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0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

f(n+ 2) − f(n+ 1) − f(n) = 0, f(0) = 0, f(1) = 1
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f(n+ 2) − 2f(n+ 1) + f(n) = 0, f(0) = 0, f(1) = 1
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f(n+ 3) − f(n+ 1) − f(n) = 0, f(0) = 3, f(1) = 0, f(2) = 2
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A sequence is called C-finite if it satisfies a linear recurrence with
constant coefficients:

crf(n+ r) + cr−1f(n+ r− 1) + · · ·+ c1f(n+ 1) + c0f(n) = 0.

We may assume without loss of generality that

Then r is called the order of the recurrence, and the sequence is
uniquely determined by the recurrence and r initial terms
f(0), . . . , f(r− 1).

A linear recurrence with constant coefficients is encoded by its
characteristic polynomial crx

r + cr−1x
r−1 + · · ·+ c1x+ c0.
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f1(n+ 1) = f1(n) − f3(n)
f2(n+ 1) = 2f2(n) + 3f3(n)

f3(n+ 1) = 3f1(n) + f2(n) − f3(n)

f1(0) = 3
f2(0) = 1
f3(0) = 2
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f1(n+ 1)
f2(n+ 1)
f3(n+ 1)



=

1 0 −1
0 2 3

3 1 −1

n+1f1(0)f2(0)
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f1 : 3, 1,−7,−10,−26,−69,−174,−443,−1129,−2875, . . .

f2 : 1, 8, 40, 89, 226, 581, 1477, 3761, 9580, 24398, 62137, . . .

f3 : 2, 8, 3, 16, 43, 105, 269, 686, 1746, 4447, 11326, . . .
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Because of Cayley-Hamilton, solutions of such systems are always
C-finite, and the characteristic polynomial of the matrix is a charac-
teristic polynomial for all the coordinate sequences of the solution
vector. (χ(A) = 0⇒ χ(A)Anx = 0)
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Certain counting sequences in combinatorics can be easily
expressed as solutions of such systems.
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Certain counting sequences in combinatorics can be easily
expressed as solutions of such systems.

Example 1: Paths in a graph.

1 2

3 4

A =


0 1 0 0

0 0 1 1

1 0 0 0

0 1 1 0



The number of paths of length n from vertex i to vertex j is exactly
the (i, j)-entry of An, when A is the adjacency matrix of the graph.
For each choice of i and j, this is a C-finite sequence in n.
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Certain counting sequences in combinatorics can be easily
expressed as solutions of such systems.

Example 2: Tilings
Set up a matrix whose entries count the number of possible exten-
sions of a partial tiling by completing two full columns.

A =

3 1 1
1 1 0

1 0 1



Then the number of tilings of a (2n) × 3 rectangle is the entry of
An at position (1, 1).
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Certain counting sequences in combinatorics can be easily
expressed as solutions of such systems.

Example 3: The Ising model in statistical physics

The status of a k× k-grid at time n+ 1 is obtained from its status
at time n through a 2k × 2k transfer matrix.
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For every fixed k, the number Tn,k of tilings of an k× n rectangle
satisfies an ugly high-order recurrence.

But there is also a nice formula due to Fisher, Temperly and
Kasteleyn. For even n and k we have

Tn,k = 2
nk/2

k/2∏
i=1

n/2∏
j=1

(
cos2

( iπ

k+ 1

)
+ cos2

( jπ

n+ 1

))

= (−1)nk/4
k/2∏
i=1

Un

(√
−1 cos

( iπ

k+ 1

))

The 2k/2-order C-finite sequence is in fact the product of k/2
C-finite sequences of order 2.

A similar formula was found by Onsager for the Ising model.
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Recall: The product of two C-finite sequences of respective orders
r and s is a C-finite sequence of order (at most) rs.

Proof by example:
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h(n+ 3) = 2f(n)g(n) + 4f(n+ 1)g(n)

+ 3f(n)g(n+ 1) + 6f(n+ 1)g(n+ 1)

h(n+ 4) = 44f(n)g(n) + 66f(n+ 1)g(n)

+ 78f(n)g(n+ 1) + 117f(n+ 1)g(n+ 1)
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Recall: The product of two C-finite sequences of respective orders
r and s is a C-finite sequence of order (at most) rs.

Proof by example:


1 0 2 6 44

0 0 2 12 66

0 0 3 11 78

0 1 3 22 117



c0
c1
c2
c3
c4

 = 0

=⇒ 4h(n) − 6h(n+ 1) − 15h(n+ 2) − 3h(n+ 3) + h(n+ 4) = 0.

Let’s write this in terms of characteristic polynomials as

(x2 − x− 1)︸ ︷︷ ︸
f(n)

⊗ (x2 − 3x− 2)︸ ︷︷ ︸
g(n)

= 4− 6x− 15x2 − 3x3 + x4︸ ︷︷ ︸
h(n)=f(n)g(n)

.
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Want: Discover product formulas like those of Fisher, Temperly
and Kasteleyn.

Need: Factorization of C-finite sequences, rather than
multiplication.
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Want: Discover product formulas like those of Fisher, Temperly
and Kasteleyn.

Need: Factorization of C-finite sequences, rather than
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recurrence but also on the initial values:

3n + 4n + 6n + 8n = (1+ 2n)(3n + 4n)

same recurrence

3n + 4n + 6n − 8n = – no factorization –
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Want: Discover product formulas like those of Fisher, Temperly
and Kasteleyn.

Need: Factorization of C-finite sequences, rather than
multiplication.

We stick to the initial-value-free variant of the problem:

r = p⊗q means that the solution space V(r) of the recurrence cor-
responding to r is generated by all the product sequences (anbn)

∞
n=0

where (an)
∞
n=0 ∈ V(p) and (bn)

∞
n=0 ∈ V(q).

Note that we have V(r) ∼= V(p)⊗V(q) in the sense of linear algebra.
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Note that our factorization problem is not the usual operator
factorization.

The usual factorization corresponds to writing a sequence as a sum
of simpler ones; V(lcm(p, q)) = V(p) + V(q).

Algorithms for this case are well understood, even for operators
with polynomial coefficients.

There are also algorithms for factoring operators with polynomial
coefficients in our sense. (Singer, Hessinger, van Hoeij, Cha, . . . )

We want something simpler for the simpler case of constant
coefficients.
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Recall: f(n) is C-finite if and only if there are numbers φ1, . . . , φs
and polynomials p1, . . . , ps such that

f(n) = p1(n)φ
n
1 + p2(n)φ

n
2 + · · ·+ ps(n)φns

for all n.

In this case, the characteristic polynomial for f(n) is

(x− φ1)
1+deg p1 · · · (x− φs)1+deg ps .
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2 + · · ·+ ps(n)φns

for all n. In this case, the characteristic polynomial for f(n) is

(x− φ1)
1+deg p1 · · · (x− φs)1+deg ps .

Note: Closure under multiplication is obvious from the closed form
representations:(

p1(n)φ
n
1 + · · ·+ ps(n)φns

)(
q1(n)ψ

n
1 + · · ·+ qt(n)ψnt

)
= p1(n)q1(n)(φ1ψ1)

n + · · ·+ ps(n)qt(n)(φsψt)n
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n
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n
2 + · · ·+ ps(n)φns

for all n. In this case, the characteristic polynomial for f(n) is

(x− φ1)
1+deg p1 · · · (x− φs)1+deg ps .

Note: Closure under multiplication is obvious from the closed form
representations:(

(x− φ1)
e1 · · · (x− φs)es

)
⊗
(
(x−ψ1)

ε1 · · · (x−ψt)εt
)

= (x− φ1ψ1)
max(e1,ε1) · · · (x− φsψt)max(es,εt)
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Consider a square-free case with s = 2, t = 3.

(x− φ1)(x− φ2)⊗ (x−ψ1)(x−ψ2)(x−ψ3) =

2∏
i=1

3∏
j=1

(x− φiψj)

= (x− ρ1)(x− ρ2)(x− ρ3)(x− ρ4)(x− ρ5)(x− ρ6).

We know ρ1, . . . , ρ6 and want to find φ1, φ2, ψ1, ψ2, ψ3.

For a suitable numbering of the roots, we will have

ρ1
ρ2

=
φ1ψ1
φ1ψ2

=
ψ1
ψ2

=
φ2ψ1
φ2ψ2

=
ρ4
ρ5

ρ1
ρ3

=
φ1ψ1
φ1ψ3

=
ψ1
ψ3

=
φ2ψ1
φ2ψ3

=
ρ4
ρ6

ρ1
ρ4

=
φ1ψ1
φ2ψ1

=
φ1
φ2

=
φ1ψ2
φ2ψ2

=
ρ2
ρ5

=
φ1ψ2
φ2ψ2

=
φ1
φ2

=
φ1ψ3
φ2ψ3

=
ρ3
ρ6
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Suppose now that we have been able to index the roots such that

ρ1
ρ2

=
ρ4
ρ5
,

ρ1
ρ3

=
ρ4
ρ6
,

ρ1
ρ4

=
ρ2
ρ5

=
ρ3
ρ6
.

Choose ψ1 arbitrarily and set

ψ2 = ψ1
ρ1ρ5
ρ2ρ4

, ψ3 = ψ1
ρ1ρ6
ρ2ρ4

, φ1 =
ρ1
ψ1
, φ2 = φ1

ρ1ρ5
ρ4ρ2

.

Then we have

(x− ρ1)(x− ρ2)(x− ρ3)(x− ρ4)(x− ρ5)(x− ρ6)

= (x− φ1)(x− φ2)⊗ (x−ψ1)(x−ψ2)(x−ψ3),

as desired.
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The arbitrary choice of ψ1 reflects the non-uniqueness of the
factorization coming from (x−ψ)⊗ (x−ψ−1) = (x− 1) and
r⊗ (x− 1) = r.

Translated to sequences, it means that (an)
∞
n=0 is C-finite iff

(anψ
n)∞n=0 is C-finite for every nonzero constant ψ.

There is more non-uniqueness than that. For example, we have

(x− 2)(x+ 2)(x− 3)(x+ 3)

= (x− 1)(x+ 1)⊗ (x− 2)(x+ 3)

= (x− 1)(x+ 1)⊗ (x− 2)(x− 3)

In this example, there are two distinct ways to number the roots
−2, 2,−3, 3 that are consistent with the required equations.
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In this example, there are two distinct ways to number the roots
−2, 2,−3, 3 that are consistent with the required equations.
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In summary, in order to factor a square-free polynomial r of
degree d, we search for a bijection

π : {1, . . . , r}× {1, . . . , s} → {1, . . . , d}

such that for all j1, j2 we have

ρπ(1,j1)

ρπ(1,j2)
=
ρπ(2,j1)

ρπ(2,j2)
= · · · =

ρπ(r,j1)

ρπ(r,j2)

and for all i1, i2 we have

ρπ(i1,1)

ρπ(i2,1)
=
ρπ(i1,2)

ρπ(i2,2)
= · · · =

ρπ(i1,s)

ρπ(i2,s)
.

Any such bijection can be translated into a factorization.
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But this is only a sufficient condition.

Some of the products φiψj may coincide (“product clash”).

Example:

• (x− 2)(x− 3)⊗ (x− 2)(x− 3)
= lcm(x− 4, x− 6, x− 6, x− 9)

= (x− 4)(x− 6)(x− 9)

• (x− 1)(x− 2)(x− 4)⊗ (x− 1
2)(x−

1
4)

= lcm(x− 1
2 , x−

1
4 , x− 1, x−

1
2 , x− 2, x− 1)

= (x− 1
2)(x−

1
4)(x− 1)(x− 2)

To also find such factorizations, note that the map
π : {1, . . . , r}× {1, . . . , s} → {1, . . . , d} need not be bijective.
Surjective is enough.
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Example:
r = (x− 4)(x− 6)(x− 9), i.e., ρ1 = 4, ρ2 = 6, ρ3 = 9.

Choose π : {1, 2}× {1, 2} → {1, 2, 3} according to

π 1 2

1 1 2

2 2 3

15
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Example:
r = (x− 4)(x− 6)(x− 9), i.e., ρ1 = 4, ρ2 = 6, ρ3 = 9.

Then we have

ρπ(1,1)

ρπ(1,2)
=
ρ1
ρ2

=
4

6
=
6

9
=
ρ2
ρ3

=
ρπ(2,1)

ρπ(2,2)

and
ρπ(1,1)

ρπ(2,1)
=
ρ1
ρ2

=
4

6
=
6

9
=
ρ2
ρ3

=
ρπ(1,2)

ρπ(2,2)
.

This gives the factorization (x− 1)(x− 3
2)⊗ (x− 4)(x− 6).
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Example:
r = (x − 1

2)(x −
1
4)(x − 1)(x − 2), i.e., ρ1 = 1

2 , ρ2 = 1
4 , ρ3 = 1,

ρ4 = 2.

Choose π : {1, 2}× {1, 2, 3} → {1, 2, 3, 4} according to

π 1 2 3

1 1 3 4

2 2 1 3
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Given the roots of r, we can test whether suitable functions
π : {1, . . . , r}× {1, . . . , s} → {1, . . . , d} exist by exhaustive search.

There are several possibilities to reduce the search space.
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Given the roots of r, we can test whether suitable functions
π : {1, . . . , r}× {1, . . . , s} → {1, . . . , d} exist by exhaustive search.

There are several possibilities to reduce the search space.

• The order of the roots in the factors is irrelevant, so we can
restrict the search to maps π with

π(1, 1) ≤ π(2, 1) ≤ · · · ≤ π(r, 1)

π(1, 1) ≤ π(1, 2) ≤ · · · ≤ π(1, s).

• Because of surjectivity, the root ρ1 must be reached, so we
can fix π(1, 1) = 1 without loss of generality.

• We can discard functions π with π(i1, j) = π(i2, j) for some
i1, i2, j with i1 6= i2, because these just signal some root of a
factor several times.

• p⊗ q = q⊗ p, so we can restrict to s ≤ r.
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Given the roots of r, we can test whether suitable functions
π : {1, . . . , r}× {1, . . . , s} → {1, . . . , d} exist by exhaustive search.

There are several possibilities to reduce the search space.

• If π : {1, . . . , n}× {1, . . . ,m} → {1, . . . , d} (n < r, m ≤ s) is
some function with

ρπ(1,j1)

ρπ(1,j2)
= · · · =

ρπ(n,j1)

ρπ(n,j2)
,

ρπ(i1,1)

ρπ(i2,1)
= · · · =

ρπ(i1,m)

ρπ(i2,m)

for all j1, j2 and all i1, i2, then for each p ∈ {1, . . . , d} there
exists at most one extension
π ′ : {1, . . . , n+ 1}× {1, . . . ,m} → {1, . . . , d} of π with
π ′(n+ 1, 1) = p.

This can be used to design a recursive search in which wrong
branches are usually recognized rather early.
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What else?

• When the polynomial is not square free, we can first factor its
square free part and afterwards see if suitable multiplicities
can be attached to the roots of the factors.

• If we don’t want to compute with algebraic numbers, we can
use floating point approximations during the search, and
afterwards validate the candidate factorizations.

• Using the power sums Pk((x− φ1) · · · (x− φn)) =
∑n
i=1φ

k
i ,

which satisfy Pk(p⊗ q) = Pk(p)Pk(q) and can be calculated
without algebraic extensions, we can get a quick strong
necessary condition for the existence of a factorization.

• When no factorization exists, it may still be possible to write
the given sequence as a linear combination of two products of
simpler ones. We can also find such representations.
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