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Analogous algorithms have been formulated for

e g-hypergeometric terms (Wilf-Zeilberger)
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e holonomic functions (Chyzak)

o TTX-expressions (Schneider)
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Basic idea: Move some of the work performed by Gosper’s
algorithm from runtime to development time.

@ Easier to implement, and more efficient
S May not always find the minimal order equation
@ Allows to estimate the size of the output

The sizes of telescoper (co(n),...,cr(1n)) and
g(n, k) grow with the size of the input f(n, k).

But the size of the certificate grows much faster,
both in theory and in practice.
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Can we compute telescopers without also computing certificates?

Chen’s algorithm:

.

co(x) f(x,t) = %( . ) +co(x) F;o((;»é)

i) gl = 2 () + ey P
2

c2(x) %f(x,t) = ag( ) +ey(x) 1;2((;%:))

) = 2 pi(x, )

CT‘(X) axrf(X,t) = a ( . ) + CT(X) q(X,t)
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Can we compute telescopers without also computing

Chen’s algorithm:

co(x) (poo(x) +pro(x)t+------ +pao(x)t?)
+c1(x) (po,i(x) + pra(x)t+---- +paq(x)t?)
+ c2(x) (po2(X) +pro(x)t 4+ + P (x)t?)

+er(x) (Poy(x) +prp(x)t 4o +Ppar(x)t?)
=0
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Can we compute telescopers without also computing

Chen’s algorithm:
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e Note: A nontrivial solution is guaranteed as soon as v > d
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Can we compute telescopers without also computing

Chen’s algorithm:

Poo(x) Poi(x) - Par(X)\ /co(x) 0
P1o(x) : c1(x) _|:
pd,(;(x) s s pd,;(x) cr(x) O

e Note: A nontrivial solution is guaranteed as soon as v > d

e Recall:
deg; pi(x,t) < d < deg; q(x,t) < deg;[[denom. of f(x,t)]]

e In general, we can't do better.

13



Our contribution (Chen, Huang, Kauers, Li; ISSAC’15):

An analogous algorithm for summation instead of integration,
with f(n, k) being hypergeometric instead of f(x,t) being rational.
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Our contribution (Chen, Huang, Kauers, Li; ISSAC’15):
An analogous algorithm for summation instead of integration,

with f(n, k) being hypergeometric instead of f(x,t) being rational.

e An adapted version of the so-called Abramov-Petkovsek
reduction plays the role of Hermite reduction.

e Technical difficulty: some extra work is needed to enforce a
finite common denominator.
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Example: f(n,k) = (2)3

Therefore

8(n+1)%f(n, k) + (7n*+21n+16)f(n + 1,k) — (n+2)*f(n + 2, k)

for some (messy)

Therefore, for F(n) =Y ", (2)3 we have

8(n+1)F(n) + (T2 +21n+16)F(n+ 1) — (m+2)*F(n+2) =0
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The four generations of creative telescoping algorithms:

1 Elimination in operator algebras / Sister Celine’s algorithm

2 Zeilberger's algorithm and its generalizations (since ~ 1990)

3 The Apagodu-Zeilberger ansatz (since ~ 2005)

4 Hermite-Reduction based methods (since ~ 2010)
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