CYLINDRICAL ALGEBRAIC DECOMPOSITION

Manuel Kauers · Institute for Algebra
Johannes Kepler University, Linz, Austria
What are the roots of $x^4 + 5x^2 - 7x + 2$?
What are the roots of $x^4 + 5x^2 - 7x + 2$?

A possible answer:

$\approx -0.603174 - 2.40107i,$

$\approx -0.603174 + 2.40107i,$

≈ 0.409527

≈ 0.796821
What are the roots of \(x^4 + 5x^2 - 7x + 2 \)?

Another possible answer: There are exactly four roots \(x_1, x_2, x_3, x_4 \in \mathbb{C} \) and they satisfy

\[
\begin{align*}
\left| x_1 - \left(-\frac{3637733974247496529026021}{6030984958023367133166935} - \frac{205607571066698343531}{85631643614737397990}i \right) \right| &< 10^{-15} \\
\left| x_2 - \left(-\frac{3637733974247496529026021}{6030984958023367133166935} + \frac{205607571066698343531}{85631643614737397990}i \right) \right| &< 10^{-15} \\
\left| x_3 - \frac{4940629603985183435915}{1206423125104110760995248} \right| &< 10^{-14} \\
\left| x_4 - \frac{76931612246324251675355}{96548159142657595865737} \right| &< 10^{-14}
\end{align*}
\]
What are the roots of $x^4 + 5x^2 - 7x + 2$?

Another possible answer: There are exactly two roots $x_1, x_2 \in \mathbb{R}$ and they satisfy

\[
\begin{align*}
|x_1 - \frac{494062960398985183435915}{1206423125104110760995248}| &< 10^{-14} \\
|x_2 - \frac{76931612246324251675355}{96548159142657595865737}| &< 10^{-14}
\end{align*}
\]
What are the roots of $x^4 + 5x^2 - 7x + 2$?

Another possible answer:

\[
\begin{align*}
\text{Root} \left[x^4+5x^2-7x+2, 1 \right], \\
\text{Root} \left[x^4+5x^2-7x+2, 2 \right], \\
\text{Root} \left[x^4+5x^2-7x+2, 3 \right], \\
\text{Root} \left[x^4+5x^2-7x+2, 4 \right].
\end{align*}
\]
What are the roots of $x^4 + 5x^2 - 7x + 2$?

Another possible answer:
What are the roots of $x^4 + 5x^2 - 7x + 2$?

Another possible answer:

\[
\begin{align*}
\text{Root} \left[x^4 + 5x^2 - 7x + 2, \ -\frac{793221}{1315078} - \frac{1343245}{559436}i \right], \\
\text{Root} \left[x^4 + 5x^2 - 7x + 2, \ -\frac{793221}{1315078} + \frac{1343245}{559436}i \right], \\
\text{Root} \left[x^4 + 5x^2 - 7x + 2, \ \frac{4737}{111567} \right], \\
\text{Root} \left[x^4 + 5x^2 - 7x + 2, \ \frac{702}{881} \right].
\end{align*}
\]
What are the roots of $x^4 + 5x^2 - 7x + 2$?

Another possible answer:

$$\text{Root}\left[x^4+5x^2-7x+2, \frac{-793221}{1315078} - \frac{1343245}{559436}i\right],$$

$$\text{Root}\left[x^4+5x^2-7x+2, \frac{-793221}{1315078} + \frac{1343245}{559436}i\right],$$

$$\text{Root}\left[x^4+5x^2-7x+2, \frac{4737}{11567}\right],$$

$$\text{Root}\left[x^4+5x^2-7x+2, \frac{702}{881}\right].$$

Today we only care about real roots.
What are the roots of $x^4 + 5x^2 - 7x + 2$?

Another possible answer:

\[
\text{Root}[x^4+5x^2-7x+2, -\frac{793221}{1315078} - \frac{1343245}{559436}i],
\]

\[
\text{Root}[x^4+5x^2-7x+2, -\frac{793221}{1315078} + \frac{1343245}{559436}i],
\]

\[
\text{Root}[x^4+5x^2-7x+2, \frac{4737}{11567}],
\]

\[
\text{Root}[x^4+5x^2-7x+2, \frac{702}{881}].
\]

Today we only care about real roots.
What are the roots of \(x^4 + 5x^2 - 7x + 2 \)?

Another possible answer:

\[
\text{Root} [x^4+5x^2-7x+2, -\frac{793221}{1315078} - \frac{1343245}{559436}i],
\]
\[
\text{Root} [x^4+5x^2-7x+2, -\frac{793221}{1315078} + \frac{1343245}{559436}i],
\]
\[
\text{Root} [x^4+5x^2-7x+2, \frac{4737}{11567}],
\]
\[
\text{Root} [x^4+5x^2-7x+2, \frac{702}{881}].
\]

Today we only care about real roots.

They divide the real line into finitely many cells in which the polynomial does not change its sign.
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ **FALSE!**
- $\exists x \in \mathbb{R}: p(x) - q(x) \geq 0 \land q(x) \geq 0$ **TRUE!**
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
 TRUE!

- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
 TRUE!

- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
 FALSE!

- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$
 $\exists x \in \mathbb{R}: p(x) - q(x) \geq 0 \land q(x) \geq 0$
 TRUE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \text{TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \text{TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \text{FALSE!}
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall \ x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists \ x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall \ x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials \(p, q \) with their corresponding sign invariant cells

Which of the following statements is true?

- \(\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0 \)
- \(\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0 \)
- \(\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0 \)
Let’s consider two polynomials \(p, q \) with their corresponding sign invariant cells

\[p \]
\[q \]

Which of the following statements is true?

- \(\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0 \) \(\text{TRUE!} \)
- \(\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0 \) \(\text{TRUE!} \)
- \(\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0 \) \(\text{FALSE!} \)
Let’s consider two polynomials \(p, q \) with their corresponding sign invariant cells.

Which of the following statements is true?

- \(\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0 \) **TRUE!**
- \(\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0 \) **FALSE!**
- \(\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0 \) **TRUE!**
Let’s consider two polynomials \(p, q \) with their corresponding sign invariant cells

Which of the following statements is true?

- \(\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0 \) **TRUE!**
- \(\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0 \) **TRUE!**
- \(\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0 \) **FALSE!**
Let's consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \textbf{TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \textbf{FALSE!}

\[p\]
\[\text{+} \quad - \quad + \quad - \quad +\]

\[q\]
\[\text{+} \quad - \quad + \quad - \quad +\]
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let's consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \textcolor{green}{TRUE!}
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \textcolor{green}{TRUE!}
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \textcolor{red}{FALSE!}
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let's consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0 \quad \text{TRUE!}$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0 \quad \text{TRUE!}$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0 \quad \text{FALSE!}$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \[\text{TRUE!}\]
- $\exists x \in \mathbb{R}: p(x) < 0 \wedge q(x) < 0$ \[\text{TRUE!}\]
- $\forall x \in \mathbb{R}: p(x) \leq 0 \vee q(x) \leq 0$ \[\text{FALSE!}\]
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \text{ TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \text{ TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \text{ FALSE!}
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$ \text{ TRUE!}
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

\[p \]
\[q \]

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$

TRUE!
Let's consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \text{ TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \text{ TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \text{ FALSE!}
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$ \text{ TRUE!}
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$

TRUE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall \ x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists \ x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall \ x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let's consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ **FALSE!**
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R} : p(x) < 0 \wedge q(x) < 0$ \textbf{TRUE!}
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \textbf{FALSE!}
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let's consider two polynomials p, q with their corresponding sign invariant cells.

![Sign Invariant Cells Diagram]

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ **FALSE!**

Where \mathbb{R} denotes the set of real numbers.
Let’s consider two polynomials \(p, q \) with their corresponding sign invariant cells.

Which of the following statements is true?

- \(\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0 \) TRUE!
- \(\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0 \) TRUE!
- \(\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0 \) FALSE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

![Diagram showing sign changes for polynomials p and q]

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
 \text{TRUE!}

- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
 \text{TRUE!}

- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
 \text{FALSE!}
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \textbf{TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \textbf{FALSE!}
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$ \textbf{TRUE!}
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ **FALSE!**

Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \[\text{TRUE!}\]
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \[\text{TRUE!}\]
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \[\text{FALSE!}\]
- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$ \[\text{TRUE!}\]
Let's consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

\[+ \quad - \quad + \quad - \quad + \]

\[p \]

\[- \quad + \quad - \]

\[q \]

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \[\text{TRUE!} \]
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \[\text{TRUE!} \]
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \[\text{FALSE!} \]
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \textbf{TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \textbf{FALSE!}
Let’s consider two polynomials \(p, q \) with their corresponding sign invariant cells

\[\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0 \]

\[\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0 \]

\[\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0 \]
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let's consider two polynomials p, q with their corresponding sign invariant cells

![Diagram showing sign patterns of p and q]

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ **FALSE!**
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ **FALSE!**
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$ **TRUE!**
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ **FALSE!**
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$

TRUE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \(\text{TRUE!}\)
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \(\text{TRUE!}\)
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \(\text{FALSE!}\)$
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \textbf{TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \textbf{FALSE!}
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ **FALSE!**
- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$ **TRUE!**
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

\[
\begin{array}{c}
\text{p} \\
\text{q}
\end{array}
\]

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \text{TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \text{TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \text{FALSE!}
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$ \text{TRUE!}
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \textbf{TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \textbf{FALSE!}
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$

TRUE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ **FALSE!**
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$ **TRUE!**
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \[\text{TRUE!}\]
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \[\text{TRUE!}\]
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \[\text{FALSE!}\]
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$![TRUE!](353x6)
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$![TRUE!](39x74)
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$![FALSE!](2039x2041)
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$![TRUE!](4000x4000)
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \[
 \text{TRUE!}
\]
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \[
 \text{TRUE!}
\]
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \[
 \text{FALSE!}
\]
Let’s consider two polynomials \(p, q \) with their corresponding sign invariant cells

Which of the following statements is true?

- \(\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0 \)
- \(\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0 \)
- \(\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0 \)
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \textbf{TRUE!}
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \textbf{FALSE!}
- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \text{ TRUE!}
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \text{ TRUE!}
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \text{ FALSE!}
- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$

TRUE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ **FALSE!**
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ **TRUE!**
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$

TRUE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \wedge q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \vee q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \quad \text{TRUE!}
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \quad \text{TRUE!}
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \quad \text{FALSE!}
- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$ \quad \text{FALSE!}
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$

TRUE!
Let's consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \hspace{1cm} \text{TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \hspace{1cm} \text{TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \hspace{1cm} \text{FALSE!}
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$ \hspace{1cm} \text{TRUE!}
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \text{ TRUE!}
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \text{ TRUE!}
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \text{ FALSE!}
- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$ \text{ TRUE!}
Let's consider two polynomials p, q with their corresponding sign invariant cells

$$p \quad + \quad - \quad +$$

$$q \quad - \quad + \quad -$$

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \textbf{TRUE!}
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \textbf{FALSE!}
- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
 TRUE!
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
 TRUE!
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
 FALSE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

![Graph showing sign invariant cells for polynomials p and q.]

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ **FALSE!**
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$
Let’s consider two polynomials \(p, q \) with their corresponding sign invariant cells.

Which of the following statements is true?

- \(\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0 \) **TRUE!**
- \(\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0 \) **TRUE!**
- \(\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0 \) **FALSE!**
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \textbf{TRUE!}
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \textbf{FALSE!}
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

\[\begin{array}{c}
\text{p} \\
\text{q}
\end{array} \]

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \textbf{TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \textbf{FALSE!}
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \[\text{TRUE!} \]
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \[\text{TRUE!} \]
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \[\text{FALSE!} \]
Let's consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall \ x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists \ x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall \ x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
- $\exists \ x \in \mathbb{R} : p(x) \geq 0 \land q(x) \geq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ FALSE!
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \text{ TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \text{ TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \text{ FALSE!}
- $\exists x \in \mathbb{R}: p(x) - q(x) \geq 0$ \text{ TRUE!}
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ **(TRUE!)**
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ **(TRUE!)**
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ **(FALSE!)**

3
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ **FALSE!**
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$ **TRUE!**
Let’s consider two polynomials p, q with their corresponding sign invariant cells

![Graph showing the sign of p and q](image)

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$

TRUE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \[TRUE\]
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \[TRUE\]
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \[FALSE\]
- $\exists x \in \mathbb{R}: p(x) \geq q(x) \geq 0$ \[TRUE\]
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \hspace{1cm} TRUE!
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \hspace{1cm} TRUE!
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \hspace{1cm} FALSE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \text{ TRUE!}
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \text{ TRUE!}
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \text{ FALSE!}
- $\exists x \in \mathbb{R} : p(x) - q(x) \geq 0 \land q(x) \geq 0$ \text{ TRUE!}
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
 TRUE!

- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
 TRUE!

- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
 FALSE!

- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$
 $p(x) - q(x) \geq 0 \land q(x) \geq 0$
 TRUE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

![Sign invariant cells for polynomials p and q.]

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ **FALSE!**
- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$ **TRUE!**
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall \ x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists \ x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall \ x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials \(p, q \) with their corresponding sign invariant cells

Which of the following statements is true?

- \(\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0 \) **TRUE!**
- \(\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0 \) **TRUE!**
- \(\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0 \) **FALSE!**
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials \(p, q \) with their corresponding sign invariant cells

Which of the following statements is true?

- \(\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0 \)
- \(\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0 \)
- \(\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0 \)
- \(\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0 \)
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let's consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \textbf{TRUE!}
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ \textbf{FALSE!}
Let's consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$

TRUE!

FALSE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials \(p, q \) with their corresponding sign invariant cells.

Which of the following statements is true?

- \(\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0 \)
- \(\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0 \)
- \(\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0 \)
Let's consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
 TRUE!

- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
 TRUE!

- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
 FALSE!

- $\exists x \in \mathbb{R}: p(x) - q(x) \geq 0 \land q(x) \geq 0$
 TRUE!
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
- $\exists x \in \mathbb{R}: p(x) - q(x) \geq 0 \land q(x) \geq 0$

TRUE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0 \quad \text{TRUE!}$
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \quad TRUE!
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \hspace{1cm} TRUE!
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \hspace{1cm} TRUE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ \hspace{1cm} TRUE!
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ \hspace{1cm} TRUE!
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ **TRUE!**
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ **TRUE!**
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$
Let's consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ FALSE!
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \implies q(x) < 0$ \hspace{1cm} TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \hspace{1cm} TRUE!
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \hspace{1cm} FALSE!
- $\exists x \in \mathbb{R} : p(x) \geq q(x) \geq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \textbf{TRUE!}
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \textbf{TRUE!}
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \textbf{FALSE!}
- $\exists x \in \mathbb{R} : p(x) - q(x) \geq 0 \land q(x) \geq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ FALSE!
- $\forall x \in \mathbb{R}: p(x) - q(x) \geq 0 \land q(x) \geq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ \quad TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ \quad TRUE!
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ \quad FALSE!
- $\exists x \in \mathbb{R} : p(x) - q(x) \geq 0 \land q(x) \geq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells.

Which of the following statements is true?

- $\forall x \in \mathbb{R}: p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R}: p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R}: p(x) \leq 0 \lor q(x) \leq 0$ FALSE!
- $\exists x \in \mathbb{R}: p(x) - q(x) \geq 0 \land q(x) \geq 0$
Let’s consider two polynomials p, q with their corresponding sign invariant cells

Which of the following statements is true?

- $\forall x \in \mathbb{R} : p(x) < 0 \Rightarrow q(x) < 0$ TRUE!
- $\exists x \in \mathbb{R} : p(x) < 0 \land q(x) < 0$ TRUE!
- $\forall x \in \mathbb{R} : p(x) \leq 0 \lor q(x) \leq 0$ FALSE!
- $\exists x \in \mathbb{R} : p(x) - q(x) \geq 0 \land q(x) \geq 0$ TRUE!
What are the roots of $yx^2 - 3xy + x - y^2$?
What are the roots of $yx^2 - 3xy + x - y^2$?

A possible answer: they form a curve in \mathbb{R}^2.
What are the roots of $yx^2 - 3xy + x - y^2$?

A possible answer: they form a curve in \mathbb{R}^2.

\[y \]

\[x \]
What are the roots of $yx^2 - 3xy + x - y^2$?

A possible answer: they form a curve in \mathbb{R}^2.

The curve divides the plane into finitely many cells in which the polynomial does not change its sign.
What are the roots of $yx^2 - 3xy + x - y^2$?

A possible answer: they form a curve in \mathbb{R}^2.

The curve divides the plane into finitely many cells in which the polynomial does not change its sign.
What are the $x \in \mathbb{R}$ such that $\forall y \in \mathbb{R}: yx^2 - 3xy + x - y^2 < 0$?
What are the $x \in \mathbb{R}$ such that $\forall y \in \mathbb{R}: yx^2 - 3xy + x - y^2 < 0$?

A possible answer: $2 - (2 - 2\sqrt{2})^{-1/3} - (3 - 2\sqrt{2})^{1/3} \leq x \leq 0$
What are the $x \in \mathbb{R}$ such that $\forall y \in \mathbb{R} : yx^2 - 3xy + x - y^2 < 0$?

A possible answer: $2 - (2 - 2\sqrt{2})^{-1/3} - (3 - 2\sqrt{2})^{1/3} \leq x \leq 0$
Quantifier elimination

INPUT: $\forall x : xy^2 - 3xy + y - x^2 < 0$

OUTPUT: $2 - (2 - 2\sqrt{2})^{-1/3} - (3 - 2\sqrt{2})^{1/3} \leq y \leq 0$

Both formulas are equivalent over \mathbb{R}, but there are no quantifiers in the output formula.
Quantifier elimination

INPUT: $\exists x : x^2 + y^2 \leq 1$

OUTPUT: $-1 \leq y \leq 1$

Both formulas are equivalent over \mathbb{R}, but there are no quantifiers in the output formula.
Quantifier elimination

INPUT: $\forall x : x^2 \geq 0$

OUTPUT: true

Both formulas are equivalent over \mathbb{R}, but there are no quantifiers in the output formula.
Quantifier elimination

INPUT: \(\forall \epsilon > 0 \exists \delta > 0 \forall x \in [-1, 1]: |x - x_0| < \delta \Rightarrow |x^2 - x_0^2| < \epsilon \)

OUTPUT: \(-1 \leq x_0 \leq 1\)

Both formulas are equivalent over \(\mathbb{R}\), but there are no quantifiers in the output formula.
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) > 0 \quad \text{and} \quad p_2(x, y) < 0.
\]
A finite set of polynomials \(\{ p_1, \ldots, p_m \} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) > 0 \quad \text{and} \quad p_2(x, y) > 0.
\]
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n]\) induces a decomposition ("partition") of \(\mathbb{R}^n\) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4\) and \(p_2 = (x - 1)(y - 1) - 1\) induce a decomposition of \(\mathbb{R}^2\) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[p_1(x, y) < 0 \quad \text{and} \quad p_2(x, y) > 0. \]
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials

\[
p_1 = x^2 + y^2 - 4 \quad \text{and} \quad p_2 = (x - 1)(y - 1) - 1
\]

induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) < 0 \quad \text{and} \quad p_2(x, y) < 0.
\]
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have \(p_1(x, y) > 0 \) and \(p_2(x, y) > 0 \).
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) = 0 \quad \text{and} \quad p_2(x, y) > 0.
\]
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

```
For all points \((x, y)\) in the shaded cell, we have

\[ p_1(x, y) = 0 \quad \text{and} \quad p_2(x, y) < 0. \]
```
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
 p_1(x, y) < 0 \quad \text{and} \quad p_2(x, y) = 0.
\]
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y) \) in the shaded cell, we have
\[
p_1(x, y) > 0 \quad \text{and} \quad p_2(x, y) = 0.
\]
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[p_1(x, y) > 0 \quad \text{and} \quad p_2(x, y) = 0. \]
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) > 0 \quad \text{and} \quad p_2(x, y) = 0.
\]
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) = 0 \quad \text{and} \quad p_2(x, y) = 0.
\]
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) = 0 \quad \text{and} \quad p_2(x, y) = 0.
\]
A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

Precise Definition: A cell in the algebraic decomposition of

\[
\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n]
\]

is a maximal connected subset of \(\mathbb{R}^n \) on which all the \(p_i \) are sign invariant.
Truth of a quantified formula can be determined by inspection from the algebraic decomposition of the involved polynomials.
Truth of a quantified formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Example: \(\forall x \exists y : x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1 \)
Truth of a quantified formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Example: \(\forall x \exists y : x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1 \)
Consider the cell(s) for which the quantifier free part
\[x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1 \]
is true.
Truth of a quantified formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Example: $\forall x \exists y : x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$

Consider the cell(s) for which the quantifier free part

$x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$

is true.

Obviously, each vertical line $x = \alpha$ intersects one of those cells nontrivially. The $\forall x \exists y$ claim follows.
Truth of a quantified formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Example: $\forall x \exists y : x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$

Consider the cell(s) for which the quantifier free part

$$x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$$

is true.

Obviously, each vertical line $x = \alpha$ intersects one of those cells nontrivially. The $\forall x \exists y$ claim follows.

Does this always work?
Theorem (Tarski)
The set of all formulas that can be built from

- polynomials over \mathbb{Q} in a finite number of variables
- comparison symbols $\geq, \leq, >, <, =, \neq$
- boolean functions \land, \lor, \imp, \neg
- quantifiers \forall, \exists

admits quantifier elimination.
Theorem (Tarski)
The set of all formulas that can be built from

• polynomials over \mathbb{Q} in a finite number of variables
• comparison symbols $\geq, \leq, >, <, =, \neq$
• boolean functions $\land, \lor, \Rightarrow, \neg$
• quantifiers \forall, \exists

admits quantifier elimination.

This means: For every such formula Φ with bounded variables x_1, \ldots, x_n and free variables y_1, \ldots, y_m, there exists another formula Ψ, of the same type, with no bounded variables and the free variables y_1, \ldots, y_m such that

$$\forall y_1, \ldots, y_m \in \mathbb{R} : \left(\Phi(y_1, \ldots, y_m) \iff \Psi(y_1, \ldots, y_m) \right).$$
Theorem (Tarski)
The set of all formulas that can be built from
- polynomials over \mathbb{Q} in a finite number of variables
- comparison symbols $\geq, \leq, >, <, =, \neq$
- boolean functions $\land, \lor, \Rightarrow, \neg$
- quantifiers \forall, \exists

admits quantifier elimination.

Tarski gives an algorithm that transforms any given formula Φ into an equivalent quantifier free formula Ψ.
Theorem (Tarski)
The set of all formulas that can be built from

- polynomials over \(\mathbb{Q} \) in a finite number of variables
- comparison symbols \(\geq, \leq, >, <, =, \neq \)
- boolean functions \(\land, \lor, \Rightarrow, \neg \)
- quantifiers \(\forall, \exists \)

admits quantifier elimination.

Tarski gives an algorithm that transforms any given formula \(\Phi \) into an equivalent quantifier free formula \(\Psi \).

This algorithm is only of theoretical interest.
Theorem (Tarski)
The set of all formulas that can be built from
• polynomials over \(\mathbb{Q} \) in a finite number of variables
• comparison symbols \(\geq, \leq, >, <, =, \neq \)
• boolean functions \(\land, \lor, \Rightarrow, \neg \)
• quantifiers \(\forall, \exists \)
admits quantifier elimination.

Tarski gives an algorithm that transforms any given formula \(\Phi \) into an equivalent quantifier free formula \(\Psi \).

This algorithm is only of theoretical interest.

A more efficient algorithm was later given by Collins.
Theorem (Tarski)

The set of all formulas that can be built from

- polynomials over \mathbb{Q} in a finite number of variables
- comparison symbols $\geq, \leq, >, <$,
- boolean functions $\land, \lor, \Rightarrow, \neg$
- quantifiers \forall, \exists

admits quantifier elimination.

Tarski gives an algorithm that transforms any given formula Φ into an equivalent quantifier free formula Ψ.

This algorithm is only of theoretical interest.

A more efficient algorithm was later given by Collins.

His algorithm is called **Cylindrical Algebraic Decomposition (CAD)**.
Theorem (Tarski)
The set of all formulas that can be built from
- polynomials over \mathbb{Q} in a finite number of variables
- comparison symbols $\geq, \leq, >, <$,
- boolean functions $\land, \lor, \Rightarrow, \neg$
- quantifiers \forall, \exists

admits quantifier elimination.

Each formula Φ with free variables y_1, \ldots, y_m defines a certain subset of \mathbb{R}^m

$$\{ (\xi_1, \ldots, \xi_m) \in \mathbb{R}^m : \Phi \text{ is true for } y_1 = \xi_1, \ldots, y_m = \xi_m \}. $$
Theorem (Tarski)
The set of all formulas that can be built from
- polynomials over \(\mathbb{Q} \) in a finite number of variables
- comparison symbols \(\geq, \leq, >, <, =, \neq \)
- boolean functions \(\land, \lor, \Rightarrow, \neg \)
- quantifiers \(\forall, \exists \)

admits quantifier elimination.

Each formula \(\Phi \) with free variables \(y_1, \ldots, y_m \) defines a certain subset of \(\mathbb{R}^m \)

\[
\{ (\xi_1, \ldots, \xi_m) \in \mathbb{R}^m : \Phi \text{ is true for } y_1 = \xi_1, \ldots, y_m = \xi_m \}.
\]

Sets that can be specified in this way are called semialgebraic sets.
Theorem (Tarski)
The set of all formulas that can be built from
- polynomials over \mathbb{Q} in a finite number of variables
- comparison symbols $\geq, \leq, >, <, =, \neq$
- boolean functions $\land, \lor, \Rightarrow, \neg$
- quantifiers \forall, \exists

admits quantifier elimination.

Each formula Φ with free variables y_1, \ldots, y_m defines a certain subset of \mathbb{R}^m

$$\{ (\xi_1, \ldots, \xi_m) \in \mathbb{R}^m : \Phi \text{ is true for } y_1 = \xi_1, \ldots, y_m = \xi_m \}. $$

Sets that can be specified in this way are called **semialgebraic sets**.

CAD is a universal tool for working with semialgebraic sets.
Some questions that CAD can answer:
Some questions that CAD can answer:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
Some questions that CAD can answer:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
- determine a tight bounding box of a given bounded s.alg. set
- determine the connected components of a given s.alg. set
- determine the boundary, the closure, or the interior of a given s.alg. set
Some questions that CAD can answer:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
Some questions that CAD can answer:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
Some questions that CAD can answer:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
- determine a tight bounding box of a given bounded s.alg. set
- determine the connected components of a given s.alg. set
- determine the boundary, the closure, or the interior of a given s.alg. set
Some questions that CAD can answer:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
- determine a tight bounding box of a given bounded s.alg. set
Some questions that CAD can answer:

- decide whether or not a given set is empty, finite, open, closed, connected, bounded
- decide whether or not a given set is contained in another one
- determine the (topologic) dimension of a given set
- determine a sample point of a given nonempty set
- determine the number of points of a given finite set
- determine a tight bounding box of a given bounded set
- determine the connected components of a given set
Some questions that CAD can answer:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
- determine a tight bounding box of a given bounded s.alg. set
- determine the connected components of a given s.alg. set
- determine the boundary, the closure, or the interior of a given s.alg. set
Some questions that CAD can answer:

- decide whether a given system of polynomial inequalities is solvable
Some questions that CAD can answer:

- decide whether a given system of polynomial inequalities is solvable
- decide whether a given formula is universally true
Some questions that CAD can answer:

- decide whether a given system of polynomial inequalities is solvable
- decide whether a given formula is universally true
- decide whether a given formula implies another one
- determine a certificate point for a given solvable system
- determine the semi-algebraic set of all points \((x_1,\ldots,x_{n-1}) \in \mathbb{R}^{n-1}\) such that there exists a number \(x_n \in \mathbb{R}\) where a given system is true at \((x_1,\ldots,x_{n-1},x_n)\)
- determine the semi-algebraic set of all points \((x_1,\ldots,x_{n-1}) \in \mathbb{R}^{n-1}\) such that for all numbers \(x_n \in \mathbb{R}\), a given system is true at \((x_1,\ldots,x_{n-1},x_n)\).
Some questions that CAD can answer:

- decide whether a given system of polynomial inequalities is solvable
- decide whether a given formula is universally true
- decide whether a given formula implies another one
- determine a certificate point for a given solvable system
Some questions that CAD can answer:

- decide whether a given system of polynomial inequalities is solvable
- decide whether a given formula is universally true
- decide whether a given formula implies another one
- determine a certificate point for a given solvable system
- determine the s.alg. set of all points \((x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}\) such that there exists a number \(x_n \in \mathbb{R}\) where a given system is true at \((x_1, \ldots, x_{n-1}, x_n)\)
Some questions that CAD can answer:

- decide whether a given system of polynomial inequalities is solvable
- decide whether a given formula is universally true
- decide whether a given formula implies another one
- determine a certificate point for a given solvable system
- determine the s.alg. set of all points \((x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}\) such that there exists a number \(x_n \in \mathbb{R}\) where a given system is true at \((x_1, \ldots, x_{n-1}, x_n)\)
- determine the s.alg. set of all points \((x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}\) such that for all numbers \(x_n \in \mathbb{R}\), a given system is true at \((x_1, \ldots, x_{n-1}, x_n)\).
Some questions that CAD can answer:

- decide whether a given system of polynomial inequalities is solvable
- decide whether a given formula is universally true
- decide whether a given formula implies another one
- determine a certificate point for a given solvable system
- determine the s.alg. set of all points \((x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}\) such that there exists a number \(x_n \in \mathbb{R}\) where a given system is true at \((x_1, \ldots, x_{n-1}, x_n)\)
- determine the s.alg. set of all points \((x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}\) such that for all numbers \(x_n \in \mathbb{R}\), a given system is true at \((x_1, \ldots, x_{n-1}, x_n)\).
11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a + b + c = x + y + z$ and $abc = xyz$. Show that if $\max\{x, y, z\} \geq \max\{a, b, c\}$ then $\min\{x, y, z\} \geq \min\{a, b, c\}$.
11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a + b + c = x + y + z$ and $abc = xyz$. Show that if $\max\{x, y, z\} \geq \max\{a, b, c\}$ then $\min\{x, y, z\} \geq \min\{a, b, c\}$.

Because of symmetry, we may assume

$$a \geq b \geq c > 0 \text{ and } x \geq y \geq z > 0.$$
11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a + b + c = x + y + z$ and $abc = xyz$. Show that if $\max\{x, y, z\} \geq \max\{a, b, c\}$ then $\min\{x, y, z\} \geq \min\{a, b, c\}$.

Because of symmetry, we may assume

$$a \geq b \geq c > 0 \text{ and } x \geq y \geq z > 0.$$

Then

$$\max\{x, y, z\} = x, \quad \max\{a, b, c\} = a,$$

$$\min\{x, y, z\} = z, \quad \max\{a, b, c\} = c.$$
Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a + b + c = x + y + z$ and $abc = xyz$. Show that if $\max\{x, y, z\} \geq \max\{a, b, c\}$ then $\min\{x, y, z\} \geq \min\{a, b, c\}$.

To do: prove

$$\forall \ a, b, c, x, y, z :$$

$$(a \geq b \geq c > 0 \land x \geq y \geq z > 0$$

$$\land a + b + c = x + y + z \land abc = xyz \land x \geq a)$$

$$\Rightarrow z \geq c.$$
11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a + b + c = x + y + z$ and $abc = xyz$. Show that if $\max\{x, y, z\} \geq \max\{a, b, c\}$ then $\min\{x, y, z\} \geq \min\{a, b, c\}$.

To do: prove

\[
\forall a, b, c, x, y, z : \\
(a \geq b \geq c > 0 \land x \geq y \geq z > 0 \\
\land a + b + c = x + y + z \land abc = xyz \land x \geq a) \\
\Rightarrow z \geq c.
\]

CAD can do that.
11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let $a, b,$ and c be the side-lengths of a triangle, and let $f(x, y, z) = xy(y + z - 2x)(y + z - x)^2$. Prove that

$$f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.$$
11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let a, b, and c be the side-lengths of a triangle, and let $f(x, y, z) = xy(y + z - 2x)(y + z - x)^2$. Prove that

$$f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.$$

For geometric reasons, we have

$$a + b \geq c \geq 0$$
$$a + c \geq b \geq 0$$
$$b + c \geq a \geq 0.$$
11205. Proposed by Wu Wei Chao, Guang Zou, China. Let a, b, and c be the side-lengths of a triangle, and let $f(x, y, z) = xy(y + z - 2x)(y + z - x)^2$. Prove that

$$f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.$$

To do: prove

$$\forall a, b, c : (a + b \geq c \geq 0 \land a + c \geq b \geq 0 \land b + c \geq a \geq 0) \Rightarrow f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.$$
11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let \(a, b,\) and \(c\) be the side-lengths of a triangle, and let \(f(x, y, z) = xy(y + z - 2x)(y + z - x)^2.\) Prove that

\[
f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.
\]

To do: prove

\[
\forall a, b, c : (a + b \geq c \geq 0 \land a + c \geq b \geq 0 \land b + c \geq a \geq 0) \Rightarrow f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.
\]

CAD can do that.
11297. Proposed by Marian Tetiva, Birlad, Romania. For positive a, b, and c, let

$$E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11297. Proposed by Marian Tetiva, Birlad, Romania. For positive \(a, b, \) and \(c, \) let

\[
E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.
\]

Find the minimum value of \(E(a, b, c) \) on the set \(D \) consisting of all positive triples \((a, b, c), \) other than \((2, 2, 2), \) at which \(abc = a + b + c + 2. \)

To do: find all \(e \) with

\[
\exists a, b, c : a > 0 \land b > 0 \land c > 0 \land abc = a + b + c + 2
\]

\[
\land e = \frac{a^2 b^2 c^2 - 64}{(a+1)(b+1)(c+1) - 27}.
\]
11297. Proposed by Marian Tetiva, Birlad, Romania. For positive a, b, and c, let

$$E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.

To do: find all e with

$$\exists a, b, c : a > 0 \land b > 0 \land c > 0 \land abc = a + b + c + 2$$

$$\land e = \frac{a^2b^2c^2 - 64}{(a+1)(b+1)(c+1) - 27}.$$
11297. Proposed by Marian Tetiva, Birlad, Romania. For positive a, b, and c, let

$$E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.

Answer: $e \geq 23 + \sqrt{178}$.

CAD can do that.
11297. Proposed by Marian Tetiva, Birlad, Romania. For positive a, b, and c, let

$$E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.

CAD can do that.
11297. Proposed by Marian Tetiva, Birlad, Romania. For positive a, b, and c, let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.

CAD can do that.

Answer: $e \geq \frac{23 + \sqrt{17}}{8}$.
The CAD output in the previous example is somewhat messy.
The CAD output in the previous example is somewhat messy. But it has a good structure:
The CAD output in the previous example is somewhat messy.

But it has a good structure:

\[
e = \frac{23 + \sqrt{17}}{8} \land \\
\lor \frac{23 + \sqrt{17}}{8} < e < \frac{32}{9} \land \\
\lor e = \frac{32}{9} \land \\
\lor \frac{32}{9} < e < 4 \land \\
\lor e \geq 4 \land
\]
The CAD output in the previous example is somewhat messy. But it has a good structure:

\[e = \frac{23 + \sqrt{17}}{8} \land \]
\[\lor \frac{23 + \sqrt{17}}{8} < e < \frac{32}{9} \land \]
\[\lor e = \frac{32}{9} \land \]
\[\lor \frac{32}{9} < e < 4 \land \]
\[\lor e \geq 4 \land \]

The boxes represent some formulas involving \(a, b, c, e \) which are guaranteed to be satisfiable.
In general, CAD brings a system of polynomial inequalities into the following recursive format:

\[
\cdots \lor \quad \text{\copyright} < x_1 < \text{\copyright} \land \quad \lor \quad x_1 = \text{\copyright} \land \quad \lor \quad \cdots
\]
In general, CAD brings a system of polynomial inequalities into the following recursive format:

\[\cdots \lor \ x_1 < \ x_1 < \ \land \cdots \lor \ x_1 = \ x_1 = \ \land \cdots \]

\[\cdots \lor \ x_2 < \ x_2 < \ \land \cdots \lor \ x_2 = \ x_2 = \ \land \cdots \]

\[\lor \ x_2 < \ x_2 < \ \land \ \cdots \]

\[\lor \ x_2 < \ x_2 < \ \land \ \cdots \]
In general, CAD brings a system of polynomial inequalities into the following recursive format:
In general, CAD brings a system of polynomial inequalities into the following recursive format:

\[\cdots \lor x_1 < x_1 \land \lor x_1 = x_1 \land \lor \cdots \]

\[\cdots \lor x_2 < x_2 \land \lor x_2 = x_2 \land \lor \cdots \]

\[\cdots \lor x_3 < x_3 \land \lor x_3 = x_3 \land \lor \cdots \]
In general, CAD brings a system of polynomial inequalities into the following recursive format:

\[\cdots \lor x_1 < \land \lor x_1 = \land \lor \cdots \]

\[\cdots \lor \land \lor x_2 < \land \lor x_2 = \land \lor \cdots \]

\[\cdots \lor \land \lor x_3 < \land \lor x_3 = \land \lor \cdots \]
In general, CAD brings a system of polynomial inequalities into the following recursive format:

\[\cdots \lor \ x_1 < x_2 \land \lor \ x_2 = \land \lor \ x_1 = \land \lor \cdots \]

\[\cdots \lor \ x_2 < x_3 \land \lor \ x_3 = \land \lor \ x_2 = \land \lor \cdots \]

\[\cdots \lor \ x_3 < x_4 \land \lor \ x_4 = \land \lor \ x_3 = \land \lor \cdots \]

\[\cdots \lor \ x_4 < x_5 \land \lor \ x_5 = \land \lor \ x_4 = \land \lor \cdots \]
In general, CAD brings a system of polynomial inequalities into the following recursive format:
In general, CAD brings a system of polynomial inequalities into the following recursive format:
In general, CAD brings a system of polynomial inequalities into the following recursive format:
• The symbols □ refer to some real algebraic numbers.
• The symbols □ refer to some real algebraic numbers.
• The symbols ■ refer to some algebraic functions in x_1.
• The symbols ■ refer to some real algebraic numbers.
• The symbols □ refer to some algebraic functions in \(x_1 \).
• The symbols ▲ refer to algebraic functions in \(x_1 \) and \(x_2 \).
• The symbols ■ refer to some real algebraic numbers.
• The symbols ■ refer to some algebraic functions in x_1.
• The symbols ■ refer to algebraic functions in x_1 and x_2.
• The symbols ■ refer to algebraic functions in x_1, x_2, and x_3.
• ...
• The symbols ■ refer to some real algebraic numbers.
• The symbols □ refer to some algebraic functions in x_1.
• The symbols ◇ refer to algebraic functions in x_1 and x_2.
• The symbols ◯ refer to algebraic functions in x_1, x_2, and x_3.
• ...
Recursive Definition (for logicians):

1 variable: A system of polynomial inequalities is called a CAD in x if it is of the form

$$\Phi_1 \lor \Phi_2 \lor \cdots \lor \Phi_m$$

where each Φ_k is of the form $x < \alpha$ or $\alpha < x < \beta$ or $x > \beta$ or $x = \gamma$ for some real algebraic numbers α, β, γ ($\alpha < \beta$) and any two Φ_k are mutually inconsistent.

n variables: A system of polynomial inequalities is called a CAD in x_1, \ldots, x_n if it is of the form

$$\left(\Phi_1 \land \Psi_1\right) \lor \left(\Phi_2 \land \Psi_2\right) \lor \cdots \lor \left(\Phi_m \land \Psi_m\right)$$

where the Φ_k are such that $\Phi_1 \lor \cdots \lor \Phi_k$ is a CAD in x_1 and the Ψ_k are CADs in x_2, \ldots, x_n whenever x_1 is replaced by a real algebraic number satisfying Φ_k.
Recursive Definition (for logicians):

• 1 variable: A system of polynomial inequalities is called a CAD in \(x \) if it is of the form

\[\Phi_1 \lor \Phi_2 \lor \cdots \lor \Phi_m \]

where each \(\Phi_k \) is of the form \(x < \alpha \) or \(\alpha < x < \beta \) or \(x > \beta \) or \(x = \gamma \) for some real algebraic numbers \(\alpha, \beta, \gamma \) (\(\alpha < \beta \)) and any two \(\Phi_k \) are mutually inconsistent.
Recursive Definition (for logicians):

- 1 variable: A system of polynomial inequalities is called a CAD in x if it is of the form

$$\Phi_1 \lor \Phi_2 \lor \cdots \lor \Phi_m$$

where each Φ_k is of the form $x < \alpha$ or $\alpha < x < \beta$ or $x > \beta$ or $x = \gamma$ for some real algebraic numbers α, β, γ ($\alpha < \beta$) and any two Φ_k are mutually inconsistent.

- n variables: A system of polynomial inequalities is called a CAD in x_1, \ldots, x_n if it is of the form

$$(\Phi_1 \land \Psi_1) \lor (\Phi_2 \land \Psi_2) \lor \cdots \lor (\Phi_m \land \Psi_m)$$

where the Φ_k are such that $\Phi_1 \lor \cdots \lor \Phi_k$ is a CAD in x_1 and the Ψ_k are CADs in x_2, \ldots, x_n whenever x_1 is replaced by a real algebraic number satisfying Φ_k.
Alternative Definition (for geometers):

For $n \in \mathbb{N}$, let

$$
\pi_n : \mathbb{R}^n \to \mathbb{R}^{n-1}, \quad (x_1, \ldots, x_{n-1}, x_n) \mapsto (x_1, \ldots, x_{n-1})
$$

denote the canonical projection.
Alternative Definition (for geometers):

For \(n \in \mathbb{N} \), let

\[
\pi_n : \mathbb{R}^n \to \mathbb{R}^{n-1}, \quad (x_1, \ldots, x_{n-1}, x_n) \mapsto (x_1, \ldots, x_{n-1})
\]

denote the canonical projection.

Definition: Let \(p_1, \ldots, p_m \in \mathbb{Q}[x_1, \ldots, x_n] \). The algebraic decomposition of \(\{p_1, \ldots, p_m\} \) is called cylindrical, if
Alternative Definition (for geometers):

For $n \in \mathbb{N}$, let

$$\pi_n : \mathbb{R}^n \to \mathbb{R}^{n-1}, \quad (x_1, \ldots, x_{n-1}, x_n) \mapsto (x_1, \ldots, x_{n-1})$$

denote the canonical projection.

Definition: Let $p_1, \ldots, p_m \in \mathbb{Q}[x_1, \ldots, x_n]$. The algebraic decomposition of $\{p_1, \ldots, p_m\}$ is called cylindrical, if

- For any two cells C, D of the decomposition, the images $\pi_n(C), \pi_n(D)$ are either identical or disjoint.
Alternative Definition (for geometers):

For $n \in \mathbb{N}$, let

$$\pi_n : \mathbb{R}^n \rightarrow \mathbb{R}^{n-1}, \quad (x_1, \ldots, x_{n-1}, x_n) \mapsto (x_1, \ldots, x_{n-1})$$

denote the canonical projection.

Definition: Let $p_1, \ldots, p_m \in \mathbb{Q}[x_1, \ldots, x_n]$. The algebraic decomposition of $\{p_1, \ldots, p_m\}$ is called **cylindrical**, if

- For any two cells C, D of the decomposition, the images $\pi_n(C), \pi_n(D)$ are either identical or disjoint.
- The algebraic decomposition of $\{p_1, \ldots, p_m\} \cap \mathbb{Q}[x_1, \ldots, x_{n-1}]$ is cylindrical.
Alternative Definition (for geometers):

For \(n \in \mathbb{N} \), let

\[\pi_n : \mathbb{R}^n \rightarrow \mathbb{R}^{n-1}, \quad (x_1, \ldots, x_{n-1}, x_n) \mapsto (x_1, \ldots, x_{n-1}) \]

denote the canonical projection.

Definition: Let \(p_1, \ldots, p_m \in \mathbb{Q}[x_1, \ldots, x_n] \). The algebraic decomposition of \(\{p_1, \ldots, p_m\} \) is called **cylindrical**, if

- For any two cells \(C, D \) of the decomposition, the images \(\pi_n(C), \pi_n(D) \) are either identical or disjoint.
- The algebraic decomposition of \(\{p_1, \ldots, p_m\} \cap \mathbb{Q}[x_1, \ldots, x_{n-1}] \) is cylindrical.

Base case: Any algebraic decomposition of \(\mathbb{R}^1 \) is cylindrical.
Example: $\{x^2 + y^2 - 4, (x - 1)(y - 1) - 1\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?
Example: \(\{ x^2 + y^2 - 4, (x - 1)(y - 1) - 1 \} \subseteq \mathbb{Q}[x, y] \)

This is not a CAD. Why not?

Consider the two shaded cells.
Example: \(\{x^2 + y^2 - 4, (x - 1)(y - 1) - 1\} \subseteq \mathbb{Q}[x, y] \)

This is not a CAD. Why not?
Consider the two shaded cells.
Their projection to the real line is neither disjoint nor identical.
Example: \(\{x^2 + y^2 - 4, (x - 1)(y - 1) - 1\} \subseteq \mathbb{Q}[x, y] \)

This is not a CAD. Why not?
Consider the two shaded cells.
Their projection to the real line is neither disjoint nor identical.
Fix: Insert two vertical lines.
Example: \(\{ x^2 + y^2 - 4, (x - 1)(y - 1) - 1 \} \subseteq \mathbb{Q}[x, y] \)

This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is neither disjoint nor identical.

Fix: Insert two vertical lines.
Example: \(\{x^2 + y^2 - 4, (x - 1)(y - 1) - 1\} \subseteq \mathbb{Q}[x, y] \)

This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is neither disjoint nor identical.

Fix: Insert two vertical lines.

Proceed analogously for all other cell pairs. The result is a CAD.
Example: \(\{x^2 + y^2 - 4, (x - 1)(y - 1) - 1\} \subseteq \mathbb{Q}[x, y] \)

This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is neither disjoint nor identical.

Fix: Insert two vertical lines.

Proceed analogously for all other cell pairs. The result is a CAD.

The first phase of the CAD algorithm consists in supplementing a given set \(\{p_1, \ldots, p_m\} \) of polynomials to a set \(\{p_1, \ldots, p_m, q_1, \ldots, q_k\} \) of polynomials whose algebraic decomposition is cylindrical.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The second phase constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The **second phase** constructs a sample point for each cell in the decomposition.
The **third phase** checks the truth value of each cell and constructs a solution formula.
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[
\begin{align*}
x &= -1 \land y = 0 \land z = 0 \\
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
\left(z = -\sqrt{1 - x^2 - y^2} \right) \\
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \\
\lor z = \sqrt{1 - x^2 - y^2} \right) \\
\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[
\begin{align*}
 x &= -1 \land y = 0 \land z = 0 \\
 \lor &\quad -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
 \lor &\quad -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \left(z = -\sqrt{1 - x^2 - y^2} \right) \\
 \lor &\quad -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \left(z = \sqrt{1 - x^2 - y^2} \right) \\
 \lor &\quad y = -\sqrt{1 - x^2} \land z = 0 \right) \\
 \lor &\quad x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[x = -1 \land y = 0 \land z = 0 \]
\[\lor (-1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \left(z = -\sqrt{1 - x^2 - y^2} \right) \]
\[\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor x = 1 \land y = 0 \land z = 0 \]
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[
x = -1 \land y = 0 \land z = 0
\]

\[
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)
\]

\[
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \left(z = -\sqrt{1 - x^2 - y^2} \right)
\]

\[
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \left(z = \sqrt{1 - x^2 - y^2} \right)
\]

\[
\lor y = -\sqrt{1 - x^2} \land z = 0 \right)
\]

\[
\lor x = 1 \land y = 0 \land z = 0
\]
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[x = -1 \land y = 0 \land z = 0 \]
\[\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \left(z = -\sqrt{1 - x^2 - y^2} \right) \]
\[\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \]
\[\lor z = \sqrt{1 - x^2 - y^2} \right) \]
\[\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor x = 1 \land y = 0 \land z = 0 \]
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[
x = -1 \land y = 0 \land z = 0
\]
\[
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)
\]
\[
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land
\left(z = -\sqrt{1 - x^2 - y^2} \right)
\]
\[
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}
\]
\[
\lor z = \sqrt{1 - x^2 - y^2} \right)
\]
\[
\lor y = -\sqrt{1 - x^2} \land z = 0 \right)
\]
\[
\lor x = 1 \land y = 0 \land z = 0
\]
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

$x = -1 \land y = 0 \land z = 0$

$\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)$

$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$

$\left(z = -\sqrt{1 - x^2 - y^2} \right)$

$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$

$\lor z = \sqrt{1 - x^2 - y^2}$

$\lor y = -\sqrt{1 - x^2} \land z = 0 \right)$

$\lor x = 1 \land y = 0 \land z = 0$
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[
x = -1 \land y = 0 \land z = 0
\]

\[
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)
\]

\[
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
\left(z = -\sqrt{1 - x^2 - y^2} \right)
\]

\[
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \\
z = \sqrt{1 - x^2 - y^2}
\]

\[
\lor y = -\sqrt{1 - x^2} \land z = 0 \right)
\]

\[
\lor x = 1 \land y = 0 \land z = 0
\]
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[
x = -1 \land y = 0 \land z = 0
\]

\[
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)
\]

\[
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \left(z = -\sqrt{1 - x^2 - y^2} \right)
\]

\[
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \left(y = -\sqrt{1 - x^2} \lor z = 0 \right)
\]

\[
\lor x = 1 \land y = 0 \land z = 0
\]
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

$x = -1 \land y = 0 \land z = 0$
\n$\lor -1 < x < 1 \land (y = -\sqrt{1 - x^2} \land z = 0$
\n$\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land$
\n$z = -\sqrt{1 - x^2 - y^2}$
\n$\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}$
\n$\lor z = \sqrt{1 - x^2 - y^2})$
\n$\lor y = -\sqrt{1 - x^2} \land z = 0)$
\n$\lor x = 1 \land y = 0 \land z = 0$
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[
\begin{align*}
x &= -1 \land y = 0 \land z = 0 \\
\lor & \quad -1 < x < 1 \land \left(y = -\sqrt{1-x^2} \land z = 0 \right) \\
\lor & \quad -\sqrt{1-x^2} < y < \sqrt{1-x^2} \land \\
\left(z = -\sqrt{1-x^2-y^2} \right) \\
\lor & \quad -\sqrt{1-x^2-y^2} < z < \sqrt{1-x^2-y^2} \\
\lor & \quad z = \sqrt{1-x^2-y^2} \right) \\
\lor & \quad y = -\sqrt{1-x^2} \land z = 0 \right) \\
\lor & \quad x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Here is a CAD for the unit sphere \(x^2 + y^2 + z^2 \)

\[
x = -1 \land y = 0 \land z = 0 \\
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
\left(z = -\sqrt{1 - x^2 - y^2} \right) \\
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \\
\lor z = \sqrt{1 - x^2 - y^2} \right) \\
\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor x = 1 \land y = 0 \land z = 0
\]
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[
x = -1 \land y = 0 \land z = 0
\]

\[
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)
\]

\[
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
\left(z = -\sqrt{1 - x^2 - y^2} \right)
\]

\[
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \\
z = \sqrt{1 - x^2 - y^2}
\]

\[
\lor y = -\sqrt{1 - x^2} \land z = 0 \right)
\]

\[
\lor x = 1 \land y = 0 \land z = 0
\]
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[
x = -1 \land y = 0 \land z = 0
\]

\[
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)
\]

\[
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land
\]

\[
\left(z = -\sqrt{1 - x^2 - y^2} \right)
\]

\[
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}
\]

\[
\lor z = \sqrt{1 - x^2 - y^2}
\]

\[
\lor y = -\sqrt{1 - x^2} \land z = 0
\]

\[
\lor x = 1 \land y = 0 \land z = 0
\]
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[x = -1 \land y = 0 \land z = 0 \]
\[\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \left(z = -\sqrt{1 - x^2 - y^2} \right) \]
\[\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \left(z = \sqrt{1 - x^2 - y^2} \right) \]
\[\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor x = 1 \land y = 0 \land z = 0 \]
Here is a CAD for the unit sphere $x^2 + y^2 + z^2$

\[
x = -1 \land y = 0 \land z = 0
\]

\[
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)
\]

\[
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land
\left(z = -\sqrt{1 - x^2 - y^2} \right)
\]

\[
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land
\left(y = -\sqrt{1 - x^2} \land z = 0 \right)
\]

\[
\lor x = 1 \land y = 0 \land z = 0
\]
Dominance in the family of Sugeno-Weber t-norms

Manuel Kaufmanna, Veronica Fidelisena, Susanne Saminger-Plátzb,*

a Research Institute for Symbolic Computation, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
b Department of Knowledge-Based Systems, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria

Received 9 July 2010, revised 14 April 2011, accepted 15 April 2011

Abstract

The dominance relationship between two members of the family of Sugeno-Weber t-norms is proved by using a quantifier elimination algorithm. Further it is shown how dominance is a transitive and therefore also an order relation on this family of t-norms.

© 2011 Elsevier B.V. All rights reserved.

Keywords: Dominance, T-norms, Sugeno t-norms, aggregation operators, Cylindrical algebraic decomposition, Mathematics

1. Introduction

Dominance is a fundamental property which arises in different application fields, and it is often a great advantage in generalizing properties of existing aggregation processes, e.g., in flexible querying, preference modeling, or computer-assisted advice in [1,2,3,4,6,9]. It is further central in the construction of Cylindrical Algebraic Decomposition (CAD) algorithms as well as in the construction of finite-valued incomplete aggregation operators and order relations [22,5,30].

Introdution in 1996 of the framework of product t-norm spaces as an inequality involving two univariate functions (see [15,17]) formed the basis of a new line of research. It was shown in [9] that dominance constitutes a reflexive and asymmetric relation on the set of all t-norms. Thus it is not a transitive relation. This has been proven much later in 2007 [9]. The authors in [9] have asked in a long-open question: to what extent, if any, dominance is a transitive relation? It turns out that the two important univariate families of t-norms, dominance is also a transitive and therefore also an order relation [22,24,25,29,31].

The family of Sugeno-Weber t-norms has become one of the most prominent families of t-norms for which dominance has not been completely characterized so far. First partial results were obtained recently [22] by using results on different optimization conditions derived from marginal monotonicity of the t-norm family inequality (E8) and using the additive generators of the t-norms. Their paper introduces and characterizes a new ...
A triangular norm is a map \(T : [0,1]^2 \to [0,1] \) which is commutative, associative, increasing, and has neutral element 1.

Examples:

• The minimum norm \((u,v) \mapsto \min(u,v)\)

• The product norm \((u,v) \mapsto uv\)

• The Lukasiewicz norm \((u,v) \mapsto \max(u+v-1,0)\)
A triangular norm is a map

\[T : [0, 1]^2 \to [0, 1] \]

which is commutative, associative, increasing, and has neutral element 1.
A triangular norm is a map

\[T: [0, 1]^2 \rightarrow [0, 1] \]

which is commutative, associative, increasing, and has neutral element 1.

Examples:
A **triangular norm** is a map

\[T: [0, 1]^2 \rightarrow [0, 1] \]

which is commutative, associative, increasing, and has neutral element 1.

Examples:

- The minimum norm \((u, v) \mapsto \min(u, v)\)
- The product norm \((u, v) \mapsto uv\)
- The Lukasiewicz norm \((u, v) \mapsto \max(u + v - 1, 0)\)
A triangular norm is a map

\[T: [0, 1]^2 \rightarrow [0, 1] \]

which is commutative, associative, increasing, and has neutral element 1.

Examples:

- The minimum norm \((u, v) \mapsto \min(u, v)\)
- The product norm \((u, v) \mapsto uv\)
A triangular norm is a map

\[T: [0, 1]^2 \rightarrow [0, 1] \]

which is commutative, associative, increasing, and has neutral element 1.

Examples:

- The minimum norm \((u, v) \mapsto \min(u, v)\)
- The product norm \((u, v) \mapsto uv\)
- The Łukasiewicz norm \((u, v) \mapsto \max(u + v - 1, 0)\)
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda: [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for \(\lambda \geq 0 \)

\[
T_\lambda : [0, 1]^2 \rightarrow [0, 1],
\]

\[
T_\lambda (u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).
\]
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_{\lambda}: [0, 1]^2 \rightarrow [0, 1],$$

$$T_{\lambda}(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$T_\lambda (u, v) = \max \left(0, (1 - \lambda)uv + \lambda (u + v - 1) \right).$$
The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda: [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for \(\lambda \geq 0 \)

\[
T_\lambda : [0, 1]^2 \rightarrow [0, 1],
T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).
\]
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_\lambda: [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$

$\lambda=1$.
The family of **Sugeno-Weber** norms is defined for \(\lambda \geq 0 \)

\[
T_{\lambda}: [0, 1]^2 \rightarrow [0, 1], \\
T_{\lambda}(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).
\]
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

\[T_\lambda : [0, 1]^2 \rightarrow [0, 1], \]

\[T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)). \]
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

\[T_\lambda : [0, 1]^2 \rightarrow [0, 1], \]
\[T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)). \]
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$
$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$
T_\lambda : [0, 1]^2 \rightarrow [0, 1],
T_\lambda (u, v) = \max (0, (1 - \lambda)uv + \lambda(u + v - 1)).
$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_{\lambda}: [0, 1]^2 \rightarrow [0, 1],$$

$$T_{\lambda}(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$

$\lambda=1.6$
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_\lambda: [0, 1]^2 \rightarrow [0, 1],$$
$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of Sugeno-Weber norms is defined for \(\lambda \geq 0 \)

\[
T_\lambda : [0,1]^2 \to [0,1],
T_\lambda(u,v) = \max(0, (1-\lambda)uv + \lambda(u+v-1)).
\]
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$:

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_\lambda: [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of \textit{Sugeno-Weber} norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$
$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of \textit{Sugeno-Weber} norms is defined for $\lambda \geq 0$

$$T_\lambda: [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

\[T_\lambda: [0, 1]^2 \rightarrow [0, 1], \]

\[T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)). \]
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda: [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$

$\lambda = 3$.
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda: [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$

$\lambda=3.1$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$T_\lambda (u, v) = \max (0, (1 - \lambda)uv + \lambda (u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_{\lambda} : [0, 1]^2 \rightarrow [0, 1],$$

$$T_{\lambda}(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$

$\lambda = 3.4$
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max (0, (1 - \lambda)uv + \lambda (u + v - 1)).$$
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max \left(0, (1 - \lambda)uv + \lambda(u + v - 1) \right).$$

$\lambda=3.8$
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

\[T_\lambda : [0, 1]^2 \rightarrow [0, 1], \]

\[T_\lambda (u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)). \]
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda: [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$
$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$

$\lambda = 4.2$
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

\[T_\lambda : [0, 1]^2 \to [0, 1], \]

\[T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)). \]
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$

$\lambda=4.4$
The family of Sugeno-Weber norms is defined for \(\lambda \geq 0 \)

\[
T_\lambda : [0, 1]^2 \rightarrow [0, 1], \\
T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).
\]
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_{\lambda} : [0, 1]^2 \to [0, 1],$$

$$T_{\lambda}(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of \textbf{Sugeno-Weber} norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$

$\lambda=5.$
A norm T is said to dominate a norm T' if

$$T(T'(u, v), T'(x, y)) \leq T'(T(u, x), T(v, y))$$

for all $x, y, u, v \in [0, 1]$.
A norm T is said to dominate a norm T' if

$$T(T'(u,v), T'(x,y)) \leq T'(T(u,x), T(v,y))$$

for all $x, y, u, v \in [0, 1]$.

Question: What are the $\lambda, \mu \geq 0$ such that the Sugeno-Weber norm T_λ dominates the Sugeno-Weber norm T_μ?
A norm T is said to dominate a norm T' if

$$T(T'(u, v), T'(x, y)) \leq T'(T(u, x), T(v, y))$$

for all $x, y, u, v \in [0, 1]$.

Question: What are the $\lambda, \mu \geq 0$ such that the Sugeno-Weber norm T_λ dominates the Sugeno-Weber norm T_μ?

Theorem (Kauers, Pillwein, Saminger-Platz, 2010)

T_λ dominates T_μ if and only if (a) $\lambda = \mu$ or (b) $0 \leq \lambda \leq \mu \leq 17 + 12\sqrt{2}$ or (c) $\mu > 17 + 12\sqrt{2}$ and $0 \leq \lambda \leq \left(\frac{1 - 3\sqrt{\mu}}{3 - \sqrt{\mu}}\right)^2$.

Just use CAD to eliminate the quantifiers from the formula

\[
\forall x, y, u, v \in [0, 1] : \\
\max(0, (1 - \lambda) \max(0, (1 - \mu)uv + \mu(u + v - 1))) \\
\times \max(0, (1 - \mu)xy + \mu(x + y - 1)) \\
+ \lambda(\max(0, (1 - \mu)uv + \mu(u + v - 1)) \\
+ \max(0, (1 - \mu)xy + \mu(x + y - 1)) - 1)) \\
\geq \max(0, (1 - \mu) \max(0, (1 - \lambda)ux + \lambda(u + x - 1))) \\
\times \max(0, (1 - \lambda)vy + \lambda(v + y - 1)) \\
+ \mu(\max(0, (1 - \lambda)ux + \lambda(u + x - 1)) \\
+ \max(0, (1 - \lambda)vy + \lambda(v + y - 1)) - 1)).
\]
Just use CAD to eliminate the quantifiers from the formula

$$\forall x, y, u, v \in [0, 1]:$$

$$\max(0, (1 - \lambda) \max(0, (1 - \mu)uv + \mu(u + v - 1))) \times \max(0, (1 - \mu)xy + \mu(x + y - 1))$$

$$+ \lambda(\max(0, (1 - \mu)uv + \mu(u + v - 1))$$

$$+ \max(0, (1 - \mu)xy + \mu(x + y - 1)) - 1))$$

$$\geq \max(0, (1 - \mu) \max(0, (1 - \lambda)ux + \lambda(u + x - 1))) \times \max(0, (1 - \lambda)vy + \lambda(v + y - 1))$$

$$+ \mu(\max(0, (1 - \lambda)ux + \lambda(u + x - 1))$$

$$+ \max(0, (1 - \lambda)vy + \lambda(v + y - 1)) - 1)).$$

This is possible in principle, but not in practice.
Task: Break the problem into several feasible subproblems.
Task: Break the problem into several feasible subproblems.

We proceeded in several steps:
Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
4. Sort out redundant clauses (using CAD)
Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
4. Sort out redundant clauses (using CAD)
5. Apply some logical simplifications (using CAD)
Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
4. Sort out redundant clauses (using CAD)
5. Apply some logical simplifications (using CAD)
6. Apply some algebraic simplifications
Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
4. Sort out redundant clauses (using CAD)
5. Apply some logical simplifications (using CAD)
6. Apply some algebraic simplifications
7. Apply CAD to finish up
1. Handle some special cases by hand.
1. Handle some special cases by hand.

It is “easy to see” that it suffices to consider the cases

\[0 < \lambda < \mu \quad \text{and} \quad x, y, u, v \in (0, 1) \]

instead of

\[\lambda, \mu \geq 0 \quad \text{and} \quad x, y, u, v \in [0, 1]. \]
1. Handle some special cases by hand.

It is “easy to see” that it suffices to consider the cases

\[0 < \lambda < \mu \quad \text{and} \quad x, y, u, v \in (0, 1) \]

instead of

\[\lambda, \mu \geq 0 \quad \text{and} \quad x, y, u, v \in [0, 1]. \]

(Homework.)
2. Eliminate the outer maxima.
2. Eliminate the outer maxima.

Apply the general equivalence

\[
\max(0, A) \geq \max(0, B) \iff B \leq 0 \lor A \geq B > 0 \quad (A, B \in \mathbb{R})
\]

to obtain
2. Eliminate the outer maxima.

Apply the general equivalence

\[
\max(0, A) \geq \max(0, B) \iff B \leq 0 \lor A \geq B > 0 \quad (A, B \in \mathbb{R})
\]

to obtain

\[
\forall x, y, u, v \in \mathbb{R} : 0 < \lambda < \mu \land 0 < x < 1 \land 0 < y < 1 \land 0 < u < 1 \land 0 < v < 1
\Rightarrow ((1 - \mu) \max(0, (1 - \lambda)ux + \lambda(u + x - 1)) \max(0, (1 - \lambda)uy + \lambda(v + y - 1)) \\
+ \mu(\max(0, (1 - \lambda)ux + \lambda(u + x - 1)) + \max(0, (1 - \lambda)uy + \lambda(v + y - 1)) - 1) \leq 0
\lor (1 - \lambda) \max(0, (1 - \mu)uv + \mu(u + v - 1)) \max(0, (1 - \mu)xy + \mu(x + y - 1))
+ \lambda(\max(0, (1 - \mu)uv + \mu(u + v - 1)) + \max(0, (1 - \mu)xy + \mu(x + y - 1)) - 1))
\geq (1 - \mu) \max(0, (1 - \lambda)ux + \lambda(u + x - 1)) \max(0, (1 - \lambda)uy + \lambda(v + y - 1))
+ \mu(\max(0, (1 - \lambda)ux + \lambda(u + x - 1)) + \max(0, (1 - \lambda)uy + \lambda(v + y - 1)) - 1) > 0)
\]
3. Eliminate the inner maxima.
3. Eliminate the inner maxima.

If $\Phi(X)$ is any formula depending on a real variable X, then

$$\Phi(\max(0, X)) \iff (X \leq 0 \land \Phi(0)) \lor (X > 0 \land \Phi(X)).$$
3. Eliminate the inner maxima.

If $\Phi(X)$ is any formula depending on a real variable X, then

$$\Phi(\max(0, X)) \iff (X \leq 0 \land \Phi(0)) \lor (X > 0 \land \Phi(X)).$$

For a formula in several variables, we have

$$\Phi(\max(0, X_1), \max(0, X_2)) \iff (X_1 \leq 0 \land X_2 \leq 0 \land \Phi(0, 0)$$
$$\lor X_1 > 0 \land X_2 \leq 0 \land \Phi(X_1, 0)$$
$$\lor X_1 \leq 0 \land X_2 > 0 \land \Phi(0, X_2)$$
$$\lor X_1 > 0 \land X_2 > 0 \land \Phi(X_1, X_2)).$$
3. Eliminate the inner maxima.

Writing

\[
X_1 := (1 - \lambda)ux + \lambda(u + x - 1), \\
X_2 := (1 - \lambda)vy + \lambda(v + y - 1), \\
X_3 := (1 - \mu)uv + \mu(u + v - 1), \\
X_4 := (1 - \mu)xy + \mu(x + y - 1),
\]

this turns the formula into...
3. Eliminate the inner maxima.

∀ x, y, u, v ∈ ℝ : 0 < λ < µ ∧ 0 < x < 1 ∧ 0 < y < 1 ∧ 0 < u < 1 ∧ 0 < v < 1
⇒ ((X_1 ≤ 0 ∧ X_2 ≤ 0 ∧ (1 − µ)0 0 + µ(0 + 0 − 1) ≤ 0
 ∨ X_1 > 0 ∧ X_2 ≤ 0 ∧ (1 − µ)X_1 0 + µ(X_1 + 0 − 1) ≤ 0
 ∨ X_1 ≤ 0 ∧ X_2 > 0 ∧ (1 − µ)0 X_2 + µ(0 + X_2 − 1) ≤ 0
 ∨ X_1 > 0 ∧ X_2 > 0 ∧ (1 − µ)X_1 X_2 + µ(X_1 + X_2 − 1) ≤ 0)
∨ (X_1 ≤ 0 ∧ X_2 ≤ 0 ∧ X_3 ≤ 0 ∧ X_4 ≤ 0
 ∧ (1 − λ)0 0 + λ(0 + 0 − 1) ≥ (1 − µ)0 0 + µ(0 + 0 − 1) > 0
 ∨ X_1 > 0 ∧ X_2 ≤ 0 ∧ X_3 ≤ 0 ∧ X_4 ≤ 0
 ∧ (1 − λ)0 0 + λ(0 + 0 − 1) ≥ (1 − µ)X_1 0 + µ(X_1 + 0 − 1) > 0
 ∨ ...)
∨ X_1 > 0 ∧ X_2 > 0 ∧ X_3 > 0 ∧ X_4 ≤ 0
 ∧ (1 − λ)X_3 0 + λ(X_3 + 0 − 1) ≥ (1 − µ)X_1 X_2 + µ(X_1 + X_2 − 1) > 0
 ∨ X_1 > 0 ∧ X_2 > 0 ∧ X_3 > 0 ∧ X_4 > 0
 ∧ (1 − λ)X_3 X_4 + λ(X_3 + X_4 − 1) ≥ (1 − µ)X_1 X_2 + µ(X_1 + X_2 − 1) > 0))
4. Discard redundant clauses.
4. Discard redundant clauses.

This formula is of the form

$$\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (C_1 \lor C_2 \lor \cdots \lor C_{20}).$$
4. Discard redundant clauses.

This formula is of the form

$$\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (C_1 \lor C_2 \lor \cdots \lor C_{20}).$$

For many indices i, we can show by CAD that

$$H \land C_i$$

is inconsistent.
4. Discard redundant clauses.

This formula is of the form

\[\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (C_1 \lor C_2 \lor \cdots \lor C_{20}). \]

For many indices \(i \), we can show by CAD that

\[H \land C_i \]

is inconsistent.

These clauses \(C_i \) can be discarded.
4. Discard redundant clauses.

This formula is of the form

$$\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (C_1 \lor C_2 \lor \cdots \lor C_{20}).$$

For many indices i, we can show by CAD that

$$H \land C_i$$

is inconsistent.

These clauses C_i can be discarded. This turns the formula into...
4. Discard redundant clauses.

\[
\forall x, y, u, v \in \mathbb{R} : 0 < \lambda < \mu \\
\quad \land 0 < x < 1 \land 0 < y < 1 \land 0 < u < 1 \land 0 < v < 1 \\
\Rightarrow (X_1 \leq 0 \lor X_2 \leq 0) \\
\quad \lor (1 - \mu)X_1X_2 + \mu(X_1 + X_2 - 1) \leq 0 \\
\quad \lor X_1 > 0 \land X_2 > 0 \land X_3 > 0 \land X_4 > 0 \\
\quad \land (1 - \lambda)X_3X_4 + \lambda(X_3 + X_4 - 1) \\
\geq (1 - \mu)X_1X_2 + \mu(X_1 + X_2 - 1) > 0).
\]
5. Apply some logical simplifications

This formula is of the form

\[\forall x, y, u, v \in \mathbb{R}: \neg A \land \neg B \Rightarrow H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land D_1 \land D_2) \].

We clearly can discard \(\neg A \land \neg B \).

Furthermore, we can prove with CAD the formulas

\[\forall x, y, u, v \in \mathbb{R}: H \land \neg C \Rightarrow D_1 \]

\[\forall x, y, u, v \in \mathbb{R}: H \land \neg C \Rightarrow \neg A \]

\[\forall x, y, u, v \in \mathbb{R}: H \land \neg C \Rightarrow \neg B \]

are true.

This allows us to drop \(D_1 \) and \(A \) and \(B \), and leads us to...
5. Apply some logical simplifications

This formula is of the form

\[\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land D_1 \land D_2). \]
5. Apply some logical simplifications

This formula is of the form

\[\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land D_1 \land D_2). \]

We clearly can discard \(\neg A \land \neg B \).
5. Apply some logical simplifications

This formula is of the form

\[\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land D_1 \land D_2). \]

We clearly can discard \(\neg A \land \neg B \).

Furthermore, we can prove with CAD the formulas

\[\forall x, y, u, v \in \mathbb{R} : H \land \neg C \Rightarrow D_1 \]
\[\forall x, y, u, v \in \mathbb{R} : H \land \neg C \Rightarrow \neg A \]
\[\forall x, y, u, v \in \mathbb{R} : H \land \neg C \Rightarrow \neg B \]

are true.
5. Apply some logical simplifications

This formula is of the form

\[\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land D_1 \land D_2) \].

We clearly can discard \(\neg A \land \neg B \).

Furthermore, we can prove with CAD the formulas

\[\forall x, y, u, v \in \mathbb{R} : H \land \neg C \Rightarrow D_1 \]
\[\forall x, y, u, v \in \mathbb{R} : H \land \neg C \Rightarrow \neg A \]
\[\forall x, y, u, v \in \mathbb{R} : H \land \neg C \Rightarrow \neg B \]

are true. This allows us to drop \(D_1 \) and \(A \) and \(B \), and leads us to...
5. Apply some logical simplifications

\[\forall x, y, u, v \in \mathbb{R} : 0 < \lambda < \mu \]
\[\land 0 < x < 1 \land 0 < y < 1 \land 0 < u < 1 \land 0 < v < 1 \]
\[\Rightarrow ((1 - \mu)X_1X_2 + \mu(X_1 + X_2 - 1) \leq 0 \]
\[\lor (1 - \lambda)X_3X_4 + \lambda(X_3 + X_4 - 1) \geq (1 - \mu)X_1X_2 + \mu(X_1 + X_2 - 1)).\]
6. Apply some algebraic simplifications

In terms of \(x, y, u, v \), this is still messy. The size can be reduced further by substituting

\[
\begin{align*}
x & \mapsto 1 - x, \\
y & \mapsto 1 - y, \\
u & \mapsto 1 - u, \\
v & \mapsto 1 - v
\end{align*}
\]

and afterwards

\[
v \mapsto \frac{v - y}{1 + (\lambda - 1)y}.
\]

This brings the formula into the form...
6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.
6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.

The size can be reduced further by substituting

$$x \mapsto 1 - x, \ y \mapsto 1 - y, \ u \mapsto 1 - u, \ v \mapsto 1 - v$$
6. Apply some algebraic simplifications

In terms of \(x, y, u, v \), this is still messy.

The size can be reduced further by substituting

\[
\begin{align*}
x & \mapsto 1 - x, \quad y \mapsto 1 - y, \quad u \mapsto 1 - u, \quad v \mapsto 1 - v
\end{align*}
\]

and afterwards \(v \mapsto (v - y)/(1 + (\lambda - 1)y) \).
6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.

The size can be reduced further by substituting

\[x \mapsto 1 - x, \quad y \mapsto 1 - y, \quad u \mapsto 1 - u, \quad v \mapsto 1 - v \]

and afterwards $v \mapsto (v - y)/(1 + (\lambda - 1)y)$.

This brings the formula into the form...
6. Apply some algebraic simplifications

\[\forall x, y, u, v \in \mathbb{R} : 0 < \lambda < \mu \]
\[\land 0 < x < 1 \land 0 < y < 1 \land 0 < u < 1 \land y < v < 1 + \lambda y \]
\[\Rightarrow (u((\lambda - 1)x + 1)((\mu - 1)v + 1) \]
\[+ (\mu - 1)vx + v + x - 1 \geq 0 \]
\[\lor vx(1 - (\lambda - 1)(\mu - 1)uy) \]
\[+ y((\lambda - 1)uy((\mu - 1)x + 1) + u - x) \geq 0) \]
7. Apply CAD to finish up
7. Apply CAD to finish up

CAD applied to this formula gives the final result.
7. Apply CAD to finish up

CAD applied to this formula gives the final result.

\[0 < \lambda < \mu \leq 17 + 12\sqrt{2} \lor \mu > 17 + 12\sqrt{2} \land 0 < \lambda \leq \left(\frac{1 - 3\sqrt{\mu}}{3 - \sqrt{\mu}}\right)^2\]
7. Apply CAD to finish up

CAD applied to this formula gives the final result.

\[0 < \lambda < \mu \leq 17 + 12\sqrt{2} \lor \mu > 17 + 12\sqrt{2} \land 0 < \lambda \leq \left(\frac{1 - 3\sqrt{\mu}}{3 - \sqrt{\mu}} \right)^2\]
Convinced that CAD is useful?
Convinced that CAD is useful?

If you want to use it, here are some good implementations:

- **Qepcad** by Hong, Brown et al.
 http://www.cs.usna.edu/~qepcad/B/QEPCAD.html

- **Redlog** by Dolzman, Seidl et al.
 http://fmi.uni-passau.de/~redlog/

- **Mathematica** by Stzebonski (CylindricalDecomposition and Resolve)
Convinced that CAD is useful?

If you want to read about it, here are some references:

- **Algorithms in Real Algebraic Geometry** by Basu, Pollack, Roy (Springer 2006)
- **ISSAC 2004 Tutorial** by Brown
- **How to use Cylindrical Algebraic Decomposition** by Kauers (SLC 2011)