(i1,1)

ρπ(i2,1)
=

ρπ(i1,2)

ρπ(i2,2)
= · · ·=

ρπ(i1,m)

ρπ(i2,m)
.

for all i1, i2, j. At every recursion level, the candidate under consideration is ex-
tended to a function π with π(n+ 1,1) = p for some p. As soon as p is chosen,
there is for each j = 2, . . . ,m at most one choice q ∈ {1, . . . , `} for the value of
π(n+1, j). The matrix M stores these values q and marks the indices j for which no
q exists with q = 0. The result is a function {1, . . . ,n+1}×{1, . . . , m̃}→ {1, . . . , `}
for some m̃≤ m. If this function is surjective, we have found a solution. Otherwise,
we proceed recursively unless we already have n+1 = m̃, because in this case any
further extension could only produce transposes of solutions that will be found at
some other stage of the search.

INPUT: The roots ρ1, . . . ,ρ` of some square-free polynomial r ∈ k[x].
OUTPUT: A list of functions π as required for solving the factorization problem.

1 let M = ((M[i, j]))`i, j=1 be a matrix with M[1, j] = j for j = 1, . . . , `.
2 call the procedure addRow(M,2) as defined below.
3 stop.

4 procedure addRow(M,n)
5 for p = M[n−1,1]+1, . . . , ` do:
6 set the nth row of M to (p,0, . . . ,0) and let J be the empty list
7 for j = 2, . . . , ` do:
8 if M[n−1, j] 6= 0 and there exists q∈ {1, . . . , `} such that ρ1/ρp = ρ j/ρq

and ρ1/ρ j = ρp/ρq

9 set M[n, j] = q and append j to J
10 if {M[i, j] : i = 1, . . . ,n; j ∈ J}= {1, . . . , `} then:
11 report the assignment π : {1, . . . ,n} × {1, . . . , |J|} → {1, . . . , `} with

π(i, j) = M[i,J[j]] for all i, j.

Factorization of C-finite Sequences 9

12 else if |{ j : M[n, j] 6= 0}|< n then
13 recursively call the procedure addRow(M,n+1)

In the interest of readability, we have refrained from some obvious optimiza-
tions. For example, an actual implementation might perform some precomputation
in order to improve the search for q in Step 8.

It is not hard to implement the algorithm. A Mathematica implementation by the
authors is available on the website of this paper,

http://www.math.rutgers.edu/˜zeilberg/mamarim/
mamarimhtml/Cfac.html.

The relevant function is CFiniteFactor.

Example 3. Let r =(x−ρ1) · · ·(x−ρ6) where ρ1 =−8, ρ2 =−6, ρ3 =−4, ρ4 =−3,
ρ5 =−2, ρ6 =−1.

After initialisation, at the first level of the recursion, there are five choices for the
first entry in the second row of M. Each of them uniquely determines the rest of the
row, as follows (writing · for 0):

(
1 2 3 4 5 6
2 · 4 · · ·

)
,(

1 2 3 4 5 6
3 4 5 · 6 ·

)
,(

1 2 3 4 5 6
4 · · · · ·

)
,(

1 2 3 4 5 6
5 · 6 · · ·

)
,(

1 2 3 4 5 6
6 · · · · ·

)
.

The second of these matrices corresponds to a solution

π : {1,2}×{1,2,3,4}→ {1,2,3,4,5,6},

which gives rise to the factorization

r = (x−1)(x− 1
2)⊗ (x+8)(x+6)(x+4)(x+2),

while the other partial solutions cannot be continued to further solutions.

10 Manuel Kauers and Doron Zeilberger

6 Multiple Roots

Let us now drop the condition that r ∈ k[x] is square free. Write r∗ for the square
free part of r. It is clear from equation (1) that when p,q ∈ k[x] are such that r =
p⊗ q, then r∗ = p∗ ⊗ q∗, where p∗,q∗ denote the square free parts of p and q,
respectively. It is therefore natural to first determine factorizations of the square
free part r∗ of r and in a second step obtain p and q from p∗ and q∗ (if possible)
by assigning appropriate multiplicities to their roots. As the multiplicities in p or
q cannot exceed those in r, there are again just finitely many candidates and we
could simply try them all. And again, the search can be improved because many
possibilities can be ruled out easily. In fact, the freedom for the multiplicities is so
limited that we can compute them rather than search for them.

First consider the case when p∗ and q∗ were obtained from an injective map π ,
i.e., the case when there are no product clashes. In this case, each root ρ` of r∗

corresponds to exactly one product φiψ j of a root φi of p∗ and a root ψ j of q∗.
The multiplicities ei of φi in p and ε j of ψ j in q, respectively, must be such that
ei +ε j−1 equals the multiplicity of ρ` in r. This gives a linear system of equations.
Every solution of this system in the positive integers gives rise to a factorization
for r, and if there is no solution for the linear system of any of the factorizations of
the square-free part r∗, then r admits no factorization.

When there are product clashes, there are roots ρ of r which are obtained in sev-
eral distinct ways as products of roots of p and q, for instance ρ = φi1ψ j1 = φi2ψ j2
for some (i1, j1) 6= (i2, j2). If m is the multiplicity of ρ in r, then the requirement for
the multiplicities ei1 ,ei2 ,ε j1 ,ε j2 of φi1 ,φi2 ,ψ j1 ,ψ j2 in p and q, respectively, is that

max(ei1 + ε j1 −1,ei2 + ε j2 −1) = m.

We obtain a system of such equations, one equation for reach root of r, and they can
be solved by exhaustive search.

Example 4. 1. Let r = (x−2)(x+2)2(x−3)2(x+3)3. We have seen earlier that the
square free part r∗ of r admits two distinct factorizations

r∗ = (x−1)(x+1)⊗ (x−2)(x+3)
= (x−1)(x+1)⊗ (x−2)(x−3).

Assigning multiplicities to the first, we get

(x−1)e1(x+1)e2 ⊗ (x−2)ε1(x+3)ε2

= (x+2)e1+ε1−1(x−3)e1+ε2−1(x−2)e2+ε1−1(x+3)e2+ε2−1.

Comparing the exponents to those of r gives the linear system

e1 + ε1−1 = 2, e1 + ε2−1 = 2,
e2 + ε1−1 = 1, e2 + ε2−1 = 3,

Factorization of C-finite Sequences 11

which has no solution. For the second factorization, we get

(x−1)e1(x+1)e2 ⊗ (x−2)ε1(x−3)ε2

= (x+2)e1+ε1−1(x+3)e1+ε2−1(x−2)e2+ε1−1(x−3)e2+ε2−1.

Comparing the exponents to those of r gives the linear system

e1 + ε1−1 = 2, e1 + ε2−1 = 3,
e2 + ε1−1 = 1, e2 + ε2−1 = 2,

whose unique solution in the positive integers is e1 = 2, e2 = 1, ε1 = 1, ε2 = 2,
thus

r = (x−1)2(x+1)⊗ (x−2)(x−3)2.

2. Let r = (x− 1
2)

2(x− 1
4)(x−1)2(x−2)3. We have seen earlier that the square free

part r∗ of r admits the factorization

r∗ = (x− 1
2)(x−

1
4)⊗ (x−1)(x−2)(x−4).

Assigning multiplicities to the factors, we get

(x− 1
2)

e1(x− 1
4)

e2 ⊗ (x−1)ε1(x−2)ε2(x−4)ε3

= (x− 1
2)

max(e1+ε1−1,e2+ε2−1)

(x−1)max(e1+ε2−1,e2+ε3−1)

(x−2)e1+ε3−1(x− 1
4)

e2+ε1−1.

Comparing the exponents to the exponents of the factors of r gives a tropical
linear system in the unknowns e1,e2,ε1,ε2,ε3, which turns out to have two solu-
tions. They correspond to the two factorizations

r = (x− 1
2)

2(x− 1
4)⊗ (x−1)(x−2)(x−4)2

= (x− 1
2)

2(x− 1
4)⊗ (x−1)(x−2)2(x−4)2

7 When we don’t want to find the roots

Sometimes our polynomials are with integer coefficients, and we prefer not to fac-
torize them over the complex numbers. Of course, all the roots are algebraic num-
bers, by definition, and computer-algebra systems know how to compute with them
(without “cheating” and using floating-point approximations), but it may be more
convenient to find the tensor product (in the generic case: no product clashes and no
repeated roots) of p = p0+ · · ·+ pmxm and q = q0+ · · ·+qnxn, a certain polynomial
r of degree mn, as follows. If the roots of p are φ1, . . . ,φn and the roots of q are
ψ1, . . . ,ψm, then the roots of p⊗q are, of course

12 Manuel Kauers and Doron Zeilberger

{φiψ j | 1≤ i≤ m, 1≤ j ≤ n}.

Let Pk(p) := ∑
m
i=1 φ k

i be the power-sum symmetric functions [9], then of course

Pk(p⊗q) = Pk(p)Pk(q), 1≤ k ≤ nm.

Now using Newton’s relations (e.g. [9], Eq. I.(2.11’) p. 23), one can go back and
forth from the elementary symmetric functions (essentially the coefficients of the
polynomial up to sign) to the power-functions, and back, enabling us easily to com-
pute the tensor product without factorizing.

If you define the reverse of a polynomial p, to be p̄(x) := xd p(1/x), where d is the
degree of p, then p⊗ p̄ has, of course, the factor (x−1)d but otherwise (generically)
all distinct roots, unless it has good reasons not to. On the other hand, if r = p⊗ q
for some non-trivial polynomials p and q then r⊗ r̄ has repeated roots other than
1−x, and the repetition profile can be easily predicted as above, or “experimentally”.
So using this approach it is easy to test quickly whether r “factorizes” (with high
probability), in the tensor-product sense. However, to actually find the factors would
take more effort.

This is implemented in the Maple package accompanying this article, linked to
from

http://www.math.rutgers.edu/˜zeilberg/mamarim/
mamarimhtml/Cfac.html.

The tensor product operation is called Mul and the testing procedure is TestFact.

8 Linear Combinations of Factorizations

For almost all polynomials r ∈ k[x] there does not exist a factorization. When no
factorization exists, we may wonder whether r admits a decomposition of a more
general type. For example, we can ask whether there exist polynomials p1, p2,q1,q2
of degree at least two such that

r = lcm(p1⊗q1, p2⊗q2).

Translated to the language of C-finite sequences, this means that we seek to write a
given C-finite sequence (an)

∞
n=0 as

an = bncn +unvn

for C-finite sequences (bn)
∞
n=0, (cn)

∞
n=0, (un)

∞
n=0, (vn)

∞
n=0, none of which should

satisfy a first-order recurrence in order to make the problem nontrivial.
It is not difficult to adapt the algorithm in Section 5 so that it can also discover

such factorizations. Suppose that r is squarefree. Then, instead of searching for a
single surjective map

Factorization of C-finite Sequences 13

π : {1, . . . ,n}×{1, . . . ,m}→ {1, . . . , `},

it suffices to find two functions

π1 : {1, . . . ,n1}×{1, . . . ,m1}→ {1, . . . , `}
π2 : {1, . . . ,n2}×{1, . . . ,m2}→ {1, . . . , `}

satisfying the same conditions previously requested for π but with surjectivity
replaced by imπ1 ∪ imπ2 = {1, . . . , `}. Once two such maps π1,π2 have been
found, we can construct p1, p2,q1,q2 by choosing φ 1

1 and φ 2
1 arbitrarily, setting

ψ1
1 = ρπ1(1,1)/φ 1

1 , ψ2
1 = ρπ2(1,1)/φ 2

1 and

φ
1
i = φ

1
1

ρπ1(i,1)

ρπ1(1,1)
, ψ

1
j = ψ

1
1

ρπ1(1, j)

ρπ1(1,1)
,

φ
2
i = φ

2
1

ρπ2(i,1)

ρπ2(1,1)
, ψ

2
j = ψ

2
1

ρπ2(1, j)

ρπ2(1,1)

for all i, j in question. Then p1 :=∏
n1
i=1(x−φ 1

i), q1 :=∏
m1
i=1(x−ψ1

j), p2 :=∏
n2
i=1(x−

φ 2
i), q2 := ∏

m2
i=1(x−ψ2

j), are such that r = lcm(p1⊗q1, p2⊗q2).
In order to search for a pair π1,π2, we can search for π1 very much like we

searched for π before, and for each partial solution encountered during the recursion,
initiate a search for another function π2 which is required to hit all the indices 1, . . . , `
not hit by the partial solution π1. Note that it is fine if some indices are hit by both
π1 and π2. The suggested modification amounts to replacing lines 12 and 13 of the
algorithm from Section 5 by the following:

12 else
13 let Q = {M[i, j] : i = 1, . . . ,n; j ∈ J}.
14 let M2 be an `× `-matrix with (1, . . . , `) as first row.
15 call the procedure addRow2(M2,2,Q) defined below.
16 for each function π2 it reports, report (π,π2).
17 if no π2 is found and |{ j : M[n, j] 6= 0}|< n then
18 recursively call addRow(M,n+1)

19 procedure addRow2(M,n,Q)

20 [lines 5–9 literally as in the definition of addRow]
21 if {1, . . . , `}\Q⊆ {M[i, j] : i = 1, . . . ,n; j ∈ J} then:
22 [literally as line 11 in the definition of addRow]
23 else if |{ j : M[n, j] 6= 0}|< n then
24 recursively call addRow2(M,n+1,Q).

This settles the case of square free input. The extension to arbitrary polynomials
is like in the previous section. For every factorization of the square free part we
can assign variables for the multiplicities of all the roots and compare the resulting
multiplicities for lcm(p1 ⊗ q1, p2 ⊗ q2) to those of r. This gives again a tropical
linear system of equations which can be solved with Grigoriev’s algorithm [5].

14 Manuel Kauers and Doron Zeilberger

Example 5. The polynomial r = (x−1)(x−2)(x−3)(x−4)(x−6)(x−12) cannot
be written as r = p⊗q for some p,q ∈ k[x]. However, we have the representation

r = lcm(p1⊗q1, p2⊗q2)

for

p1 = (x−1)(x−2), p2 = (x−1)(x−3),
q1 = (x−2)(x−3), q2 = (x−1)(x−4).

Note that the roots 3 and 4 of r are produced by both p1⊗q1 and p2⊗q2.

9 Examples

Our main motivation for studying the factorization problem for C-finite sequences
are two interesting identities that can be interpreted as such factorizations. They
both originate from the transfer matrix method.

The first is a tiling problem studied in [7, 3], and more recently in [18]. Given
a rectangle of size m× n, the question is in how many different ways we can fill it
using tiles of size 2×1 or 1×2. If n and m are even, it turns out that

Tn,m = 2nm/2
m/2

∏
i=1

n/2

∏
j=1

(
z2 cos2

(iπ
m+1

)
+ z2 cos2

(jπ
n+1

))
is a bivariate polynomial in the variables z ,z where the coefficient of a monomial
zuzv is exactly the number of tilings of the m×n rectangle that uses exactly u tiles of
size 2×1 and v tiles of size 1×2. The transfer matrix method can be used to prove
this result automatically for every fixed m and arbitrary n (or vice versa). For every
fixed choice of m (say), it delivers a polynomial r which encodes a recurrence for
(Tn,m)

∞
n=0. For every fixed i ∈ {1, . . . ,m}, the sequence

2n/2
n

∏
j=1

(
z2 cos2

(iπ
m+1

)
+ z2 cos2

(jπ
n+1

))
=

1
w

znTn(
√

w)+
(

1− 1
w

)
znUn(

√
w)

with w = 1+
(z

z cos(iπ
m+1)

)2 and Tn and Un the Chebyshev polynomials of the first
and second kind, is C-finite with respect to n. An annihilating polynomial is

pi = x2−2
(

z2 +2z2 cos2(iπ
2m+1

))
x+ z4.

The formula for Tn,m can be proven for each particular choice of m and arbitrary n
by checking r = p1⊗ ·· ·⊗ pm and comparing the first 2m initial terms. While the

Factorization of C-finite Sequences 15

standard algorithms can confirm the correctness of some conjectured factorization,
the algorithm described in the present paper can help discover the factorization in
the first place, taking only r as input. Fisher, Temperly [3] or Kasteleyn [7] would
probably have found it useful back in the 1960s to apply the algorithm to m =
2,4,6,8,10 and to detect the general pattern from the outputs.

The second identity which motivated our study has a similar nature. It describes
the Ising model on an n×m grid wrapped around a torus [10, 14]. Starting from a
certain model in statistical physics that we do not want to explain here, the trans-
fer matrix method produces for every fixed m ∈ N an annihilating polynomial r of
degree 2m for a certain C-finite sequence in n. The asymptotic behaviour of this se-
quence for n→ ∞ is of interest. In view of Theorem 2, it is goverend by the root
of r with the largest absolute value. Onsager discovered that this largest root of r is
equal to

(2sinh(2ν))m/2 exp
(1

2 (γ1 + γ3 + · · ·+ γ2m−1)
)

where ν is some physical constant and γk is defined as

γk = arccosh
(
cosh(2ν)coth(2ν)− cos(πk

m)
)

for k = 1,3, . . . ,2m−1 (compare eq. (V.5.1) (p. 131) in [14]).
Let us translate these formulas to a more familiar form. First note that because of

periodicity and symmetry of the cosine, we have γk = γ2m−k for k = 1,3, Hence
each of the γk in the argument of exp appears twice, except the middle term γm,
which only appears for odd m. Set z= exp(ν) and xk = exp(γk) for k = 1,3, . . . ,2m−
1. Then 2sinh(2ν) = z2− z−2, and Onsager’s expression for the largest root of r
simplifies to {

(z2 + z−2)m/2x1x3 · · ·xm−1 if m is even
(z2 + z−2)(m−1)/2(1+ z2)x1x3 · · ·xm−1 if m is odd.

For the second case we have used
√
(z2 + z−2)xm = 1+ z2. The equation for γk says

that xk is a root of

pk := x2 +
(

2cos(πk
m)− (z4 +1)2

(z4−1)z2

)
x+1.

Set q = x− (z2− z−2)m/2 when m is even and set q = x− (z2− z−2)(m−1)/2(1+ z2)
when m is odd. Then Onsager’s formula says that the largest root of r is equal to the
largest root of q⊗ p1⊗ p3⊗·· ·⊗ pm−1.

In fact, the polynomial q⊗ p1⊗ p3⊗·· ·⊗ pm−1 ∈Q(z)[x] happens to be exactly
the irreducible factor of r ∈ Q(z)[x] corresponding to the largest root of r. There-
fore, our algorithm applied to this irreducible factor of r could have helped Onsager
discover his formula.

16 Manuel Kauers and Doron Zeilberger

References

1. Yongjae Cha. Closed form solutions of linear difference equations in terms of symmetric
products. Journal of Symbolic Computation, 60:62–77, 2014.

2. Graham R. Everest and Alf J. van der Poorten. Factorization in the ring of exponential poly-
nomials. Proceedings of the AMS, 125(5):1293–1298, 1997.

3. M. Fisher and H. Temperley. Dimer problems in statistical mechanics–an exact result. Philos.
Mag., 6:1061–1063, 1961.

4. Guoqiang Ge. Algorithms related to multiplicative representations of algebraic numbers. PhD
thesis, U.C. Berkeley, 1993.

5. Dima Grigoriev. Complexity of solving tropical linear systems. Computational Complexity,
22:71–88, 2013.

6. Sabrina Hessinger. Computing Galois Groups of Linear Differential Equations of Order Four.
PhD thesis, North Carolina State University, 1997.

7. P. W. Kasteleyn. The statistics of dimers on a lattice: I. the number of dimer arrangements in
a quadratic lattice. Physica, 27:1209–1225, 1961.

8. Manuel Kauers and Peter Paule. The Concrete Tetrahedron. Springer, 2011.
9. Ian Macdonald. Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford, 2nd

edition, 1995.
10. Lars Onsager. Crystal statistics, I. a two-dimensional model with an order-disorder transition.

Physical Review, 65:117–149, 1944.
11. Joseph F. Ritt. A factorization theory for functions ∑

n
i=1 aieαix. Transactions of the AMS,

29(3):584–596, 1927.
12. Michael F. Singer. Solving homogeneous linear differential equations in terms of second order

linear differential equations. American Journal of Mathematics, 107(3):663–696, 1985.
13. Richard P. Stanley. Enumerative Combinatorics, Volume 2. Cambridge Studies in Advanced

Mathematics 62. Cambridge University Press, 1999.
14. Colin J. Thompson. Mathematical Statistical Mechanics. Princeton University Press, 1972.
15. Mark van Hoeij. Decomposing a 4th order linear differential equation as a symmetric product.

Banach Center Publications, 58:89–96, 2002.
16. Mark van Hoeij. Solving third order lienar differential equations in terms of second order

equations. In Proceedings of ISSAC’07, pages 355–360, 2007.
17. Doron Zeilberger. A holonomic systems approach to special function identities. Journal of

Computational and Applied Mathematics, 32:321–368, 1990.
18. Doron Zeilberger. CounTilings. The Personal Journal of Shalosh B. Ekhad and Doron Zeil-

berger, 2006.
19. Doron Zeilberger. The C-finite ansatz. The Ramanujan Journal, 31(1):23–32, 2013.

