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e An element of k(x) is called integral if its denominator is in k.
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e An element of k(x) is called integral if its monic (!) minimal
polynomial belongs to k[x][y].

Note: This is the case if and only if the corresponding
function has no poles on any of its branches.

Example: ’andare integral but \/1 XJis not.
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This is a k[x]-module, but it is generated by 1, v/x2, (V/x2)2.
In fact, %\3/7? € O\ (klx] + kX VX% + k[x](\%?)z).

It can be shown that {1, \%?, %W} is a module basis of O.

Such a basis is called an integral basis for K.
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Classical Problem: Given an irreducible polynomial M € k(x)[y],
find an integral basis for K = k(x)[yl/(M), i.e., a k[x]-module
basis for the set O of all integral elements of K.

Classical Algorithms:

e Trager's algorithm — based on ideal arithmetic
e van Hoeij's algorithm — based on series arithmetic

Key Fact:

e An element a € K is integral if and only if all its Puiseux
series expansions at all places have nonnegative valuation.



Example: M = (£2x3 +2x*) —x3y — (2x + 1)y? + ¢



Example: M = (£2x3 +2x*) —x3y — (2x + 1)y? + ¢




Example: M = (£2x3 +2x*) —x3y — (2x + 1)y? + ¢




Example: M = (%7@ +2xH) =Py — (2x+ Dy’ +y

x=0 | Y | |

1st sol T4+2x+---
2nd sol 5 x3/2 — 9 X2 4.

3rd sol 5 3/2—1— x5/2+--~



Example: M =

(Bx3 + %) —x3

(2x+ 1)y
x=0 ‘ Yy yz
1st sol T+2x+--- 1+4x+
2nd sol | 3x3/2— x4 ... X34

3rd sol

5 3/z+ 255/ 4



Example: M = (%7@ +2xH) =3y — (2x+ Ny +y°

x=0 ‘ y ‘ y2 ‘ ¥ —y
1st sol T4+2x+--- 14+4x+--- 2% 4 - - -
2nd sol | 3x3/2 — 9 x3/2 4 ... %7&4_... 16X3+

3rd sol 53/2-1— x5/2+--~ %—27@4—--- %7@4_...



Example: M = (%7@ +2xH) — %3

x=0 ‘ y

ly*—y)

1st sol T4+2x+---

2nd sol | 3x3/2— x4 ...
3rd sol 5 3/2+ FXO2 4

24
%Xz_i_...

252
]6X _|_



Example: M = (%7@ +2xH) =3y — (2x+ Ny +y°

x=0 | Y | -y
1st sol T+2x+--- 14+4x+--- 24 ...
2nd sol %x3/2—%x5/2+... %‘ZX‘?’—F-“ %Xz—i--'-
3rdsol | —3x32 4 2x32 4. | B 4. B2y

The element %(yz — 1) is integral but does not belong to
kX + kxly + kix]y?.



Example: M = (%7@ +2xH) =3y — (2x+ Ny +y°

x=0 | Y | -y
1st sol T+2x+--- 14+4x+--- 24 ...
2nd sol %x3/2—%x5/2+... %‘ZX‘?’—F-“ %Xz—i--'-
3rdsol | —3x32 4 2x32 4. | B 4. B2y

The element %(yz — 1) is integral but does not belong to
kX + kxly + kix]y?.

In fact, an integral basis is given by {1,y, %(yz —y)}.
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General outline of the algorithm:

1 Start with the basis (bg, by,...,ba_1) = (1,y,...,y¢ ).

2 If there exists an integral element a which does not belong to
k[x]bg + - - - + k[x]bg_1, say of degree 1 with respect to y,
replace b; by a and goto 2.

3 Otherwise, return by, ..., bg_1 and stop.

Facts: a=_(Bobo+ -+ Bi_1bi_1 + b;)
e Existence 6f an element a can be decided by making a
suitable ansatz, equating coefficients in the
and solving a linear system. around «

e Termination of the algorithm can be shown by considering a
[certain ponnomiaI]whose degree decreases whenever some b;
is replaced by an a.

disc(bg, ..., bg_1)
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L=po+p10+---+p:0" € k(x)[0].

For any «, such an operator L admits a fundamental system of
generalized series solutions of the form

oxp(P((x — oc)]"rsj) (x — oc)VQ((x — )%, log(x — oc))

for some s € N, P € k[t], v € k, and Q € k[[ul][v].

We restrict the attention to operators L where P =0 and s =1 for
all its solutions.

We call such a series integral if v > 0. (Well, v might not be real;
see the paper for a more careful definition.)
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Consider the algebra A = k(x)[0]/(L), where (L) = k(x)[0]L is the

left ideal generated by L.

This is a k(x)-vector space generated by 1,9,...,0".

An element qo + q10 + -+ q,_10""" € A is called integral if for

every series solution f of L at any o € k the corresponding series
q0f+ qi £/ + -+ qr—1 f(T*U

is integral.
Fact: The integral elements of A form a k[x]-submodule of A.

Want: A k[x]-module basis of this module.
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Example: L =2x(2x — 1)0% — (4x2 +1)0 + (2x + 1).

x:1/2‘ 1 ‘ xd ‘lel(zxa_w
Istsol | T+ (x—3)+- | F+3x—1)+- T
2nd sol | T+ (x—3) 4+ | 14+ 3(x-1)+-- T4...

ZQ—_](ZXB - 1) is an integral element of k(x)[d]/(L), but does not
belong to k[x] 4+ k[x] x0
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Main result: The idea of van Hoeij's algorithm carries over from
the algebraic case to the D-finite case.

In view of ALGEBRAIC C D-FINITE, our version may be viewed as
a generalization of van Hoeij's original algorithm.
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Example. L =2x(2x —1)3% — (4x2 + 1)d + (2x + 1).
An integral basis of k(x)[0]/(L) is {1, ﬁ(ZXO — 1)}.

For a solution y of L, let wp:=1-y, w; = 2;—71(27@ —1)-yand
consider

(4x2 +37x — 11wy — (28x%3 — 40x% + x + 1wy

f =
4(x — 1)2x?

Then a Hermite-reduction-like calculation can find

Jf (11 + 4x) o + 5(2x — ey
N 8(1 —x)2x?

So far, we have not worked out whether this works in general.
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