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ABSTRACT
It is well known that the composition of a D-finite function
with an algebraic function is again D-finite. We give the
first estimates for the orders and the degrees of annihilating
operators for the compositions. We find that the analysis of
removable singularities leads to an order-degree curve which
is much more accurate than the order-degree curve obtained
from the usual linear algebra reasoning.

1. INTRODUCTION
A function f is called D-finite if it satisfies an ordinary

linear differential equation with polynomial coefficients,

p0(x)f(x) + p1(x)f ′(x) + · · ·+ pr(x)f (r)(x) = 0.

A function g is called algebraic if it satisfies a polynomial
equation with polynomial coefficients,

p0(x) + p1(x)g(x) + · · ·+ pr(x)g(x)r = 0.

It is well known [9] that when f is D-finite and g is alge-
braic, the composition f ◦g is again D-finite. For the special
case f = id this reduces to Abel’s theorem, which says that
every algebraic function is D-finite. This particular case was
investigated closely in [2], where a collection of bounds was
given for the orders and degrees of the differential equations
satisfied by a given algebraic function. It was also pointed
out in [2] that differential equations of higher order may have
significantly lower degrees, an observation that gave rise to a
more efficient algorithm for transforming an algebraic equa-
tion into a differential equation. Their observation has also
motivated the study of order-degree curves: for a fixed D-
finite function f , these curves describe the boundary of the
region of all pairs (r, d) ∈ N2 such that f satisfies a differen-
tial equation of order r and degree d.
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Example 1. We have fixed some randomly chosen operator
L ∈ C[x][∂] of order rL = 3 and degree dL = 4 and a random
polynomial P ∈ C[x][y] of y-degree
rP = 3 and x-degree dP = 4. For
some prescribed orders r, we com-
puted the smallest degrees d such
that there is an operator M of or-
der r and degree d that annihilates
f ◦ g for all solutions f of L and all
solutions g of P . The points (r, d)
are shown in the figure on the right.
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Experiments suggested that order-degree curves are often
just simple hyperbolas. A priori knowledge of these hyper-
bolas can be used to design efficient algorithms. For the case
of creative telescoping of hyperexponential functions and hy-
pergeometric terms, as well as for simple D-finite closure
properties (addition, multiplication, Ore-action), bounds for
order-degree curves have been derived [4, 3, 8]. However, it
turned out that these bounds are often not tight.

A new approach to order-degree curves has been suggested
in [7], where a connection was established between order-
degree curves and apparent singularities. Using the main
result of this paper, very accurate order-degree curves for a
function f can be written down in terms of the number and
the cost of the apparent singularities of the minimal order
annihilating operator for f . However, when the task is to
compute an annihilating operator from some other represen-
tation, e.g., a definite integral, then the information about
the apparent singularities of the minimal order operator is
only a posteriori knowledge. Therefore, in order to design
efficient algorithms using the result of [7], we need to predict
the singularity structure of the output operator in terms of
the input data. This is the program for the present paper.

First (Section 2), we derive an order-degree bound for D-
finite substitution using the classical approach of considering
a suitable ansatz over the constant field, comparing coeffi-
cients, and balancing variables and equations in the resulting
linear system. This leads to an order-degree curve which is
not tight. Then (Section 3) we estimate the order and degree
of the minimal order annihilating operator for the compo-
sition by generalizing the corresponding result of [2] from
f = id to arbitrary D-finite f . The derivation of the bound
is a bit more tricky in this more general situation, but once
it is available, most of the subsequent algorithmic considera-
tions of [2] generalize straightforwardly. Finally (Section 4)
we turn to the analysis of the singularity structure, which
indeed leads to much more accurate results. The derivation
is also much more straightforward, except for the required
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justification of the desingularization cost. In practice, it is
almost always equal to one, and although this is the value to
be expected for generic input, it is surprisingly cumbersome
to give a rigorous proof for this expectation.

Throughout the paper, we use the following conventions:

• C is a field of characteristic zero, C[x] is the usual com-
mutative ring of univariate polynomials over C. We
write C[x][y] or C[x, y] for the commutative ring of
bivariate polynomials and C[x][∂] for the non-commu-
tative ring of linear differential operators with polyno-
mial coefficients. In this latter ring, the multiplication
is governed by the commutation rule ∂x = x∂ + 1.

• L ∈ C[x][∂] is an operator of order rL := deg∂(L)
with polynomial coefficients of degree at most dL :=
degx(L).

• P ∈ C[x, y] is a polynomial of degrees rP := degy(P )
and dP := degx(P ). It is assumed that P is square-free
as an element of C(x)[y] and that it has no divisors in
C̄[y], where C̄ is the algebraic closure of C.

• M ∈ C[x][∂] is an operator such that for every solution
f of L and every solution g of P , the composition f◦g is
a solution ofM . The expression f◦g can be understood
either as a composition of analytic functions in the case
C = C, or in the following sense. We define M such
that for every α ∈ C, for every solution g ∈ C[[x− α]]
of P and every solution f ∈ C[[x − g(α)]] of L, M
annihilates f ◦ g, which is a well-defined element of
C[[x − α]]. In the case C = C these two definitions
coincide.

2. ORDER-DEGREE-CURVE
BY LINEAR ALGEBRA

Let g be a solution of P , i.e., suppose that P (x, g(x)) = 0,
and let f be a solution of L, i.e., suppose that L(f) = 0.
Expressions involving g and f can be manipulated according
to the following three well-known observation:

1. (Reduction by P ) For each polynomial Q ∈ C[x, y]

with degy(Q) ≥ rP there exists a polynomial Q̃ ∈
C[x, y] with degy(Q̃) ≤ degy(Q) − 1 and degx(Q̃) ≤
degx(Q) + dP such that

Q(x, g) =
1

lcy(P )
Q̃(x, g).

The polynomial Q̃ is the result of the first step of com-
puting the pseudoremainder of Q by P w.r.t. y.

2. (Reduction by L) There exist polynomials v, qj,k ∈
C[x] of degree at most dLdP such that

f (rL) ◦ g =
1

v

rP−1∑
j=0

rL−1∑
k=0

qj,kg
j · (f (k) ◦ g).

To see this, write L =
∑rL
k=0 lk∂

k for some polynomials
lk ∈ C[x] of degree at most dL. Then we have

f (rL) ◦ g =
−1

lrL ◦ g

rL−1∑
k=0

(lk ◦ g) · (f (k) ◦ g).

By the assumptions on P , the denominator lrL ◦g can-
not be zero. In other words, gcd(P (x, y), lrL(y)) = 1 in
C(x)[y]. For each k = 0, . . . , rL−1, consider an ansatz

AP +BlrL = lk for polynomials A,B ∈ C(x)[y] of de-
grees at most dL−1 and rP −1, respectively, and com-
pare coefficients with respect to y. This gives k inho-
mogeneous linear systems over C(x) with rP +dL vari-
ables and equations, which only differ in the inhomoge-
neous part but have the same matrix M = Syly(P, lrL)
for every k. The claim follows using Cramer’s rule,
taking into account that the coefficient matrix of the
system has dL many columns with polynomials of de-
gree dP and rP many columns with polynomials of
degree degx lk(y) = 0 (which is also the degree of the
inhomogeneous part). Note that v = det(M) does not
depend on k.

3. (Multiplication by g′) For each polynomial Q ∈ C[x, y]
with degy(Q) ≤ rP − 1 there exist polynomials qj ∈
C[x] of degree at most degx(Q) + 2rP dP such that

g′Q(x, g) =
1

w lcy(P )

rP−1∑
j=0

qjg
j ,

where w ∈ C[x] is the discriminant of P . To see
this, first apply Observation 1 (Reduction by P ) to
rewrite −QPx as T = 1

lcy(P )

∑2rP−2
j=0 tjy

j for some

tj ∈ C[x] of degree degx(Q) + dP . Then consider an
ansatz AP + BPy = lcy(P )T with unknown polyno-
mials A,B ∈ C(x)[y] of degrees at most rP − 2 and
rP − 1, respectively, and compare coefficients with re-
spect to y. This gives an inhomogeneous linear system
over C(x) with 2rP − 1 variables and equations. The
claim then follows using Cramer’s rule.

Lemma 2. Let u = vw lcy(P )rP , where v and w are as in
the Observations 2 and 3 above. Let f be a solution of L
and g be a solution of P . Then for every ` ∈ N there are
polynomials ei,j ∈ C[x] of degree at most `deg(u) such that

∂`(f ◦ g) =
1

u`

rP−1∑
i=0

rL−1∑
j=0

ei,jg
i · (f (j) ◦ g).

Proof. This is evidently true for ` = 0. Suppose it is true
for some `. Then

∂`+1(f ◦ g) =

rP−1∑
i=0

rL−1∑
j=0

(
ei,j
u`

gi · (f (j) ◦ g)

)′

=

rP−1∑
i=0

rL−1∑
j=0

(
e′i,ju− `ei,ju′

u`+1
gi · (f (j) ◦ g)

+
ei,j
u`

(
i gi−1 · (f (j) ◦ g) + gi · (f (j+1) ◦ g)

)
g′
)
.

The first term in the summand expression already matches
the claimed bound. To complete the proof, we show that

(
i gi−1 · (f (j) ◦ g) + gi · (f (j+1) ◦ g)

)
g′ =

1

u

rP−1∑
k=0

qkg
k (1)

for some polynomials qk of degree at most deg(u). Indeed,

the only critical term is f (rL) ◦ g. According to Observa-
tion 2, f (rL) ◦ g can be rewritten as 1

v

∑rP−1
j=0

∑rL−1
k=0 qj,kg

j ·
(f (k) ◦ g) for some qj,k ∈ C[x] of degree at most dLdP .
This turns the left hand side of (1) into an expression of

the form 1
v

∑2rP−2
j=0 q̃j,kg

j · (f (k) ◦ g) for some polynomials



q̃j,k ∈ C[x] of degree at most dLdP . An (rP − 1)-fold appli-
cation of Observation 1 brings this expression to the form

1

v lcy(P )rP−1

∑rP−1
j=0 q̄j,kg

j · (f (k) ◦ g) for some polynomials

q̄j,k ∈ C[x] of degree at most dLdP + (rP − 1)dP . Now
Observation 3 completes the induction argument.

Theorem 3. Let r, d ∈ N be such that

r ≥ rLrP and d ≥ r(3rP + dL − 1)dP rLrP
r + 1− rLrP

.

Then there exists an operator M ∈ C[x][∂] of order ≤ r and
degree ≤ d such that for every solution g of P and every
solution f of L the composition f ◦ g is a solution of M . In
particular, there is an operator M of order r = rLrP and
degree (3rP + dL − 1)dP r

2
Lr

2
P = O

(
(rP + dL)dP r

2
Lr

2
P

)
.

Proof. Let g be a solution of P and f be a solution of L.
Then we have P (x, g(x)) = 0 and L(f) = 0, and we seek

an operator M =
∑d
i=0

∑r
j=0 ci,jx

i∂j ∈ C[x][∂] such that

M(f ◦ g) = 0. Let r ≥ rLrP and consider an ansatz

M =

d∑
i=0

r∑
j=0

ci,jx
i∂j

with undetermined coefficients ci,j ∈ C.
Let u be as in Lemma 2. Then applying M to f ◦ g and

multiplying by ur gives an expression of the form

d+r deg(u)∑
i=0

rP−1∑
j=0

rL−1∑
k=0

qi,j,kx
igj · (f (k) ◦ g),

where the qi,j,k are C-linear combinations of the undeter-
mined coefficients ci,j . Equating all the qi,j,k to zero leads
to a linear system over C with at most (1+d+r deg(u))rLrP
equations and exactly (r + 1)(d+ 1) variables. This system
has a nontrivial solution as soon as

(r + 1)(d+ 1) > (1 + d+ r deg(u))rLrP

⇐⇒ (r + 1− rLrP )(d+ 1) > r rLrP deg(u)

⇐⇒ d > −1 +
r rLrP deg(u)

r + 1− rLrP
.

The claim follows because deg(u) ≤ dP dL + (2rP − 1)dP +
rP dP = (3rP + dL − 1)dP .

3. A DEGREE BOUND FOR
THE MINIMAL OPERATOR

According to Theorem 3, there is operator M of order r =
rLrP and degree d = O((rP + dL)dP r

2
Lr

2
P ). Usually there is

no operator of order less than rLrP , but if such an operator
accidentally exists, Theorem 3 makes no statement about its
degree. The result of the present section (Theorem 8 below)
is a degree bound for the minimal order operator, which also
applies when its order is less than rLrP , and which is better
than the bound of Theorem 3 if the minimal order operator
has order rLrP .

The following Lemma is a variant of Lemma 2 in which g is
allowed to appear in the denominator, and with exponents
larger than rP − 1. This allows us to keep the x-degrees
smaller.

Lemma 4. Let f be a solution of L and g be a solution of P .
For every ` ∈ N, there exist polynomials E`,j ∈ C[x, y] for

0 ≤ j < rL such that degxE`,j ≤ `(2dP −1) and degy E`,j ≤
`(2rP + dL − 1) for all 0 ≤ j < rL, and

∂` (f ◦ g) =
1

U(x, g)`

rL−1∑
j=0

E`,j(x, g)(f (j) ◦ g),

where U(x, y) = P 2
y (x, y)lrL(y).

Proof. This is true for ` = 0. Suppose it is true for some `.
Then

∂`+1(f ◦ g) =

(
1

U(x, g)`

rL−1∑
j=0

E`,j(x, g)(f (j) ◦ g)

)′

=

rL−1∑
j=0

( `(Ux + g′Uy)

U `+1
Ei,j · (f (j) ◦ g)

+
1

U `
((E`,j)x+g′ ·(E`,j)y)(f (j)◦g)+

1

U `
E`,jg

′ ·(f (j+1)◦g)
)

We consider the summands separately. In
`(Ux+g′Uy)

U`+1 , Ux
is already a polynomial in x and g of bidegree at most (2dp−
1, 2rP + dL − 1). Since g′ = −Px(x,g)

Py(x,g)
and Uy is divisible by

Py, g′Uy is also a polynomial with the same bound for the
bidegree.

Futhermore, we can write

(E`,j)x + g′ · (E`,j)y =
1

U
(U(E`,j)x − PxPylrL(g)(E`,j)y),

where the expression in the parenthesis satisfies the stated
bound.

For j + 1 < rL, the last summand can be written as

1

U `
E`,jg

′ · (f (j+1) ◦ g) =
PxPylrl(g)

U `+1
E`,j · (f (j+1) ◦ g). (2)

For j = rL + 1, due to Observation 2

g′ · (f (rL) ◦ g) = −PxPy
U

rL−1∑
j=0

lj(g)(f (j) ◦ g). (3)

Right-hand sides of both (2) and (3) satisfy the bound.

Let f1, . . . , frL be C-linearly independent solutions of L,
and let g1, . . . , grP be distinct solutions of P . By r we denote
the C-dimension of the C-linear space V spanned by fi ◦ gj
for all 1 ≤ i ≤ rL and 1 ≤ j ≤ rP . The order of the operator
annihilating V is at least r. We will construct an operator
of order r annihilating V using Wronskian-type matrices.

Lemma 5. There exists a matrix A(x, y) ∈ C[x, y](r+1)×rL

such that the bidegree of every entry of the i-th row of A(x, y)
does not exceed (2rdP − i+ 1, r(2rP + dL− 1)) and f ∈ V if

and only if the vector (f, . . . , f (r))T lies in the column space
of the (r + 1)× rLrP matrix

(
A(x, g1) · · · A(x, grP )

)
.

Proof. With the notation of Lemma 4, let A(x, y) be the
matrix whose (i, j)-th entry is Ei−1,j−1(x, y)U(x, y)r+1−i.
Then A(x, y) meets the stated degree bound.

By Wi we denote the (r + 1) × rL Wronskian matrix for
f1 ◦ gi, . . . , frL ◦ gi. Then f ∈ V if and only if the vec-

tor (f, . . . , f (r))T lies in the column space of the matrix(
W1 · · · WrP

)
. Hence, it is sufficient to prove that Wi



and A(x, gi) have the same column space. The following
matrix equality follows from the definition of Ei,j

Wi =
1

U(x, gi)r
A(x, gi)


f1 ◦ gi · · · frL ◦ gi
f ′1 ◦ gi · · · frL ◦ gi

...
. . .

...

f
(rL−1)
1 ◦ gi · · · f

(rL−1)
rL ◦ gi

 .

The latter matrix is nondegenerate since it is a Wronskian
matrix for the C-linearly independent power series f1 ◦ gi,
. . . , frL ◦ gi with respect to the derivation (g′i)

−1∂. Hence,
Wi and A(x, gi) have the same column space.

In order to express the above condition of lying in the
column space in terms of vanishing of a single determinant,
we want to “square” the matrix

(
A(x, g1), · · · , A(x, grP )

)
.

Lemma 6. There exists a matrix B(y) ∈ C[y](rLrP−r)×rL

such that the degree of every entry does not exceed rP − 1
and the (rLrP + 1)× rLrP matrix

C =

(
A(x, g1) · · · A(x, grP )
B(g1) · · · B(grP )

)
has rank rLrP .

Proof. Let D be the Vandermonde matrix for g1, . . . , grP ,
and let IrL denote the identity matrix. Then C0 = D ⊗ IrL
is nondegenerate and has the form

(
B0(g1), . . . , B0(grP )

)
,

for some B0(y) ∈ C[y]rLrP×rL with entries of degree at most
rP − 1. Since C0 is nondegenerate, we can choose rLrP − r
rows which span a complimentary subspace to the row space
of
(
A(x, g1), . . . , A(x, grP )

)
. Discarding all other rows from

B0(y), we obtain B(y) with the desired properties.

By C` (A`(x, y), resp.) we will denote the matrix C
(A(x, y), resp.) without the `-th row.

Lemma 7. For every 1 ≤ ` ≤ r + 1 the determinant of C`
is divisible by

∏
i<j(gi − gj)

rL

Proof. We show that detC` is divisible by (gi − gj)
rL for

every i 6= j. Without loss of generality, it is sufficient to
show this for i = 1 and j = 2. We have

detC` =

∣∣∣∣A`(x, g1)−A`(x, g2) A`(x, g2) · · · A`(x, grP )
B(g1)−B(g2) B(g2) · · · B(grP )

∣∣∣∣ .
Since for every polynomial p(y) we have g1 − g2 | p(g1) −
p(g2), every entry of the first rL columns in the above matrix
is divisible by g1 − g2. Hence, the whole determinant is
divisible by (g1 − g2)rL .

Theorem 8. The minimal operator M ∈ C[x][∂] annihi-
lating f ◦ g for every f and g such that L(f) = 0 and
P (x, g(x)) = 0 has order r ≤ rLrP and degree at most

2r2dP − 1
2
(r−2)(r−1) + rdP rL(2rP+dL−1)− dP rL(rP−1)

= O(rdP rL(dL + rP )).

Proof. We construct M using detC` for 1 ≤ ` ≤ r + 1.
We consider some f and by F we denote the (rLrP + 1)-

dimensional vector (f, . . . , f (r), 0, . . . , 0)T . If f ∈ V , then
the first r+1 rows of the matrix

(
C F

)
are linearly depen-

dent, so it is degenerate. On the other hand, if this matrix is
degenerate, then Lemma 6 implies that F is a linear combi-
nation of the columns of C, so Lemma 5 implies that f ∈ V .

Hence f ∈ V ⇔ detC1f ± · · · + (−1)r detCr+1f
(r) = 0.

Due to Lemma 7, the latter condition is equivalent to c1f +
· · ·+cr+1f

(r) = 0, where c` = (−1)`−1 detC`/
∏
i<j

(gi−gj)rL .

Thus we can take M = c1+· · ·+cr+1∂
r. It remains to bound

the degrees of the coefficients of M .
Combining lemmas 5, 6, and 7, we obtain

dX := degx c` ≤
∑
i6=`

(2rdP+1−i) ≤ 2r2dP − 1
2
(r−2)(r−1),

dY := deggi c` ≤ rrL(2rP + dL − 1)− rL(rP − 1).

Since c` is symmetric with respect to g1, . . . , grP , it can be
written as an element of C[x, s1, . . . , srP ] where sj is the j-th
elementary symmetric polynomial in g1, . . . , grP , and the to-
tal degree of c` with respect to sj ’s does not exceed dY . Sub-
stituting sj with the corresponding coefficient of 1

lcy P
P (x, y)

and clearing denominators, we obtain a polynomial in x of
degree at most dX + dY dP .

Since the order of M is equal to the dimension of the space
of all compositions of the form f ◦ g, where L(f) = 0 and
P (x, g) = 0, M is the minimal annihilating operator for this
space.

Remark 9. The proof of Theorem 8 is a generalization of
the proof of [2, Thm. 1]. Specializing rL = 1, dL = 0 in
Theorem 8 gives a sightly larger bound as the bound in [2,
Thm. 1], but with the same leading term.

Although the bound of Theorem 8 for r = rLrP beats the
bound of Theorem 3 for r = rLrP by a factor of rP , it is
apparently still not tight. Experiments we have conducted
with random operators lead us to conjecture that in fact, at
least generically, the minimal order operator of order rLrP
has degree O(rLrP dP (dL + rLrP )). By interpolating the
degrees of the operators we found in our computations, we
obtain the expression in the following conjecture.

Conjecture 10. For every rP , rL, dP , dL ≥ 2 there exist L
and P such that the corresponding minimal order operator
M has order rLrP and degree

r2
L(2rP (rP − 1) + 1)dP + rLrP (dP (dL + 1) + 1) + dLdP

− r2
Lr

2
P − rLdLdP ,

and there do not exist L and P for which the corresponding
minimal operator M has order rLrP and larger degree.

4. ORDER-DEGREE-CURVE
BY SINGULARITIES

A singularity of the minimal operator M is a root of its
leading coefficient polynomial lc∂(M) ∈ C[x]. In the nota-
tion and terminology of [7], a factor p of this polynomial
is called removable at cost n if there exists an operator
Q ∈ C(x)[∂] of order deg∂(Q) ≤ n such that QM ∈ C[x][∂]
and gcd(lc∂(QM), p) = 1. A factor p is called removable if
it is removable at some finite cost n ∈ N, and non-removable
otherwise. The following theorem [7, Theorem 9] translates
information about the removable singularities of a minimal
operator into an order-degree curve.

Theorem 11. Let M ∈ C[x][∂], and let p1, . . . , pm ∈ C[x]
be pairwise coprime factors of lc∂(M) which are removable



at costs c1, . . . , cm, respectively. Let r ≥ deg∂(M) and

d ≥ degx(M)−
⌈ m∑
i=1

(
1− ci

r − deg∂(M) + 1

)+

degx(pi)

⌉
,

where we use the notation (x)+ := max{x, 0}. Then there
exists an operator Q ∈ C(x)[∂] such that QM ∈ C[x][∂] and
deg∂(QM) = r and degx(QM) = d.

The order-degree curve of Theorem 11 is much more accu-
rate than that of Theorem 3. However, the theorem depends
on quantities that are not easily observable when only L and
P are known. From Theorem 8 (or Conj. 10), we have a good
bound for degx(M). In the the rest of the paper, we discuss
bounds and plausible hypotheses for the degree and the cost
of the removable factors. The following example shows how
knowledge about the degree of the operator and the degree
and cost of its removable singularities influence the curve.

Example 12. The figure below compares the data of Exam-
ple 1 with the curve obtained from Theorem 11 using m = 1,
degx(Mmin) = 544, degx(p1) = 456, c1 = 1. This curve is
labeled (a) below. Only for a few orders r, the curve slightly
overshoots. In contrast, the curve of Theorem 3, labeled (b)
below, overshoots significantly and systematically.

The figure also illustrates how the parameters affect the
accuracy of the estimate. The value degx(Mmin) = 544 is
correctly predicted by Conjecture 10. If we use the more
conservative estimate degx(Mmin) = 1568 of Theorem 8, we
get the curve (e). For curve (d) we have assumed a remov-
ability degree of degx(p1) = 408, as predicted by Theorem 17
below, instead of the true value degx(p1) = 456. For (c) we
have assumed a removability cost c1 = 10 instead of c1 = 1.
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4.1 Degree of Removable Factors

Lemma 13. Let P (x, y) ∈ C[x, y] be a polynomial with
degy P = d, and R(x) = Resy(P, Py). Assume that α ∈ C̄
is a root of R(x) of multiplicity k. Then the squarefree part

S(y) = P (α, y)
/

gcd
(
P (α, y), Py(α, y)

)
of P (α, y) has degree at least d− k.

Proof. Let M(x) be the Sylvester matrix for P (x, y) and

Py(x, y) with respect to y. The value R(k)(α) is of the form∑
detMi(α), where every Mi(x) has at least 2d − 1 − k

common columns withM(x). SinceR(k)(α) 6= 0, at least one
of these matrices is nondegenerate. Hence, corankM(α) ≤

k. On the other hand, corankM(α) is equal to the dimension
of the space of pairs of polynomials (a(y), b(y)) such that
a(y)P (α, y) + b(y)Py(α, y) = 0 and deg b(y) < d. Then b(y)
is divisible by S(y), and for every b(y) divisible by S(y)
there exists exactly one a(y). Hence, corankM(α) = d −
degS(y) ≤ k.

Let M be the minimal order operator annihilating all com-
positions f ◦ g of a solution of P with a solution of L. The
leading coefficient q = lc∂(M) ∈ C[x] can be factored as
q = qremqnrem, where qrem and qnrem are the products of all
removable and all nonremovable factors of lc∂(M), respec-
tively.

Lemma 14. deg qnrem ≤ dP (4rLrP − 2rL + dL).

Proof. For α ∈ C̄ by πα (λα, µα, resp.) we denote rP
(rL or deg∂M , resp.) minus the number of solutions of
P (x, g(x)) = 0 (the dimension of the solutions set of Lf(x) =
0 or Mf(x) = 0, resp.) in C̄[[x− α]].

Corollary 4.3 from [10] implies that ordα qnrem (the mini-
mal order at α in inα Clα(M) in notation of [10]) is equal to
µα (ordαBα(M) − (sα + 1) in notation of [10]). Summing
over all α, we have

∑
α∈C̄

µα = deg qnrem. Bounding the de-

gree of the nonremovable part of lc∂(L) by dL, we also have∑
α∈C̄

λα ≤ dL.

Let R(x) be the resultant of P (x, y) and Py(x, y) with
respect to y. Let α be a root of R(x) of multiplicity k.
Lemma 13 implies that the degree of the squarefree part of
P (α, y) is at least rP − k. So, at most k roots are multiple,
so at least rP − 2k roots are simple. Hence, P (x, y) = 0 has
at least rP − 2k solutions in C̄[[x − α]]. Thus

∑
α∈C̄ πα ≤

2 degR ≤ 2dP (2rP − 1).
Let α ∈ C̄ and let g1(x), . . . , grP−πα(x) ∈ C̄[[x − α]] be

solutions of P (x, g(x)) = 0. Let βi = gi(0) for all 1 ≤ i ≤
rP − πα. Since the composition of a power series in x − βi
with gi(x) is a power series in x− α,

µα ≤ rLπα +

rP−πα∑
i=1

λβi . (4)

We sum (4) over all α ∈ C̄. The number of occurrences of
λβ in this sum for a fixed β ∈ C̄ is equal to the number of
distinct power series of the form g(x) = β+

∑
ci(x−γ)i such

that P (x, g(x)) = 0. Inverting these power series, we obtain
distinct Puiseux series solutions of P (x, y) = 0 at y = β, so
this number does not exceed dP . Hence∑
α∈C̄

µα ≤ rL
∑
α∈C̄

πα+dP
∑
β∈C̄

λβ ≤ 2rLdP (2rP−1)+dP dL.

In order to use Theorem 11, we need a lower bound for
deg qrem. Theorem 8 gives us an upper bound for degxM ,
but we must also estimate the difference degxM−deg lc∂M .
By Nα we denote the Newton polygon for M at α ∈ C̄∪{∞}
(for definitions and notation, see [11, Section 3.3]). By Hα,
we denote the difference of the ordinates of the highest and
the smallest vertices of Nα, and we call this quantity the
height of the Newton polygon. Note that H∞ ≤ degxM −
deg lc∂M . This estimate together with the Lemma above
implies deg qrem ≥ degx(M)−H∞ − dP (4rLrP − 2rL + dL).

The equation P (x, y) = 0 has rP distinct Puiseux series
solutions g1(x), . . . , grP (x) at infinity. For 1 ≤ i ≤ rP , let



βi = gi(∞) ∈ C̄ ∪ {∞}, and let ρi be the order of zero of
gi(x)−βi ( 1

gi(x)
, resp.) at infinity if βi ∈ C̄ (βi =∞, resp.).

The numbers ρ1, . . . , ρrP are positive rationals and can be
read off from Newton polygons of P (see [1, Chapter II]).

Lemma 15. H∞ ≤
∑rP
i=1 ρiHβi .

Proof. Writing L as L(x, ∂) ∈ C[x][∂], we have

M = lclm

(
L

(
g1,

1

g′1
∂

)
, . . . , L

(
grP ,

1

g′rP
∂

))
.

Hence, the set of edges of N∞ is a subset of the union of sets
of edges of Newton polygons of the operators L(gi,

1
g′i
∂), so

the height of N∞ is bounded by the sum of the heights of
the Newton polygons of these operators. Consider g1 and
assume that β1 ∈ C̄. Then the Newton polygon for L at β1

is constructed from the set of monomials of L written as an
element of C(x−β1)[(x−β1)∂]. Let L(x, ∂) = L̃(x−β1, (x−
β1)∂), then

L
(
g1,

1

g′1
∂
)

= L̃
(
g1−β1,

g1−β1

g′1
∂
)

= L̃
(
x−ρ1h1(x), xh2(x)∂

)
,

where h1(∞) and h2(∞) are nonzero elements of C̄. Since
h1 and h2 do not affect the shape of the Newton polygon
at infinity, the Newton polygon at infinity for L(g1,

1
g′1
∂) is

obtained from the Newton polygon for L at β1 by stretching
it vertically by the factor ρ1, so its height is equal to ρ1Hβ1 .

The case β1 =∞ is analogous using L = L̃
(

1
x
,−x∂

)
.

Remark 16. Generically, the βi’s will be ordinary points
of L, so it is fair to expectHβi = 0 for all i in most situations.

The following theorem is a consequence of Theorem 11
and the discussion above.

Theorem 17. Let ρ1, . . . , ρrP be as above. Assume that
all removable singularities of M are removable at cost at

most c. Let δ =
rP∑
i=1

ρiHβi + dP (4rLrP − 2rL + dL). Let

r ≥ deg∂M + c− 1 and

d ≥ δ ·
(

1− c

r − deg∂(M) + 1

)
+ degxM ·

c

r − deg∂(M) + 1
.

Then there exists an operator Q ∈ C(x)[∂] such that QM ∈
C[x][∂] and deg∂(QM) = r and degx(QM) = d.

Note that degx(M) may be replaced with the expression
from Theorem 8 or Conjecture 10.

4.2 Cost of Removable Factors
The goal of this final section is to explain why in the case

rP > 1 one can almost always choose c = 1 in Theorem 17.
For a differential operator L ∈ C[x][∂], byM(L) we denote

the minimal operator M such that Mf(g(x)) = 0 whenever
Lf = 0 and P (x, g(x)) = 0. We want to investigate the pos-
sible behaviour of a removable singularity at α ∈ C when L
varies and P with rP > 1 is fixed. Without loss of generality,
we assume that α = 0.

We will assume that:

(S1) P (0, y) is a squarefree polynomial of degree rP ;

(S2) g(0) is not a singularity of L for any root g(x) of P ;

(G) Roots of P (x, g(x)) = 0 at zero are of the form gi(x) =
αi + βix + γix

2 + . . ., where β2, . . . , βrP are nonzero,
and either β1 or γ1 is nonzero.

Conditions (S1) and (S2) ensure that zero is not a po-
tential true singularity of M(L). Condition (G) is an es-
sential technical assumption on P . We note that it holds
at all nonsingular points (not just at zero) for almost all
P , because this condition is violated at α iff some root of
P (α, y) = Px(α, y) = 0 (this means that at least one of βi
is zero) is also a root of either Pxx(α, y) = 0 (then γi is also
zero) or Pxy(α, y) = 0 (then there are at least two such β’s).
For a generic P this does not hold.

Under these assumptions we will prove the following the-
orem. Informally speaking, it means that if M(L) has an
apparent singularity at zero, then it almost surely is remov-
able at cost one.

Theorem 18. Let dL be such that dL ≥ (rLrP − rL + 1)rP .
By V we denote the (algebraic) set of all L ∈ C̄[x][∂] of order
rL and degree ≤ dL such that the leading coefficient of L
does not vanish at α1, . . . , αrP . We consider two (algebraic)
subsets in V

X =
{
L ∈ V

∣∣M(L) has an apparent singularity at 0
}
,

Y =
{
L ∈ V

∣∣M(L) has an apparent singularity at 0

which is not removable at cost one
}
.

Then, dimX > dimY as algebraic sets.

For α ∈ C̄, by Opα(r, d) we denote the space of differential
operators in C̄[x − α][∂] of order at most r and degree at
most d. By NOpα(r, d) ⊂ Opα(r, d) we denote the set of L
such that ordL = r and (lc∂ L)(α) 6= 0. Then

V ⊂ NOpα1
(rL, dL) ∩ . . . ∩NOpαrP

(rL, dL).

To every operator L ∈ NOpα(r, d0) and d1 ≥ r, we as-
sign a fundamental matrix of degree d1 at α, denote it by
Fα(L, d1). It is defined as the r× (d1 + 1) matrix such that
the first r columns constitute the identity matrix Ir, and ev-
ery row consists of the first d1 +1 terms of some power series
solution of L at x = α. Since L ∈ NOpα(r, d0), F (L, d1) is
well defined for every d1.

By F (r, d) we denote the space of all possible fundamen-
tal matrices of degree d for operators of order r. This space
is isomorphic to Ar(d+1−r). The following proposition says
that a generic operator has generic and independent funda-
mental matrices, so we can work with these matrices instead
of working with operators.

Proposition 19. Let ϕ : V → (F (rL, rLrP ))rP be the map
sending L ∈ V to Fα1(L, rLrP )⊕ . . .⊕FαrP (L, rLrP ). Then
ϕ is a surjective map of algebraic sets, and all fibers of ϕ
have the same dimension.

For the proof we need the following lemma.

Lemma 20. Let ψ : NOpα(r, d) → F (r, d + r) be the map
sending L to Fα(L, d+r). Then ψ is surjective and all fibers
have the same dimension.

Proof. First we assume that L is of the form L = ∂rL +
arL−1(x)∂rL−1 + . . .+a0(x), and aj(x) = aj,dx

d+ . . .+aj,0,
where aj,i ∈ C̄. We also denote the truncated power series
corresponding to the j + 1-st row of F (L, d+ rL) by fj and
write it as

fj = xj +

d∑
i=0

bj,ix
rL+i, where bj,i ∈ C̄.



We will prove the following claim by induction on i:
Claim. For every 0 ≤ j ≤ rL − 1 and every 0 ≤ i ≤ d,

bj,i can be written as a polynomial in ap,q with q < i and
aj,i. And, vice versa, aj,i can be written as a polynomial in
bp,q with q < i and bj,i.

The claim would imply that ψ defines an isomorphism of
algebraic varieties between Fα(rP , d + r) and the subset of
monic operators in NOpα(r, d).

For i = 0, looking at the constant term of L(fj), we obtain
that j!aj,0 + rL!bj,0 = 0. This proves the base case of the
induction.

Now we consider i > 0 and look at the constant term of
∂iL(fj). The operator ∂iL can be written as

∂iL = ∂i+rL + a
(i)
rL−1(x)∂rL−1 + . . .+ a

(i)
0 (x)

+
∑

k<i,l<i+rL,s≤d

ck,l,sa
(k)
s (x)∂l

Applying this to fj , we obtain the following expression for
the constant term:

(i+ rL)!bj,i + j!i!aj,i +
∑

k<i,l<i+rL,s≤d

c̃k,l,sas,kbj,l−rL = 0.

Applying the induction hypothesis to the equalities

bj,i =
−1

(i+ rL)!

j!i!aj,i +
∑

k<i,l<i+rL,s≤d

c̃k,l,sas,kbj,l−rL



aj,i =
−1

i!j!

(i+ rL)!bj,i +
∑

k<i,l<i+rL,s≤d

c̃k,l,sas,kbj,l−rL


we prove the claim.

The above proof also implies that F (L, d+r) is completely
determined by the truncation of L at degree d + 1. So, for
arbitrary L ∈ NOpα(r, d), F (L, d) = F (L̃, d), where L̃ is
the truncation of 1

lc∂ L
L at degree d + 1, which is monic

in ∂. Hence, every fiber of ψ is isomorphic to the set of all
polynomials of degree at most d with nonzero constant term.
This set is isomorphic to C̄∗ × C̄d.

Proof of Proposition 19. Let d0 = rLrP −rL. We will factor
ϕ as a composition

V
ϕ1−−→

rP⊕
i=1

NOpαi(rL, d0)
ϕ2−−→ F (rL, rLrP )rP ,

where ϕ2 is a component-wise application of Fαi(∗, d0) and
ϕ1 sends L ∈ V to a vector whose i-th coordinate is the
truncation at degree d0 + 1 of L written as an element of
C̄[x − αi][∂]. We will prove that both these maps are sur-
jective with fibers of equal dimension.

The map ϕ1 can be extended to

ϕ1 : Op0(rL, dL)→ Opα1
(rL, d0)⊕ . . .⊕OpαrP

(rL, d0).

This map is linear, so it is sufficient to show that the dimen-
sion of the kernel is equal to the difference of the dimensions
of the source space and the target space. The latter num-
ber is equal to (dL + 1)(rL + 1) − (d0 + 1)(rL + 1)rP . Let
L ∈ kerϕ1. This is equivalent to the fact that every coeffi-
cient of L is divisible by (x− αi)d0+1 for every 1 ≤ i ≤ rP .
The dimension of the space of such operators is equal to
(rL + 1)(dL + 1− rP (d0 + 1)) ≥ 0, so ϕ1 is surjective.

Lemma 20 implies that ϕ2 is also surjective and all fibers
are of the same dimension.

Let g1(x), . . . , grP (x) ∈ C̄[[x]] be solutions of P (x, y) = 0
at zero. Recall that gi(x) = αi+βix+ . . . for all 1 ≤ i ≤ rP ,
and by (G) we can assume that β2, . . . , βrP are nonzero.

Consider A ∈ F (rL, d), assume that its rows correspond
to truncations of power series f1, . . . , frL ∈ C̄[[x − αi]]. By
ε(gi, A) we denote the rL × (d + 1)-matrix whose rows are
truncations of f1 ◦ gi, . . . , frL ◦ gi ∈ C̄[[x]] at degree d+ 1.

Lemma 21. We can write ε(gi, A) = A ·T (gi), where T (gi)
is an upper triangular (d+1)×(d+1)-matrix depending only
on gi with 1, βi, . . . , β

d
i on the diagonal.

Futhermore, if βi = 0 and gi(x) = αi + γix
2 + . . ., then

the i-th row of T (gi) is zero for i ≥ d+3
2

, and starts with

2(i− 1) zeroes and γi−1
i for i < d+3

2
.

Proof. Let the j-th row of A correspond to a polynomial
fj(x−αi) = xj−1+O(xrL). The substitution operation fj →
fj ◦gi is linear with respect to coefficients of fi, so ε(gi, A) =
A · T (gi) for some matrix T (gi). Since the coefficient of xk

in fj ◦ gi is a linear combination of coefficients of (x − αi)l
with l ≤ k in fj , the matrix T (gi) is upper triangular. Since
(x− αi)k ◦ gi = βki x

k + O(xk+1), T (gi) has 1, βi, . . . , β
d
i on

the diagonal.
The second claim of the lemma can be verified by a similar

computation.

Corollary 22. If βi 6= 0, then the matrix ε(gi, A) has the
form (A0 A1), where A0 is an upper triangular matrix over
C̄, and the entries of A1 are linearly independent linear
forms in the entries of A.

An element of the affine space W = (F (rL, rLrP ))rP is a
tuple of matrices N1, . . . , NrP ∈ F (rL, rLrP ), where every

Ni has the form Ni = (ErL Ñi). Entries of Ñ1, . . . , ÑrP are

coordinates on W , so we will view entries of Ñi as a set Xi
of algebraically independent variables. We will represent N
as a single (rLrP )× (rLrP + 1)-matrix

N =

 N1

...
NrP

 , and set ε(N) =

 ε(g1, N1)
...

ε(grP , NrP )

 .

For any matrix A, by A(1) and A(2) we denote A with-
out the last column and without the last but one column,
respectively. By π we denote the composition ε ◦ ϕ. Since
π(L) represents solutions of M(L) at zero truncated at de-
gree rLrP + 1, properties of the operator L ∈ V can be
described in terms of the matrix π(L):

• M(L) has order less than rLrP or has an apparent
singularity at zero iff π(L)(1) is degenerate;

• M(L) has order less than rLrP or has an apparent
singularity at zero which is either not removable at
cost one or of degree greater than one iff both π(L)(1)

and π(L)(2) are degenerate.

Let X0 = {L ∈ V | detπ(L)(1) = 0} and Y0 = {L ∈ V |
detπ(L)(2) = 0}, then X0 \ Y0 ⊂ X ⊂ X0 and Y ⊂ Y0.

Proposition 23. ϕ(X0) is an irreducible subset of W , and
ϕ(Y0) is a proper algebraic subset of ϕ(X0).



Proof. The above discussion and the surjectivity of ϕ imply
that ϕ(X0) = {N ∈ W | det ε(N)(1) = 0}. Hence, we need
to prove that det ε(N)(1) is a nonzero irreducible polynomial
in R = C̄[X1, . . . , XrP ]. We set A = ε(N)(1).

We claim that there is a way to reorder columns and rows
of A such that it will be of the form(

B C1

C2 D

)
,

where B and D are square matrices, and

• B is upper triangular with nonzero elements of C̄ on
the diagonal;

• entries ofD are algebraically independent over the sub-
algebra generated in R by entries of B,C1, and C2.

In order to prove the claim we consider two cases:

1. β1 6= 0. By Corollary 22, A is already of the desired
form with B being an rL × rL-submatrix.

2. β1 = 0. Then (G) implies that g1(x) = α1 + γ1x
2 + . . .

with γ1 6= 0. Then Lemma 21 implies that the follow-
ing permutations would give us the desired block struc-
ture with B being an b3rL/2c×b3rL/2c-submatrix, for
columns:

1, 3, . . . , 2rL − 1, 2, 4, . . . , 2brL/2c, ∗,

and for rows:

1, 2, . . . , rL, rL + 2, rL + 4, . . . , rL + 2brL/2c, ∗,

where ∗ stands for all other indices in any order.

Using elementary row operations, we can bring A to the
form (

B ∗
0 D̃

)
,

where the entries of D̃ are still algebraically independent.

Hence, detA is proportional to det D̃ which is irreducible.
In order to prove that ϕ(Y0) is a proper subset of ϕ(X0)

it is sufficient to prove that det ε(N)(2) is not divisible by
det ε(N)(1). This follows from the fact that these polyno-
mials are both of degree rLrP − rL with respect to (alge-

braically independent) entries of Ñ2, . . . , ÑrP , but involve
different subsets of this variable set.

Now we can complete the proof of Theorem 18. Proposi-
tion 23 implies that dimϕ(X0) > dimϕ(Y0). Since all fibers
of ϕ have the same dimension, dimX0 > dimY0. Hence,
dimX ≥ dim(X0 \ Y0) = dimX0 > dimY0 ≥ dimY .

Remark 24. Theorem 18 is stated only for points satis-
fying (S1) and (S2). However, the proof implies that ev-
ery such point is generically nonsingular. We expect that
the same technique can be used to prove that generically
no removable singularities occur in points violating condi-
tions (S1) and (S2). This expectation agrees with our com-
putational experiments with random operators and random
polynomials. We think that these experimental results and
Theorem 18 justify the choice c = 1 in Theorem 17 in most
applications.

Remark 25. On the other hand, neither Theorem 18 nor
our experiments support the choice c = 1 in the case rP = 1.
Instead, it seems that in this case the cost for removability is
systematically larger. To see why, consider the special case
P = y − x2 of substituting the polynomial g(x) = x2 into a
solution f of a generic operator L. If the solution space of
L admits a basis of the form

1 + a1,rLx
rL + a1,rL+1x

rL+1 + · · · ,
x + a2,rLx

rL + a2,rL+1x
rL+1 + · · · ,

...

xrL−1 + arL−1,rLx
rL + arL−1,rL+1x

rL+1 + · · · ,

and M is the minimal operator for the composition, then its
solution space obviously has the basis

1 + a1,rLx
2rL + a1,rL+1x

2rL+2 + · · · ,
x2 + a2,rLx

2rL + a2,rL+1x
2rL+2 + · · · ,

...

x2(rL−1) + arL−1,rLx
2rL + arL−1,rL+1x

2rL+2 + · · · ,

and so the indicial polynomial of M is λ(λ−2) · · · (λ−2(rL−
1)). According to the theory of apparent singularities [6, 5],
M has a removable singularity at the origin and the cost of
removability is as high as rL.

More generally, if g is a rational function and α is a root
of g′, so that g(x) = c+ O((x− α)2), a reasoning along the
same lines confirms that such an α will also be a removable
singularity with cost rL.

Acknowledgement. We thank the referees for their con-
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5. REFERENCES
[1] G.A. Bliss. Algebraic functions. AMS, 1933.

[2] A. Bostan, F. Chyzak, B. Salvy, G. Lecerf, and
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