Creative Telescoping via Hermite Reduction

Manuel Kauers
Institute for Algebra
Johannes Kepler University
4040 Linz, Austria
e-mail: manuel.kauers @jku.at

Abstract—We give an overview over various techniques for
creative telescoping, starting from the classical algorithms and
ending with the most recent approaches based on Hermite
reduction.

I. INTRODUCTION

Creative telescoping is a key tool in symbolic summation
and integration. It is used for constructing for a given definite
sum or integral an associated linear recurrence or differential
equation, which can then be used by other algorithms for
finding out all sorts of interesting facts about the quantity in
question.

Suppose we want to find a linear recurrence operator

P =po(n) +p1(n)0p + -+ pr(n)0;,

such that P applied to the sum S(n) := >}, (2)2 gives
zero, i.e., such that

po(n)S(n) + pr(n)S(n+1) + - +pp(n)S(n+r) =0

for all n € N. Following the paradigm of creative telescoping,
we first search for an annihilating operator of the summand

sequence f(n, k) = (2)2 which can be written in the form

P+ (0 —1)Q

for some operator P involving only n and 0, and some
operator () that may involve n, k, O, 0,,. In the example, one
such operator is

(24 4n) — (n 4 1)0 +(0 — 1) 23— 2k +3)

(n—k+1)2
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Writing g(n, k) Q- f(n,k) = %(k)z -

2(2%—3n— 2 . .
% ("+")", this operator corresponds to the equation

(2+4n) f(n, k)—(n+1) f(n+1, k‘)—i—(g(n, k+1)—g(n, k)) =0

for all n, k € N. Summing this equation for k =0,...,n+1
leads to (244n)S(n)—(n+1)S(n+1) = 0 for n € N. In short,
an operator of the form P — (0 — 1)@ which annihilates a
summand sequence gives rise to an annihilating operator P for
the sum. For more details about this reasoning, see, e.g., [11],
[9].

All the operators which annihilate a particular summand
sequence f(n, k) form a left ideal of a certain operator algebra.
Creative telescoping algorithms compute an element of the

form P — (0y — 1)@ in this ideal, given an arbitrary ideal
basis. Four generations of creative telescoping algorithms can
be distinguished: the first was based on elimination in ideals
of operator algebras [12], [13], [8]. The second is the classical
Zeilberger algorithm and its variants [14], [15], [7]. The third
goes back to an idea of Apagodu and Zeilberger [1], [10], [6].
The fourth and final (so far) generation of creative telescoping
algorithms is based on Hermite reduction [2], [4], [3]. In the
talk, we will explain the idea of this apprach and a striking
advantage compared to earlier algorithms. We will also present
a Hermite-reduction based algorithm applicable to definite
hypergeometric sums, published this year in a joint ISSAC
paper with Chen, Huang, and Li [5].
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