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• An element of Q is called integral if its denominator is 1 or −1.

• An element of k(x) is called integral if its denominator is in k.

Note: This is the case if and only if the element has no poles.

• An element of k(x) is called integral if its monic (!) minimal
polynomial belongs to k[x][y].

Note: This is the case if and only if the corresponding
function has no poles on any of its branches.

Example:
√
x and

3
√
x2 are integral but

√
1/x is not.
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Consider the field K = k(x)
( 3
√
x2
)
.

It is the k(x)-vector space generated by 1,
3
√
x2, (

3
√
x2)2.

Let O be the set of all integral elements of K.

This is a k[x]-module, but it is not generated by 1,
3
√
x2, (

3
√
x2)2.

In fact, 1x
3
√
x4 ∈ O \

(
k[x] + k[x]

3
√
x2 + k[x](

3
√
x2)2

)
.

It can be shown that
{
1,

3
√
x2, 1

x

3
√
x4
}

is a module basis of O.

Such a basis is called an integral basis for K.
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Classical Problem: Given an irreducible polynomial M ∈ k(x)[y],
find an integral basis for K = k(x)[y]/〈M〉, i.e., a k[x]-module
basis for the set O of all integral elements of K.

Classical Algorithms:

• Trager’s algorithm

– based on ideal arithmetic

• van Hoeij’s algorithm

– based on series arithmetic

Key Fact:

• An element a ∈ K is integral if and only if all its Puiseux
series expansions at all places have nonnegative valuation.
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Example: M = (2516x
3 + 2x4) − x3 y− (2x+ 1)y2 + y3

5



Example: M = (2516x
3 + 2x4) − x3 y− (2x+ 1)y2 + y3

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

5



Example: M = (2516x
3 + 2x4) − x3 y− (2x+ 1)y2 + y3

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

5



Example: M = (2516x
3 + 2x4) − x3 y− (2x+ 1)y2 + y3

x = 0 y

y2

1
x(

y2 − y

)

1st sol 1+ 2x+ · · ·

1+ 4x+ · · · 2x+ · · ·2+ · · ·

2nd sol 5
4x
3/2 − 9

20x
5/2 + · · ·

25
16x

3 + · · · 25
16x

3 + · · ·25
16x

2 + · · ·

3rd sol − 5
4x
3/2 + 9

20x
5/2 + · · ·

25
16x

3 + · · · 25
16x

3 + · · ·25
16x

2 + · · ·

The element 1
x(y

2 − y) is integral but does not belong to
k[x] + k[x]y+ k[x]y2.

In fact, an integral basis is given by
{
1, y, 1x(y

2 − y)
}

.
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General outline of the algorithm:

1 Start with the basis (b0, b1, . . . , bd−1) = (1, y, . . . , yd−1).

2 If there exists an integral element a which does not belong to
k[x]b0 + · · ·+ k[x]bd−1, say of degree i with respect to y,
replace bi by a and goto 2.

3 Otherwise, return b0, . . . , bd−1 and stop.

Facts:

• Existence of an element a can be decided by making a
suitable ansatz, equating coefficients in the Puiseux series,
and solving a linear system.

• Termination of the algorithm can be shown by considering a
certain polynomial whose degree decreases whenever some bi
is replaced by an a.

6



General outline of the algorithm:

1 Start with the basis (b0, b1, . . . , bd−1) = (1, y, . . . , yd−1).

2 If there exists an integral element a which does not belong to
k[x]b0 + · · ·+ k[x]bd−1, say of degree i with respect to y,
replace bi by a and goto 2.

3 Otherwise, return b0, . . . , bd−1 and stop.

Facts:

• Existence of an element a can be decided by making a
suitable ansatz, equating coefficients in the Puiseux series,
and solving a linear system.

• Termination of the algorithm can be shown by considering a
certain polynomial whose degree decreases whenever some bi
is replaced by an a.

6



General outline of the algorithm:

1 Start with the basis (b0, b1, . . . , bd−1) = (1, y, . . . , yd−1).

2 If there exists an integral element a which does not belong to
k[x]b0 + · · ·+ k[x]bd−1, say of degree i with respect to y,
replace bi by a and goto 2.

3 Otherwise, return b0, . . . , bd−1 and stop.

Facts:

• Existence of an element a can be decided by making a
suitable ansatz, equating coefficients in the Puiseux series,
and solving a linear system.

• Termination of the algorithm can be shown by considering a
certain polynomial whose degree decreases whenever some bi
is replaced by an a.

6



General outline of the algorithm:

1 Start with the basis (b0, b1, . . . , bd−1) = (1, y, . . . , yd−1).

2 If there exists an integral element a which does not belong to
k[x]b0 + · · ·+ k[x]bd−1, say of degree i with respect to y,
replace bi by a and goto 2.

3 Otherwise, return b0, . . . , bd−1 and stop.

Facts:

• Existence of an element a can be decided by making a
suitable ansatz, equating coefficients in the Puiseux series,
and solving a linear system.

• Termination of the algorithm can be shown by considering a
certain polynomial whose degree decreases whenever some bi
is replaced by an a.

6



General outline of the algorithm:

1 Start with the basis (b0, b1, . . . , bd−1) = (1, y, . . . , yd−1).

2 If there exists an integral element a which does not belong to
k[x]b0 + · · ·+ k[x]bd−1, say of degree i with respect to y,
replace bi by a and goto 2.

3 Otherwise, return b0, . . . , bd−1 and stop.

Facts:

• Existence of an element a can be decided by making a
suitable ansatz, equating coefficients in the Puiseux series,
and solving a linear system.

• Termination of the algorithm can be shown by considering a
certain polynomial whose degree decreases whenever some bi
is replaced by an a.

6



General outline of the algorithm:

1 Start with the basis (b0, b1, . . . , bd−1) = (1, y, . . . , yd−1).

2 If there exists an integral element a which does not belong to
k[x]b0 + · · ·+ k[x]bd−1, say of degree i with respect to y,
replace bi by a and goto 2.

3 Otherwise, return b0, . . . , bd−1 and stop.

Facts:

• Existence of an element a can be decided by making a
suitable ansatz, equating coefficients in the Puiseux series,
and solving a linear system.

• Termination of the algorithm can be shown by considering a
certain polynomial whose degree decreases whenever some bi
is replaced by an a.

6



General outline of the algorithm:

1 Start with the basis (b0, b1, . . . , bd−1) = (1, y, . . . , yd−1).

2 If there exists an integral element a which does not belong to
k[x]b0 + · · ·+ k[x]bd−1, say of degree i with respect to y,
replace bi by a and goto 2.

3 Otherwise, return b0, . . . , bd−1 and stop.

Facts:

• Existence of an element a can be decided by making a

a = 1
x−α(β0b0 + · · ·+ βi−1bi−1 + bi)

suitable ansatz, equating coefficients in the Puiseux series,
and solving a linear system.

• Termination of the algorithm can be shown by considering a
certain polynomial whose degree decreases whenever some bi
is replaced by an a.

6



General outline of the algorithm:

1 Start with the basis (b0, b1, . . . , bd−1) = (1, y, . . . , yd−1).

2 If there exists an integral element a which does not belong to
k[x]b0 + · · ·+ k[x]bd−1, say of degree i with respect to y,
replace bi by a and goto 2.

3 Otherwise, return b0, . . . , bd−1 and stop.

Facts:

• Existence of an element a can be decided by making a

a = 1
x−α(β0b0 + · · ·+ βi−1bi−1 + bi)

suitable ansatz, equating coefficients in the
around α

Puiseux series,
and solving a linear system.

• Termination of the algorithm can be shown by considering a
certain polynomial whose degree decreases whenever some bi
is replaced by an a.

6



General outline of the algorithm:

1 Start with the basis (b0, b1, . . . , bd−1) = (1, y, . . . , yd−1).

2 If there exists an integral element a which does not belong to
k[x]b0 + · · ·+ k[x]bd−1, say of degree i with respect to y,
replace bi by a and goto 2.

3 Otherwise, return b0, . . . , bd−1 and stop.

Facts:

• Existence of an element a can be decided by making a

a = 1
x−α(β0b0 + · · ·+ βi−1bi−1 + bi)

suitable ansatz, equating coefficients in the
around α

Puiseux series,
and solving a linear system.

• Termination of the algorithm can be shown by considering a
certain polynomial whose degree decreases whenever some bi
is replaced by an a.

6



General outline of the algorithm:

1 Start with the basis (b0, b1, . . . , bd−1) = (1, y, . . . , yd−1).

2 If there exists an integral element a which does not belong to
k[x]b0 + · · ·+ k[x]bd−1, say of degree i with respect to y,
replace bi by a and goto 2.

3 Otherwise, return b0, . . . , bd−1 and stop.

Facts:

• Existence of an element a can be decided by making a

a = 1
x−α(β0b0 + · · ·+ βi−1bi−1 + bi)

suitable ansatz, equating coefficients in the
around α

Puiseux series,
and solving a linear system.

• Termination of the algorithm can be shown by considering a

disc(b0, . . . , bd−1)

certain polynomial whose degree decreases whenever some bi
is replaced by an a.

6



\end{old}

\begin{new}

7



Consider a linear differential operator
L = p0 + p1∂+ · · ·+ pr∂r ∈ k(x)[∂].

For any α, such an operator L admits a fundamental system of
generalized series solutions of the form

exp
(
P((x− α)1/s)

)
(x− α)νQ

(
(x− α)1/s, log(x− α)

)
for some s ∈ N, P ∈ k[t], ν ∈ k, and Q ∈ k[[u]][v].

We restrict the attention to operators L where P = 0 and s = 1 for
all its solutions.

We call such a series integral if ν ≥ 0. (Well, ν might not be real;
see the paper for a more careful definition.)
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Consider the algebra A = k(x)[∂]/〈L〉, where 〈L〉 = k(x)[∂]L is the
left ideal generated by L.

This is a k(x)-vector space generated by 1, ∂, . . . , ∂r−1.

An element q0 + q1∂+ · · ·+ qr−1∂r−1 ∈ A is called integral if for
every series solution f of L at any α ∈ k the corresponding series

q0 f+ q1 f
′ + · · ·+ qr−1 f(r−1)

is integral.

Fact: The integral elements of A form a k[x]-submodule of A.

Want: A k[x]-module basis of this module.
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Example: L = 2x(2x− 1)∂2 − (4x2 + 1)∂+ (2x+ 1).
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Main result: The idea of van Hoeij’s algorithm carries over from
the algebraic case to the D-finite case.

In view of ALGEBRAIC ⊆ D-FINITE, our version may be viewed as
a generalization of van Hoeij’s original algorithm.
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Why should we care?

• Trager uses integral bases to integrate algebraic functions.

• Is there a similar integration algorithm for D-finite functions?

Maybe.
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Example. L = 2x(2x− 1)∂2 − (4x2 + 1)∂+ (2x+ 1).

An integral basis of k(x)[∂]/〈L〉 is
{
1, 1
2x−1(2x∂− 1)

}
.

For a solution y of L, let ω0 := 1 · y, ω1 :=
1

2x−1(2x∂− 1) · y and
consider

f =
(4x2 + 37x− 11)ω0 − (28x3 − 40x2 + x+ 1)ω1

4(x− 1)2x2
.

Then a Hermite-reduction-like calculation can find

∫

f =

∂ ·

(11+ 4x)ω0 + 5(2x− 1)ω1
8(1− x)2x2

+ 0

So far, we have not worked out whether this works in general.
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