Desingularization in Several Variables

Manuel Kauers · Institute for Algebra · JKU

Joint work with Shaoshi Chen, Ziming Li, and Yi Zhang

What is a singularity?

Consider a linear differential operator with polyomial coefficients:

 $\mathbf{L} = \mathbf{p}_0(\mathbf{x}) + \mathbf{p}_1(\mathbf{x})\mathbf{D} + \dots + \mathbf{p}_r(\mathbf{x})\mathbf{D}^r \in \mathbf{C}[\mathbf{x}][\mathbf{D}]$

What is a singularity?

Consider a linear differential operator with polyomial coefficients:

$$\mathbf{L} = \mathbf{p}_0(\mathbf{x}) + \mathbf{p}_1(\mathbf{x})\mathbf{D} + \dots + \mathbf{p}_r(\mathbf{x})\mathbf{D}^r \in \mathbf{C}[\mathbf{x}][\mathbf{D}]$$

The roots of p_r are the singularities of L.

What is a singularity?

Consider a linear differential operator with polyomial coefficients:

$$\mathbf{L} = \mathbf{p}_0(\mathbf{x}) + \mathbf{p}_1(\mathbf{x})\mathbf{D} + \dots + \mathbf{p}_r(\mathbf{x})\mathbf{D}^r \in \mathbf{C}[\mathbf{x}][\mathbf{D}]$$

The roots of p_r are the singularities of L.

Example: $(2x-9)D^2 - (5x+2)D + (x+3)$ has the singularity 9/2.

What is a removable singularity?

What is a removable singularity?

Consider an operator $L \in C[x][D]$ with a singularity $\alpha \in \overline{C}$. If there is an operator $M \in C(x)[D]$ such that $ML \in C[x][D]$ and α is not a singularity of ML, then we say that α is removable from L.

What is a removable singularity?

Consider an operator $L \in C[x][D]$ with a singularity $\alpha \in \overline{C}$. If there is an operator $M \in C(x)[D]$ such that $ML \in C[x][D]$ and α is not a singularity of ML, then we say that α is removable from L.

Example: $\alpha = 0$ is removable from xD - 1 by $M = \frac{1}{x}D$, because

$$\frac{1}{x}D(xD-1) = \frac{1}{x}((xD+1)D - (1D+0)) = D^2.$$

A singularity α of L is removable if and only if there is no solution of L which has a singularity at α .

Why is this important?

A singularity α of L is removable if and only if there is no solution of L which has a singularity at α .

Example:

- The solution of L = xD 1 is x and has no singularity at 0. Hence 0 is removable.
- The solution of L = xD + 1 is x^{-1} and has a singularity at 0. Hence 0 is not removable.

How to recognize removable singularities?

How to recognize removable singularities?

Determine all $e \in \mathbb{N}$ such that L has a formal power series solution starting with $(x - \alpha)^e$.

How to recognize removable singularities?

Determine all $e \in \mathbb{N}$ such that L has a formal power series solution starting with $(x - \alpha)^e$.

These values e are roots of a certain polynomial, called the indicial polynomial of L at α .

Determine all $e \in \mathbb{N}$ such that L has a formal power series solution starting with $(x - \alpha)^e$.

These values e are roots of a certain polynomial, called the indicial polynomial of L at α .

It turns out that α is removable if and only if there are ${\rm ord}(L)$ many different e's in $\mathbb N.$

How can we remove a removable singularity?

If L has a removable singularity at α , the list of starting exponents of the series have some gaps.

If L has a removable singularity at α , the list of starting exponents of the series have some gaps.

If L has a removable singularity at α , the list of starting exponents of the series have some gaps.

Idea: construct a larger operator with additional solutions chosen such as to close these gaps.

If L has a removable singularity at α , the list of starting exponents of the series have some gaps.

Idea: construct a larger operator with additional solutions chosen such as to close these gaps.

If L has a removable singularity at α , the list of starting exponents of the series have some gaps.

Idea: construct a larger operator with additional solutions chosen such as to close these gaps.

$$L = x(x-2)D^2 + (2-x^2)D + (2x-2)$$

is generated by two series of the form $1 + \cdots$ and $x^2 + \cdots$.

$$L = x(x-2)D^2 + (2-x^2)D + (2x-2)$$

is generated by two series of the form $1 + \cdots$ and $x^2 + \cdots$.

A solution of the form $x + \cdots$ is missing.

$$L = x(x-2)D^{2} + (2-x^{2})D + (2x-2)$$

is generated by two series of the form $1 + \cdots$ and $x^2 + \cdots$. A solution of the form $x + \cdots$ is missing.

The solution space of U = xD - 1 is generated by x.

$$\operatorname{lclm}(L, U) = (x^2 - 2x + 2)D^3 - x^2D^2 + 2xD - 2$$

$$L = x(x-2)D^2 + (2-x^2)D + (2x-2)$$

is generated by two series of the form $1 + \cdots$ and $x^2 + \cdots$. A solution of the form $x + \cdots$ is missing.

The solution space of U = xD - 1 is generated by x.

$$\operatorname{lclm}(L, U) = (x^2 - 2x + 2)D^3 - x^2D^2 + 2xD - 2$$

$$lclm(L, D-2) = (x^2 - 3x + 1)D^3 + \cdots$$

$$lclm(L, D - 2) = (x^2 - 3x + 1)D^3 + \cdots$$
$$lclm(L, 2D + x) = (2x^4 - 4x^2 + 16x - 16)D^3 + \cdots$$

$$\begin{split} \mathrm{lclm}(L,D-2) &= (x^2 - 3x + 1)D^3 + \cdots \\ \mathrm{lclm}(L,2D+x) &= (2x^4 - 4x^2 + 16x - 16)D^3 + \cdots \\ \mathrm{clm}(L,(x+2)D-3) &= (x^4 - 4x^3 - 6x^2 + 8x - 8)D^3 + \cdots \end{split}$$

$$lclm(L, D - 2) = (x^{2} - 3x + 1)D^{3} + \cdots$$
$$lclm(L, 2D + x) = (2x^{4} - 4x^{2} + 16x - 16)D^{3} + \cdots$$
$$lclm(L, (x + 2)D - 3) = (x^{4} - 4x^{3} - 6x^{2} + 8x - 8)D^{3} + \cdots$$

Does this also work for several variables?

Does this also work for several variables?

Yes.

7

We consider operator ideals $I \subseteq C(x_1, \ldots, x_n)[D_1, \ldots, D_n]$
We consider operator ideals $I \subseteq C(x_1, \ldots, x_n)[D_1, \ldots, D_n]$ The ideals should be D-finite, i.e., their dimension should be 0.

We consider operator ideals $I \subseteq C(x_1, \ldots, x_n)[D_1, \ldots, D_n]$ The ideals should be D-finite, i.e., their dimension should be 0. Let's restrict to two variables x, y from now on.

We consider operator ideals $I \subseteq C(x_1, \ldots, x_n)[D_1, \ldots, D_n]$ The ideals should be D-finite, i.e., their dimension should be 0. Let's restrict to two variables x, y from now on. Example: $I = \langle xD_x + D_y - 1, D_y^2 - D_y \rangle \subseteq C(x, y)[D_x, D_y].$

We consider operator ideals $I \subseteq C(x_1, ..., x_n)[D_1, ..., D_n]$ The ideals should be D-finite, i.e., their dimension should be 0. Let's restrict to two variables x, y from now on. Example: $I = \langle xD_x + D_y - 1, D_y^2 - D_y \rangle \subseteq C(x, y)[D_x, D_y]$. Fix a term order on $C(x, y)[D_x, D_y]$, say, with $D_x > D_y$.

What is a singularity?

Let $G \subseteq C[x,y][D_x, D_y]$ be a Gröbner basis in $C(x,y)[D_x, D_y]$.

What is a singularity?

Let $G \subseteq C[x, y][D_x, D_y]$ be a Gröbner basis in $C(x, y)[D_x, D_y]$. $(\alpha, \beta) \in C^2$ is a singularity of G if at least one element $L \in G$ has a leading coefficient $lc(L) \in C[x, y]$ which vanishes at (α, β) .

What is a singularity?

Let $G \subseteq C[x, y][D_x, D_y]$ be a Gröbner basis in $C(x, y)[D_x, D_y]$. $(\alpha, \beta) \in C^2$ is a singularity of G if at least one element $L \in G$ has a leading coefficient $lc(L) \in C[x, y]$ which vanishes at (α, β) . Example: Every $(0, \beta) \in C^2$ is a singularity of $\{xD_x + D_y - 1, D_y^2 - D_y\}$.

What is a removable singularity?

What is a removable singularity?

Consider a Gröbner basis $G\subseteq C[x,y][D_x,D_y]$ with a singularity $(\alpha,\beta)\in C^2$. If there is an ideal $I\subseteq C(x,y)[D_x,D_y]$ such that $G\subseteq I$ and I has a Gröbner basis in $C[x,y][D_x,D_y]$ for which (α,β) is not a singularity, then we say that $(\alpha,\beta)\in C^2$ is removable from G.

What is a removable singularity?

Consider a Gröbner basis $G\subseteq C[x,y][D_x,D_y]$ with a singularity $(\alpha,\beta)\in C^2$. If there is an ideal $I\subseteq C(x,y)[D_x,D_y]$ such that $G\subseteq I$ and I has a Gröbner basis in $C[x,y][D_x,D_y]$ for which (α,β) is not a singularity, then we say that $(\alpha,\beta)\in C^2$ is removable from G.

 $\begin{array}{l} \mbox{Example: } (0,\beta)\in C^2 \mbox{ is removable from} \\ G=\{xD_x+D_y-1,D_y^2-D_y\} \mbox{ because} \end{array}$

$$G \subseteq \langle D_y^2 - D_y, D_x D_y, D_x^2 \rangle$$

Without loss of generality, let's focus on (0, 0).

Without loss of generality, let's focus on (0, 0).

We can show that the singularity (0, 0) is removable iff G has a basis of solutions in C[[x, y]].

Without loss of generality, let's focus on (0, 0).

We can show that the singularity (0, 0) is removable iff G has a basis of solutions in C[[x, y]].

The possible exponent vectors (i, j) of their initial terms $x^i y^j$ are solutions of a certain ideal in C[x, y], called the indicial ideal.

Without loss of generality, let's focus on (0, 0).

We can show that the singularity (0, 0) is removable iff G has a basis of solutions in C[[x, y]].

The possible exponent vectors (i, j) of their initial terms $x^i y^j$ are solutions of a certain ideal in C[x, y], called the indicial ideal.

When $\langle G \rangle$ is a D-finite ideal, the indicial ideal has dimension 0.

We can also show (0,0) is not a singularity iff there are solutions in C[[x,y]] starting with x^iy^j for every (i,j) such that $D^i_xD^j_y$ is not a leading term of $\langle G\rangle$.

We can also show (0,0) is not a singularity iff there are solutions in C[[x,y]] starting with x^iy^j for every (i,j) such that $D^i_xD^j_y$ is not a leading term of $\langle G\rangle$.

If (0, 0) is a removable singularity, some starting terms are misplaced.

We can also show (0,0) is not a singularity iff there are solutions in C[[x,y]] starting with x^iy^j for every (i,j) such that $D^i_xD^j_y$ is not a leading term of $\langle G \rangle$.

If (0, 0) is a removable singularity, some starting terms are misplaced.

We can also show (0,0) is not a singularity iff there are solutions in C[[x,y]] starting with x^iy^j for every (i,j) such that $D^i_xD^j_y$ is not a leading term of $\langle G \rangle$.

If (0, 0) is a removable singularity, some starting terms are misplaced.

Idea: construct an ideal with further solutions which fill up the gaps.

We can also show (0,0) is not a singularity iff there are solutions in C[[x,y]] starting with x^iy^j for every (i,j) such that $D^i_xD^j_y$ is not a leading term of $\langle G \rangle$.

If (0, 0) is a removable singularity, some starting terms are misplaced.

Idea: construct an ideal with further solutions which fill up the gaps.

We can also show (0,0) is not a singularity iff there are solutions in C[[x,y]] starting with x^iy^j for every (i,j) such that $D^i_xD^j_y$ is not a leading term of $\langle G \rangle$.

If (0, 0) is a removable singularity, some starting terms are misplaced.

Idea: construct an ideal with further solutions which fill up the gaps.

Example: For $G=\{xD_x+D_y-1,D_y^2-D_y\}$ we have solutions of the form $1+\cdots$ and $x+\cdots.$

Example: For $G = \{xD_x + D_y - 1, D_y^2 - D_y\}$ we have solutions of the form $1 + \cdots$ and $x + \cdots$.

A solution of the form $y + \cdots$ is missing.

Example: For $G = \{xD_x + D_y - 1, D_y^2 - D_y\}$ we have solutions of the form $1 + \cdots$ and $x + \cdots$.

A solution of the form $y + \cdots$ is missing.

For $J = \langle yD_y - 1, D_x \rangle$ we have the solution y.

Example: For $G = \{xD_x + D_y - 1, D_y^2 - D_y\}$ we have solutions of the form $1 + \cdots$ and $x + \cdots$.

A solution of the form $y + \cdots$ is missing.

For
$$J = \langle yD_y - 1, D_x \rangle$$
 we have the solution y.
 $\langle G \rangle \cap J = \langle (1-y)D_y^2 + xD_x + yD_y - 1, D_xD_y, D_x^2 \rangle$

Example: For $G = \{xD_x + D_y - 1, D_y^2 - D_y\}$ we have solutions of the form $1 + \cdots$ and $x + \cdots$.

A solution of the form $y + \cdots$ is missing.

For
$$J = \langle yD_y - 1, D_x \rangle$$
 we have the solution y.
 $\langle G \rangle \cap J = \langle (1-y)D_y^2 + xD_x + yD_y - 1, D_xD_y, D_x^2 \rangle$

Yes: It suffices to compute $\langle G \rangle \cap J$ for almost any ideal J for which $\dim_{C(x,y)} C(x,y)[D_x,D_y]/J$ is sufficiently large.

Yes: It suffices to compute $\langle G \rangle \cap J$ for almost any ideal J for which $\dim_{C(x,y)} C(x,y)[D_x,D_y]/J$ is sufficiently large.

Yes: It suffices to compute $\langle G \rangle \cap J$ for almost any ideal J for which $\dim_{C(x,y)} C(x,y)[D_x,D_y]/J$ is sufficiently large.

$$\langle G \rangle \cap \langle D_x, D_y \rangle = \langle D_y^2 - D_y, D_x D_y, D_x^2 \rangle$$

Yes: It suffices to compute $\langle G \rangle \cap J$ for almost any ideal J for which $\dim_{C(x,y)} C(x,y)[D_x,D_y]/J$ is sufficiently large.

$$\begin{split} \langle G \rangle \cap \langle D_x, D_y \rangle &= \langle D_y^2 - D_y, D_x D_y, D_x^2 \rangle \\ \langle G \rangle \cap \langle D_x - 1, D_y \rangle &= \langle D_y^2 - D_y, \ D_x D_y, \\ & (1 - x) D_x^2 - x D_x + D_y - 1 \rangle \end{split}$$

Yes: It suffices to compute $\langle G \rangle \cap J$ for almost any ideal J for which $\dim_{C(x,y)} C(x,y)[D_x,D_y]/J$ is sufficiently large.

$$\begin{split} \langle G\rangle \cap \langle D_x, D_y\rangle &= \langle D_y^2 - D_y, D_x D_y, D_x^2\rangle\\ \langle G\rangle \cap \langle D_x - 1, D_y\rangle &= \langle D_y^2 - D_y, \ D_x D_y,\\ (1{-}x)D_x^2 - xD_x + D_y - 1\rangle\\ \langle G\rangle \cap \langle D_x - y, D_y + x\rangle &= \langle (1-x^2+y)D_y^2 + \cdots,\\ (1-x^2-y)D_x D_y + \cdots,\\ (1-x^2+y)D_x^2 + \cdots \rangle \end{split}$$

Yes: It suffices to compute $\langle G \rangle \cap J$ for almost any ideal J for which $\dim_{C(x,y)} C(x,y)[D_x,D_y]/J$ is sufficiently large.

$$\begin{split} \langle G\rangle \cap \langle D_x, D_y\rangle &= \langle D_y^2 - D_y, D_x D_y, D_x^2\rangle\\ \langle G\rangle \cap \langle D_x - 1, D_y\rangle &= \langle D_y^2 - D_y, \ D_x D_y,\\ (1-x)D_x^2 - xD_x + D_y - 1\rangle\\ \langle G\rangle \cap \langle D_x - y, D_y + x\rangle &= \langle (1-x^2+y)D_y^2 + \cdots,\\ (1-x^2-y)D_x D_y + \cdots,\\ (1-x^2+y)D_x^2 + \cdots \rangle \end{split}$$

We would like to have a simple algorithm for computing a basis of the contraction ideal $\langle G \rangle \cap C[x,y][D_x,D_y]$.

We would like to have a simple algorithm for computing a basis of the contraction ideal $\langle G \rangle \cap C[x,y][D_x,D_y]$.

Desingularization can be viewed as a first step in this direction.

- We would like to have a simple algorithm for computing a basis of the contraction ideal $\langle G \rangle \cap C[x,y][D_x,D_y]$.
- Desingularization can be viewed as a first step in this direction.
- We would also like to have a simple algorithm for computing a basis of solutions in C[[x, y]] when (0, 0) is not removable.

- We would like to have a simple algorithm for computing a basis of the contraction ideal $\langle G \rangle \cap C[x,y][D_x,D_y]$.
- Desingularization can be viewed as a first step in this direction.
- We would also like to have a simple algorithm for computing a basis of solutions in C[[x, y]] when (0, 0) is not removable.
- With our results, we can only compute such a basis when (0,0) is a removable singularity.

We would like to have a simple algorithm for computing a basis of the contraction ideal $\langle G \rangle \cap C[x,y][D_x,D_y]$.

Desingularization can be viewed as a first step in this direction.

We would also like to have a simple algorithm for computing a basis of solutions in C[[x, y]] when (0, 0) is not removable.

With our results, we can only compute such a basis when (0,0) is a removable singularity.

Complicated algorithms are known for both problems. We are asking for more simple algorithms.