CYLINDRICAL ALGEBRAIC DECOMPOSITION

Manuel Kauers · Institute for Algebra Johannes Kepler University, Linz, Austria

A possible answer:

$$\approx -0.603174 - 2.40107i,$$

 $\approx -0.603174 + 2.40107i,$
 ≈ 0.409527
 ≈ 0.796821

Another possible answer: There are exactly four roots $x_1, x_2, x_3, x_4 \in \mathbb{C}$ and they satisfy

$$\begin{vmatrix} x_1 - \left(-\frac{3637733974247496529026021}{6030984958023367133166935} - \frac{205607571066698343531}{85631643614737397990} i \right) \end{vmatrix} < 10^{-15}$$

$$\begin{vmatrix} x_2 - \left(-\frac{3637733974247496529026021}{6030984958023367133166935} + \frac{205607571066698343531}{85631643614737397990} i \right) \end{vmatrix} < 10^{-15}$$

$$\begin{vmatrix} x_3 - \frac{494062960398985183435915}{1206423125104110760995248} \end{vmatrix} < 10^{-14}$$

$$\begin{vmatrix} x_4 - \frac{76931612246324251675355}{96548159142657595865737} \end{vmatrix} < 10^{-14}$$

2

Another possible answer: There are exactly two roots $x_1, x_2 \in \mathbb{R}$ and they satisfy

$$\begin{vmatrix} x_1 - \frac{494062960398985183435915}{1206423125104110760995248} \end{vmatrix} < 10^{-14}$$

$$\begin{vmatrix} x_2 - \frac{76931612246324251675355}{96548159142657595865737} \end{vmatrix} < 10^{-14}$$

Another possible answer:

Root $[x^4+5x^2-7x+2, 1]$,

Root[x^4+5x^2-7x+2 , 2],

Root[x^4+5x^2-7x+2 , 3],

Root $[x^4+5x^2-7x+2, 4]$.

Another possible answer:

$$-\frac{1}{2\sqrt{\frac{3}{-10+\sqrt[3]{\frac{853}{2}-\frac{9\sqrt{3173}}{2}}+\sqrt[3]{\frac{1}{2}\left(853+9\sqrt{3173}\right)}}}}-\frac{1}{2}\sqrt{-\frac{20}{3}-\frac{1}{3}\sqrt[3]{\frac{853}{2}-\frac{9\sqrt{3173}}{2}}-\frac{1}{3}\sqrt[3]{\frac{1}{2}\left(853+9\sqrt{3173}\right)}}$$

$$\frac{1}{2}\sqrt{-\frac{20}{3}-\frac{1}{3}\sqrt[3]{\frac{853}{2}-\frac{9\sqrt{3173}}{2}}-\frac{1}{3}\sqrt[3]{\frac{1}{2}\left(853+9\sqrt{3173}\right)}-14\sqrt{\frac{3}{-10+\sqrt[3]{\frac{853}{2}-\frac{9\sqrt{3173}}{2}}+\sqrt[3]{\frac{1}{2}\left(853+9\sqrt{3173}\right)}}$$

$$-\frac{1}{2}\sqrt{-\frac{20}{3}-\frac{1}{3}\sqrt[3]{\frac{853}{2}-\frac{9\sqrt{3173}}{2}}+\sqrt[3]{\frac{1}{2}\left(853+9\sqrt{3173}\right)}}$$

$$-\frac{1}{2}\sqrt{-\frac{20}{3}-\frac{1}{3}\sqrt[3]{\frac{853}{2}-\frac{9\sqrt{3173}}{2}}-\frac{1}{3}\sqrt[3]{\frac{1}{2}\left(853+9\sqrt{3173}\right)}}}$$

$$+\frac{1}{2}\sqrt{-\frac{20}{3}-\frac{1}{3}\sqrt[3]{\frac{853}{2}-\frac{9\sqrt{3173}}{2}}-\frac{1}{3}\sqrt[3]{\frac{1}{2}\left(853+9\sqrt{3173}\right)}}$$

Another possible answer:

Root [x^4+5x^2-7x+2,
$$-\frac{793221}{1315078} - \frac{1343245}{559436}i$$
], Root [x^4+5x^2-7x+2, $-\frac{793221}{1315078} + \frac{1343245}{559436}i$], Root [x^4+5x^2-7x+2, $\frac{4737}{11567}$], Root [x^4+5x^2-7x+2, $\frac{702}{881}$].

Another possible answer:

Root [x^4+5x^2-7x+2,
$$-\frac{793221}{1315078} - \frac{1343245}{559436}i$$
],
Root [x^4+5x^2-7x+2, $-\frac{793221}{1315078} + \frac{1343245}{559436}i$],
Root [x^4+5x^2-7x+2, $\frac{4737}{11567}$],
Root [x^4+5x^2-7x+2, $\frac{702}{881}$].

Today we only care about real roots.

Another possible answer:

Root [x^4+5x^2-7x+2,
$$-\frac{793221}{1315078} - \frac{1343245}{559436}i$$
],
Root [x^4+5x^2-7x+2, $-\frac{793221}{1315078} + \frac{1343245}{559436}i$],
Root [x^4+5x^2-7x+2, $\frac{4737}{11567}$],
Root [x^4+5x^2-7x+2, $\frac{702}{881}$].

Today we only care about real roots.

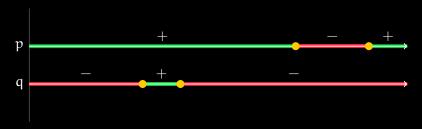
Another possible answer:

Root [x^4+5x^2-7x+2,
$$-\frac{793221}{1315078} - \frac{1343245}{559436}i$$
],
Root [x^4+5x^2-7x+2, $-\frac{793221}{1315078} + \frac{1343245}{559436}i$],
Root [x^4+5x^2-7x+2, $\frac{4737}{11567}$],
Root [x^4+5x^2-7x+2, $\frac{702}{881}$].

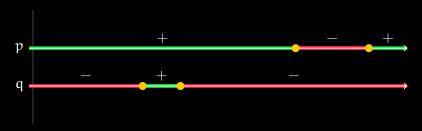
Today we only care about real roots.

They divide the real line into finitely many cells in which the polynomial does not change its sign.

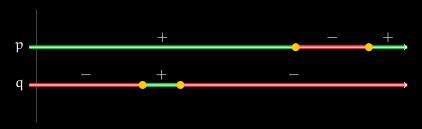
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



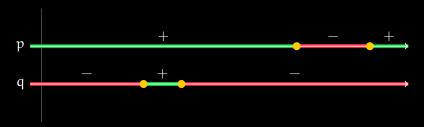
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



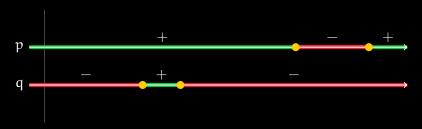
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



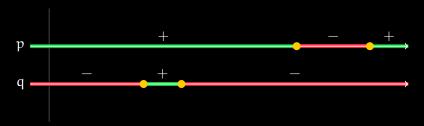
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow \overline{q(x)} < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



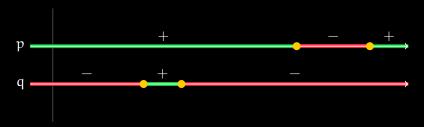
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



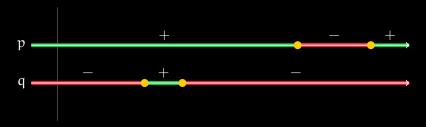
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



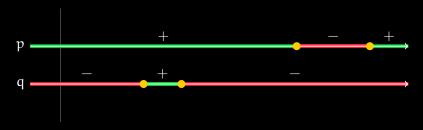
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



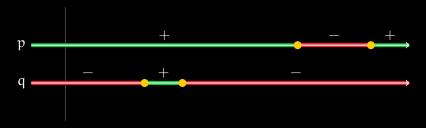
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



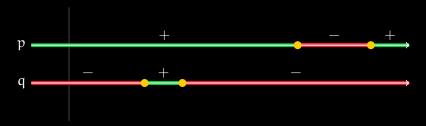
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



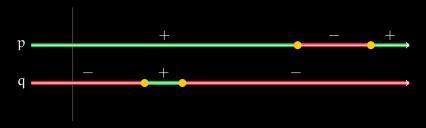
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



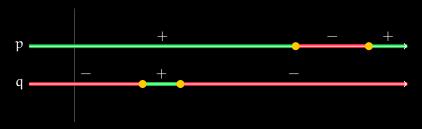
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



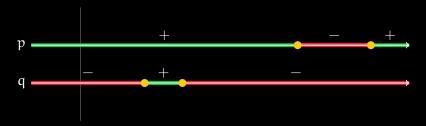
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



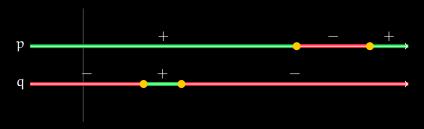
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow \overline{q(x)} < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



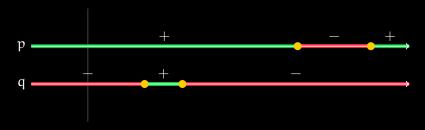
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



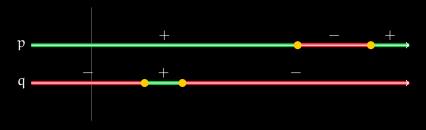
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



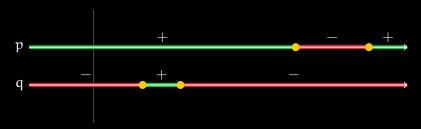
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



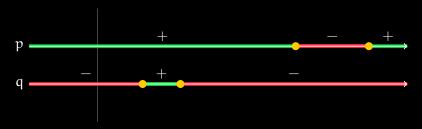
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



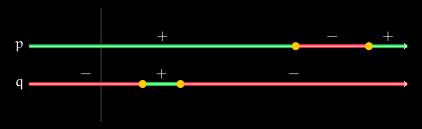
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



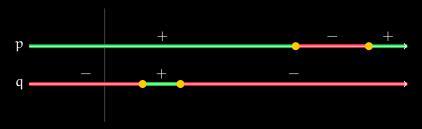
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



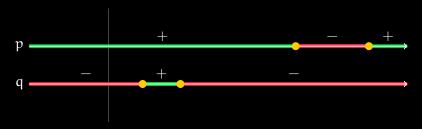
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



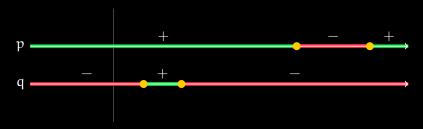
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



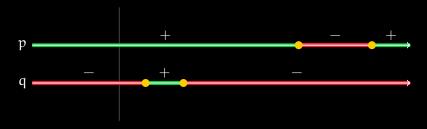
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



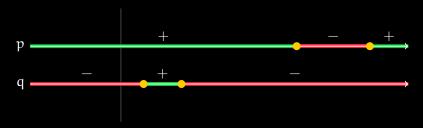
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



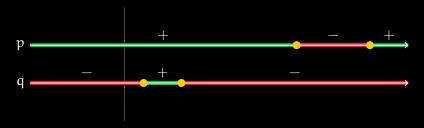
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



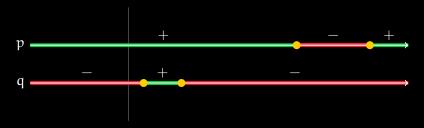
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



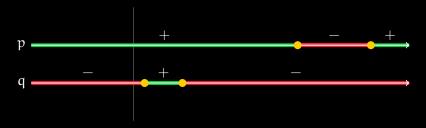
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



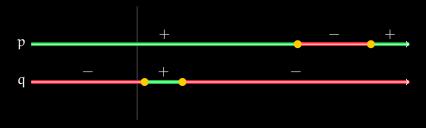
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



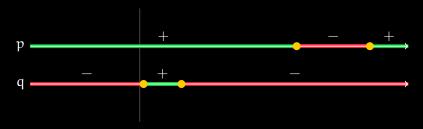
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



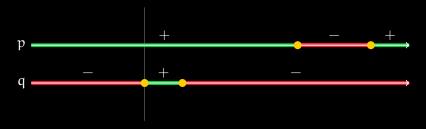
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



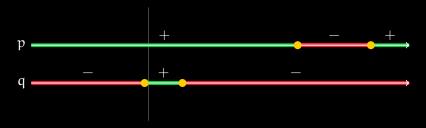
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



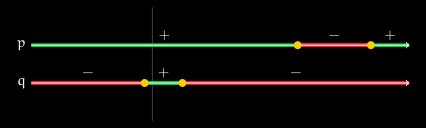
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



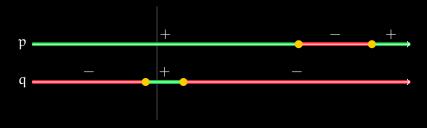
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



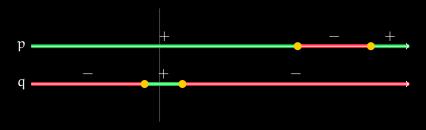
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



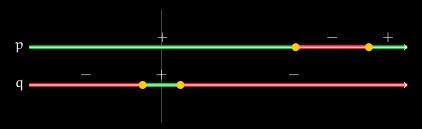
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



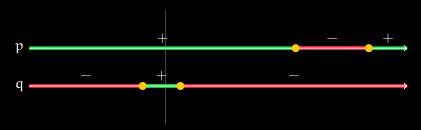
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



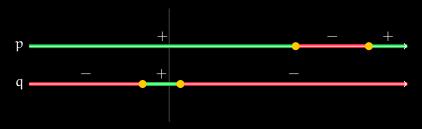
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



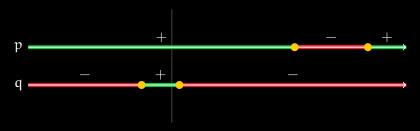
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



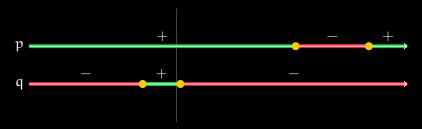
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



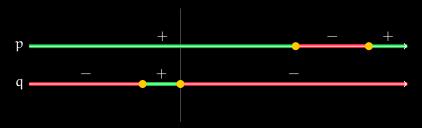
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



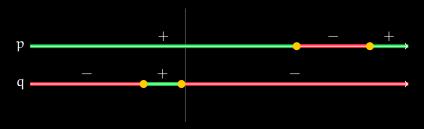
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



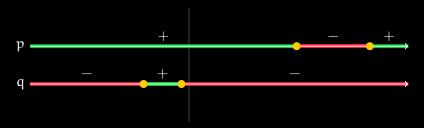
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



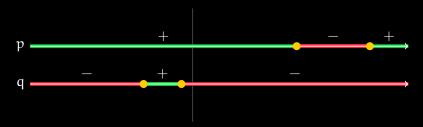
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



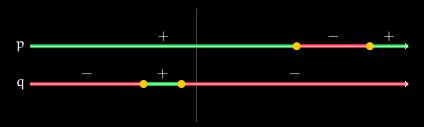
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



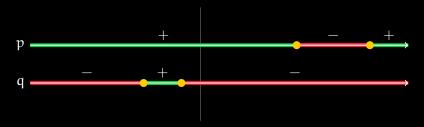
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



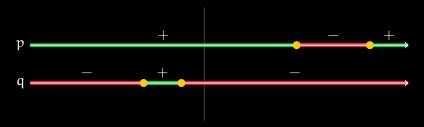
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



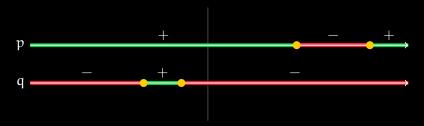
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



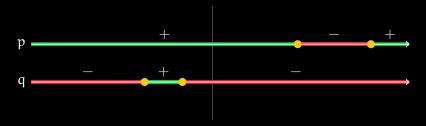
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



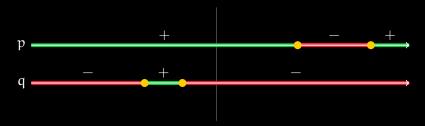
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



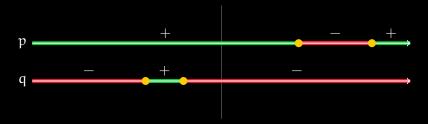
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



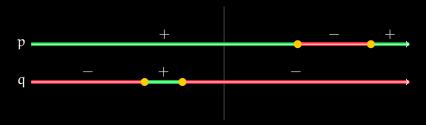
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



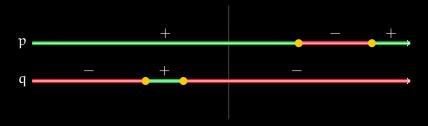
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



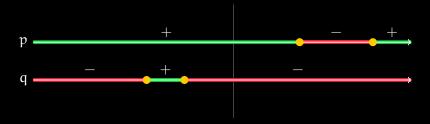
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



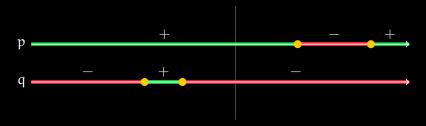
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



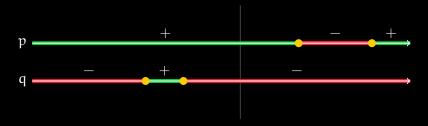
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



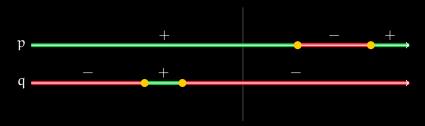
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



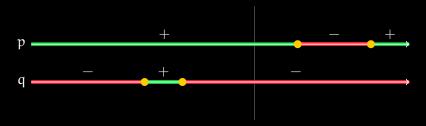
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



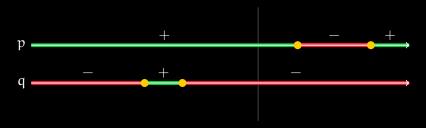
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



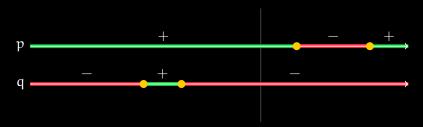
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



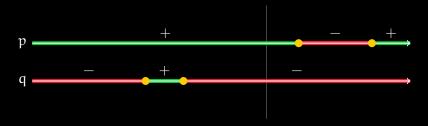
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$

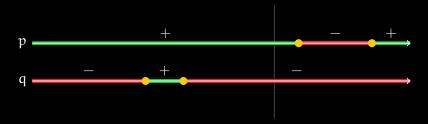


- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$

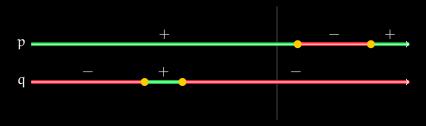


- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$

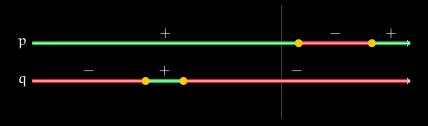
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



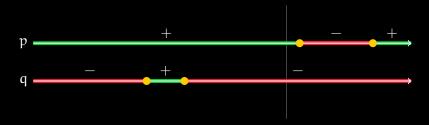
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land \overline{q(x)} < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



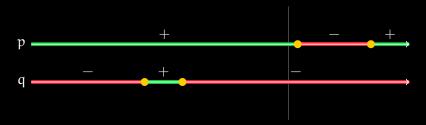
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



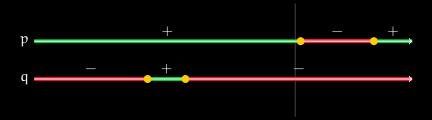
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



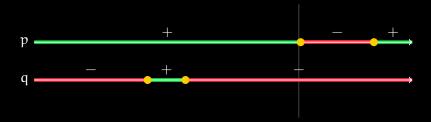
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



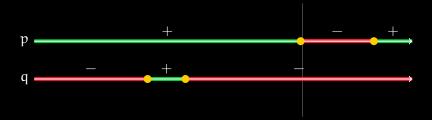
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



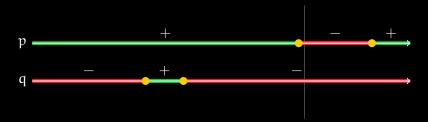
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



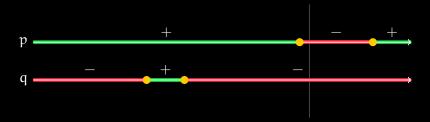
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



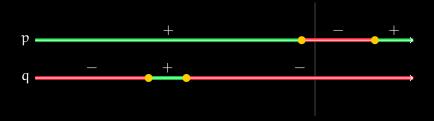
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



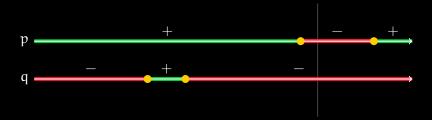
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



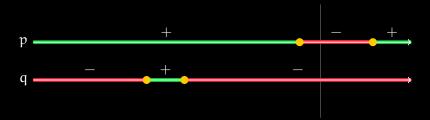
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



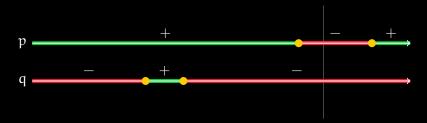
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



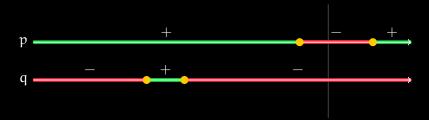
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



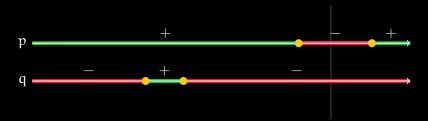
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



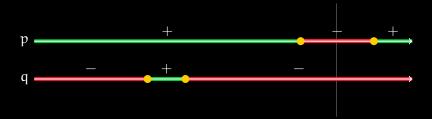
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



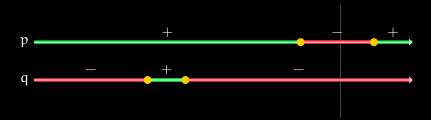
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



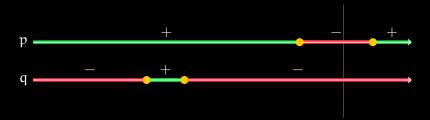
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



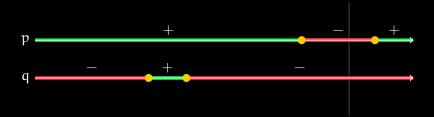
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



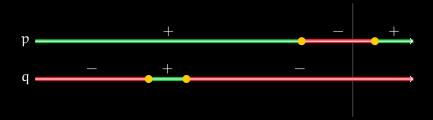
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



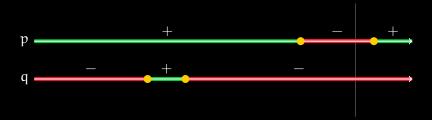
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



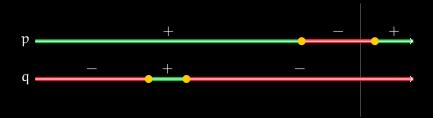
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



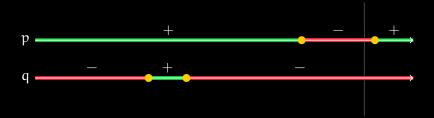
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



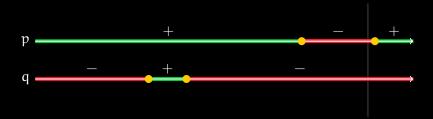
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



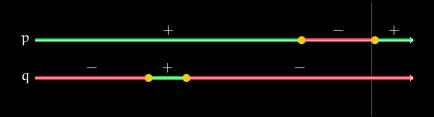
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow \overline{q(x)} < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



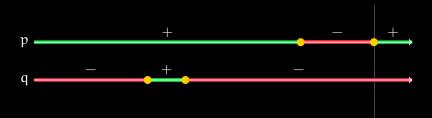
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow \overline{q(x)} < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



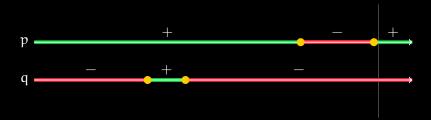
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



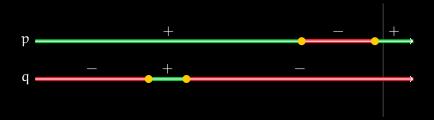
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



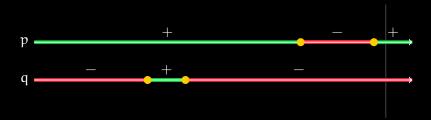
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



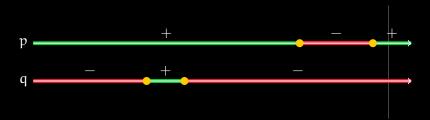
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



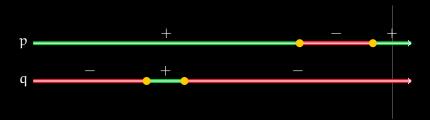
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



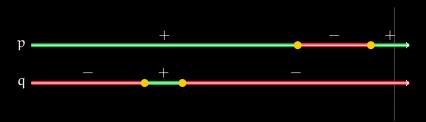
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



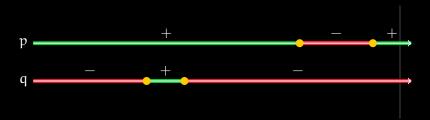
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



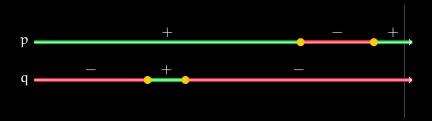
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



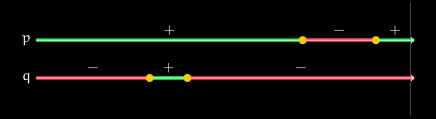
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



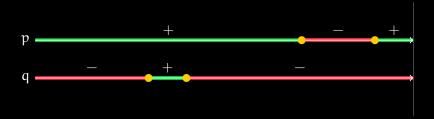
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$

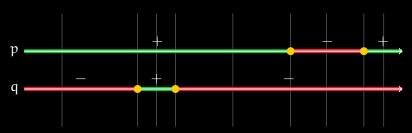


- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$

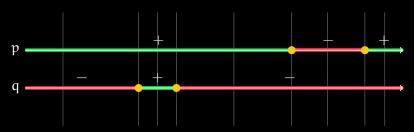


- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$

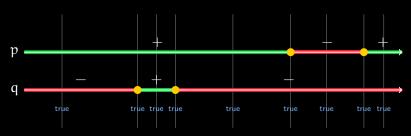
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



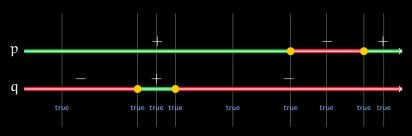
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



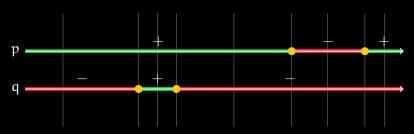
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



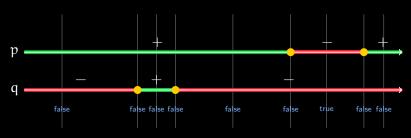
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



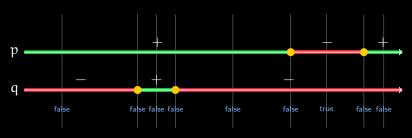
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



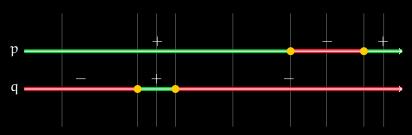
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



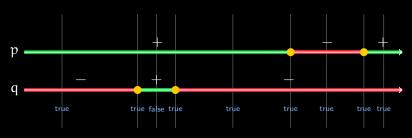
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



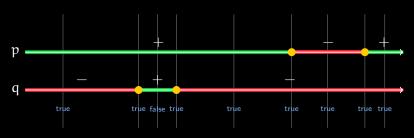
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



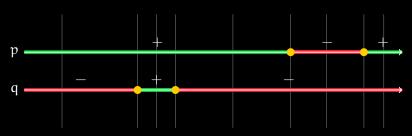
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



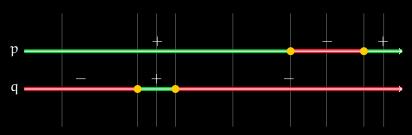
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$



- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$ FALSE!



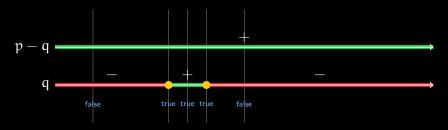
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < \overline{0}$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$ FALSE!
- $\exists x \in \mathbb{R} : p(x) \ge q(x) \ge 0$



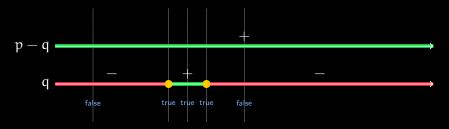
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$ FALSE!
- $\exists x \in \mathbb{R} : p(x) q(x) \ge 0 \land q(x) \ge 0$

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$ FALSE!
- $\exists x \in \mathbb{R} : p(x) q(x) \ge 0 \land q(x) \ge 0$

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$ FALSE!
- $\exists x \in \mathbb{R} : p(x) q(x) \ge 0 \land q(x) \ge 0$



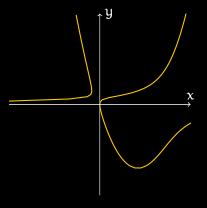
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$ FALSE!
- $\exists x \in \mathbb{R} : p(x) q(x) \ge 0 \land q(x) \ge 0$



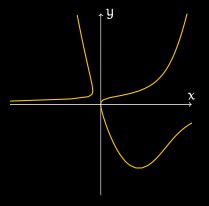
- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R} : p(x) \le 0 \lor q(x) \le 0$ FALSE!
- $\exists x \in \mathbb{R} : p(x) q(x) \ge 0 \land q(x) \ge 0$ TRUE!

A possible answer: they form a curve in \mathbb{R}^2 .

A possible answer: they form a curve in \mathbb{R}^2 .

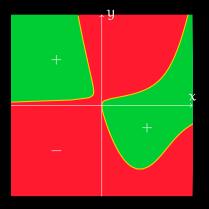


A possible answer: they form a curve in \mathbb{R}^2 .



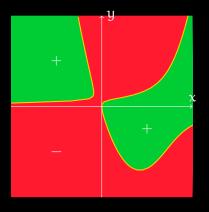
The curve divides the plane into finitely many cells in which the polynomial does not change its sign.

A possible answer: they form a curve in \mathbb{R}^2 .

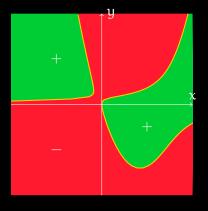


The curve divides the plane into finitely many cells in which the polynomial does not change its sign.

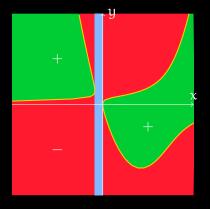
What are the $x \in \mathbb{R}$ such that $\forall y \in \mathbb{R} : yx^2 - 3xy + x - y^2 < 0$?



What are the $x \in \mathbb{R}$ such that $\forall \ y \in \mathbb{R} : yx^2 - 3xy + x - y^2 < 0$? A possible answer: $2 - (2 - 2\sqrt{2})^{-1/3} - (3 - 2\sqrt{2})^{1/3} \le x \le 0$



What are the $x \in \mathbb{R}$ such that $\forall y \in \mathbb{R} : yx^2 - 3xy + x - y^2 < 0$? A possible answer: $2 - (2 - 2\sqrt{2})^{-1/3} - (3 - 2\sqrt{2})^{1/3} \le x \le 0$



INPUT:
$$\forall x : xy^2 - 3xy + y - x^2 < 0$$

OUTPUT:
$$2 - (2 - 2\sqrt{2})^{-1/3} - (3 - 2\sqrt{2})^{1/3} \le y \le 0$$

Both formulas are equivalent over $\mathbb{R},$ but there are no quantifiers in the output formula.

INPUT:
$$\exists x : x^2 + y^2 \le 1$$

OUTPUT:
$$-1 \le y \le 1$$

Both formulas are equivalent over $\mathbb{R},$ but there are no quantifiers in the output formula.

INPUT: $\forall x : x^2 \ge 0$

OUTPUT: true

Both formulas are equivalent over \mathbb{R} , but there are no quantifiers in the output formula.

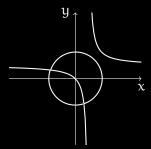
INPUT:
$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 \ \forall \ x \in [-1,1] : |x-x_0| < \delta \Rightarrow |x^2-x_0^2| < \varepsilon$$

OUTPUT: $-1 \le x_0 \le 1$

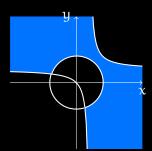
Both formulas are equivalent over \mathbb{R} , but there are no quantifiers in the output formula.

A finite set of polynomials $\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n]$ induces a decomposition ("partition") of \mathbb{R}^n into maximal sign-invariant cells ("regions").

Example: The polynomials $p_1=x^2+y^2-4$ and $p_2=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^2 into 13 cells:

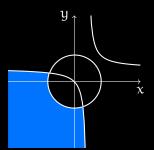


Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



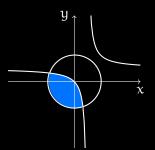
$$p_1(x,y) > 0$$
 and $p_2(x,y) < 0$.

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



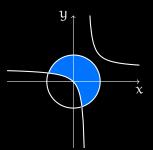
$$p_1(x,y) > 0$$
 and $p_2(x,y) > 0$.

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



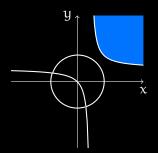
$$p_1(x,y) < 0$$
 and $p_2(x,y) > 0$.

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



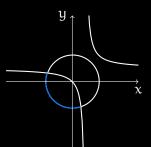
$$p_1(x,y)<0\quad\text{and}\quad p_2(x,y)<0.$$

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



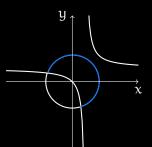
$$p_1(x, y) > 0$$
 and $p_2(x, y) > 0$.

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



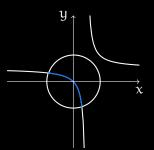
$$p_1(x,y)=0\quad\text{and}\quad p_2(x,y)>0.$$

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



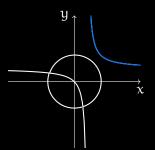
$$p_1(x,y)=0\quad\text{and}\quad p_2(x,y)<0.$$

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



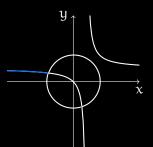
$$p_1(x,y)<0\quad\text{and}\quad p_2(x,y)=0.$$

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



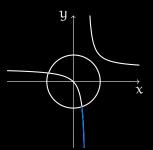
$$p_1(x, y) > 0$$
 and $p_2(x, y) = 0$.

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



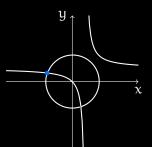
$$p_1(x,y) > 0$$
 and $p_2(x,y) = 0$.

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



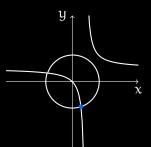
$$p_1(x, y) > 0$$
 and $p_2(x, y) = 0$.

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



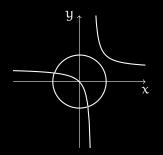
$$p_1(x, y) = 0$$
 and $p_2(x, y) = 0$.

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



$$p_1(x, y) = 0$$
 and $p_2(x, y) = 0$.

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x-1)(y-1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:



Precise Definition:

A cell in the algebraic decomposition of

$${p_1,\ldots,p_m}\subseteq \mathbb{R}[x_1,\ldots,x_n]$$

is a maximal connected subset of \mathbb{R}^n on which all the p_i are sign invariant.

Example:
$$\forall x \exists y : x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$$

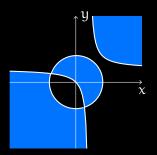
7

Example:
$$\forall x \exists y : x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$$

Consider the cell(s) for which the quantifier free part

$$x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$$

is true.



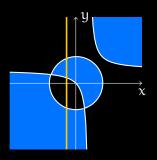
Example:
$$\forall x \exists y : x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$$

Consider the cell(s) for which the quantifier free part

$$x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$$

is true.

Obviously, each vertical line $x=\alpha$ intersects one of those cells nontrivially. The $\forall x \exists y$ claim follows.



Example:
$$\forall x \exists y : x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$$

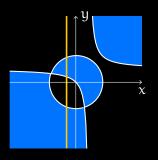
Consider the cell(s) for which the quantifier free part

$$x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$$

is true.

Obviously, each vertical line $x=\alpha$ intersects one of those cells nontrivially. The $\forall x\exists y$ claim follows.

Does this always work?



The set of all formulas that can be built from

- ullet polynomials over ${\mathbb Q}$ in a finite number of variables
- comparison symbols \geq , \leq , >, <, =, \neq
- boolean functions ∧, ∨, ⇒, ¬
- quantifiers ∀, ∃

admits quantifier elimination.

The set of all formulas that can be built from

- ullet polynomials over ${\mathbb Q}$ in a finite number of variables
- comparison symbols \geq , \leq , >, <, =, \neq
- boolean functions $\land, \lor, \Rightarrow, \neg$
- quantifiers ∀, ∃

admits quantifier elimination.

This means: For every such formula Φ with bounded variables x_1, \ldots, x_n and free variables y_1, \ldots, y_m , there exists another formula Ψ , of the same type, with no bounded variables and the free variables y_1, \ldots, y_m such that

$$\forall \ y_1, \dots, y_m \in \mathbb{R} : \Big(\Phi(y_1, \dots, y_m) \iff \Psi(y_1, \dots, y_m) \Big).$$

8

The set of all formulas that can be built from

- ullet polynomials over ${\mathbb Q}$ in a finite number of variables
- comparison symbols \geq , \leq , >, <, =, \neq
- boolean functions $\wedge, \vee, \Rightarrow, \neg$
- quantifiers ∀, ∃

admits quantifier elimination.

Tarski gives an algorithm that transforms any given formula Φ into an equivalent quantifier free formula Ψ .

8

The set of all formulas that can be built from

- ullet polynomials over ${\mathbb Q}$ in a finite number of variables
- comparison symbols \geq , \leq , >, <, =, \neq
- boolean functions $\wedge, \vee, \Rightarrow, \neg$
- quantifiers ∀, ∃

admits quantifier elimination.

Tarski gives an algorithm that transforms any given formula Φ into an equivalent quantifier free formula Ψ .

This algorithm is only of theoretical interest.

The set of all formulas that can be built from

- ullet polynomials over ${\mathbb Q}$ in a finite number of variables
- comparison symbols \geq , \leq , >, <, =, \neq
- boolean functions $\land, \lor, \Rightarrow, \neg$
- quantifiers ∀, ∃

admits quantifier elimination.

Tarski gives an algorithm that transforms any given formula Φ into an equivalent quantifier free formula Ψ .

This algorithm is only of theoretical interest.

A more efficient algorithm was later given by Collins.

The set of all formulas that can be built from

- ullet polynomials over ${\mathbb Q}$ in a finite number of variables
- comparison symbols \geq , \leq , >, <, =, \neq
- boolean functions $\land, \lor, \Rightarrow, \neg$
- quantifiers ∀, ∃

admits quantifier elimination.

Tarski gives an algorithm that transforms any given formula Φ into an equivalent quantifier free formula Ψ .

This algorithm is only of theoretical interest.

A more efficient algorithm was later given by Collins.

His algorithm is called Cylindrical Algebraic Decomposition (CAD).

The set of all formulas that can be built from

- ullet polynomials over ${\mathbb Q}$ in a finite number of variables
- comparison symbols \geq , \leq , >, <, =, \neq
- boolean functions $\wedge, \vee, \Rightarrow, \neg$
- quantifiers ∀, ∃

admits quantifier elimination.

Each formula Φ with free variables y_1, \ldots, y_m defines a certain subset of \mathbb{R}^m

$$\{\; (\xi_1,\ldots,\xi_m)\in\mathbb{R}^m: \Phi \text{ is true for } y_1=\xi_1,\ldots,y_m=\xi_m \;\}.$$

8

The set of all formulas that can be built from

- ullet polynomials over ${\mathbb Q}$ in a finite number of variables
- comparison symbols \geq , \leq , >, <, =, \neq
- boolean functions $\land, \lor, \Rightarrow, \neg$
- quantifiers ∀, ∃

admits quantifier elimination.

Each formula Φ with free variables y_1, \ldots, y_m defines a certain subset of \mathbb{R}^m

$$\{\; (\xi_1,\ldots,\xi_m)\in\mathbb{R}^m: \Phi \text{ is true for } y_1=\xi_1,\ldots,y_m=\xi_m \;\}.$$

Sets that can be specified in this way are called semialgebraic sets.

The set of all formulas that can be built from

- ullet polynomials over ${\mathbb Q}$ in a finite number of variables
- comparison symbols \geq , \leq , >, <, =, \neq
- boolean functions $\land, \lor, \Rightarrow, \neg$
- quantifiers ∀,∃

admits quantifier elimination.

Each formula Φ with free variables y_1, \ldots, y_m defines a certain subset of \mathbb{R}^m

$$\{\; (\xi_1,\ldots,\xi_m)\in\mathbb{R}^m: \Phi \text{ is true for } y_1=\xi_1,\ldots,y_m=\xi_m \; \}.$$

Sets that can be specified in this way are called semialgebraic sets.

CAD is a universal tool for working with semialgebraic sets.

 decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
- determine a tight bounding box of a given bounded s.alg. set

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
- determine a tight bounding box of a given bounded s.alg. set
- determine the connected components of a given s.alg. set

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
- determine a tight bounding box of a given bounded s.alg. set
- determine the connected components of a given s.alg. set
- determine the boundary, the closure, or the interior of a given s.alg. set

 decide whether a given system of polynomial inequalities is solvable

- decide whether a given system of polynomial inequalities is solvable
- decide whether a given formula is universally true

- decide whether a given system of polynomial inequalities is solvable
- decide whether a given formula is universally true
- decide whether a given formula implies another one

- decide whether a given system of polynomial inequalities is solvable
- decide whether a given formula is universally true
- decide whether a given formula implies another one
- determine a certificate point for a given solvable system

- decide whether a given system of polynomial inequalities is solvable
- decide whether a given formula is universally true
- decide whether a given formula implies another one
- determine a certificate point for a given solvable system
- determine the s.alg. set of all points $(x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$ such that **there exists** a number $x_n \in \mathbb{R}$ where a given system is true at $(x_1, \ldots, x_{n-1}, x_n)$

- decide whether a given system of polynomial inequalities is solvable
- decide whether a given formula is universally true
- decide whether a given formula implies another one
- determine a certificate point for a given solvable system
- determine the s.alg. set of all points $(x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$ such that **there exists** a number $x_n \in \mathbb{R}$ where a given system is true at $(x_1, \ldots, x_{n-1}, x_n)$
- determine the s.alg. set of all points $(x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$ such that **for all** numbers $x_n \in \mathbb{R}$, a given system is true at $(x_1, \ldots, x_{n-1}, x_n)$.

- decide whether a given system of polynomial inequalities is solvable
- decide whether a given formula is universally true
- decide whether a given formula implies another one
- determine a certificate point for a given solvable system
- determine the s.alg. set of all points $(x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$ such that **there exists** a number $x_n \in \mathbb{R}$ where a given system is true at $(x_1, \ldots, x_{n-1}, x_n)$
- determine the s.alg. set of all points $(x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$ such that **for all** numbers $x_n \in \mathbb{R}$, a given system is true at $(x_1, \ldots, x_{n-1}, x_n)$.

THE AMERICAN MATHEMATICAL MAA

Yueh-Gin Gung and Dr. Charles Y. Hu Award for 2013 to William A. Hawkins for Distinguished Service to Mathematics Are I. Illiams New Balancing Principles Applied to Circumsolids of Revolution, and to ~Dimensional Spheres, Cylindrids, and Cylindrical Wedges Tom M. Apotal and Manaion A. Matsulamian	295 298
The Parents of Jacobi's Four Squares Theorem Are Unique Xenneth S. XIIIIams	329
A Borsuk-Ulam Equivalent that Directly Implies Sperner's Lemma Kathryn L. Nyman and Francis Edward Su	346
NOTES	
A New Proof of a Classical Formula Hobb Bin Museflar	355
Illuminating a Network from its Nodes Stree Apens and Robbert Feating	358
A Sneaky Proof of the Maximum Modulus Principle Orr Moshe Shalit	359
A Short Proof of Rayleigh's Theorem with Extensions Olivier benandi	362
PROBLEMS AND SOLUTIONS	365
REVIEWS	
Linear and Nonlinear Programming By David G. Luenberger and Yinyu Ye Marie Silpes	373

An Official Publication of the **Wathematical Association of America**

11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that a + b + c = x + y + z and abc = xyz. Show that if $\max\{x, y, z\} \ge \max\{a, b, c\}$ then $\min\{x, y, z\} \ge \min\{a, b, c\}$.

11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a,b,c,x,y,z be positive numbers such that a+b+c=x+y+z and abc=xyz. Show that if $\max\{x,y,z\} \ge \max\{a,b,c\}$ then $\min\{x,y,z\} \ge \min\{a,b,c\}$.

Because of symmetry, we may assume

$$a \ge b \ge c > 0$$
 and $x \ge y \ge z > 0$.

11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a,b,c,x,y,z be positive numbers such that a+b+c=x+y+z and abc=xyz. Show that if $\max\{x,y,z\} \ge \max\{a,b,c\}$ then $\min\{x,y,z\} \ge \min\{a,b,c\}$.

Because of symmetry, we may assume

$$a \ge b \ge c > 0$$
 and $x \ge y \ge z > 0$.

Then

$$\max\{x, y, z\} = x, \quad \max\{a, b, c\} = a,$$

$$\min\{x, y, z\} = z, \quad \max\{a, b, c\} = c.$$

11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a,b,c,x,y,z be positive numbers such that a+b+c=x+y+z and abc=xyz. Show that if $\max\{x,y,z\} \geq \max\{a,b,c\}$ then $\min\{x,y,z\} \geq \min\{a,b,c\}$.

To do: prove

$$\forall a, b, c, x, y, z:$$

$$(a \ge b \ge c > 0 \land x \ge y \ge z > 0$$

$$\land a + b + c = x + y + z \land abc = xyz \land x \ge a)$$

$$\Rightarrow z \ge c.$$

11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a,b,c,x,y,z be positive numbers such that a+b+c=x+y+z and abc=xyz. Show that if $\max\{x,y,z\} \ge \max\{a,b,c\}$ then $\min\{x,y,z\} \ge \min\{a,b,c\}$.

To do: prove

$$\forall a, b, c, x, y, z :$$

$$(a \ge b \ge c > 0 \land x \ge y \ge z > 0$$

$$\land a + b + c = x + y + z \land abc = xyz \land x \ge a)$$

$$\Rightarrow z \ge c.$$

CAD can do that.

$$f(a, b, c) + f(b, c, a) + f(c, a, b) \ge 0.$$

$$f(a,b,c) + f(b,c,a) + f(c,a,b) \ge 0.$$

For geometric reasons, we have

$$a+b \ge c \ge 0$$

$$a+c \ge b \ge 0$$

$$b+c > a > 0.$$

$$f(a,b,c) + f(b,c,a) + f(c,a,b) \ge 0.$$

To do: prove

$$\forall a,b,c: (a+b \ge c \ge 0 \land a+c \ge b \ge 0 \land b+c \ge a \ge 0)$$

$$\Rightarrow f(a,b,c) + f(b,c,a) + f(c,a,b) \ge 0.$$

$$f(a,b,c) + f(b,c,a) + f(c,a,b) \ge 0.$$

To do: prove

$$\forall a,b,c: (a+b \ge c \ge 0 \land a+c \ge b \ge 0 \land b+c \ge a \ge 0)$$

$$\Rightarrow f(a,b,c) + f(b,c,a) + f(c,a,b) \ge 0.$$

CAD can do that.

$$E(a,b,c) = \frac{a^2b^2c^2 - 64}{(a+1)(b+1)(c+1) - 27}.$$

Find the minimum value of E(a,b,c) on the set D consisting of all positive triples (a,b,c), other than (2,2,2), at which abc=a+b+c+2.

$$E(a,b,c) = \frac{a^2b^2c^2 - 64}{(a+1)(b+1)(c+1) - 27}.$$

Find the minimum value of E(a,b,c) on the set D consisting of all positive triples (a,b,c), other than (2,2,2), at which abc=a+b+c+2.

To do: find all e with

$$\exists \ a,b,c: a > 0 \land b > 0 \land c > 0 \land abc = a+b+c+2$$

$$\land e = \frac{a^2b^2c^2-64}{(a+1)(b+1)(c+1)-27}.$$

$$E(a,b,c) = \frac{a^2b^2c^2 - 64}{(a+1)(b+1)(c+1) - 27}.$$

Find the minimum value of E(a,b,c) on the set D consisting of all positive triples (a,b,c), other than (2,2,2), at which abc=a+b+c+2.

To do: find all e with

$$\exists \ a,b,c: a>0 \land b>0 \land c>0 \land abc=a+b+c+2 \\ \land \underbrace{e}_{(a+1)(b+1)(c+1)-27}^{a^2b^2c^2-64}.$$

$$E(a,b,c) = \frac{a^2b^2c^2 - 64}{(a+1)(b+1)(c+1) - 27}.$$

Find the minimum value of E(a,b,c) on the set D consisting of all positive triples (a,b,c), other than (2,2,2), at which abc=a+b+c+2.

$$E(a,b,c) = \frac{a^2b^2c^2 - 64}{(a+1)(b+1)(c+1) - 27}.$$

Find the minimum value of E(a,b,c) on the set D consisting of all positive triples (a,b,c), other than (2,2,2), at which abc=a+b+c+2.

CAD can do that.

$$E(a,b,c) = \frac{a^2b^2c^2 - 64}{(a+1)(b+1)(c+1) - 27}.$$

Find the minimum value of E(a,b,c) on the set D consisting of all positive triples (a,b,c), other than (2,2,2), at which abc=a+b+c+2.

CAD can do that.

Answer: $e \ge \frac{23+\sqrt{17}}{8}$.

But it has a good structure:

But it has a good structure:

$$e = \frac{23 + \sqrt{17}}{8} \land \boxed{$$

$$\lor \frac{23 + \sqrt{17}}{8} < e < \frac{32}{9} \land \boxed{}$$

$$\lor e = \frac{32}{9} \land \boxed{}$$

$$\lor \frac{32}{9} < e < 4 \land \boxed{}$$

$$\lor e \ge 4 \land \boxed{}$$

But it has a good structure:

$$e = \frac{23 + \sqrt{17}}{8} \land \boxed{$$

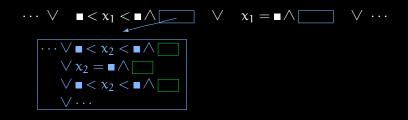
$$\lor \frac{23 + \sqrt{17}}{8} < e < \frac{32}{9} \land \boxed{}$$

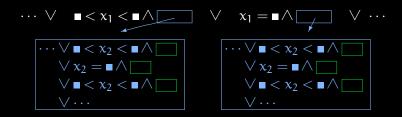
$$\lor e = \frac{32}{9} \land \boxed{}$$

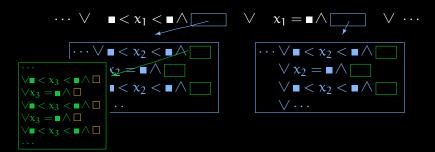
$$\lor \frac{32}{9} < e < 4 \land \boxed{}$$

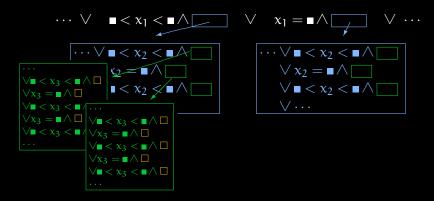
$$\lor e \ge 4 \land \boxed{}$$

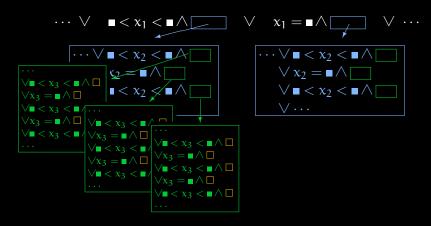
The boxes represent some formulas involving a, b, c, e which are guaranteed to be satisfiable.

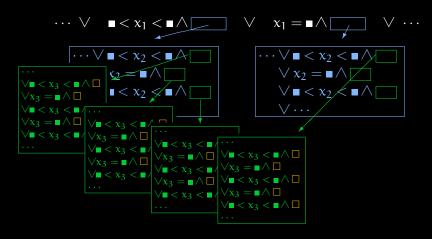




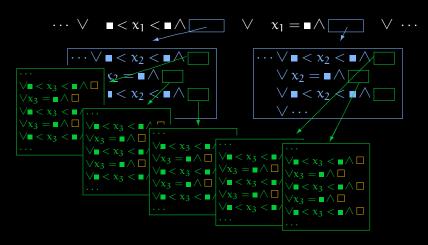




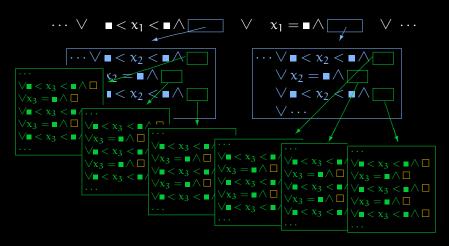




In general, CAD brings a system of polynomial inequalities into the following recursive format:



In general, CAD brings a system of polynomial inequalities into the following recursive format:



• The symbols ■ refer to some real algebraic numbers.

- The symbols refer to some real algebraic numbers.
- The symbols \blacksquare refer to some algebraic functions in x_1 .

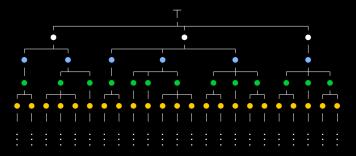
- The symbols refer to some real algebraic numbers.
- The symbols \blacksquare refer to some algebraic functions in x_1 .
- The symbols \blacksquare refer to algebraic functions in x_1 and x_2 .

- The symbols refer to some real algebraic numbers.
- The symbols \blacksquare refer to some algebraic functions in x_1 .
- The symbols \blacksquare refer to algebraic functions in x_1 and x_2 .
- The symbols \blacksquare refer to algebraic functions in x_1, x_2 , and x_3 .

• • • •

- The symbols refer to some real algebraic numbers.
- The symbols \blacksquare refer to some algebraic functions in x_1 .
- The symbols \blacksquare refer to algebraic functions in x_1 and x_2 .
- The symbols \blacksquare refer to algebraic functions in x_1, x_2 , and x_3 .

• ...



Recursive Definition (for logicians):

Recursive Definition (for logicians):

 1 variable: A system of polynomial inequalities is called a CAD in x if it is of the form

$$\Phi_1 \vee \Phi_2 \vee \dots \vee \Phi_{\mathfrak{m}}$$

where each Φ_k is of the form $x < \alpha$ or $\alpha < x < \beta$ or $x > \beta$ or $x = \gamma$ for some real algebraic numbers α, β, γ ($\alpha < \beta$) and any two Φ_k are mutually inconsistent.

Recursive Definition (for logicians):

 1 variable: A system of polynomial inequalities is called a CAD in x if it is of the form

$$\Phi_1 \vee \Phi_2 \vee \cdots \vee \Phi_m$$

where each Φ_k is of the form $x < \alpha$ or $\alpha < x < \beta$ or $x > \beta$ or $x = \gamma$ for some real algebraic numbers α, β, γ ($\alpha < \beta$) and any two Φ_k are mutually inconsistent.

 n variables: A system of polynomial inequalities is called a CAD in x₁,...,x_n if it is of the form

$$(\Phi_1 \wedge \Psi_1) \vee (\Phi_2 \wedge \Psi_2) \vee \cdots \vee (\Phi_m \wedge \Psi_m)$$

where the Φ_k are such that $\Phi_1 \vee \cdots \vee \Phi_k$ is a CAD in x_1 and the Ψ_k are CADs in x_2, \ldots, x_n whenever x_1 is replaced by a real algebraic number satisfying Φ_k .

For $n \in \mathbb{N}$, let

$$\pi_n \colon \mathbb{R}^n \to \mathbb{R}^{n-1}, \qquad (x_1, \dots, x_{n-1}, \underbrace{x_n}) \mapsto (x_1, \dots, x_{n-1})$$

denote the canonical projection.

For $n \in \mathbb{N}$, let

$$\pi_n \colon \mathbb{R}^n \to \mathbb{R}^{n-1}, \qquad (x_1, \dots, x_{n-1}, \frac{x_n}{x_n}) \mapsto (x_1, \dots, x_{n-1})$$

denote the canonical projection.

Definition: Let $p_1, ..., p_m \in \mathbb{Q}[x_1, ..., x_n]$. The algebraic decomposition of $\{p_1, ..., p_m\}$ is called cylindrical, if

For $n \in \mathbb{N}$, let

$$\pi_n \colon \mathbb{R}^n \to \mathbb{R}^{n-1}, \qquad (x_1, \dots, x_{n-1}, \frac{x_n}{n}) \mapsto (x_1, \dots, x_{n-1})$$

denote the canonical projection.

Definition: Let $p_1, ..., p_m \in \mathbb{Q}[x_1, ..., x_n]$. The algebraic decomposition of $\{p_1, ..., p_m\}$ is called cylindrical, if

• For any two cells C,D of the decomposition, the images $\pi_n(C),\pi_n(D)$ are either identical or disjoint.

For $n \in \mathbb{N}$, let

$$\pi_n \colon \mathbb{R}^n \to \mathbb{R}^{n-1}, \qquad (x_1, \dots, x_{n-1}, \frac{x_n}{n}) \mapsto (x_1, \dots, x_{n-1})$$

denote the canonical projection.

Definition: Let $p_1, \ldots, p_m \in \mathbb{Q}[x_1, \ldots, x_n]$. The algebraic decomposition of $\{p_1, \ldots, p_m\}$ is called cylindrical, if

- For any two cells C,D of the decomposition, the images $\pi_n(C),\pi_n(D)$ are either identical or disjoint.
- The algebraic decomposition of $\{p_1, \ldots, p_m\} \cap \mathbb{Q}[x_1, \ldots, x_{n-1}]$ is cylindrical.

For $n \in \mathbb{N}$, let

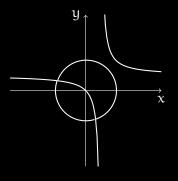
$$\pi_n \colon \mathbb{R}^n \to \mathbb{R}^{n-1}, \qquad (x_1, \dots, x_{n-1}, \frac{x_n}{x_n}) \mapsto (x_1, \dots, x_{n-1})$$

denote the canonical projection.

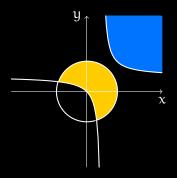
Definition: Let $p_1, \ldots, p_m \in \mathbb{Q}[x_1, \ldots, x_n]$. The algebraic decomposition of $\{p_1, \ldots, p_m\}$ is called cylindrical, if

- For any two cells C, D of the decomposition, the images $\pi_n(C), \pi_n(D)$ are either identical or disjoint.
- The algebraic decomposition of $\{p_1, \ldots, p_m\} \cap \mathbb{Q}[x_1, \ldots, x_{n-1}]$ is cylindrical.

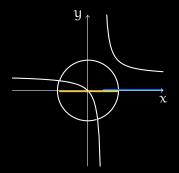
Base case: Any algebraic decomposition of \mathbb{R}^1 is cylindrical.



This is not a CAD. Why not?



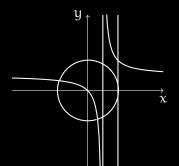
This is not a CAD. Why not? Consider the two shaded cells.



This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is neither disjoint nor identical.

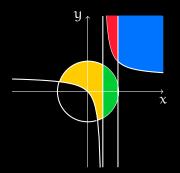


This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is neither disjoint nor identical.

Fix: Insert two vertical lines.

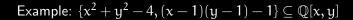


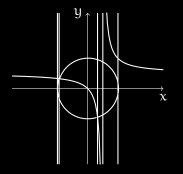
This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is neither disjoint nor identical.

Fix: Insert two vertical lines.





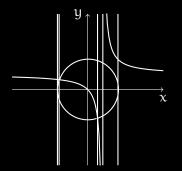
This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is neither disjoint nor identical.

Fix: Insert two vertical lines.

Proceed analogously for all other cell pairs. The result is a CAD.



This is not a CAD. Why not?

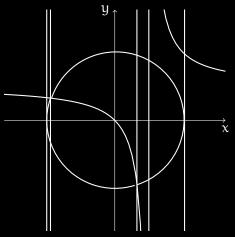
Consider the two shaded cells.

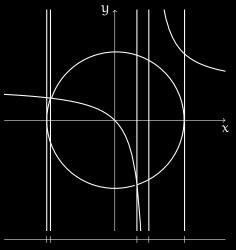
Their projection to the real line is neither disjoint nor identical.

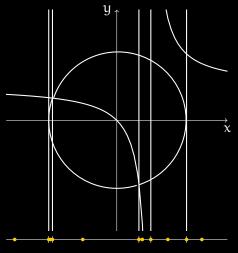
Fix: Insert two vertical lines.

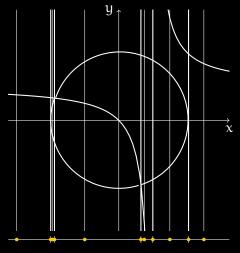
Proceed analogously for all other cell pairs. The result is a CAD.

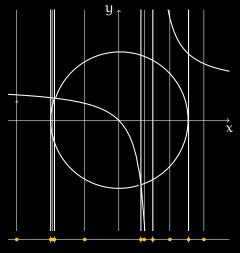
The first phase of the CAD algorithm consists in supplementing a given set $\{p_1, \ldots, p_m\}$ of polynomials to a set $\{p_1, \ldots, p_m, q_1, \ldots, q_k\}$ of polynomials whose algebraic decomposition is cylindrical.

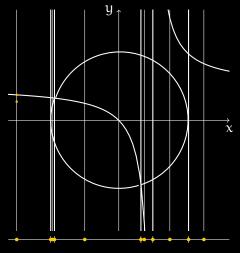


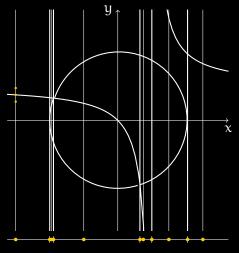


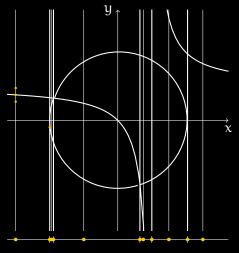


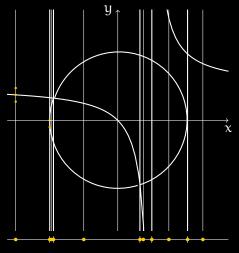


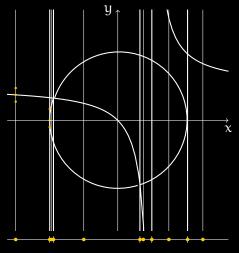


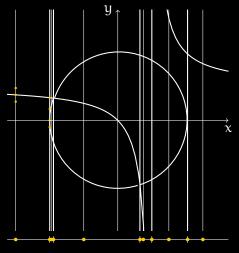


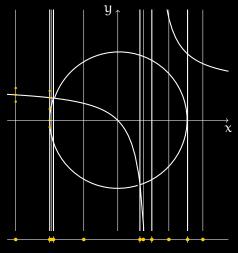


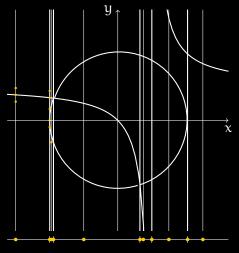


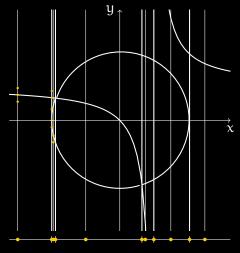


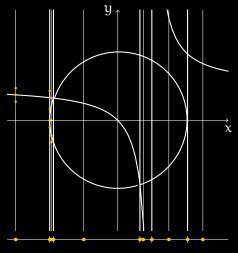


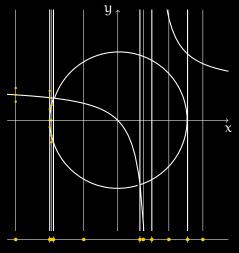


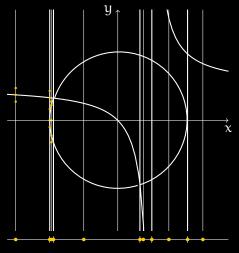


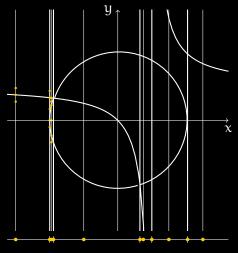


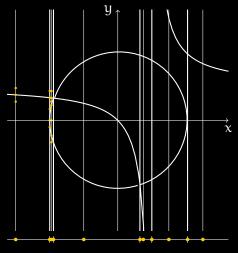


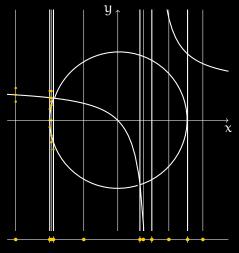


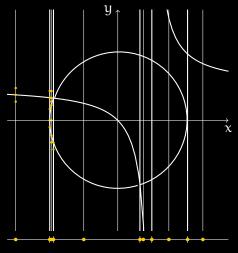


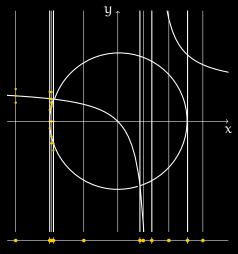


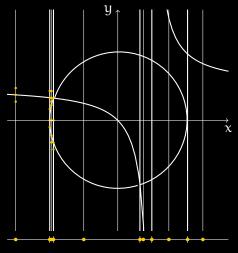


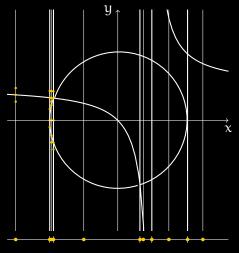


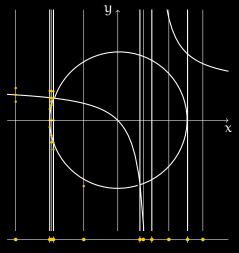


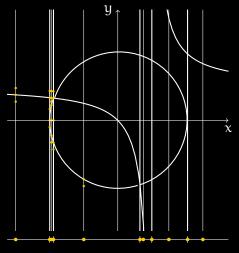


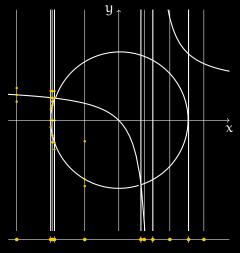


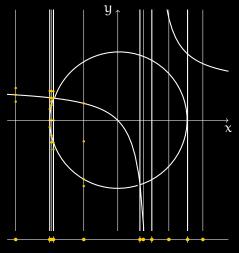


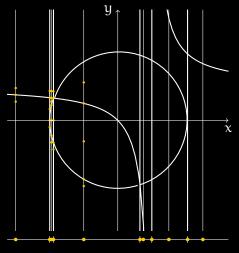


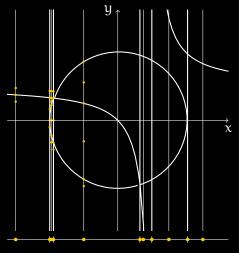


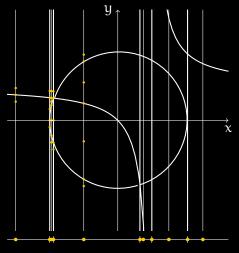


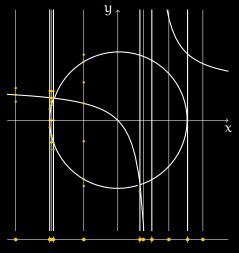


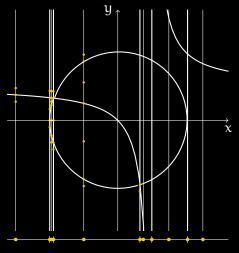


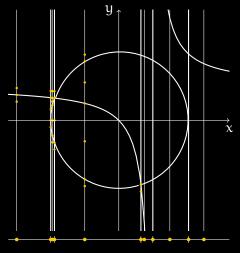


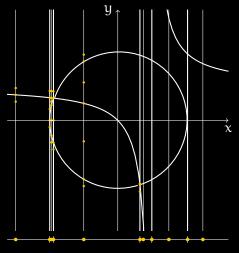


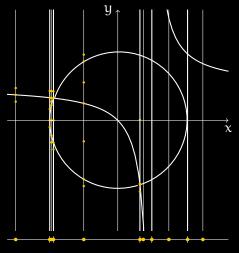


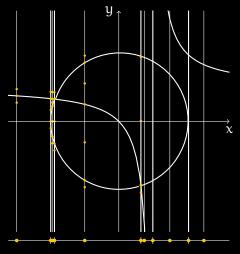


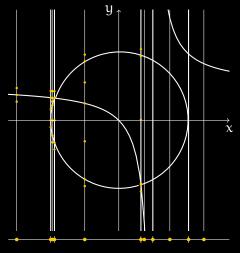




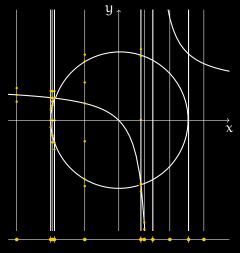


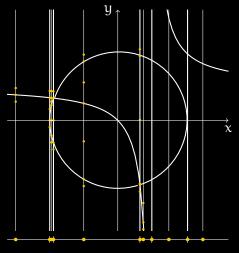


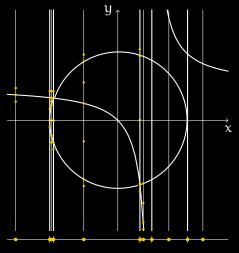


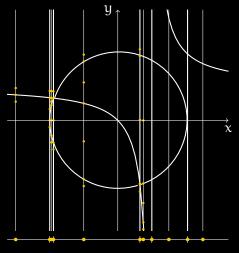


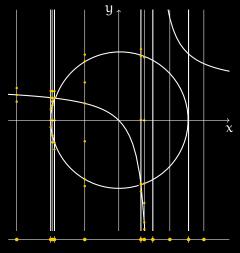


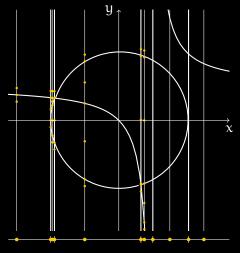


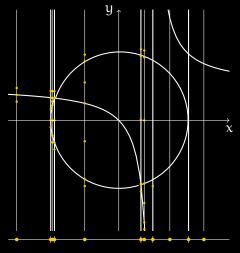


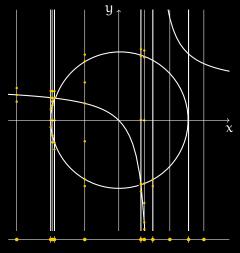


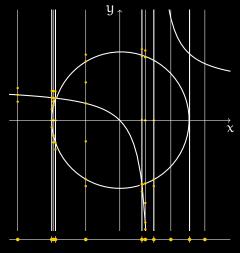


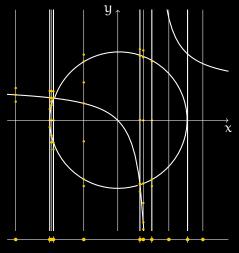


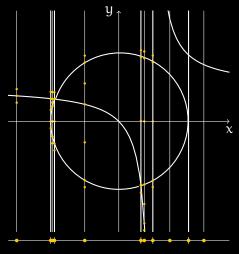


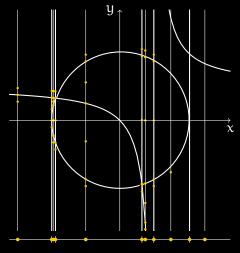


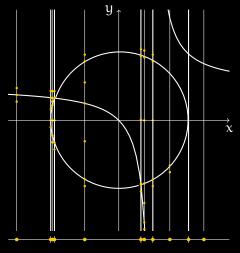


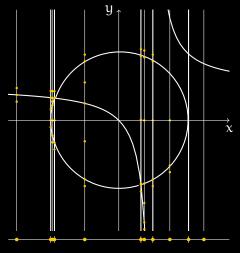


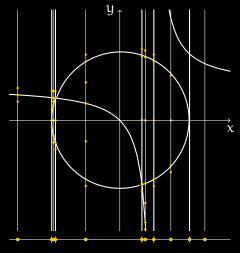


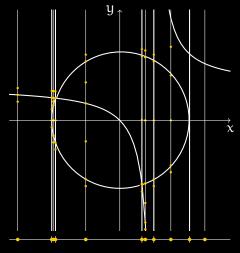


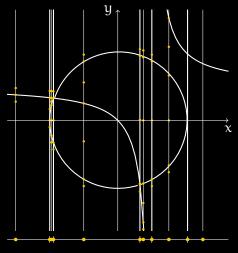


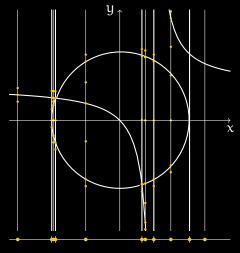


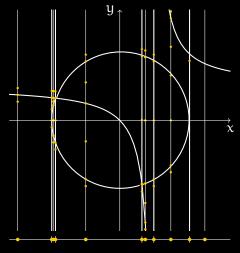


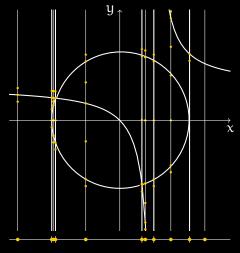


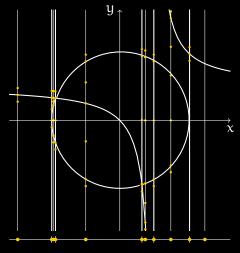


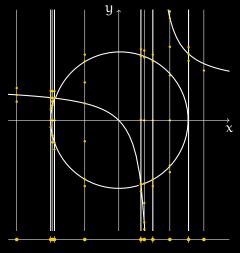


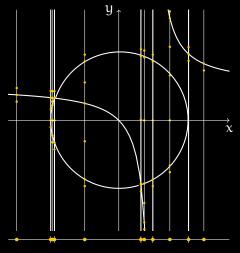


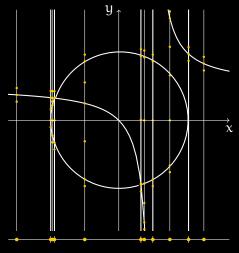




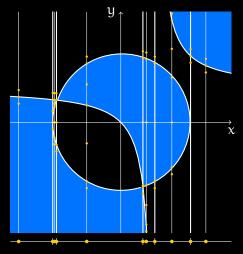








The third phase checks the truth value of each cell and constructs a solution formula.



$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

$$x = -1 \land y = 0 \land z = 0$$

$$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$$

$$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$$

$$\left(z = -\sqrt{1 - x^2 - y^2} \right)$$

$$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$$

$$\lor z = \sqrt{1 - x^2 - y^2}$$

$$\lor y = -\sqrt{1 - x^2} \land z = 0$$

$$\lor x = 1 \land y = 0 \land z = 0$$

Dominance in the family of Sugeno-Weber t-norms

Manuel Kauersa, Veronika Pillweina, Susanne Saminger-Platzb.+

 $^{3} Research Sanitote for Symbolic Computation, Solvanez Kepler University Lies; Altenbergeretream 49, A+600 Lies; Austria$ * Department of Econolising Based Mathematical Systems, Johannes Replet University Line, Abenharger trease 69, A+4010 Line, Austria Received 29 July 2010; acceived in revised form 11 April 2001; accepted 18 April 2001 Available on Inc 29 April 2011

The dominance relationship between two members of the family of Sugeno-Weber t-norms is proven by using a quantifier climination absorbs. Further t is shown that dominance is a transitive and therefore also an order relation on this family of C 2011 Ebevier B.V. Allrights reserved.

Reprová: Doninance: 'hi angular norme: Tuzzy cannozives und aggregation operators; Cylinfrical a light nic decempo átion; Mathematics

1. Introduction

Dominance is a functional inequality which arises in different application fields. It most often appears when discussing the preservation of properties during (dis-hargestation processes like, e.g., in flexible querying, preference modelling or computer-assisted assessment [5,7,20,23]. It is further crucial in the construction of Cartesian products of probabilistic metric and normed spaces [8,31,30] as well as when constructing many-valued equivalence and order

Introduced in 1976 in the framework of prohabilistic metric spaces as an inequality involving two triangle functions (see [31,36] for an early 20 mm limiton to operations on a partially ordered set), it was soon clear that dominance constitutes a reflexive and antisymmetric relation on the set of all t-norms. That it is not a transitive relation has been powen much later in 2007 [30]. This negative answer to a long open question has, to some extent, been surprising. In particular since cardier results showed that for several important single-parametric families of Fnorms, dominance is also a transitive and therefore an order relation [10,21,24,25,29,33].

The family of Sugeno-We ber Faorus has been one of the more prominent families of Fuorus for which dominance has not been completely claracterized so far. First partial results were obtained recently [22] by invoking results on different sufficient conditions derived from a generalization of the Mulho Band inequality [28] and involving the additive generators of the tyroms, their pseudo-inverses and their derivatives [22]

Evani addenne admentiti a jiu a (M. Kaura), spillosi Criss Jana (N. Riberia), se uma amingo plat Cjiu a (S. Saningo Plat). 0169-01145- acc from matter © 2011 Election B.V. A British a courved.

doi:10.1016/j.fix.2011.04.007

$$T: [0,1]^2 \to [0,1]$$

which is commutative, associative, increasing, and has neutral element 1.

$$T: [0,1]^2 \to [0,1]$$

which is commutative, associative, increasing, and has neutral element 1.

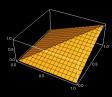
Examples:

T:
$$[0,1]^2 \to [0,1]$$

which is commutative, associative, increasing, and has neutral element 1.

Examples:

• The minimum norm $(u, v) \mapsto \min(u, v)$

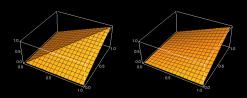


$$T: [0,1]^2 \to [0,1]$$

which is commutative, associative, increasing, and has neutral element 1.

Examples:

- The minimum norm $(u, v) \mapsto \min(u, v)$
- The product norm $(\mathfrak{u}, \mathfrak{v}) \mapsto \mathfrak{u}\mathfrak{v}$



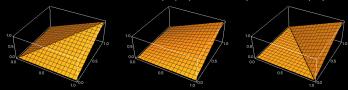
A triangular norm is a map

$$T: [0,1]^2 \to [0,1]$$

which is commutative, associative, increasing, and has neutral element 1.

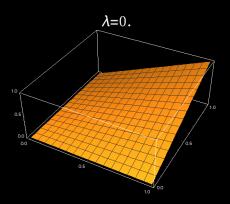
Examples:

- The minimum norm $(u, v) \mapsto \min(u, v)$
- The product norm $(u, v) \mapsto uv$
- The Łukasiewicz norm $(\mathfrak{u}, \mathfrak{v}) \mapsto \max(\mathfrak{u} + \mathfrak{v} 1, \mathfrak{0})$

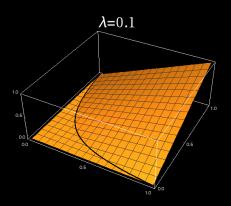


$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$

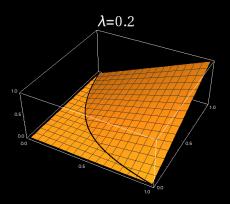
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



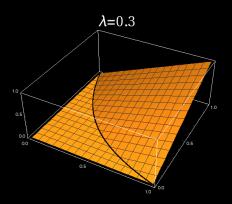
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



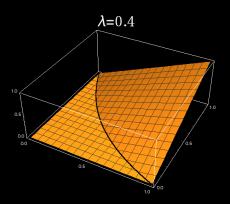
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



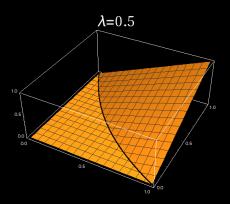
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,\nu) &= \max \bigl(0, (1-\lambda)u\nu + \lambda(u+\nu-1)\bigr). \end{split}$$



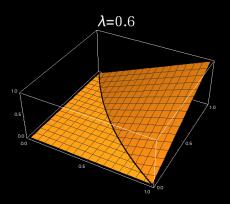
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



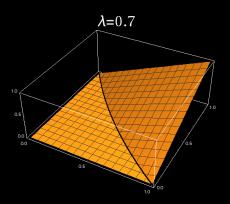
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



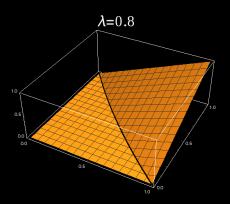
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,\nu) &= \max \bigl(0, (1-\lambda)u\nu + \lambda(u+\nu-1)\bigr). \end{split}$$



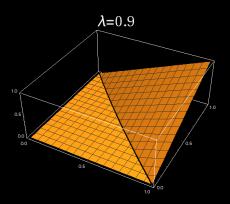
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,\nu) &= \max \bigl(0, (1-\lambda)u\nu + \lambda(u+\nu-1)\bigr). \end{split}$$



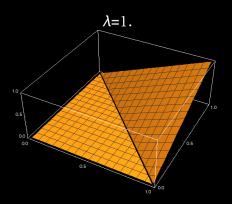
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



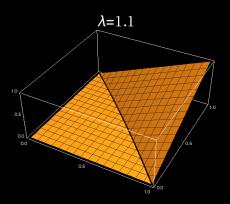
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



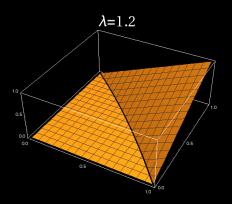
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,\nu) = \max \bigl(0,(1-\lambda)u\nu + \lambda(u+\nu-1)\bigr). \end{split}$$



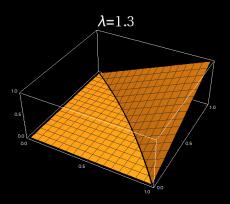
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



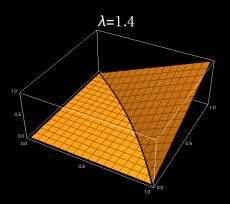
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,\nu) &= \max \bigl(0, (1-\lambda)u\nu + \lambda(u+\nu-1)\bigr). \end{split}$$



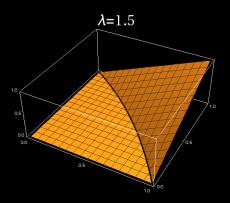
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



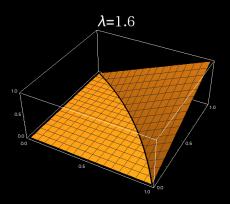
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



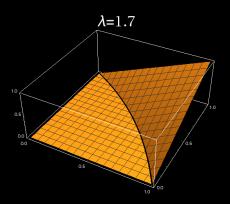
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



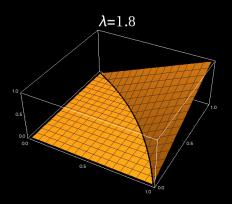
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



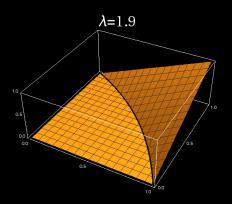
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



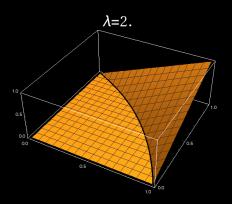
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



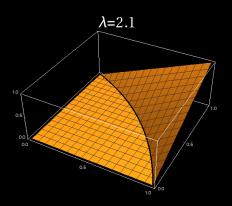
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



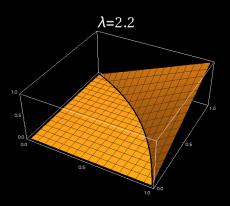
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



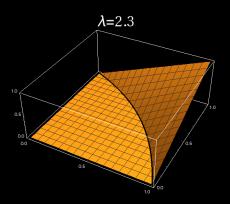
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



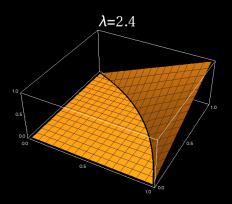
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



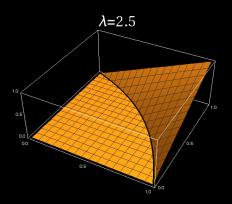
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



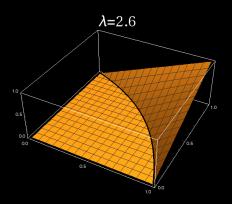
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



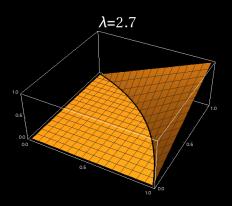
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



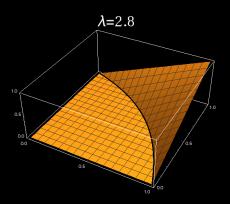
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



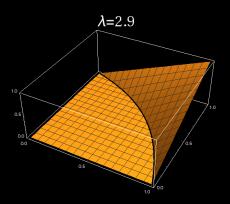
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



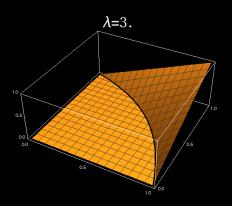
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



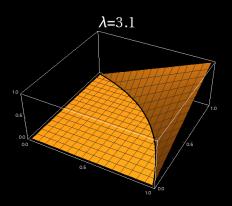
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



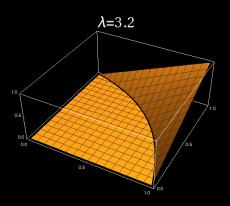
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



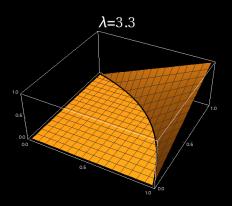
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



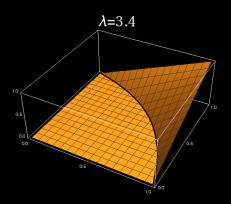
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



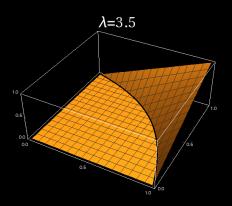
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



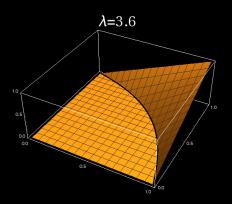
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



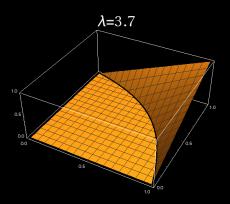
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



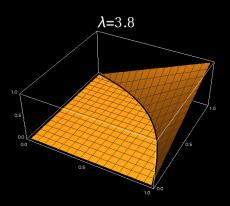
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



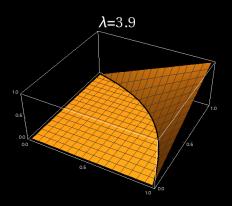
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



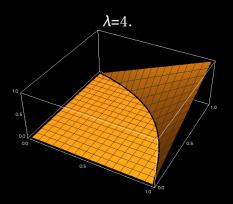
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



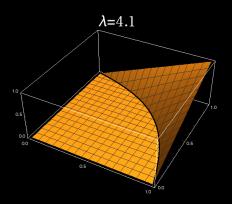
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



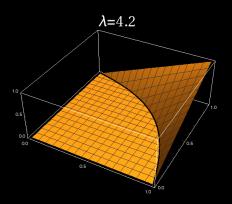
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



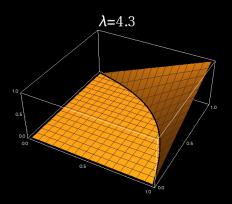
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,\nu) &= \max \bigl(0, (1-\lambda)u\nu + \lambda(u+\nu-1)\bigr). \end{split}$$



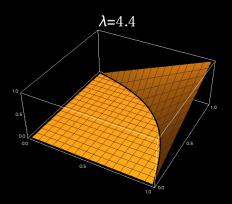
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



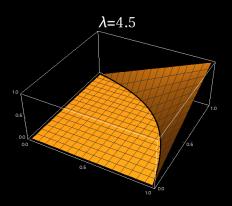
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



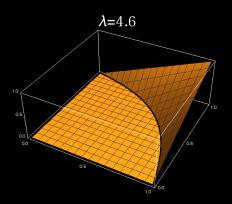
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



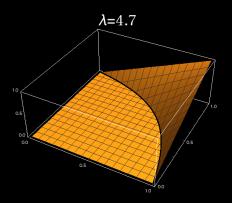
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



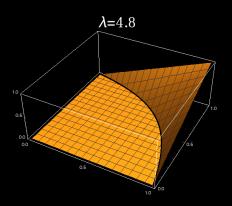
$$\begin{split} &T_{\lambda} \colon [0,1]^2 \to [0,1], \\ &T_{\lambda}(u,v) = \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



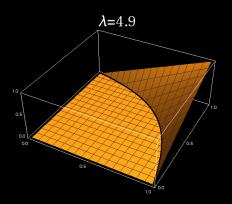
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,\nu) &= \max \bigl(0, (1-\lambda)u\nu + \lambda(u+\nu-1)\bigr). \end{split}$$



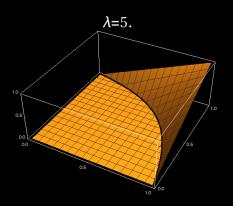
$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0,(1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



$$\begin{split} T_{\lambda} \colon [0,1]^2 &\to [0,1], \\ T_{\lambda}(u,v) &= \max \bigl(0, (1-\lambda)uv + \lambda(u+v-1)\bigr). \end{split}$$



A norm T is said to dominate a norm T' if

$$\mathsf{T}(\mathsf{T}'(\mathfrak{u},\nu),\mathsf{T}'(x,y)) \leq \mathsf{T}'(\mathsf{T}(\mathfrak{u},x),\mathsf{T}(\nu,y))$$

for all $x, y, u, v \in [0, 1]$.

A norm T is said to dominate a norm T' if

$$\mathsf{T}(\mathsf{T}'(\mathsf{u},\mathsf{v}),\mathsf{T}'(\mathsf{x},\mathsf{y})) \leq \mathsf{T}'(\mathsf{T}(\mathsf{u},\mathsf{x}),\mathsf{T}(\mathsf{v},\mathsf{y}))$$

for all $x, y, u, v \in [0, 1]$.

Question: What are the $\lambda, \mu \geq 0$ such that the Sugeno-Weber norm T_{λ} dominates the Sugeno-Weber norm T_{μ} ?

A norm T is said to dominate a norm T' if

$$\mathsf{T}(\mathsf{T}'(\mathfrak{u},\nu),\mathsf{T}'(x,y)) \leq \mathsf{T}'(\mathsf{T}(\mathfrak{u},x),\mathsf{T}(\nu,y))$$

for all $x, y, u, v \in [0, 1]$.

Question: What are the $\lambda, \mu \geq 0$ such that the Sugeno-Weber norm T_{λ} dominates the Sugeno-Weber norm T_{μ} ?

Theorem (Kauers, Pillwein, Saminger-Platz, 2010)

 T_{λ} dominates T_{μ} if and only if (a) $\lambda = \mu$ or (b)

$$0 \le \lambda \le \mu \le 17 + 12\sqrt{2}$$
 or (c) $\mu > 17 + 12\sqrt{2}$ and

$$0 \le \lambda \le (\frac{1-3\sqrt{\mu}}{3-\sqrt{\mu}})^2.$$

Just use CAD to eliminate the quantifiers from the formula

$$\begin{split} \forall \; x,y,u,\nu \in [0,1]: \\ & \max \bigl(0,(1-\lambda)\max(0,(1-\mu)u\nu + \mu(u+\nu-1)) \\ & \times \max(0,(1-\mu)xy + \mu(x+y-1)) \\ & + \lambda \bigl(\max(0,(1-\mu)u\nu + \mu(u+\nu-1)) \\ & + \max(0,(1-\mu)xy + \mu(x+y-1)) - 1)\bigr) \\ & \geq \max \bigl(0,(1-\mu)\max(0,(1-\lambda)ux + \lambda(u+x-1)) \\ & \times \max(0,(1-\lambda)\nu y + \lambda(\nu+y-1)) \\ & + \mu \bigl(\max(0,(1-\lambda)\nu y + \lambda(\nu+y-1)) - 1)\bigr). \end{split}$$

Just use CAD to eliminate the quantifiers from the formula

$$\begin{split} \forall \; x,y,u,\nu \in [0,1]: \\ & \max \bigl(0,(1-\lambda)\max(0,(1-\mu)u\nu + \mu(u+\nu-1)) \\ & \times \max(0,(1-\mu)xy + \mu(x+y-1)) \\ & + \lambda \bigl(\max(0,(1-\mu)u\nu + \mu(u+\nu-1)) \\ & + \max(0,(1-\mu)xy + \mu(x+y-1)) - 1)\bigr) \\ & \geq \max \bigl(0,(1-\mu)\max(0,(1-\lambda)ux + \lambda(u+x-1)) \\ & \times \max(0,(1-\lambda)\nuy + \lambda(\nu+y-1)) \\ & + \mu \bigl(\max(0,(1-\lambda)\nuy + \lambda(\nu+y-1)) - 1)\bigr). \end{split}$$

This is possible in principle, but not in practice.

We proceeded in several steps:

1 Handle some special cases by hand

- 1 Handle some special cases by hand
- 2 Eliminate the outer maxima

- 1 Handle some special cases by hand
- 2 Eliminate the outer maxima
- 3 Eliminate the inner maxima

- 1 Handle some special cases by hand
- 2 Eliminate the outer maxima
- 3 Eliminate the inner maxima
- **4** Sort out redundant clauses (using CAD)

- 1 Handle some special cases by hand
- 2 Eliminate the outer maxima
- 3 Eliminate the inner maxima
- 4 Sort out redundant clauses (using CAD)
- **5** Apply some logical simplifications (using CAD)

- 1 Handle some special cases by hand
- 2 Eliminate the outer maxima
- 3 Eliminate the inner maxima
- **4** Sort out redundant clauses (using CAD)
- **5** Apply some logical simplifications (using CAD)
- **6** Apply some algebraic simplifications

- 1 Handle some special cases by hand
- 2 Eliminate the outer maxima
- 3 Eliminate the inner maxima
- **4** Sort out redundant clauses (using CAD)
- **5** Apply some logical simplifications (using CAD)
- **6** Apply some algebraic simplifications
- **7** Apply CAD to finish up

1. Handle some special cases by hand.

1. Handle some special cases by hand.

It is "easy to see" that it suffices to consider the cases

$$0 < \lambda < \mu$$
 and $x, y, u, v \in (0, 1)$

instead of

$$\lambda, \mu \geq 0$$
 and $x, y, u, v \in [0, 1]$.

1. Handle some special cases by hand.

It is "easy to see" that it suffices to consider the cases

$$0 < \lambda < \mu$$
 and $x, y, u, v \in (0, 1)$

instead of

$$\lambda, \mu \geq 0$$
 and $x, y, u, v \in [0, 1]$.

(Homework.)

2. Eliminate the outer maxima.

2. Eliminate the outer maxima.

Apply the general equivalence

$$\max(0,A) \geq \max(0,B) \iff B \leq 0 \lor A \geq B > 0 \quad (A,B \in \mathbb{R})$$

to obtain

2. Eliminate the outer maxima.

Apply the general equivalence

$$\max(0,A) \geq \max(0,B) \iff B \leq 0 \lor A \geq B > 0 \quad (A,B \in \mathbb{R})$$

to obtain

```
\begin{split} \forall \; x,y,u,\nu \in \mathbb{R} : 0 < \lambda < \mu \land 0 < x < 1 \land 0 < y < 1 \land 0 < u < 1 \land 0 < \nu < 1 \\ \Rightarrow \left( (1-\mu)\max(0,(1-\lambda)ux + \lambda(u+x-1))\max(0,(1-\lambda)\nuy + \lambda(\nu+y-1)) \right. \\ \left. + \mu(\max(0,(1-\lambda)ux + \lambda(u+x-1)) + \max(0,(1-\lambda)\nuy + \lambda(\nu+y-1)) - 1 \right) \leq 0 \\ \lor (1-\lambda)\max(0,(1-\mu)u\nu + \mu(u+\nu-1))\max(0,(1-\mu)xy + \mu(x+y-1)) \\ \left. + \lambda(\max(0,(1-\mu)u\nu + \mu(u+\nu-1)) + \max(0,(1-\mu)xy + \mu(x+y-1)) - 1 \right) \right) \\ \geq (1-\mu)\max(0,(1-\lambda)ux + \lambda(u+x-1)) \max(0,(1-\lambda)\nuy + \lambda(\nu+y-1)) \\ \left. + \mu(\max(0,(1-\lambda)ux + \lambda(u+x-1)) + \max(0,(1-\lambda)\nuy + \lambda(\nu+y-1)) - 1 \right) > 0 \right) \end{split}
```

If $\Phi(X)$ is any formula depending on a real variable X, then

$$\Phi(\max(\textbf{0},\textbf{X})) \iff (\textbf{X} \leq \textbf{0} \land \Phi(\textbf{0})) \lor (\textbf{X} > \textbf{0} \land \Phi(\textbf{X})).$$

If $\Phi(X)$ is any formula depending on a real variable X, then

$$\Phi(\max(0,X)) \iff (X \le 0 \land \Phi(0)) \lor (X > 0 \land \Phi(X)).$$

For a formula in several variables, we have

$$\begin{split} \Phi(\max(0,X_1),\max(0,X_2)) &\iff \left(X_1 \leq 0 \land X_2 \leq 0 \land \Phi(0,0) \right. \\ & \lor X_1 > 0 \land X_2 \leq 0 \land \Phi(X_1,0) \\ & \lor X_1 \leq 0 \land X_2 > 0 \land \Phi(0,X_2) \\ & \lor X_1 > 0 \land X_2 > 0 \land \Phi(X_1,X_2) \big) \end{split}$$

Writing

$$X_1 := (1 - \lambda)ux + \lambda(u + x - 1),$$

$$X_2 := (1 - \lambda)vy + \lambda(v + y - 1),$$

$$X_3 := (1 - \mu)uv + \mu(u + v - 1),$$

$$X_4 := (1 - \mu)xy + \mu(x + y - 1),$$

this turns the formula into...

$$\forall \ x,y,u,v \in \mathbb{R} : 0 < \lambda < \mu \land 0 < x < 1 \land 0 < y < 1 \land 0 < u < 1 \land 0 < v < 1 \\ \Rightarrow \left(\left(X_1 \leq 0 \land X_2 \leq 0 \land (1-\mu)00 + \mu(0+0-1) \leq 0 \right. \right. \right. \\ \left. (X_1 > 0 \land X_2 \leq 0 \land (1-\mu)X_1 0 + \mu(X_1+0-1) \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 \leq 0 \land (1-\mu)0X_2 + \mu(0+X_2-1) \leq 0 \right. \\ \left. (X_1 \leq 0 \land X_2 > 0 \land (1-\mu)0X_2 + \mu(0+X_2-1) \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land (1-\mu)X_1X_2 + \mu(X_1+X_2-1) \leq 0 \right) \\ \left. (X_1 \leq 0 \land X_2 \leq 0 \land X_3 \leq 0 \land X_4 \leq 0 \right. \\ \left. (1-\lambda)00 + \lambda(0+0-1) \geq (1-\mu)00 + \mu(0+0-1) > 0 \right. \\ \left. (X_1 > 0 \land X_2 \leq 0 \land X_3 \leq 0 \land X_4 \leq 0 \right. \\ \left. (1-\lambda)00 + \lambda(0+0-1) \geq (1-\mu)X_1 0 + \mu(X_1+0-1) > 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 \leq 0 \right. \\ \left. (X_1 > 0$$

This formula is of the form

$$\forall \ x,y,u,v \in \mathbb{R}: H \Rightarrow (C_1 \vee C_2 \vee \cdots \vee C_{20}).$$

This formula is of the form

$$\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (C_1 \vee C_2 \vee \cdots \vee C_{20}).$$

For many indices i, we can show by CAD that

$$H \wedge C_i$$

is inconsistent.

This formula is of the form

$$\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (C_1 \vee C_2 \vee \cdots \vee C_{20}).$$

For many indices i, we can show by CAD that

$$H \wedge C_i$$

is inconsistent.

These clauses C_i can be discarded.

This formula is of the form

$$\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (C_1 \vee C_2 \vee \cdots \vee C_{20}).$$

For many indices i, we can show by CAD that

$$H \wedge C_i$$

is inconsistent.

These clauses C_i can be discarded. This turns the formula into...

This formula is of the form

$$\forall x,y,u,v \in \mathbb{R} : H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land D_1 \land D_2).$$

This formula is of the form

$$\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land D_1 \land D_2).$$

We clearly can discard $\neg A \land \neg B$.

This formula is of the form

$$\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land D_1 \land D_2).$$

We clearly can discard $\neg A \land \neg B$.

Furthermore, we can prove with CAD the formulas

$$\forall x, y, u, v \in \mathbb{R} : H \land \neg C \Rightarrow D_1$$

$$\forall x, y, u, v \in \mathbb{R} : H \land \neg C \Rightarrow \neg A$$

$$\forall x, y, u, v \in \mathbb{R} : H \land \neg C \Rightarrow \neg B$$

are true.

This formula is of the form

$$\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land D_1 \land D_2).$$

We clearly can discard $\neg A \land \neg B$.

Furthermore, we can prove with CAD the formulas

$$\forall x, y, u, v \in \mathbb{R} : H \land \neg C \Rightarrow D_1$$

$$\forall x, y, u, v \in \mathbb{R} : H \land \neg C \Rightarrow \neg A$$

$$\forall x, y, u, v \in \mathbb{R} : H \land \neg C \Rightarrow \neg B$$

are true. This allows us to drop D_1 and A and B, and leads us to...

$$\begin{split} \forall \ x,y,u,v \in \mathbb{R} : 0 < \lambda < \mu \\ & \wedge 0 < x < 1 \wedge 0 < y < 1 \wedge 0 < u < 1 \wedge 0 < v < 1 \\ & \Rightarrow \big((1-\mu)X_1X_2 + \mu(X_1+X_2-1) \leq 0 \\ & \vee (1-\lambda)X_3X_4 + \lambda(X_3+X_4-1) \\ & \geq (1-\mu)X_1X_2 + \mu(X_1+X_2-1) \big). \end{split}$$

In terms of x, y, u, v, this is still messy.

In terms of x, y, u, v, this is still messy.

The size can be reduced further by substituting

$$x \mapsto 1-x, \ y \mapsto 1-y, \ u \mapsto 1-u, \ v \mapsto 1-v$$

In terms of x, y, u, v, this is still messy.

The size can be reduced further by substituting

$$x \mapsto 1 - x$$
, $y \mapsto 1 - y$, $u \mapsto 1 - u$, $v \mapsto 1 - v$

and afterwards $v \mapsto (v - y)/(1 + (\lambda - 1)y)$.

In terms of x, y, u, v, this is still messy.

The size can be reduced further by substituting

$$x \mapsto 1-x$$
, $y \mapsto 1-y$, $u \mapsto 1-u$, $v \mapsto 1-v$

and afterwards $v \mapsto (v - y)/(1 + (\lambda - 1)y)$.

This brings the formula into the form...

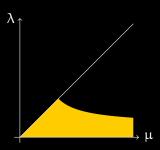
CAD applied to this formula gives the final result.

CAD applied to this formula gives the final result.

$$0 < \lambda < \mu \le 17 + 12\sqrt{2} \lor \mu > 17 + 12\sqrt{2} \land 0 < \lambda \le \left(\frac{1 - 3\sqrt{\mu}}{3 - \sqrt{\mu}}\right)^2$$

CAD applied to this formula gives the final result.

$$0 < \lambda < \mu \le 17 + 12\sqrt{2} \lor \mu > 17 + 12\sqrt{2} \land 0 < \lambda \le \left(\frac{1 - 3\sqrt{\mu}}{3 - \sqrt{\mu}}\right)^2$$



Convinced that CAD is useful?

Convinced that CAD is useful?

If you want to use it, here are some good implementations:

- Qepcad by Hong, Brown et al. http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
- Redlog by Dolzman, Seidl et al. http://fmi.uni-passau.de/~redlog/
- Mathematica by Stzebonski (CylindricalDecomposition and Resolve)

Convinced that CAD is useful?

If you want to read about it, here are some references:

- Algorithms in Real Algebraic Geometry by Basu, Pollack, Roy (Springer 2006)
- ISSAC 2004 Tutorial by Brown http://www.usna.edu/Users/cs/wcbrown/research/
- How to use Cylindrical Algebraic Decomposition by Kauers (SLC 2011)