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f(x) is called algebraic if it satisfies a polynomial equation with
polynomial coefficients:

Po(x) +P1(x)f(x) + -+ pr(x)f(x)" = 0.

Examples: x> — 1, VT —x, VX2 +2x —1—VT1+x°, ...
f(x) is called D-finite if it satisfies a linear differential equation
with polynomial coefficients:

P1OOF(x) + 2 () (%) + -+ + e ()T (x) = 0.
Examples: log(x), €%, v/1 —x, log(1 —+/1—x), ...
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Main Question:

How big is the equation for h(x)

in terms of the sizes of equations
for f(x) and g(x)?

Subquestion A: how to measure the size of an equation?

Subquestion B: the equation of h(x) is not unique; which equation
is the smallest?
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Similar questions have already been addressed for other operations:
e f(x) algebraic = f(x) D-finite
[Bostan, Chyzak, Salvy, Lecerf, Schost, 2007]

e f(x,y) hyperexponential = fx f(x,y) D-finite
[Chen, Kauers, 2012]

e f(x),g(x) D-finite = f(x) + g(x) and f(x)g(x) D-finite
[Kauers, 2014]
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In all these cases, it is not too hard to get a bound on the order.

Also for substitution, this is not too hard.

e If f satisfies a differential equation of order 4, then every
higher order derivative of f can be rewritten as a C(x)-linear
combination of f, f’, f" ",

e If g satisfies a polynomial equation of degree 3, then every
higher power of g can be rewritten as a C(x)-linear
combination of 1, g, g°.

e Moreover, also the derivative g’ can be written in this form.









h(x) = f'(g(x))g’(x)

= (@D - @Psx) - @Pox)?)f'(g(x)



h(x) =f"(g(x))g'(x)* + f'(g(x))g" (x)



h(x) = f"(g(x))g’(x)* + f'(g(x))g" (x)
= (@D - @Psx) - @Pox)?)f'(g(x)
+ (@ - @Psx) - @Py(x)?)f"(g(x))



h/l/ (X) —

—

(@ - @< - @Psx)?)f (g(x)
(@ - @Psx) - @Pox))"(g(x))
(@ - @) - @Psx)) " (g(x)

+ o+
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h®(x)

= (@ - @) +-9(x)2)f(9

h,h/,h” ... all live in a C(x)-vector space of dimension 4 x 3 = 12.
Therefore, h, h/, ..., h(12) are linearly dependent over C(x).



-+-9(X) +-9(X)2)f(9
+ (@D + @) +-9(X)2)f’(
+ (@D + @) + @P9(x))f"(g
+ (@D + @) + @D (X)Z)f”’
h,h/,h” ... all live in a C(x)-vector space of dimension 4 x 3 = 12.

Therefore, h, h/, ..., h(12) are linearly dependent over C(x).
Therefore, h satisfies a linear differential equation of order 12.
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More generally:

f(x) D-finite /\ g(x) algebraic = f(g(x)) D-finite
-  — S

~—
order ¢ degree order < r¢r
g g g

There can be equations of order < 1¢1y, but generically there aren't.
What about the degrees?

To bound the degrees, equate coefficients with respect to C rather
than with respect to C(x) and balance variables and equations.

This requires a more precise understanding of the clouds on the
previous slide, which can be obtained by a lengthy calculation.
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Theorem [Kauers, Pogudin, 2017]:

f(x) D-finite /\ g(x) algebraic = f(g(x)) D-finite
—_ S

order T¢ g-degree 14 order 1 > T1Tg
X-degree dy x-degree dg x-degree d s.t.

5 1(3rg+de—1)dgrgrs
e =

The bound for the degree d depends rationally on the order .
We get a hyperbolic curve.

How accurate is it?
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A Degree bounds for the operator of minimal order
e Setting 1 = 14714 into our formula for the curve yields
< (3rg+ df — 1)dgriri = O((rg + df)dgrars)

e Generalizing a theorem of [Bostan, Chyzak, Salvy, Lecerf,
Schost, 2007], we can show that when 1 < r47¢ is the minimal
order and d is the corresponding degree, then

< 2r2d — —r( — 1) +rdgre(2rg +df — 1) — %dgrfrg(rg —1)
= O((rg + df)dgrgrf).
e We conjecture that generically the degree is
17 (2rg(rg—1)+1)dg+rerq(dg(ds+1)+T1)+drdg—Tiri—Tedsdg
= O((rgrs + df)dgrgry).
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e The order-degree curve is uniquely determined by the minimal
order operator L € C[x][0], because all other operators are
C(x)[0]-left multiples of L.

e Left multiples of L may have lower degree than L, for example:
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Order-Degree Curve via Desingularization

The order-degree curve is uniquely determined by the minimal
order operator L € C[x][0], because all other operators are
C(x)[0]-left multiples of L.

Left multiples of L may have lower degree than L, for example:

1
(;az) (x —1)xd + (2 —x)) = (x — 1)d° + 30°
order 1 order 3
degree 2 degree 1

Whether such a degree reduction is possible depends on the
removable factors of L. A polynomial p € C[x] is called
removable at cost ¢ (from L) if

3P e C(x)[d] : degy(c) = P, PL € C[xI[d], le(PL) = le(L)/p.
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B Order-Degree Curve via Desingularization

Lemma [Chen, Jaroschek, Kauers, Singer, 2013] Let L € C[x][0],
and let p be removable from L at cost c. Let v > degy(L) and

c
N r—degy(L) 4+ 1

> deg, (1) — (1 ) degy(p).

Then there is a C(x)[0]-left multiple of L of order r and degree
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Lemma [Chen, Jaroschek, Kauers, Singer, 2013] Let L € C[x][0],
and let p be removable from L at cost c. Let v > degy(L) and

c
N r—degy(L) 4+ 1

> deg, (1) — (1 ) degy(p).

Then there is a C(x)[0]-left multiple of L of order r and degree

Bottom line: We can get an order-degree curve for h(x) = f(g(x))
if we can predict the order and degree of the minimal order operator
for h(x) as well as the degree and the cost of its removable factors.
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B Order-Degree Curve via Desingularization

Lemma [Chen, Jaroschek, Kauers, Singer, 2013] Let L € C[x][0],
and let p be removable from L at cost c. Let v > degy(L) and

c
N r—degy(L) 4+ 1

> deg, (1) — (1 ) degy(p).

Then there is a C(x)[0]-left multiple of L of order r and degree

Theorem [Kauers, Pogudin, 2017]: Generically, h(x) = f(g(x)) sat-
isfies a recurrence of order 1 and degree d if r > ¢4 and

1

Z (dg(4Tfrg —ZTf + df) - 6) (] - m
9

)+e.

Here, 6 is a degree bound for the minimal order operator.
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