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What are the roots of x* +5xZ —7x +2 ?

A possible answer:

~ —0.603174 — 2.40107i,
~ —0.603174 + 2.40107i,
~ 0.409527
~ 0.796821



What are the roots of x* +5xZ —7x +2 ?

Another possible answer: There are exactly four roots x1, %2, X3, X4 €
C and they satisfy

6030984958023367133166935 85631643614737397990 1

X — (_3637733974247496529026021 __ 205607571066698343531 )’ < 10~1°

Xy — _3637733974247496529026021 + 205607571 O66698343531i < 1015
2 6030984958023367133166935 85631643614737397990

X2 — 494062960398985183435915 < 10—14
3 1206423125104110760995248

_ 76931612246324251675355 —14
X4 96548159142657595865737 <10




What are the roots of x* +5xZ —7x +2 ?

Another possible answer: There are exactly two roots x1,%x; € R
and they satisfy

X1 — 494062960398985183435915 < 10714

1 1206423125104110760995248

Xy — 76931612246324251675355 < 10—14
2 96548159142657595865737




What are the roots of x* +5xZ —7x +2 ?

Another possible answer:

Root [x"4+5x"2-Tx+2,
Root [x"4+5x"2-Tx+2,
Root [x"4+5x"2-7x+2,
Root [x"4+5x"2-Tx+2,

1],
2],
3],
4].



What are the roots of x* +5xZ —7x +2 ?

Another possible answer:
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What are the roots of x* +5xZ —7x +2 ?

Another possible answer:

Root [x"4+bx"2-Tx+2, —{iaes — Gepmeil,

Root [x"4+5x"2-Tx+2, —5iad 4 1252bi],

Root [x"4+5x"2-7Tx+2, %] ,

Root [x~4+5x"2-7x+2, 4351




What are the roots of x* +5xZ —7x +2 ?

Another possible answer:

Root [x"4+5x"2-Tx+2, —% — 15%‘?934%%46511 ,

R . 793221 | 1343245
Root [x"4+5x"2-Tx+2, 1375078 + E5oize i],
R - 4737
Root [x"4+6x"2-7x+2, 11=51,
702

Root [x"4+5x72-7x+2, go7l.

Today we only care about real roots.



What are the roots of x* +5xZ —7x +2 ?

Another possible answer:

Root [x- 452 7Txe2, — 732l — )

3 4245, .
Root [x"4+5x72-7Tx+2, A—é%§§%4+ Eﬁiﬁ;ﬂ,

Root [x"4+5x"2-7Tx+2, %] ,

Root [x"4+5x"2-7x+2, g% .

Today we only care about real roots.




What are the roots of x* +5xZ —7x +2 ?

Another possible answer:
- o _ 793221 _ 1343245
Root [x"4+5X"2-7x+2, —{375573 — tsoizc 1]

2 212 5.
Root [x"4+5x72-7Tx+2, A—é%§§%4+ Eﬁiﬁ;ﬂ,

Root [x"4+5x"2-7Tx+2, %] ,

Root [x"4+5x"2-7x+2, 4371

Today we only care about real roots.

+ — +
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They divide the real line into finitely many cells in which the poly-
nomial does not change its sign.



Let's consider two polynomials p, q with their corresponding sign
invariant cells
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Which of the following statements is true?
e VxeR:p(x)<0=q(x)<0
e IxeR:p(x)<0Aq(x) <0
e VxeR:p(x)<0Vq(x) <0
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Quantifier elimination
INPUT: V x : xy? — 3xy +y —x* <0
OUTPUT:2—-(2—-2v2)"3 - (3—-2v2)13 <y <0

Both formulas are equivalent over R, but there are no quantifiers
in the output formula.
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Quantifier elimination
INPUT: V x:x%*>0
OUTPUT: true

Both formulas are equivalent over R, but there are no quantifiers
in the output formula.



Quantifier elimination

INPUT:Ve>030>0Vxe [—1,1]:|x—xo <6:>|x2—x%|< €
OUTPUT: —1 <x <1

Both formulas are equivalent over R, but there are no quantifiers
in the output formula.
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Precise Definition:
\ A cell in the algebraic decomposition of
k X {ph---)pm}gR[X])-”aXn]
is a maximal connected subset of R™ on
which all the pj are sign invariant.
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Truth of a quantified formula can be determined by inspection
from the algebraic decomposition of the involved polynomials.

Example: Vx3y:x?+1y2 >4 &= (x—1)(y—1)>1
Consider the cell(s) for which the quan-

tifier free part Y
XHyr>4 = x—1y—1)>1

is true.

Obviously, each vertical line x = o inter-
sects one of those cells nontrivially. The
Vx3y claim follows.

Does this always work?
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boolean functions /\,V,=,—

e quantifiers V, 3

admits quantifier elimination.

Tarski gives an algorithm that transforms any given formula @ into
an equivalent quantifier free formula V.

This algorithm is only of theoretical interest.

A more efficient algorithm was later given by Collins.

His algorithm is called Cylindrical Algebraic Decomposition (CAD).
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Theorem (Tarski)
The set of all formulas that can be built from

e polynomials over Q in a finite number of variables
e comparison symbols >, <, > <, =, #

e boolean functions /\,V,=,—

e quantifiers V, 3

admits quantifier elimination.

Each formula ® with free variables yi,...,Ym defines a certain
subset of R™

{(&1y...,&m) ER™: D is true for y; = &1,...,ym = &m |-

Sets that can be specified in this way are called semialgebraic sets.

CAD is a universal tool for working with semialgebraic sets.
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e decide whether a given formula implies another one
e determine a certificate point for a given solvable system
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11397. Proposed by Grahame Bennet, Indiana University, Bloom-
ington, IN. Let a,b,c,x,y,z be positive numbers such that a +
b+c=x+y+zand abc = xyz. Show that if max{x,y,z} >
max{a, b, c} then min{x,y,z} > min{a, b, c}.
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max{a, b, c} then min{x,y,z} > min{a, b, c}.

Because of symmetry, we may assume
a>b>c>0and x>y >z>0.
Then

max{x,y,z} =%, max{a,b,c}=a,

min{x,y,z} =z, max{a,b,c}=c.
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11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let a,b,
and c be the side-lengths of a triangle, and let f(x,y,z) = xy(y +
z—2x)(y + z — x)*. Prove that

f(a,b,c) + f(b,c,a) + f(c,a,b) > 0.
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b+c>a>0.
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11297. Proposed by Marian Tetiva, Birlad, Romania. For positive
a,b, and c, let

a’b?c? — 64

Hab e = (o e -2

Find the minimum value of E(a,b,c) on the set D consisting of
all positive triples (a,b,c), other than (2,2,2), at which abc =
a+b+c+2.
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11297. Proposed by Marian Tetiva, Birlad, Romania. For positive
a,b, and c, let

a’b?c? — 64

Hab e = (o e -2

Find the minimum value of E(a,b,c) on the set D consisting of
all positive triples (a,b,c), other than (2,2,2), at which abc =
a+b+c+2.

CAD can do that.

Answer: e > B%ﬁ.
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The CAD output in the previous example is somewhat messy.

But it has a good structure:

\/23+T\m<e<%2/\|:|
ve=#A[ ]

VI <e<an] |
Ve>4An[ ]

The boxes represent some formulas involving a, b, c, e which are
guaranteed to be satisfiable.
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In general, CAD brings a system of polynomial inequalities into the
following recursive format:

-V om<xi<maA[ ] V xi=aA[__ ] V...
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x =y for some real algebraic numbers «, 3,y (x < ) and
any two @y are mutually inconsistent.
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Recursive Definition (for logicians):

e 1 variable: A system of polynomial inequalities is called a
CAD in x if it is of the form

OIVD,V -V Dy

where each @y is of the form x < xorax <x <P orx > or
x =y for some real algebraic numbers «, 3,y (x < ) and
any two @y are mutually inconsistent.

e n variables: A system of polynomial inequalities is called a
CAD in xq,...,Xq if it is of the form

(@1 AY) V (O, AY) Voo V(O AW)

where the @y are such that ®;V---V @y is a CAD in x; and
the Wy are CADs in x;,...,Xn whenever x; is replaced by a
real algebraic number satisfying ®y.
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Alternative Definition (for geometers):

Forn € N, let

Tn: R — R (X1ye ey Xn_1yXn) — (X7y...

denote the canonical projection.
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decomposition of {p1,...,pm} is called cylindrical, if
e For any two cells C, D of the decomposition, the images
70 (C), mn (D) are either identical or disjoint.
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is cylindrical.

15



Alternative Definition (for geometers):

Forn € N, let
. —1
7TTL-RHHRH ) (Xh---vxn—hxn)'_)(Xh---»xn—l)

denote the canonical projection.
Definition: Let p1,...,pm € Q[x1,...,xn]. The algebraic
decomposition of {p1,...,pm} is called cylindrical, if

e For any two cells C, D of the decomposition, the images
70 (C), mn (D) are either identical or disjoint.

e The algebraic decomposition of {p1,...,pPmtNQx1y... Xn_1]
is cylindrical.

Base case: Any algebraic decomposition of R! is cylindrical.

15



Example: {X2+y2_4) (X_ ])(y - 1) - 1} - @[X)y]

y This is not a CAD. Why not?

D

k’ X
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Y

N

N

This is not a CAD. Why not?
Consider the two shaded cells.

Their projection to the real line is
neither disjoint nor identical.

Fix: Insert two vertical lines.

Proceed analogously for all other
cell pairs. The result is a CAD.
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Example: {Xz +UZ _4) (X_ ])(y - 1) - 1} - @[X)y]
y This is not a CAD. Why not?
Consider the two shaded cells.

TN MN—__  Their projection to the real line is
neither disjoint nor identical.

\ Fix: Insert two vertical lines.

Proceed analogously for all other
cell pairs. The result is a CAD.

The first phase of the CAD algorithm consists in supplementing a
given set {p1,...,pm} of polynomials to a set

{p1y.--yPm, q15-- -, gk} of polynomials whose algebraic
decomposition is cylindrical.
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The second phase constructs a sample point for each cell in the
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The third phase checks the truth value of each cell and constructs
a solution formula.

Y

¥
¥
-
>

17



Here is a CAD for the unit sphere x* + y2 + 22
x=—1Ay=0Az=0
V-1 <x<1/\<y:—MAz:o
V—V1=x2 <y < V1—xA

(z:—\ﬂ —x?—y?
V—1-x2—y2<z<y1—x2—y?
Vz=+/1 —xz—yz)

Vy=—v1 —xz/\z=0>

Vx=1Ay=0Az=0
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A triangular norm is a map
T:[0,11* — [0, 1]

which is commutative, associative, increasing, and has neutral
element 1.
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A triangular norm is a map
T:[0,11* — [0, 1]

which is commutative, associative, increasing, and has neutral
element 1.
Examples:

e The minimum norm (u,v) — min(u,v)

e The product norm (u,v) — uv

e The tukasiewicz norm (u,v) — max(u+v—1,0)
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The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).
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The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=0.3
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The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=0.4
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Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=0.5
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The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=0.6
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The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=0.7
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A=0.8
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Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=1.
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Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=1.8

21
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Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=2.5

21
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Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).
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The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=2.8

21



The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=29
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The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=3.
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The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=3.9
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The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=4.
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Th: 0,117 = [0, 1],
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The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).
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The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=49
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The family of Sugeno-Weber norms is defined for A > 0

Th: 0,117 = [0, 1],

Ta(u,v) = max (0, (1 — A)uv + A(u+v —1)).

A=5.
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A norm T is said to dominate a norm T’ if
T(T'(u,v), T'(x,y)) < T'(T(u,x), T(v,y))

for all x,y,u,v € [0,1].
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Question: What are the A, it > 0 such that the Sugeno-Weber
norm T, dominates the Sugeno-Weber norm T,7
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A norm T is said to dominate a norm T’ if
T(T'(u,v), T'(x,y)) < T'(T(u,x), T(v,y))

for all x,y,u,v € [0,1].

Question: What are the A, it > 0 such that the Sugeno-Weber
norm T, dominates the Sugeno-Weber norm T,7

Theorem (Kauers, Pillwein, Saminger-Platz, 2010)
Ty dominates T, if and only if (a) A = p or (b)
0<ASH<174+12v20r (c) u> 17 +12v/2 and

0 <A< ()
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Just use CAD to eliminate the quantifiers from the formula

YV x,y,u,v € [0,1]:

wuv + p(uw4+v—1))
(0, (T—wxy + ulx+y—1))
(0, (1T — pw + plu+v—1))

+ max(0, (1 — wxy + p(x+y—1)) = 1))
(
(

maX(O (1 —A)max(0, (1 —
X max

(max

> max(O (1 —u)max(0, (1 —AN)ux +A(u+x—1))
x max(0, (1 —=A)vy +A(v+y—1))
0, 1T—ANux+Au+x—1))
+ max(0, (1 = A)vy +A(v+y—1)) —1)).

(max
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Just use CAD to eliminate the quantifiers from the formula

YV x,y,u,v € [0,1]:
maX(O (1 —A)max(0, (T—pwuv+ p(u+v—1))

(T—wxy+ux+y—1))
(1 —puw +plu+v—1))
(

x max(0,
(0,

+max(0, (1 — wxy + plx +y — 1)) = 1))
(
(

(max

> max(O (1 —u)max(0, (1 —AN)ux +A(u+x—1))
x max(0, (1 —=A)vy +A(v+y—1))
0, 1T—ANux+Au+x—1))
+ max(0, (1 = A)vy +A(v+y—1)) —1)).

(max

This is possible in principle, but not in practice.
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Task: Break the problem into several feasible subproblems.
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Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1 Handle some special cases by hand

2 Eliminate the outer maxima

3 Eliminate the inner maxima

4 Sort out redundant clauses (using CAD)

5 Apply some logical simplifications (using CAD)
6 Apply some algebraic simplifications

7 Apply CAD to finish up

24



1. Handle some special cases by hand.
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1. Handle some special cases by hand.

It is “easy to see” that it suffices to consider the cases
O<A<p and x,y,u,v € (0,1)
instead of

Au>0 and X, Y, u,v € [0, 1].
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1. Handle some special cases by hand.

It is “easy to see” that it suffices to consider the cases
O<A<p and x,y,u,v € (0,1)
instead of
Au>0 and X, Y, u,v € [0, 1].

(Homework.)
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2. Eliminate the outer maxima.
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2. Eliminate the outer maxima.

Apply the general equivalence
max(0,A) > max(0,B) & B<O0VA>B>0

to obtain

(A,B € R)
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2. Eliminate the outer maxima.

Apply the general equivalence
max(0,A) > max(0,B) &= B<O0VA>B>0 (A,BeR)

to obtain

VXYY, L, ER:O< A< uANAOI<x<TAO<y<INAO<u<lAO<v<]
= ((] — p)max(0, (1 —A)ux + A(uw+x — 1)) max(0, (1 —A)vy + A(v+y — 1))
+ p(max(0, (1 — A)ux + A(u+x — 1)) + max(0, (1 —A)vy +A(v+y—1))—1) <0
V(1 —A)max(0, (1 — p)uv + p(u+v —1))max(0, (1 — u)xy + u(x +y — 1))
+ A(max (0, (1 — p)uv + p(u+v—1)) + max(0, (1 — u)xy + u(x +y —1)) — 1))
> (1 — p)max(0, (1 — A)ux + A(u+ x — 1)) max(0, (1 —A)vy + A(v+y — 1))
+ p(max(0, (1 — A)ux + A+ x — 1)) + max(0, (T —A)vy +A(v+y —1)) — 1) > 0)
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3. Eliminate the inner maxima.
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3. Eliminate the inner maxima.

If ®(X) is any formula depending on a real variable X, then

®(max(0,X)) &= (X <O0AD(0))V (X >0AD(X)).
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3. Eliminate the inner maxima.

If ®(X) is any formula depending on a real variable X, then
®(max(0,X)) & X<O0NAD(0))V (X>0ANAD(X)).
For a formula in several variables, we have

@ (max(0,X;), max(0,X;)) <= (X1 <0AX; < 0N D(0,0)
VX; >0AX; <ONAD(X5,0)
VX <O0AX: >0AD(0,X))
VX >0/\X2>0/\®(X1,Xz))
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3. Eliminate the inner maxima.

Writing
Xi=(1=ANux+A(u+x—1),
X2 =(1=Avy+A(v+y-—1),
Xz3=(1T—pw+put+v—1),
Xg= (1 =puxy+pux+y—1),

this turns the formula into. ..
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3. Eliminate the inner maxima.

VXY, , VER: 0 <A< puANAO<x<TAO<y<IAO<u<lIANAO<v<]
= (X9 SOAXy SOA(T—p)00+pu(0+0—-1)<0
VX7 >0AXy SOA(T—wXy 0+ u(Xy +0—1) <
VX <OAX >0A(1T—p)0Xy +p(0+Xy; —1) <
VXy>0AXy >0A(1T—p)XXa +p(Xg +Xz2—1)<0)
V(X1 S0OAX; SONAX3 <0AXy <0
A =AN00+A0+0—1)> (1 —pw)0O0+p(0+0—1)>0
VX >0AX SOANX3 <0AXy <0
AT =AN00+A0+0—-1)> (T -—wWX70+puXy+0—-1)>0
VX >0AXy >0AX3>0AXy <0
AN =AX30+A(X34+0—-1)> (1 — W)X Xy +u(Xy +X2—-1)>0
VX >0AXy >0AX3>0AXy >0
AT =A)X3Xg +A(X3 +X4 —1) > (1 — @)X X + p(Xg + X2 —1) >0))

0
0
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4. Discard redundant clauses.
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4. Discard redundant clauses.

This formula is of the form

Vx,yuu,wveR: H= (C;VC V-V Cy).
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4. Discard redundant clauses.

This formula is of the form

Vx,yuuwveR: H= (C;VCV--

For many indices i, we can show by CAD that
HACy

is inconsistent.

-V Co).
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4. Discard redundant clauses.

This formula is of the form

Vx,yuuwveR: H= (C;VCV--

For many indices i, we can show by CAD that
HAC

is inconsistent.

These clauses C; can be discarded.

-V Co).

25



4. Discard redundant clauses.

This formula is of the form
Vx,yuu,wveR: H= (C;VC V-V Cy).
For many indices i, we can show by CAD that
HACy

is inconsistent.

These clauses C; can be discarded. This turns the formula into. ..
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4. Discard redundant clauses.

Vxy,,vER:0<A<
NO<x<TINO<y<IAO<u<IAO<v<]
= (X1 <0VX2<0
V(T =Xy Xz + Xy + X2 —1) <0
VXi>0AX >0AX3>0AXs >0
AT =NX3Xq +AX3+ X4 —1)
> (1= wWXiXo + p(X; + X2 —1) >0).

25



5. Apply some logical simplifications
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5. Apply some logical simplifications

This formula is of the form

V%Y u,vER:H= (AVBVCV—-AA-BAD; ADy).
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5. Apply some logical simplifications

This formula is of the form
vVxyuveR:H= (A\/B\/C\/ﬁA/\ﬂB/\D1 A D3).

We clearly can discard —A /A —B.
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5. Apply some logical simplifications

This formula is of the form

V%Y u,vER:H= (AVBVCV—-AA-BAD; ADy).

We clearly can discard —A /A —B.

Furthermore, we can prove with CAD the formulas

vVxyu,ve R: HA—=C = Dy
Vxyu,ve R:HA-C=—-A
vVxyu,ve R:HA—-C= —B

are true.
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5. Apply some logical simplifications

This formula is of the form
vVxyuveR:H= (A\/B\/C\/ﬁA/\ﬂB/\D1 A D3).

We clearly can discard —A /A —B.

Furthermore, we can prove with CAD the formulas

vVxyu,ve R: HA—=C = Dy
Vxyu,ve R:HA-C=—-A
vVxyu,ve R:HA—-C= —B

are true. This allows us to drop D7 and A and B, and leads us to. ..
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5. Apply some logical simplifications

Vxy,u,veR:0<A<pn
NO<x<TAO<y<TAO<u<1INAO<v<]
( WX Xo+pX;+X;—1) <0
V(T—=A)X3Xg +AX3+ X4 —1)
> (1—wWXi Xy 4+ u(X; + X2 —1)).

25



6. Apply some algebraic simplifications
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6. Apply some algebraic simplifications

In terms of x,y,u, v, this is still messy.
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6. Apply some algebraic simplifications

In terms of x,y,u, v, this is still messy.

The size can be reduced further by substituting

x—1l—-x,y—=l—-yu—T—-u ve—1-—-v
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6. Apply some algebraic simplifications

In terms of x,y,u, v, this is still messy.

The size can be reduced further by substituting
x—1l—-x,y—=l—-yu—T—-u ve—1-—-v

and afterwards v — (v—y)/(1+ (A —T)y).
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6. Apply some algebraic simplifications

In terms of x,y,u, v, this is still messy.

The size can be reduced further by substituting
x—1l—-x,y—=l—-yu—T—-u ve—1-—-v

and afterwards v — (v—y)/(1+ (A —T)y).

This brings the formula into the form. ..
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6. Apply some algebraic simplifications

Vx,y,u,ve R:0<A<p
NO<x<TAO<y<ITAO<u<lAy<v<l+Ay
= WA-=1x+D({(p—Tv+1)

+(pu—Tvx+v+x—12>0
V(1 — (A= 1)(1—1)uy)
FY(A = Nuy((p—Tx+1)+u—x) >0).
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7. Apply CAD to finish up
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7. Apply CAD to finish up

CAD applied to this formula gives the final result.
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7. Apply CAD to finish up

CAD applied to this formula gives the final result.

0<A< pg17+12\fzvp>17+12\f2/\0<7\g(

1-3/1
3=V

:
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7. Apply CAD to finish up

CAD applied to this formula gives the final result.

1- 32
O<A<u<I7412V2ZV u>17+12VZA0 <A < (%f)

A




Convinced that CAD is useful?
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Convinced that CAD is useful?

If you want to use it, here are some good implementations:

e Qepcad by Hong, Brown et al.
http://www.cs.usna.edu/"gepcad/B/QEPCAD.html

e Redlog by Dolzman, Seidl et al.
http://fmi.uni-passau.de/“redlog/

e Mathematica by Stzebonski (CylindricalDecomposition
and Resolve)
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Convinced that CAD is useful?

If you want to read about it, here are some references:

e Algorithms in Real Algebraic Geometry by Basu, Pollack, Roy
(Springer 2006)

e ISSAC 2004 Tutorial by Brown
http://www.usna.edu/Users/cs/wcbrown /research/

e How to use Cylindrical Algebraic Decomposition by Kauers
(SLC 2011)
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