Desingularization in Several Variables

Manuel Kauers · Institute for Algebra · JKU

Joint work with Shaoshi Chen, Ziming Li, and Yi Zhang
What is a singularity?

Consider a linear differential operator with polynomial coefficients:

\[L = p_0(x) D^0 + p_1(x) D^1 + \cdots + p_r(x) D^r \in C[x][D] \]

The roots of \(p_r \) are the singularities of \(L \).

Example: \((2x - 9) D^2 - (5x + 2) D + (x + 3)\) has the singularity \(9/2\).
What is a singularity?

Consider a linear differential operator with polynomial coefficients:

\[L = p_0(x) + p_1(x)D + \cdots + p_r(x)D^r \in C[x][D] \]
What is a singularity?

Consider a linear differential operator with polynomial coefficients:

\[L = p_0(x) + p_1(x)D + \cdots + p_r(x)D^r \in C[x][D] \]

The roots of \(p_r \) are the singularities of \(L \).
What is a singularity?

Consider a linear differential operator with polynomial coefficients:

\[L = p_0(x) + p_1(x)D + \cdots + p_r(x)D^r \in C[x][D] \]

The roots of \(p_r \) are the singularities of \(L \).

Example: \((2x-9)D^2 - (5x+2)D + (x+3)\) has the singularity \(9/2\).
What is a removable singularity?

Consider an operator $L \in \mathbb{C}[x][D]$ with a singularity $\alpha \in \bar{\mathbb{C}}$. If there is an operator $M \in \mathbb{C}((x))[D]$ such that $ML \in \mathbb{C}[x][D]$ and α is not a singularity of ML, then we say that α is removable from L.

Example: $\alpha = 0$ is removable from $xD - 1$ by $M = xD$, because $xD(xD - 1) = xD((xD + 1)D - (1D + 0)) = D^2$.
What is a removable singularity?

Consider an operator $L \in C[x][D]$ with a singularity $\alpha \in \overline{C}$. If there is an operator $M \in C(x)[D]$ such that $ML \in C[x][D]$ and α is not a singularity of ML, then we say that α is removable from L.

Example: $\alpha = 0$ is removable from xD^{-1} by $M = 1 \cdot xD$, because $1 \cdot xD(xD^{-1}) = D$.

What is a removable singularity?

Consider an operator $L \in \mathbb{C}[x][D]$ with a singularity $\alpha \in \bar{\mathbb{C}}$. If there is an operator $M \in \mathbb{C}(x)[D]$ such that $ML \in \mathbb{C}[x][D]$ and α is not a singularity of ML, then we say that α is removable from L.

Example: $\alpha = 0$ is removable from $xD - 1$ by $M = \frac{1}{x}D$, because

$$\frac{1}{x}D(xD - 1) = \frac{1}{x}((xD + 1)D - (1D + 0)) = D^2.$$
Why is this important?

A singularity \(\alpha \) of \(L \) is removable if and only if there is no solution of \(L \) which has a singularity at \(\alpha \).

Example:

- The solution of \(L = x^{D-1} \) is \(x \) and has no singularity at \(0 \). Hence \(0 \) is removable.
- The solution of \(L = x^D + 1 \) is \(x^{-1} \) and has a singularity at \(0 \). Hence \(0 \) is not removable.
A singularity α of L is removable if and only if there is no solution of L which has a singularity at α.

- Example:
 - The solution of $L = x^D - 1$ is x and has no singularity at 0. Hence 0 is removable.
 - The solution of $L = x^D + 1$ is $x - 1$ and has a singularity at 0. Hence 0 is not removable.
A singularity α of L is removable if and only if there is no solution of L which has a singularity at α.

Example:

- The solution of $L = xD - 1$ is x and has no singularity at 0. Hence 0 is removable.
- The solution of $L = xD + 1$ is x^{-1} and has a singularity at 0. Hence 0 is not removable.
How to recognize removable singularities?

Determine all $e \in \mathbb{N}$ such that L has a formal power series solution starting with $(x - \alpha)^e$. These values e are roots of a certain polynomial, called the indicial polynomial of L at α. It turns out that α is removable if and only if there are $\text{ord}(L)$ many different e's in \mathbb{N}.
How to recognize removable singularities?

Determine all $e \in \mathbb{N}$ such that L has a formal power series solution starting with $(x - \alpha)^e$.

These values e are roots of a certain polynomial, called the indicial polynomial of L at α.

It turns out that α is removable if and only if there are $\text{ord}(L)$ many different e's in \mathbb{N}.

How to recognize removable singularities?

Determine all $e \in \mathbb{N}$ such that L has a formal power series solution starting with $(x - \alpha)^e$.

These values e are roots of a certain polynomial, called the indicial polynomial of L at α.
How to recognize removable singularities?

Determine all $e \in \mathbb{N}$ such that L has a formal power series solution starting with $(x - \alpha)^e$.

These values e are roots of a certain polynomial, called the indicial polynomial of L at α.

It turns out that α is removable if and only if there are $\text{ord}(L)$ many different e’s in \mathbb{N}.
How can we remove a removable singularity?
How can we remove a removable singularity?

Fact: α is not a singularity iff there are power series solutions starting with $(x - \alpha)^e$ for all $e = 0, \ldots, \text{ord}(L) - 1$.
How can we remove a removable singularity?

Fact: α is not a singularity iff there are power series solutions starting with $(x - \alpha)^e$ for all $e = 0, \ldots, \text{ord}(L) - 1$.

If L has a removable singularity at α, the list of starting exponents of the series have some gaps.
How can we remove a removable singularity?

Fact: \(\alpha \) is not a singularity iff there are power series solutions starting with \((x - \alpha)^e\) for all \(e = 0, \ldots, \text{ord}(L) - 1\).

If \(L\) has a removable singularity at \(\alpha\), the list of starting exponents of the series have some gaps.
How can we remove a removable singularity?

Fact: \(\alpha \) is not a singularity iff there are power series solutions starting with \((x - \alpha)^e\) for all \(e = 0, \ldots, \text{ord}(L) - 1\).

If \(L\) has a removable singularity at \(\alpha\), the list of starting exponents of the series have some gaps.

\[\bullet \bullet \bullet \bullet \rightarrow e\]

Idea: construct a larger operator with additional solutions chosen such as to close these gaps.
How can we remove a removable singularity?

Fact: α is not a singularity iff there are power series solutions starting with $(x - \alpha)^e$ for all $e = 0, \ldots, \text{ord}(L) - 1$.

If L has a removable singularity at α, the list of starting exponents of the series have some gaps.

\[\bullet \bullet \bullet \bullet \rightarrow e \]

Idea: construct a larger operator with additional solutions chosen such as to close these gaps.
How can we remove a removable singularity?

Fact: α is not a singularity iff there are power series solutions starting with $(x - \alpha)^e$ for all $e = 0, \ldots, \text{ord}(L) - 1$.

If L has a removable singularity at α, the list of starting exponents of the series have some gaps.

Idea: construct a larger operator with additional solutions chosen such as to close these gaps.
How can we remove a removable singularity?

Example: The solution space of

\[L = x(x - 2)D^2 + (2 - x^2)D + (2x - 2) \]

is generated by two series of the form \(1 + \cdots \) and \(x^2 + \cdots \).
How can we remove a removable singularity?

Example: The solution space of

\[L = x(x - 2)D^2 + (2 - x^2)D + (2x - 2) \]

is generated by two series of the form \(1 + \cdots \) and \(x^2 + \cdots \).

A solution of the form \(x + \cdots \) is missing.
How can we remove a removable singularity?

Example: The solution space of

$$L = x(x - 2)D^2 + (2 - x^2)D + (2x - 2)$$

is generated by two series of the form $1 + \cdots$ and $x^2 + \cdots$. A solution of the form $x + \cdots$ is missing.

The solution space of $U = xD - 1$ is generated by x.

$$lclm(L, U) = (x^2 - 2x + 2)D^3 - x^2D^2 + 2xD - 2$$
How can we remove a removable singularity?

Example: The solution space of

\[L = x(x - 2)D^2 + (2 - x^2)D + (2x - 2) \]

is generated by two series of the form \(1 + \cdots\) and \(x^2 + \cdots\).

A solution of the form \(x + \cdots\) is missing.

The solution space of \(U = xD - 1\) is generated by \(x\).

\[\text{lclm}(L, U) = (x^2 - 2x + 2)D^3 - x^2D^2 + 2xD - 2 \]
Is there an easier way?

Yes: It suffices to compute $lclm(L, U)$ for almost any operator U of sufficiently large order.

Example with $L = x(x - 2)D^2 + (2 - x^2)D + (2x - 2)$:

$$lclm(L, D - 2) = (x^2 - 3x + 1)D^3 + \cdots$$

$$lclm(L, 2D + x) = (2x^4 - 4x^2 + 16x - 16)D^3 + \cdots$$

$$lclm(L, (x + 2)D - 3) = (x^4 - 4x^3 - 6x^2 + 8x - 8)D^3 + \cdots$$
Is there an easier way?

Yes: It suffices to compute $\text{lclm}(L, U)$ for almost any operator U of sufficiently large order.
Is there an easier way?

Yes: It suffices to compute $\text{lclm}(L, U)$ for almost any operator U of sufficiently large order.

Example with $L = x(x - 2)D^2 + (2 - x^2)D + (2x - 2)$:

$$\text{lclm}(L, D - 2) = (x^2 - 3x + 1)D^3 + \cdots$$
Is there an easier way?

Yes: It suffices to compute $\text{lclm}(L, U)$ for almost any operator U of sufficiently large order.

Example with $L = x(x - 2)D^2 + (2 - x^2)D + (2x - 2)$:

\[\text{lclm}(L, D - 2) = (x^2 - 3x + 1)D^3 + \cdots \]
\[\text{lclm}(L, 2D + x) = (2x^4 - 4x^2 + 16x - 16)D^3 + \cdots \]
Is there an easier way?

Yes: It suffices to compute $\text{lclm}(L, U)$ for almost any operator U of sufficiently large order.

Example with $L = x(x - 2)D^2 + (2 - x^2)D + (2x - 2)$:

\[
\begin{align*}
\text{lclm}(L, D - 2) &= (x^2 - 3x + 1)D^3 + \cdots \\
\text{lclm}(L, 2D + x) &= (2x^4 - 4x^2 + 16x - 16)D^3 + \cdots \\
\text{lclm}(L, (x + 2)D - 3) &= (x^4 - 4x^3 - 6x^2 + 8x - 8)D^3 + \cdots
\end{align*}
\]
Is there an easier way?

Yes: It suffices to compute \(\text{lclm}(L, U) \) for almost any operator \(U \) of sufficiently large order.

Example with
\[
L = x(x - 2)D^2 + (2 - x^2)D + (2x - 2):
\]

\[
\text{lclm}(L, D - 2) = (x^2 - 3x + 1)D^3 + \cdots
\]

\[
\text{lclm}(L, 2D + x) = (2x^4 - 4x^2 + 16x - 16)D^3 + \cdots
\]

\[
\text{lclm}(L, (x + 2)D - 3) = (x^4 - 4x^3 - 6x^2 + 8x - 8)D^3 + \cdots
\]
Does this also work for several variables?
Does this also work for several variables?

Yes.
What does this mean?

We consider operator ideals $I \subseteq C(x_1, \ldots, x_n)[D_1, \ldots, D_n]$. The ideals should be D-finite, i.e., their dimension should be 0.

Let's restrict to two variables x, y from now on.

Example: $I = \langle xD_x + D_y - 1, D_2 y - D_y \rangle \subseteq C(x, y)[D_x, D_y]$.

Fix a term order on $C(x, y)[D_x, D_y]$, say, with $D_x > D_y$.

8
What does this mean?

We consider operator ideals $I \subseteq C(x_1, \ldots, x_n)[D_1, \ldots, D_n]$.
What does this mean?

We consider operator ideals $I \subseteq C(x_1, \ldots, x_n)[D_1, \ldots, D_n]$. The ideals should be D-finite, i.e., their dimension should be 0.
What does this mean?

We consider operator ideals $I \subseteq C(x_1, \ldots, x_n)[D_1, \ldots, D_n]$. The ideals should be D-finite, i.e., their dimension should be 0. Let’s restrict to two variables x, y from now on.
What does this mean?

We consider operator ideals $I \subseteq C(x_1, \ldots, x_n)[D_1, \ldots, D_n]$

The ideals should be D-finite, i.e., their dimension should be 0.

Let’s restrict to two variables x,y from now on.

Example: $I = \langle xD_x + D_y - 1, D_y^2 - D_y \rangle \subseteq C(x, y)[D_x, D_y]$.
What does this mean?

We consider operator ideals $I \subseteq \mathbb{C}(x_1, \ldots, x_n)[D_1, \ldots, D_n]$

The ideals should be D-finite, i.e., their dimension should be 0.

Let’s restrict to two variables x, y from now on.

Example: $I = \langle xD_x + D_y - 1, D_y^2 - D_y \rangle \subseteq \mathbb{C}(x, y)[D_x, D_y]$.

Fix a term order on $\mathbb{C}(x, y)[D_x, D_y]$, say, with $D_x > D_y$.
What is a singularity?

Let $G \subseteq \mathbb{C}[x,y][D_x, D_y]$ be a Gröbner basis in $\mathbb{C}(x,y)[D_x, D_y]$. $(\alpha, \beta) \in \mathbb{C}^2$ is a singularity of G if at least one element $L \in G$ has a leading coefficient $lc(L) \in \mathbb{C}[x,y]$ which vanishes at (α, β).

Example: Every $(0, \beta) \in \mathbb{C}^2$ is a singularity of $\{x D_x + D_y - 1, D_y^2 - D_y\}$.
What is a singularity?

Let $G \subseteq C[x, y][D_x, D_y]$ be a Gröbner basis in $C(x, y)[D_x, D_y]$.
What is a singularity?

Let $G \subseteq C[x, y][D_x, D_y]$ be a Gröbner basis in $C(x, y)[D_x, D_y]$.

$(\alpha, \beta) \in C^2$ is a singularity of G if at least one element $L \in G$ has a leading coefficient $\text{lc}(L) \in C[x, y]$ which vanishes at (α, β).
What is a singularity?

Let $G \subseteq C[x, y][D_x, D_y]$ be a Gröbner basis in $C(x, y)[D_x, D_y]$.

$(\alpha, \beta) \in C^2$ is a singularity of G if at least one element $L \in G$ has a leading coefficient $lc(L) \in C[x, y]$ which vanishes at (α, β).

Example: Every $(0, \beta) \in C^2$ is a singularity of $\{xD_x + D_y - 1, D_y^2 - D_y\}$.
What is a removable singularity?

Consider a Gröbner basis $G \subseteq \mathbb{C}[x,y][D_x, D_y]$ with a singularity $(\alpha, \beta) \in \mathbb{C}^2$. If there is an ideal $I \subseteq \mathbb{C}(x,y)[D_x, D_y]$ such that $G \subseteq I$ and I has a Gröbner basis in $\mathbb{C}[x,y][D_x, D_y]$ for which (α, β) is not a singularity, then we say that $(\alpha, \beta) \in \mathbb{C}^2$ is removable from G.

Example: $(0, \beta) \in \mathbb{C}^2$ is removable from $G = \{xD_x + D_y - 1, D_2 y - D_y\}$ because $G \subseteq \langle D_2 y - D_y, D_x D_y, D_2 x \rangle$.
What is a removable singularity?

Consider a Gröbner basis $G \subseteq \mathbb{C}[x, y][D_x, D_y]$ with a singularity $(\alpha, \beta) \in \mathbb{C}^2$. If there is an ideal $I \subseteq \mathbb{C}(x, y)[D_x, D_y]$ such that $G \subseteq I$ and I has a Gröbner basis in $\mathbb{C}[x, y][D_x, D_y]$ for which (α, β) is not a singularity, then we say that $(\alpha, \beta) \in \mathbb{C}^2$ is removable from G.

Example: $(0, \beta) \in \mathbb{C}^2$ is removable from $G = \{x D_x + D_y - 1, D_y^2 - D_y\}$ because $G \subseteq \langle D_y^2 - D_y, D_x D_y, D_x^2 \rangle$.
What is a removable singularity?

Consider a Gröbner basis $G \subseteq \mathbb{C}[x, y][D_x, D_y]$ with a singularity $(\alpha, \beta) \in \mathbb{C}^2$. If there is an ideal $I \subseteq \mathbb{C}(x, y)[D_x, D_y]$ such that $G \subseteq I$ and I has a Gröbner basis in $\mathbb{C}[x, y][D_x, D_y]$ for which (α, β) is not a singularity, then we say that $(\alpha, \beta) \in \mathbb{C}^2$ is removable from G.

Example: $(0, \beta) \in \mathbb{C}^2$ is removable from $G = \{xD_x + D_y - 1, D_y^2 - D_y\}$ because

$$G \subseteq \langle D_y^2 - D_y, D_xD_y, D_x^2 \rangle$$
How to recognize removable singularities?
How to recognize removable singularities?

Without loss of generality, let’s focus on $(0,0)$.

The possible exponent vectors (i,j) of their initial terms $x^i y^j$ are solutions of a certain ideal in $\mathbb{C}[x,y]$, called the indicial ideal. When $\langle G \rangle$ is a D-finite ideal, the indicial ideal has dimension 0.
How to recognize removable singularities?

Without loss of generality, let’s focus on $(0, 0)$. We can show that the singularity $(0, 0)$ is removable iff G has a basis of solutions in $\mathbb{C}[[x, y]]$.

The possible exponent vectors (i, j) of their initial terms $x^i y^j$ are solutions of a certain ideal in $\mathbb{C}[x, y]$, called the indicial ideal. When $\langle G \rangle$ is a D-finite ideal, the indicial ideal has dimension 0.
How to recognize removable singularities?

Without loss of generality, let’s focus on \((0, 0)\).

We can show that the singularity \((0, 0)\) is removable iff \(G\) has a basis of solutions in \(\mathbb{C}[[x, y]]\).

The possible exponent vectors \((i, j)\) of their initial terms \(x^i y^j\) are solutions of a certain ideal in \(\mathbb{C}[x, y]\), called the indicial ideal.
How to recognize removable singularities?

Without loss of generality, let’s focus on \((0, 0)\).

We can show that the singularity \((0, 0)\) is removable iff \(G\) has a basis of solutions in \(\mathbb{C}[[x, y]]\).

The possible exponent vectors \((i, j)\) of their initial terms \(x^i y^j\) are solutions of a certain ideal in \(\mathbb{C}[x, y]\), called the indicial ideal.

When \(\langle G \rangle\) is a D-finite ideal, the indicial ideal has dimension 0.
How to recognize removable singularities?

We can also show \((0,0)\) is not a singularity iff there are solutions in \(\mathbb{C}[[x, y]]\) starting with \(x^i y^j\) for every \((i, j)\) such that \(D_x^i D_y^j\) is not a leading term of \(\langle G \rangle\).
How to recognize removable singularities?

We can also show \((0, 0)\) is not a singularity iff there are solutions in \(\mathbb{C}[[x, y]]\) starting with \(x^i y^j\) for every \((i, j)\) such that \(D_x^i D_y^j\) is not a leading term of \(\langle G \rangle\).

If \((0, 0)\) is a removable singularity, some starting terms are misplaced.
How to recognize removable singularities?

We can also show \((0, 0)\) is not a singularity iff there are solutions in \(\mathbb{C}[[x, y]]\) starting with \(x^i y^j\) for every \((i, j)\) such that \(D_x^i D_y^j\) is not a leading term of \(\langle G \rangle\).

If \((0, 0)\) is a removable singularity, some starting terms are misplaced.
How to recognize removable singularities?

We can also show \((0, 0)\) is not a singularity iff there are solutions in \(C[[x, y]]\) starting with \(x^i y^j\) for every \((i, j)\) such that \(D_x^i D_y^j\) is not a leading term of \(\langle G \rangle\).

If \((0, 0)\) is a removable singularity, some starting terms are misplaced.

Idea: construct an ideal with further solutions which fill up the gaps.
How to recognize removable singularities?

We can also show $(0,0)$ is not a singularity iff there are solutions in $\mathbb{C}[[x,y]]$ starting with $x^i y^j$ for every (i,j) such that $D_x^i D_y^j$ is not a leading term of $\langle G \rangle$.

If $(0,0)$ is a removable singularity, some starting terms are misplaced.

Idea: construct an ideal with further solutions which fill up the gaps.
How to recognize removable singularities?

We can also show \((0, 0)\) is not a singularity iff there are solutions in \(\mathbb{C}[[x, y]]\) starting with \(x^i y^j\) for every \((i, j)\) such that \(D_x^i D_y^j\) is not a leading term of \(\langle G \rangle\).

If \((0, 0)\) is a removable singularity, some starting terms are misplaced.

\[
\begin{array}{ccccccc}
& & & & & & j \\
& & & & & & \\
& & & & & & \\
i & & & & & & \\
\end{array}
\]

Idea: construct an ideal with further solutions which fill up the gaps.
How to recognize removable singularities?

Example: For \(G = \{ xD_x + D_y - 1, D_y^2 - D_y \} \) we have solutions of the form \(1 + \cdots \) and \(x + \cdots \).
How to recognize removable singularities?

Example: For $G = \{x D_x + D_y - 1, D_y^2 - D_y\}$ we have solutions of the form $1 + \cdots$ and $x + \cdots$.

A solution of the form $y + \cdots$ is missing.
How to recognize removable singularities?

Example: For $G = \{xD_x + D_y - 1, D_y^2 - D_y\}$ we have solutions of the form $1 + \cdots$ and $x + \cdots$.

A solution of the form $y + \cdots$ is missing.

For $J = \langle yD_y - 1, D_x \rangle$ we have the solution y.
How to recognize removable singularities?

Example: For $G = \{ xD_x + D_y - 1, D_y^2 - D_y \}$ we have solutions of the form $1 + \cdots$ and $x + \cdots$.

A solution of the form $y + \cdots$ is missing.

For $J = \langle yD_y - 1, D_x \rangle$ we have the solution y.

$\langle G \rangle \cap J = \langle (1 - y)D_y^2 + xD_x + yD_y - 1, D_x D_y, D_x^2 \rangle$
How to recognize removable singularities?

Example: For $G = \{xD_x + D_y - 1, D_y^2 - D_y\}$ we have solutions of the form $1 + \cdots$ and $x + \cdots$.

A solution of the form $y + \cdots$ is missing.

For $J = \langle yD_y - 1, D_x \rangle$ we have the solution y.

$\langle G \rangle \cap J = \langle (1 - y)D_y^2 + xD_x + yD_y - 1, D_xD_y, D_x^2 \rangle$
Is there an easier way?

Yes: It suffices to compute \(\langle G \rangle \cap J \) for almost any ideal \(J \) for which \(\dim C(x, y) C(x, y)[D_x, D_y] / J \) is sufficiently large.

Example with \(G = \{ x D_x + D_y - 1, D_2 y - D_y \} \):

\[
\langle G \rangle \cap \langle D_x, D_y \rangle = \langle D_2 y - D_y, D_x D_y, D_2 x \rangle
\]

\[
\langle G \rangle \cap \langle D_x - 1, D_y \rangle = \langle D_2 y - D_y, D_x D_y, (1 - x^2) D_2 x - x D_2 x + D_y - 1 \rangle
\]

\[
\langle G \rangle \cap \langle D_x - y, D_y + x \rangle = \langle (1 - x^2) D_2 y + \ldots, (1 - x^2 - y) D_x D_y + \ldots, (1 - x^2 + y) D_2 x + \ldots \rangle
\]
Is there an easier way?

Yes: It suffices to compute $\langle G \rangle \cap J$ for almost any ideal J for which $\dim_{C(x,y)} C(x, y)[D_x, D_y]/J$ is sufficiently large.
Is there an easier way?

Yes: It suffices to compute $\langle G \rangle \cap J$ for almost any ideal J for which $\dim_{C(x,y)} C(x,y)[D_x, D_y]/J$ is sufficiently large.

Example with $G = \{xD_x + D_y - 1, D_y^2 - D_y\}$:
Is there an easier way?

Yes: It suffices to compute $\langle G \rangle \cap J$ for almost any ideal J for which $\dim_{\mathbb{C}(x,y)} \mathbb{C}(x,y)[D_x, D_y]/J$ is sufficiently large.

Example with $G = \{xD_x + D_y - 1, D_y^2 - D_y\}$:

$$\langle G \rangle \cap \langle D_x, D_y \rangle = \langle D_y^2 - D_y, D_xD_y, D_x^2 \rangle$$
Is there an easier way?

Yes: It suffices to compute $\langle G \rangle \cap J$ for almost any ideal J for which $\dim_{C(x,y)} C(x,y)[D_x, D_y]/J$ is sufficiently large.

Example with $G = \{xD_x + D_y - 1, D_y^2 - D_y\}$:

$$\langle G \rangle \cap \langle D_x, D_y \rangle = \langle D_y^2 - D_y, D_x D_y, D_x^2 \rangle$$

$$\langle G \rangle \cap \langle D_x - 1, D_y \rangle = \langle D_y^2 - D_y, D_x D_y, (1-x)D_x^2 - xD_x + D_y - 1 \rangle$$
Is there an easier way?

Yes: It suffices to compute \(\langle G \rangle \cap J \) for almost any ideal \(J \) for which \(\dim_{\mathbb{C}(x,y)} \mathbb{C}(x,y)[D_x, D_y]/J \) is sufficiently large.

Example with \(G = \{xD_x + D_y - 1, D_y^2 - D_y\} \):

\[
\langle G \rangle \cap \langle D_x, D_y \rangle = \langle D_y^2 - D_y, D_xD_y, D_x^2 \rangle
\]
\[
\langle G \rangle \cap \langle D_x - 1, D_y \rangle = \langle D_y^2 - D_y, D_xD_y, (1-x)D_x^2 - xD_x + D_y - 1 \rangle
\]
\[
\langle G \rangle \cap \langle D_x - y, D_y + x \rangle = \langle (1-x^2 + y)D_y^2 + \cdots , (1-x^2 - y)D_xD_y + \cdots , (1-x^2 + y)D_x^2 + \cdots \rangle
\]
Is there an easier way?

Yes: It suffices to compute \(\langle G \rangle \cap J \) for almost any ideal \(J \) for which \(\dim_{C(x,y)} C(x,y)[D_x, D_y]/J \) is sufficiently large.

Example with \(G = \{xD_x + D_y - 1, D_y^2 - D_y\} \):

\[
\langle G \rangle \cap \langle D_x, D_y \rangle = \langle D_y^2 - D_y, D_xD_y, D_x \rangle \\
\langle G \rangle \cap \langle D_x - 1, D_y \rangle = \langle D_y^2 - D_y, D_xD_y, (1-x)D_x^2 - xD_x + D_y - 1 \rangle \\
\langle G \rangle \cap \langle D_x - y, D_y + x \rangle = \langle (1 - x^2 + y)D_y^2 + \cdots, (1 - x^2 - y)D_xD_y + \cdots, (1 - x^2 + y)D_x^2 + \cdots \rangle
\]
What’s next?

We would like to have a simple algorithm for computing a basis of the contraction ideal $\langle G \rangle \cap C[x,y][D_x,D_y]$. Desingularization can be viewed as a first step in this direction.

We would also like to have a simple algorithm for computing a basis of solutions in $C[x,y]$ when $(0,0)$ is not removable. With our results, we can only compute such a basis when $(0,0)$ is a removable singularity.

Complicated algorithms are known for both problems. We are asking for more simple algorithms.
What’s next?

We would like to have a simple algorithm for computing a basis of the contraction ideal \(\langle G \rangle \cap \mathbb{C}[x, y][D_x, D_y] \).

Desingularization can be viewed as a first step in this direction. We would also like to have a simple algorithm for computing a basis of solutions in \(\mathbb{C}[x, y] \) when \((0,0)\) is not removable. With our results, we can only compute such a basis when \((0,0)\) is a removable singularity. Complicated algorithms are known for both problems. We are asking for more simple algorithms.
What’s next?

We would like to have a simple algorithm for computing a basis of the contraction ideal \(\langle G \rangle \cap C[x, y][D_x, D_y] \).

Desingularization can be viewed as a first step in this direction.
What’s next?

We would like to have a simple algorithm for computing a basis of the contraction ideal $\langle G \rangle \cap C[x, y][D_x, D_y]$.

Desingularization can be viewed as a first step in this direction.

We would also like to have a simple algorithm for computing a basis of solutions in $C[[x, y]]$ when $(0, 0)$ is not removable.
What’s next?

We would like to have a simple algorithm for computing a basis of the contraction ideal \(\langle G \rangle \cap \mathbb{C}[x, y][D_x, D_y] \).

Desingularization can be viewed as a first step in this direction.

We would also like to have a simple algorithm for computing a basis of solutions in \(\mathbb{C}[[x, y]] \) when \((0, 0)\) is not removable.

With our results, we can only compute such a basis when \((0, 0)\) is a removable singularity.
What’s next?

We would like to have a simple algorithm for computing a basis of the contraction ideal $\langle G \rangle \cap C[x, y][D_x, D_y]$.

Desingularization can be viewed as a first step in this direction.

We would also like to have a simple algorithm for computing a basis of solutions in $C[[x, y]]$ when $(0, 0)$ is not removable.

With our results, we can only compute such a basis when $(0, 0)$ is a removable singularity.

Complicated algorithms are known for both problems. We are asking for more simple algorithms.