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f(x) is called algebraic if it satisfies a polynomial equation with
polynomial coefficients:

p0(x) + p1(x)f(x) + · · ·+ pr(x)f(x)r = 0.

Examples: x5 − 1,
√
1− x, 3

√
x2 + 2x− 1−

√
1+ x9, . . .

f(x) is called D-finite if it satisfies a linear differential equation
with polynomial coefficients:

p1(x)f(x) + p2(x)f
′(x) + · · ·+ pr(x)f(r)(x) = 0.

Examples: log(x), ex,
√
1− x, log(1−

√
1− x), . . .
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Abel’s theorem:

algebraic ⇒ D-finite

More generally:

f(x) D-finite ∧ g(x) algebraic ⇒ f(g(x)) D-finite

Example:
f(x) = log(1− x) f ′(x) + (x− 1)f ′′(x) = 0

← short

g(x) =
√
1− x (1− x) − g(x)2 = 0

← short

h(x) = f(g(x)) 3h ′(x) + (7x− 4)h ′′(x) + (2x2 − 2x)h ′′′(x)︸ ︷︷ ︸
longer

= 0
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Main Question:

How big is the equation for h(x)
in terms of the sizes of equations
for f(x) and g(x) ?

Subquestion A: how to measure the size of an equation?

Subquestion B: the equation of h(x) is not unique; which equation
is the smallest?
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Similar questions have already been addressed for other operations:

• f(x) algebraic ⇒ f(x) D-finite
[Bostan, Chyzak, Salvy, Lecerf, Schost, 2007]

• f(x, y) hyperexponential ⇒ ∫x f(x, y) D-finite
[Chen, Kauers, 2012]

• f(x), g(x) D-finite ⇒ f(x) + g(x) and f(x)g(x) D-finite
[Kauers, 2014]

...
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In all these cases, it is not too hard to get a bound on the order.

Also for substitution, this is not too hard.

• If f satisfies a differential equation of order 4, then every
higher order derivative of f can be rewritten as a C(x)-linear
combination of f, f ′, f ′′, f ′′′.

• If g satisfies a polynomial equation of degree 3, then every
higher power of g can be rewritten as a C(x)-linear
combination of 1, g, g2.

• Moreover, also the derivative g ′ can be written in this form.
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h(x) = f(g(x))

+
(

+ g(x) + g(x)2
)
f ′′′(g(x))

7
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h(7)(x) = · · ·
=
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h(8)(x) = · · ·
=

(
+ g(x) + g(x)2

)
f(g(x))

+
(

+ g(x) + g(x)2
)
f ′(g(x))

+
(

+ g(x) + g(x)2
)
f ′′(g(x))

+
(

+ g(x) + g(x)2
)
f ′′′(g(x))

h, h ′, h ′′, . . . all live in a C(x)-vector space of dimension 4×3 = 12.

Therefore, h, h ′, . . . , h(12) are linearly dependent over C(x).

Therefore, h satisfies a linear differential equation of order 12.
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More generally:

f(x) D-finite︸ ︷︷ ︸
order rf

∧ g(x) algebraic︸ ︷︷ ︸
degree rg

⇒ f(g(x)) D-finite︸ ︷︷ ︸
order ≤ rfrg

There can be equations of order < rfrg, but generically there aren’t.

What about the degrees?

To bound the degrees, equate coefficients with respect to C rather
than with respect to C(x) and balance variables and equations.

This requires a more precise understanding of the clouds on the
previous slide, which can be obtained by a lengthy calculation.
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Theorem [Kauers, Pogudin, 2017]:

f(x) D-finite︸ ︷︷ ︸
order rf

x-degree df

∧ g(x) algebraic︸ ︷︷ ︸
g-degree rg
x-degree dg

⇒ f(g(x)) D-finite︸ ︷︷ ︸
order r ≥ rfrg
x-degree d s.t.

d ≥ r(3rg+df−1)dgrgrf
r+1−rfrg

The bound for the degree d depends rationally on the order r.

We get a hyperbolic curve.

How accurate is it?
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Main Question:

Can we do better?

Subquestion A: Can we improve the left part of the curve?

Subquestion B: Can we improve the right part of the curve?
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A Degree bounds for the operator of minimal order

• Setting r = rfrg into our formula for the curve yields

d ≤ (3rg + df − 1)dgr
2
gr
2
f = O((rg + df)dgr

2
gr
2
f)

• Generalizing a theorem of [Bostan, Chyzak, Salvy, Lecerf,
Schost, 2007], we can show that when r ≤ rgrf is the minimal
order and d is the corresponding degree, then

d ≤ 2r2dg − 1
2r(r− 1) + rdgrf(2rg + df − 1) −

1
2dgrfrg(rg − 1)

= O((rg + df)dgrgr
2
f).

• We conjecture that generically the degree is

d = r2f(2rg(rg−1)+1)dg+rfrg(dg(df+1)+1)+dfdg−r
2
fr
2
g−rfdfdg

= O((rgrf + df)dgrgrf).
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B Order-Degree Curve via Desingularization

• The order-degree curve is uniquely determined by the minimal
order operator L ∈ C[x][∂], because all other operators are
C(x)[∂]-left multiples of L.

• Left multiples of L may have lower degree than L, for example:

(
1

x
∂2) ((x− 1)x∂+ (2− x))︸ ︷︷ ︸

order 1

degree 2

= (x− 1)∂3 + 3∂2︸ ︷︷ ︸
order 3

degree 1

• Whether such a degree reduction is possible depends on the
removable factors of L. A polynomial p ∈ C[x] is called
removable at cost c (from L) if

∃ P ∈ C(x)[∂] : deg∂(c) = P, PL ∈ C[x][∂], lc(PL) = lc(L)/p.
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removable at cost c (from L) if

∃ P ∈ C(x)[∂] : deg∂(c) = P, PL ∈ C[x][∂], lc(PL) = lc(L)/p.

Lemma [Chen, Jaroschek, Kauers, Singer, 2013] Let L ∈ C[x][∂],
and let p be removable from L at cost c. Let r ≥ deg∂(L) and

d ≥ degx(L) −
(
1−

c

r− deg∂(L) + 1

)
degx(p).

Then there is a C(x)[∂]-left multiple of L of order r and degree d.

Bottom line: We can get an order-degree curve for h(x) = f(g(x))
if we can predict the order and degree of the minimal order operator
for h(x) as well as the degree and the cost of its removable factors.
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d ≥ degx(L) −
(
1−

c

r− deg∂(L) + 1

)
degx(p).

Then there is a C(x)[∂]-left multiple of L of order r and degree d.

Theorem [Kauers, Pogudin, 2017]: Generically, h(x) = f(g(x)) sat-
isfies a recurrence of order r and degree d if r ≥ rfrg and

d ≥ (dg(4rfrg − 2rf + df) − δ)
(
1−

1

r− rfrg + 1

)
+ δ.

Here, δ is a degree bound for the minimal order operator.
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Recall: the curve obtained
through linear algebra

overshoots a lot
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The curve obtained from the
theorem on the previous slide

is much better
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It gets even better if we use
the conjectured degree for the

minimal operator
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We would get the true curve if
we knew not only the degree of the

minimal operator but also the degree
of its removable factor exactly

13


