
NO NEWS ON
MATRIX MULTIPLICATION

Manuel Kauers · Institute for Algebra · JKU

(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

c1,1 =

M1 +M4 −M5 +M7

a1,1·b1,1 + a1,2·b2,1
c1,2 =

M3 +M5

a1,1·b1,2 + a1,2·b2,2
c2,1 =

M2 +M4

a2,1·b1,1 + a2,2·b2,1
c2,2 =

M1 −M2 +M3 +M6

a2,1·b1,2 + a2,2·b2,2

1

(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

c1,1 =M1 +M4 −M5 +M7

a1,1·b1,1 + a1,2·b2,1

c1,2 =M3 +M5

a1,1·b1,2 + a1,2·b2,2

c2,1 =M2 +M4

a2,1·b1,1 + a2,2·b2,1

c2,2 =M1 −M2 +M3 +M6

a2,1·b1,2 + a2,2·b2,2

1

(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)
. . . where

M1 = (a1,1 + a2,2)·(b1,1 + b2,2)
M2 = (a2,1 + a2,2)·b1,1
M3 = a1,1·(b1,2 − b2,2)
M4 = a2,2·(b2,1 − b1,1)
M5 = (a1,1 + a1,2)·b2,2
M6 = (a2,1 − a1,1)·(b1,1 + b1,2)
M7 = (a1,2 − a2,2)·(b2,1 + b2,2)

1

(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=

(
c1,1 c1,2
c2,1 c2,2

)

• This scheme needs 7 multiplications instead of 8.

• Recursive application allows to multiply n× n matrices with
O(nlog2 7) operations in the ground ring.

• Let ω be the smallest number so that n× n matrices can be
multiplied using O(nω) operations in the ground domain.

• Then 2 ≤ ω < 3. What is the exact value?

1

• Strassen 1969: ω ≤ log2 7 ≤ 2.807

• Pan 1978: ω ≤ 2.796
• Bini et al. 1979 : ω ≤ 2.7799
• Schönhage 1981: ω ≤ 2.522
• Romani 1982: ω ≤ 2.517
• Coppersmith/Winograd 1981: ω ≤ 2.496
• Strassen 1986: ω ≤ 2.479
• Coppersmith/Winograd 1990: ω ≤ 2.376
• Stothers 2010: ω ≤ 2.374
• Williams 2011: ω ≤ 2.3728642
• Le Gall 2014 : ω ≤ 2.3728639

2

• Strassen 1969: ω ≤ log2 7 ≤ 2.807
• Pan 1978: ω ≤ 2.796
• Bini et al. 1979 : ω ≤ 2.7799
• Schönhage 1981: ω ≤ 2.522
• Romani 1982: ω ≤ 2.517
• Coppersmith/Winograd 1981: ω ≤ 2.496
• Strassen 1986: ω ≤ 2.479
• Coppersmith/Winograd 1990: ω ≤ 2.376

• Stothers 2010: ω ≤ 2.374
• Williams 2011: ω ≤ 2.3728642
• Le Gall 2014 : ω ≤ 2.3728639

2

• Strassen 1969: ω ≤ log2 7 ≤ 2.807
• Pan 1978: ω ≤ 2.796
• Bini et al. 1979 : ω ≤ 2.7799
• Schönhage 1981: ω ≤ 2.522
• Romani 1982: ω ≤ 2.517
• Coppersmith/Winograd 1981: ω ≤ 2.496
• Strassen 1986: ω ≤ 2.479
• Coppersmith/Winograd 1990: ω ≤ 2.376
• Stothers 2010: ω ≤ 2.374
• Williams 2011: ω ≤ 2.3728642
• Le Gall 2014 : ω ≤ 2.3728639

2

• Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

• Want: a matrix multiplication algorithm that beats Strassen’s
algorithm for matrices of moderate size.

• Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

• Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

• Answer: Nobody knows.

3

• Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

• Want: a matrix multiplication algorithm that beats Strassen’s
algorithm for matrices of moderate size.

• Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

• Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

• Answer: Nobody knows.

3

• Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

• Want: a matrix multiplication algorithm that beats Strassen’s
algorithm for matrices of moderate size.

• Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

• Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

• Answer: Nobody knows.

3

• Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

• Want: a matrix multiplication algorithm that beats Strassen’s
algorithm for matrices of moderate size.

• Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

• Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

• Answer: Nobody knows.

3

• Only Strassen’s algorithm beats the classical algorithm for
reasonable problem sizes.

• Want: a matrix multiplication algorithm that beats Strassen’s
algorithm for matrices of moderate size.

• Idea: instead of dividing the matrices into 2× 2-block
matrices, divide them into 3× 3-block matrices.

• Question: What’s the minimal number of multiplications
needed to multiply two 3× 3 matrices?

• Answer: Nobody knows.

3

Question: What’s the minimal number of multiplications needed to
multiply two 3× 3 matrices?

• naive algorithm: 27

• padd with zeros, use Strassen twice, cleanup: 25

• best known upper bound: 23 (Laderman 1976)

• best known lower bound: 19 (Bläser 2003)

• maximal number of multiplications allowed if we want to beat
Strassen: 21 (because log3 21 < log2 7 < log3 22).

4

Using SAT solvers, Courtois et al. discovered a new scheme with
23 multiplication in 2011, but none with ≤22. Can we do better?

Idea:

• Find a better encoding

• Exploit symmetries of the problem

• Use more powerful SAT solvers

→ Biere’s Treengeling

• Let it run on bigger computers

→ SG Altix UV 1000

• Wait for a solution with fewer multiplications

We are still waiting.

(Possible other approach: use QBF instead of SAT.)

5

Using SAT solvers, Courtois et al. discovered a new scheme with
23 multiplication in 2011, but none with ≤22. Can we do better?

Idea:

• Find a better encoding

• Exploit symmetries of the problem

• Use more powerful SAT solvers

→ Biere’s Treengeling

• Let it run on bigger computers

→ SG Altix UV 1000

• Wait for a solution with fewer multiplications

We are still waiting.

(Possible other approach: use QBF instead of SAT.)

5

Using SAT solvers, Courtois et al. discovered a new scheme with
23 multiplication in 2011, but none with ≤22. Can we do better?

Idea:

• Find a better encoding

• Exploit symmetries of the problem

• Use more powerful SAT solvers → Biere’s Treengeling

• Let it run on bigger computers → SG Altix UV 1000

• Wait for a solution with fewer multiplications

We are still waiting.

(Possible other approach: use QBF instead of SAT.)

5

Using SAT solvers, Courtois et al. discovered a new scheme with
23 multiplication in 2011, but none with ≤22. Can we do better?

Idea:

• Find a better encoding

• Exploit symmetries of the problem

• Use more powerful SAT solvers → Biere’s Treengeling

• Let it run on bigger computers → SG Altix UV 1000

• Wait for a solution with fewer multiplications

We are still waiting.

(Possible other approach: use QBF instead of SAT.)

5

Using SAT solvers, Courtois et al. discovered a new scheme with
23 multiplication in 2011, but none with ≤22. Can we do better?

Idea:

• Find a better encoding

• Exploit symmetries of the problem

• Use more powerful SAT solvers → Biere’s Treengeling

• Let it run on bigger computers → SG Altix UV 1000

• Wait for a solution with fewer multiplications

We are still waiting.

(Possible other approach: use QBF instead of SAT.)

5

How to encode the search for a matrix multiplication scheme as a
SAT problem?

6

How to encode the search for a matrix multiplication scheme as a
SAT problem?

Make an ansatz

M1 = (α
(1)
1,1a1,1 + α

(1)
1,2a1,2 + · · ·)(β

(1)
1,1b1,1 + · · ·)

M2 = (α
(2)
1,1a1,1 + α

(2)
1,2a1,2 + · · ·)(β

(2)
1,1b1,1 + · · ·)

...

c1,1 = γ
(1)
1,1M1 + γ

(2)
1,1M2 + · · ·

...

Set ci,j =
∑
k ai,kbk,j for all i, j and compare coefficients.

6

How to encode the search for a matrix multiplication scheme as a
SAT problem?

Make an ansatz

M1 = (α
(1)
1,1a1,1 + α

(1)
1,2a1,2 + · · ·)(β

(1)
1,1b1,1 + · · ·)

M2 = (α
(2)
1,1a1,1 + α

(2)
1,2a1,2 + · · ·)(β

(2)
1,1b1,1 + · · ·)

...

c1,1 = γ
(1)
1,1M1 + γ

(2)
1,1M2 + · · ·

...

Set ci,j =
∑
k ai,kbk,j for all i, j and compare coefficients.

6

How to encode the search for a matrix multiplication scheme as a
SAT problem?

This gives the Brent equations (e.g., for 3×3 with 21multiplications)

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

21∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• 36 = 729 cubic equations

• 21 · 9 · 3 = 567 variables

Laderman claims that he solved this system by hand,
but he doesn’t say exactly how.

6

How to encode the search for a matrix multiplication scheme as a
SAT problem?

This gives the Brent equations (e.g., for 3×3 with 21multiplications)

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

21∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• 36 = 729 cubic equations

• 21 · 9 · 3 = 567 variables

Laderman claims that he solved this system by hand,
but he doesn’t say exactly how.

6

How to encode the search for a matrix multiplication scheme as a
SAT problem?

This gives the Brent equations (e.g., for 3×3 with 21multiplications)

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

21∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

• 36 = 729 cubic equations

• 21 · 9 · 3 = 567 variables

Laderman claims that he solved this system by hand,
but he doesn’t say exactly how.

6

How to encode the search for a matrix multiplication scheme as a
SAT problem?

This gives the Brent equations (e.g., for 3×3 with 21multiplications)

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

21∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Solve this system in Z2.

Reading α
(q)
i,j

, β
(q)
k,l

, γ
(q)
m,n

as boolean variables and + as XOR, the
problem becomes a SAT problem.

6

How to encode the search for a matrix multiplication scheme as a
SAT problem?

This gives the Brent equations (e.g., for 3×3 with 21multiplications)

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

21∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

Solve this system in Z2.

Reading α
(q)
i,j

, β
(q)
k,l

, γ
(q)
m,n

as boolean variables and + as XOR, the
problem becomes a SAT problem.

6

Problem: SAT solvers don’t like XOR. They want CNF as input.

a+ b = 1 ⇐⇒ (ā∨ b̄)∧ (a∨ b)

a+ b+ c = 1 ⇐⇒ (ā∨ b̄∨ c)∧ (ā∨ c̄∨ b)

∧ (b̄∨ c̄∨ a)∧ (a∨ b∨ c)

a+ b+ c+ d = 1 ⇐⇒ (ā∨ b̄∨ c̄∨ d̄)∧ (ā∨ b̄∨ c∨ d)

∧ (ā∨ c̄∨ b∨ d)∧ (ā∨ d̄∨ b∨ c)

∧ (b̄∨ c̄∨ a∨ d)∧ (b̄∨ d̄∨ a∨ c)

∧ (c̄∨ d̄∨ a∨ b)∧ (a∨ b∨ c∨ d).

Expanding 21-term sum into CNF like this gives a million clauses.

7

Problem: SAT solvers don’t like XOR. They want CNF as input.

a+ b = 1 ⇐⇒ (ā∨ b̄)∧ (a∨ b)

a+ b+ c = 1 ⇐⇒ (ā∨ b̄∨ c)∧ (ā∨ c̄∨ b)

∧ (b̄∨ c̄∨ a)∧ (a∨ b∨ c)

a+ b+ c+ d = 1 ⇐⇒ (ā∨ b̄∨ c̄∨ d̄)∧ (ā∨ b̄∨ c∨ d)

∧ (ā∨ c̄∨ b∨ d)∧ (ā∨ d̄∨ b∨ c)

∧ (b̄∨ c̄∨ a∨ d)∧ (b̄∨ d̄∨ a∨ c)

∧ (c̄∨ d̄∨ a∨ b)∧ (a∨ b∨ c∨ d).

Expanding 21-term sum into CNF like this gives a million clauses.

7

Problem: SAT solvers don’t like XOR. They want CNF as input.

a+ b = 1 ⇐⇒ (ā∨ b̄)∧ (a∨ b)

a+ b+ c = 1 ⇐⇒ (ā∨ b̄∨ c)∧ (ā∨ c̄∨ b)

∧ (b̄∨ c̄∨ a)∧ (a∨ b∨ c)

a+ b+ c+ d = 1 ⇐⇒ (ā∨ b̄∨ c̄∨ d̄)∧ (ā∨ b̄∨ c∨ d)

∧ (ā∨ c̄∨ b∨ d)∧ (ā∨ d̄∨ b∨ c)

∧ (b̄∨ c̄∨ a∨ d)∧ (b̄∨ d̄∨ a∨ c)

∧ (c̄∨ d̄∨ a∨ b)∧ (a∨ b∨ c∨ d).

Expanding 21-term sum into CNF like this gives a million clauses.

7

Problem: SAT solvers don’t like XOR. They want CNF as input.

a+ b = 1 ⇐⇒ (ā∨ b̄)∧ (a∨ b)

a+ b+ c = 1 ⇐⇒ (ā∨ b̄∨ c)∧ (ā∨ c̄∨ b)

∧ (b̄∨ c̄∨ a)∧ (a∨ b∨ c)

a+ b+ c+ d = 1 ⇐⇒ (ā∨ b̄∨ c̄∨ d̄)∧ (ā∨ b̄∨ c∨ d)

∧ (ā∨ c̄∨ b∨ d)∧ (ā∨ d̄∨ b∨ c)

∧ (b̄∨ c̄∨ a∨ d)∧ (b̄∨ d̄∨ a∨ c)

∧ (c̄∨ d̄∨ a∨ b)∧ (a∨ b∨ c∨ d).

Expanding 21-term sum into CNF like this gives a million clauses.

7

Problem: SAT solvers don’t like XOR. They want CNF as input.

a+ b = 1 ⇐⇒ (ā∨ b̄)∧ (a∨ b)

a+ b+ c = 1 ⇐⇒ (ā∨ b̄∨ c)∧ (ā∨ c̄∨ b)

∧ (b̄∨ c̄∨ a)∧ (a∨ b∨ c)

a+ b+ c+ d = 1 ⇐⇒ (ā∨ b̄∨ c̄∨ d̄)∧ (ā∨ b̄∨ c∨ d)

∧ (ā∨ c̄∨ b∨ d)∧ (ā∨ d̄∨ b∨ c)

∧ (b̄∨ c̄∨ a∨ d)∧ (b̄∨ d̄∨ a∨ c)

∧ (c̄∨ d̄∨ a∨ b)∧ (a∨ b∨ c∨ d).

Expanding 21-term sum into CNF like this gives a million clauses.

7

SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0↓
a+ b+ c = T1

→ CNF

d+ e+ f = T2

→ CNF

g+ h+ i = T3

→ CNF

T1 + T2 + T3 = 0

→ CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

8

SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0

↓
a+ b+ c = T1

→ CNF

d+ e+ f = T2

→ CNF

g+ h+ i = T3

→ CNF

T1 + T2 + T3 = 0

→ CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

8

SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0↓
a+ b+ c = T1

→ CNF

d+ e+ f = T2

→ CNF

g+ h+ i = T3

→ CNF

T1 + T2 + T3 = 0

→ CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

8

SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0↓
a+ b+ c = T1 → CNF

d+ e+ f = T2 → CNF

g+ h+ i = T3 → CNF

T1 + T2 + T3 = 0 → CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

8

SAT people avoid this explosion by assigning new variables
(“Tseitin variables”) to subexpressions before converting to CNF:

a+ b+ c+ d+ e+ f+ g+ h+ i = 0↓
a+ b+ c = T1 → CNF

d+ e+ f = T2 → CNF

g+ h+ i = T3 → CNF

T1 + T2 + T3 = 0 → CNF

This decreases the number (and length) of clauses at the cost of
increasing the number of variables.

8

Breaking all the sums of length 21 into chunks of size 3 terms each,
we end up with a CNF with 21861 variables and 116748 clauses.

Next, we enrich this formula with some additional information that
the solver might find helpful. For example:

• For each i, j, at least one of α
(1)
i,j , . . . , α

(q)
i,j must be nonzero.

Likewise for β and γ.

• For each q, at least one of the α
(q)
i,j must be nonzero.

Likewise for β and γ.

9

Breaking all the sums of length 21 into chunks of size 3 terms each,
we end up with a CNF with 21861 variables and 116748 clauses.

Next, we enrich this formula with some additional information that
the solver might find helpful.

For example:

• For each i, j, at least one of α
(1)
i,j , . . . , α

(q)
i,j must be nonzero.

Likewise for β and γ.

• For each q, at least one of the α
(q)
i,j must be nonzero.

Likewise for β and γ.

9

Breaking all the sums of length 21 into chunks of size 3 terms each,
we end up with a CNF with 21861 variables and 116748 clauses.

Next, we enrich this formula with some additional information that
the solver might find helpful. For example:

• For each i, j, at least one of α
(1)
i,j , . . . , α

(q)
i,j must be nonzero.

Likewise for β and γ.

• For each q, at least one of the α
(q)
i,j must be nonzero.

Likewise for β and γ.

9

Breaking all the sums of length 21 into chunks of size 3 terms each,
we end up with a CNF with 21861 variables and 116748 clauses.

Next, we enrich this formula with some additional information that
the solver might find helpful. For example:

• For each i, j, at least one of α
(1)
i,j , . . . , α

(q)
i,j must be nonzero.

Likewise for β and γ.

• For each q, at least one of the α
(q)
i,j must be nonzero.

Likewise for β and γ.

9

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

10

We should also exploit symmetries.

It suffices to inspect one
configuration per orbit.

10

Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

Altogether, the symmetry group is S3 ×GL(n)3.

We have worked out a small set of clauses that has exactly one
solution in each orbit under this group action.

11

Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

Altogether, the symmetry group is S3 ×GL(n)3.

We have worked out a small set of clauses that has exactly one
solution in each orbit under this group action.

11

Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

Altogether, the symmetry group is S3 ×GL(n)3.

We have worked out a small set of clauses that has exactly one
solution in each orbit under this group action.

11

Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

Altogether, the symmetry group is S3 ×GL(n)3.

We have worked out a small set of clauses that has exactly one
solution in each orbit under this group action.

11

Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

Altogether, the symmetry group is S3 ×GL(n)3.

We have worked out a small set of clauses that has exactly one
solution in each orbit under this group action.

11

Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

Altogether, the symmetry group is S3 ×GL(n)3.

We have worked out a small set of clauses that has exactly one
solution in each orbit under this group action.

11

Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

Altogether, the symmetry group is S3 ×GL(n)3.

We have worked out a small set of clauses that has exactly one
solution in each orbit under this group action.

11

Matrix multiplication AB = C enjoys several symmetries:

• AUU−1B = C for every invertible U

• VAB = VC for every invertible V

• ABW = CW for every invertible W

• B>A> = C>

• and one more that is a little more subtle

Altogether, the symmetry group is S3 ×GL(n)3.

We have worked out a small set of clauses that has exactly one
solution in each orbit under this group action.

11

Simpler example: For the group action

GL(3)2 × Z3×32 → Z3×32 , (U,V) ·A := UAV−1

we have four orbits.

A choice of orbit representatives is0 0 0

0 0 0

0 0 0



not needed

,

1 0 0

0 0 0

0 0 0



Stabilizer

H1 ≤ GL(3)2

|H1| = 576

,

1 0 0

0 1 0

0 0 0



Stabilizer

H2 ≤ GL(3)2

|H2| = 96

,

1 0 0

0 1 0

0 0 1



Stabilizer

H3 ≤ GL(3)2

|H3| = 168

.

12

Simpler example: For the group action

GL(3)2 × Z3×32 → Z3×32 , (U,V) ·A := UAV−1

we have four orbits. A choice of orbit representatives is0 0 0

0 0 0

0 0 0



not needed

,

1 0 0

0 0 0

0 0 0



Stabilizer

H1 ≤ GL(3)2

|H1| = 576

,

1 0 0

0 1 0

0 0 0



Stabilizer

H2 ≤ GL(3)2

|H2| = 96

,

1 0 0

0 1 0

0 0 1



Stabilizer

H3 ≤ GL(3)2

|H3| = 168

.

12

Simpler example: For the group action

GL(3)2 × Z3×32 → Z3×32 , (U,V) ·A := UAV−1

we have four orbits. A choice of orbit representatives is0 0 0

0 0 0

0 0 0


not needed

,

1 0 0

0 0 0

0 0 0



Stabilizer

H1 ≤ GL(3)2

|H1| = 576

,

1 0 0

0 1 0

0 0 0



Stabilizer

H2 ≤ GL(3)2

|H2| = 96

,

1 0 0

0 1 0

0 0 1



Stabilizer

H3 ≤ GL(3)2

|H3| = 168

.

12

Simpler example: For the group action

GL(3)2 × Z3×32 → Z3×32 , (U,V) ·A := UAV−1

we have four orbits. A choice of orbit representatives is0 0 0

0 0 0

0 0 0


not needed

,

1 0 0

0 0 0

0 0 0


Stabilizer

H1 ≤ GL(3)2

|H1| = 576

,

1 0 0

0 1 0

0 0 0


Stabilizer

H2 ≤ GL(3)2

|H2| = 96

,

1 0 0

0 1 0

0 0 1


Stabilizer

H3 ≤ GL(3)2

|H3| = 168

.

12

Next, for each i = 1, 2, 3 consider the group action(
Hi ×GL(3)

)
× Z3×32 → Z3×32 , (U,V,W)× B := V BW−1.

For instance for i = 2 we get 6 orbits. A list of representatives is0 0 0

0 0 0

0 0 0

 ,
1 0 0

0 0 0

0 0 0

 ,
0 0 0

0 0 0

1 0 0

 ,
1 0 0

0 1 0

0 0 0

 ,
1 0 0

0 0 0

0 1 0

 ,
1 0 0

0 1 0

0 0 1

 .
Similarly, we have 6 orbits for i = 1 and 4 orbits for i = 3.

13

Next, for each i = 1, 2, 3 consider the group action(
Hi ×GL(3)

)
× Z3×32 → Z3×32 , (U,V,W)× B := V BW−1.

For instance for i = 2 we get 6 orbits.

A list of representatives is0 0 0

0 0 0

0 0 0

 ,
1 0 0

0 0 0

0 0 0

 ,
0 0 0

0 0 0

1 0 0

 ,
1 0 0

0 1 0

0 0 0

 ,
1 0 0

0 0 0

0 1 0

 ,
1 0 0

0 1 0

0 0 1

 .
Similarly, we have 6 orbits for i = 1 and 4 orbits for i = 3.

13

Next, for each i = 1, 2, 3 consider the group action(
Hi ×GL(3)

)
× Z3×32 → Z3×32 , (U,V,W)× B := V BW−1.

For instance for i = 2 we get 6 orbits. A list of representatives is0 0 0

0 0 0

0 0 0

 ,
1 0 0

0 0 0

0 0 0

 ,
0 0 0

0 0 0

1 0 0

 ,
1 0 0

0 1 0

0 0 0

 ,
1 0 0

0 0 0

0 1 0

 ,
1 0 0

0 1 0

0 0 1

 .

Similarly, we have 6 orbits for i = 1 and 4 orbits for i = 3.

13

Next, for each i = 1, 2, 3 consider the group action(
Hi ×GL(3)

)
× Z3×32 → Z3×32 , (U,V,W)× B := V BW−1.

For instance for i = 2 we get 6 orbits. A list of representatives is0 0 0

0 0 0

0 0 0

 ,
1 0 0

0 0 0

0 0 0

 ,
0 0 0

0 0 0

1 0 0

 ,
1 0 0

0 1 0

0 0 0

 ,
1 0 0

0 0 0

0 1 0

 ,
1 0 0

0 1 0

0 0 1

 .
Similarly, we have 6 orbits for i = 1 and 4 orbits for i = 3.

13

Altogether, we have found 5+ 5+ 3 nontrivial orbits for the
combined group action

GL(3)3 × (Z3×32)2 → (Z3×32)2,

(U,V,W)× (A,B) := (UAV−1, V BW−1).

For each representative, determine the stabilizer H ≤ GL(3)3 and
find the orbits of the action of H on C ∈ Z3×32 .

Merge orbits that are equivalent under the action of S3.

Finally, instead of (29 − 1)3 = 133432830 matrix triples, we have
to consider only 94 orbit representatives.

14

Altogether, we have found 5+ 5+ 3 nontrivial orbits for the
combined group action

GL(3)3 × (Z3×32)2 → (Z3×32)2,

(U,V,W)× (A,B) := (UAV−1, V BW−1).

For each representative, determine the stabilizer H ≤ GL(3)3 and
find the orbits of the action of H on C ∈ Z3×32 .

Merge orbits that are equivalent under the action of S3.

Finally, instead of (29 − 1)3 = 133432830 matrix triples, we have
to consider only 94 orbit representatives.

14

Altogether, we have found 5+ 5+ 3 nontrivial orbits for the
combined group action

GL(3)3 × (Z3×32)2 → (Z3×32)2,

(U,V,W)× (A,B) := (UAV−1, V BW−1).

For each representative, determine the stabilizer H ≤ GL(3)3 and
find the orbits of the action of H on C ∈ Z3×32 .

Merge orbits that are equivalent under the action of S3.

Finally, instead of (29 − 1)3 = 133432830 matrix triples, we have
to consider only 94 orbit representatives.

14

Altogether, we have found 5+ 5+ 3 nontrivial orbits for the
combined group action

GL(3)3 × (Z3×32)2 → (Z3×32)2,

(U,V,W)× (A,B) := (UAV−1, V BW−1).

For each representative, determine the stabilizer H ≤ GL(3)3 and
find the orbits of the action of H on C ∈ Z3×32 .

Merge orbits that are equivalent under the action of S3.

Finally, instead of (29 − 1)3 = 133432830 matrix triples, we have
to consider only 94 orbit representatives.

14

Actually there are some much more obvious and much more
effective symmetries:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

21∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

We can change the order of summation in 21! possible ways.

We impose a lexicographic order on the summands in order to
break this symmetry.

15

Actually there are some much more obvious and much more
effective symmetries:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

21∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

We can change the order of summation in 21! possible ways.

We impose a lexicographic order on the summands in order to
break this symmetry.

15

Actually there are some much more obvious and much more
effective symmetries:

∀ i, j, k, l,m, n ∈ {1, 2, 3} :

21∑
q=1

α
(q)
i,j
β
(q)
k,l
γ
(q)
m,n

= δj,kδi,mδl,n

We can change the order of summation in 21! possible ways.

We impose a lexicographic order on the summands in order to
break this symmetry.

15

At the end of the day, we have an enriched CNF with 25078
variables and 130709 clauses.

Unfortunately, we haven’t been able to solve it within some 10
years of CPU time.

In contrast, finding Strassen’s original algorithm for 2× 2 matrices
is a matter of a few seconds only.

The optimal algorithms for the rectangular cases (2× 2)(2× 3)
and (2× 3)(3× 3) are found within a few minutes.

We will keep trying to find some improvement for 3× 3. For the
time being, we have no news on matrix multiplication.

16

At the end of the day, we have an enriched CNF with 25078
variables and 130709 clauses.

Unfortunately, we haven’t been able to solve it within some 10
years of CPU time.

In contrast, finding Strassen’s original algorithm for 2× 2 matrices
is a matter of a few seconds only.

The optimal algorithms for the rectangular cases (2× 2)(2× 3)
and (2× 3)(3× 3) are found within a few minutes.

We will keep trying to find some improvement for 3× 3. For the
time being, we have no news on matrix multiplication.

16

At the end of the day, we have an enriched CNF with 25078
variables and 130709 clauses.

Unfortunately, we haven’t been able to solve it within some 10
years of CPU time.

In contrast, finding Strassen’s original algorithm for 2× 2 matrices
is a matter of a few seconds only.

The optimal algorithms for the rectangular cases (2× 2)(2× 3)
and (2× 3)(3× 3) are found within a few minutes.

We will keep trying to find some improvement for 3× 3. For the
time being, we have no news on matrix multiplication.

16

At the end of the day, we have an enriched CNF with 25078
variables and 130709 clauses.

Unfortunately, we haven’t been able to solve it within some 10
years of CPU time.

In contrast, finding Strassen’s original algorithm for 2× 2 matrices
is a matter of a few seconds only.

The optimal algorithms for the rectangular cases (2× 2)(2× 3)
and (2× 3)(3× 3) are found within a few minutes.

We will keep trying to find some improvement for 3× 3. For the
time being, we have no news on matrix multiplication.

16

At the end of the day, we have an enriched CNF with 25078
variables and 130709 clauses.

Unfortunately, we haven’t been able to solve it within some 10
years of CPU time.

In contrast, finding Strassen’s original algorithm for 2× 2 matrices
is a matter of a few seconds only.

The optimal algorithms for the rectangular cases (2× 2)(2× 3)
and (2× 3)(3× 3) are found within a few minutes.

We will keep trying to find some improvement for 3× 3. For the
time being, we have no news on matrix multiplication.

16

