Integral D-finite Functions

Manuel Kauers

Institute for Algebra Johannes Kepler University Linz, Austria

Integral D-finite Functions $p_0(x)f(x) + p_1(x)f'(x) + \dots + p_r(x)f^{(r)}(x) = 0$ Manuel Kauers

Institute for Algebra Johannes Kepler University Linz, Austria

Institute for Algebra Johannes Kepler University Linz, Austria

$\mathbb{Z} \cdots \mathbb{Q}$ **Integral D-finite Functions** $p_{0}(x)f(x) + p_{1}(x)f'(x) + \cdots + p_{r}(x)f^{(r)}(x) = 0$ Manuel Kauers

Institute for Algebra Johannes Kepler University Linz, Austria

$\begin{array}{c} \mathbf{k}[\mathbf{x}] & \cdots & \mathbf{k}(\mathbf{x}) \\ \mathbb{Z} & \cdots & \mathbb{Q} \end{array} \\ \hline \mathbf{Integral D-finite Functions} \\ \mathbf{p}_{0}(\mathbf{x})\mathbf{f}(\mathbf{x}) + \mathbf{p}_{1}(\mathbf{x})\mathbf{f}'(\mathbf{x}) + \cdots + \mathbf{p}_{r}(\mathbf{x})\mathbf{f}^{(r)}(\mathbf{x}) = \mathbf{0} \\ & \text{Manuel Kauers} \end{array}$

Institute for Algebra Johannes Kepler University Linz, Austria

Institute for Algebra Johannes Kepler University Linz, Austria

 $\begin{array}{ccc} ??? & \cdots & \overset{\textbf{D-finite functions}}{\overline{k(x)}} \\ \mathcal{O}_{k[x]} & \cdots & k(x) \\ \mathbb{Z} & \cdots & \mathbb{Q} \\ \hline \textbf{Integral D-finite Functions} \\ p_0(x)f(x) + p_1(x)f'(x) + \cdots + p_r(x)f^{(r)}(x) = 0 \\ & \text{Manuel Kauers} \end{array}$

Institute for Algebra Johannes Kepler University Linz, Austria

• An element of \mathbb{Q} is called integral if its denominator is 1 or -1.

- An element of \mathbb{Q} is called integral if its denominator is 1 or -1.
- An element of k(x) is called integral if its denominator is in k.

- An element of \mathbb{Q} is called integral if its denominator is 1 or -1.
- An element of k(x) is called integral if its denominator is in k.
 Note: This is the case if and only if the element has no poles.

- An element of \mathbb{Q} is called integral if its denominator is 1 or -1.
- An element of k(x) is called integral if its denominator is in k.
 Note: This is the case if and only if the element has no poles.
- An element of $\overline{k(x)}$ is called integral if its monic (!) minimal polynomial belongs to k[x][y].

- An element of \mathbb{Q} is called integral if its denominator is 1 or -1.
- An element of k(x) is called integral if its denominator is in k.
 Note: This is the case if and only if the element has no poles.
- An element of k(x) is called integral if its monic (!) minimal polynomial belongs to k[x][y].
 Note: This is the case if and only if the corresponding

function has no poles on any of its branches.

- An element of \mathbb{Q} is called integral if its denominator is 1 or -1.
- An element of k(x) is called integral if its denominator is in k.
 Note: This is the case if and only if the element has no poles.
- An element of k(x) is called integral if its monic (!) minimal polynomial belongs to k[x][y].
 Note: This is the case if and only if the corresponding function has no poles on any of its branches.
 Example: √x and ³√x² are integral but √1/x is not.

- An element of \mathbb{Q} is called integral if its denominator is 1 or -1.
- An element of k(x) is called integral if its denominator is in k.
 Note: This is the case if and only if the element has no poles.
- An element of $\overline{k(x)}$ is called integral if its monic (!) minimal polynomial belongs to k[x][y].

Example: \sqrt{x} and $\sqrt[3]{x^2}$ are integral but $\sqrt{1/x}$ is not. $M = y^2 - x$

- An element of \mathbb{Q} is called integral if its denominator is 1 or -1.
- An element of k(x) is called integral if its denominator is in k.
 Note: This is the case if and only if the element has no poles.
- An element of $\overline{k(x)}$ is called integral if its monic (!) minimal polynomial belongs to k[x][y].

Example: \sqrt{x} and $\sqrt[3]{x^2}$ are integral but $\sqrt{1/x}$ is not. $M = y^2 - x$ $M = y^3 - x^2$

- An element of \mathbb{Q} is called integral if its denominator is 1 or -1.
- An element of k(x) is called integral if its denominator is in k.
 Note: This is the case if and only if the element has no poles.
- An element of k(x) is called integral if its monic (!) minimal polynomial belongs to k[x][y].

Example: \sqrt{x} and $\sqrt[3]{x^2}$ are integral but $\sqrt{1/x}$ is not. $M = y^2 - x$ $M = y^3 - x^2$ $M = y^2 - \frac{1}{x}$

- An element of \mathbb{Q} is called integral if its denominator is 1 or -1.
- An element of k(x) is called integral if its denominator is in k.
 Note: This is the case if and only if the element has no poles.
- An element of $\overline{k(x)}$ is called integral if its monic (!) minimal polynomial belongs to k[x][y].

Example: \sqrt{x} and $\sqrt[3]{x^2}$ are integral but $\sqrt{1/x}$ is not. $M = y^2 - x$ $M = y^3 - x^2$ $M = xy^2 - 1$ Consider the field $K = k(x) (\sqrt[3]{x^2}).$

Consider the field $K = k(x)(\sqrt[3]{x^2})$. It is the k(x)-vector space generated by 1, $\sqrt[3]{x^2}$, $(\sqrt[3]{x^2})^2$. Consider the field $K = k(x)(\sqrt[3]{x^2})$. It is the k(x)-vector space generated by 1, $\sqrt[3]{x^2}$, $(\sqrt[3]{x^2})^2$. Let \mathcal{O} be the set of all integral elements of K. Consider the field $K = k(x)(\sqrt[3]{x^2})$. It is the k(x)-vector space generated by 1, $\sqrt[3]{x^2}$, $(\sqrt[3]{x^2})^2$. Let \mathcal{O} be the set of all integral elements of K. This is a k[x]-module, but it is not generated by 1, $\sqrt[3]{x^2}$, $(\sqrt[3]{x^2})^2$. Consider the field $K = k(x)(\sqrt[3]{x^2})$. It is the k(x)-vector space generated by 1, $\sqrt[3]{x^2}$, $(\sqrt[3]{x^2})^2$. Let \mathcal{O} be the set of all integral elements of K. This is a k[x]-module, but it is **not** generated by 1, $\sqrt[3]{x^2}$, $(\sqrt[3]{x^2})^2$. In fact, $\frac{1}{v}\sqrt[3]{x^4} \in \mathcal{O} \setminus (k[x] + k[x]\sqrt[3]{x^2} + k[x](\sqrt[3]{x^2})^2)$. Consider the field $K = k(x)(\sqrt[3]{x^2})$. It is the k(x)-vector space generated by 1, $\sqrt[3]{x^2}$, $(\sqrt[3]{x^2})^2$. Let \mathcal{O} be the set of all integral elements of K. This is a k[x]-module, but it is not generated by 1, $\sqrt[3]{x^2}$, $(\sqrt[3]{x^2})^2$. In fact, $\frac{1}{x}\sqrt[3]{x^4} \in \mathcal{O} \setminus (k[x] + k[x]\sqrt[3]{x^2} + k[x](\sqrt[3]{x^2})^2)$. It can be shown that $\{1, \sqrt[3]{x^2}, \frac{1}{x}\sqrt[3]{x^4}\}$ is a module basis of \mathcal{O} . Consider the field $K = k(x)(\sqrt[3]{x^2})$. It is the k(x)-vector space generated by 1, $\sqrt[3]{x^2}$, $(\sqrt[3]{x^2})^2$. Let \mathcal{O} be the set of all integral elements of K. This is a k[x]-module, but it is **not** generated by 1, $\sqrt[3]{x^2}$, $(\sqrt[3]{x^2})^2$. In fact, $\frac{1}{x}\sqrt[3]{x^4} \in \mathcal{O} \setminus (k[x] + k[x]\sqrt[3]{x^2} + k[x](\sqrt[3]{x^2})^2)$. It can be shown that $\{1, \sqrt[3]{x^2}, \frac{1}{x}\sqrt[3]{x^4}\}$ is a module basis of \mathcal{O} . Such a basis is called an integral basis for K.

Classical Algorithms:

- Trager's algorithm
- van Hoeij's algorithm

Classical Algorithms:

- Trager's algorithm based on ideal arithmetic
- van Hoeij's algorithm

Classical Algorithms:

- Trager's algorithm based on ideal arithmetic
- van Hoeij's algorithm based on series arithmetic

Classical Algorithms:

• Trager's algorithm - based on ideal arithmetic

• van Hoeij's algorithm - based on series arithmetic

Classical Algorithms:

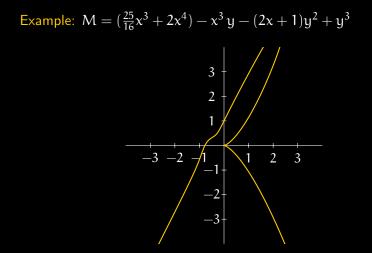
• Trager's algorithm - based on ideal arithmetic

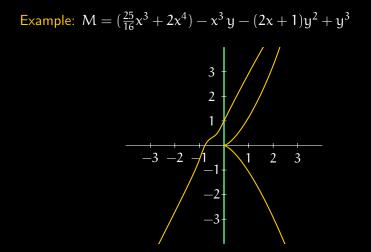
• van Hoeij's algorithm – based on series arithmetic

Key Fact:

• An element $a \in K$ is integral if and only if all its Puiseux series expansions at all places have nonnegative valuation.

Example:
$$M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$$





Example: $M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$

$\mathbf{x} = 0$	y	
1st sol	$1+2x+\cdots$	
2nd sol	$\frac{5}{4}x^{3/2} - \frac{9}{20}x^{5/2} + \cdots$	
3rd sol	$-\frac{5}{4}x^{3/2} + \frac{9}{20}x^{5/2} + \cdots$	

Example: $M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$

$\mathbf{x} = 0$	y	y ²	
1st sol	$1+2x+\cdots$	$1+4x+\cdots$	
2nd sol	$\frac{5}{4}x^{3/2} - \frac{9}{20}x^{5/2} + \cdots$	$\frac{25}{16}x^3 + \cdots$	
3rd sol	$-\frac{5}{4}x^{3/2} + \frac{9}{20}x^{5/2} + \cdots$	$\frac{25}{16}x^3 + \cdots$	

Example: $M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$

$\mathbf{x} = 0$	y	y²	$y^2 - y$
1st sol	$1+2x+\cdots$	$1+4x+\cdots$	$2x + \cdots$
2nd sol	$\frac{5}{4}x^{3/2} - \frac{9}{20}x^{5/2} + \cdots$	$\frac{25}{16}x^3 + \cdots$	$\frac{25}{16}x^3 + \cdots$
3rd sol	$-\frac{5}{4}x^{3/2} + \frac{9}{20}x^{5/2} + \cdots$	$\frac{25}{16}x^3 + \cdots$	$\frac{25}{16}x^3 + \cdots$

Example: $M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$

$\mathbf{x} = 0$	y	y ²	$\frac{1}{x}(y^2-y)$
1st sol	$1+2x+\cdots$	$1+4x+\cdots$	$2+\cdots$
2nd sol	$\frac{5}{4}x^{3/2} - \frac{9}{20}x^{5/2} + \cdots$	$\frac{25}{16}x^3 + \cdots$	$\frac{25}{16}x^2 + \cdots$
3rd sol	$-\frac{5}{4}x^{3/2} + \frac{9}{20}x^{5/2} + \cdots$	$\frac{25}{16}x^3 + \cdots$	$\frac{\frac{25}{16}}{16}x^2 + \cdots$

Example: $M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$

$\mathbf{x} = 0$	y	y²	$\frac{1}{x}(y^2-y)$
1st sol	$1+2x+\cdots$	$1+4x+\cdots$	$2+\cdots$
2nd sol	$\frac{5}{4}x^{3/2} - \frac{9}{20}x^{5/2} + \cdots$	$\frac{25}{16}x^3 + \cdots$	$\frac{25}{16}x^2 + \cdots$
3rd sol	$-\frac{5}{4}x^{3/2} + \frac{9}{20}x^{5/2} + \cdots$	$\frac{25}{16}x^3 + \cdots$	$\frac{25}{16}x^2 + \cdots$

The element $\frac{1}{x}(y^2 - y)$ is integral but does not belong to $k[x] + k[x]y + k[x]y^2$.

Example: $M = (\frac{25}{16}x^3 + 2x^4) - x^3y - (2x+1)y^2 + y^3$

$\mathbf{x} = 0$	y	y ²	$\frac{1}{x}(y^2-y)$
1st sol	$1+2x+\cdots$	$1+4x+\cdots$	$2+\cdots$
2nd sol	$\frac{5}{4}x^{3/2} - \frac{9}{20}x^{5/2} + \cdots$	$\frac{25}{16}x^3 + \cdots$	$\frac{25}{16}x^2 + \cdots$
3rd sol	$-\frac{5}{4}x^{3/2} + \frac{9}{20}x^{5/2} + \cdots$	$\frac{25}{16}x^3 + \cdots$	$\tfrac{25}{16}x^2 + \cdots$

The element $\frac{1}{x}(y^2 - y)$ is integral but does not belong to $k[x] + k[x]y + k[x]y^2$.

In fact, an integral basis is given by $\{1, y, \frac{1}{x}(y^2 - y)\}$.

1 Start with the basis $(b_0, b_1, \ldots, b_{d-1}) = (1, y, \ldots, y^{d-1}).$

- 1 Start with the basis $(b_0,b_1,\ldots,b_{d-1})=(1,y,\ldots,y^{d-1}).$
- **2** If there exists an integral element a which does not belong to $k[x]b_0 + \cdots + k[x]b_{d-1}$, say of degree i with respect to y, replace b_i by a and goto **2**.

- 1 Start with the basis $(b_0,b_1,\ldots,b_{d-1})=(1,y,\ldots,y^{d-1}).$
- 2 If there exists an integral element a which does not belong to $k[x]b_0+\cdots+k[x]b_{d-1}$, say of degree i with respect to y, replace b_i by a and goto 2.
- **3** Otherwise, return b_0, \ldots, b_{d-1} and stop.

- 1 Start with the basis $(b_0,b_1,\ldots,b_{d-1})=(1,y,\ldots,y^{d-1}).$
- 2 If there exists an integral element a which does not belong to $k[x]b_0+\cdots+k[x]b_{d-1}$, say of degree i with respect to y, replace b_i by a and goto 2.
- **3** Otherwise, return b_0, \ldots, b_{d-1} and stop.

Facts:

- 1 Start with the basis $(b_0,b_1,\ldots,b_{d-1})=(1,y,\ldots,y^{d-1}).$
- 2 If there exists an integral element a which does not belong to $k[x]b_0+\cdots+k[x]b_{d-1}$, say of degree i with respect to y, replace b_i by a and goto 2.
- **3** Otherwise, return b_0, \ldots, b_{d-1} and stop.

Facts:

 Existence of an element α can be decided by making a suitable ansatz, equating coefficients in the Puiseux series, and solving a linear system.

- 1 Start with the basis $(b_0,b_1,\ldots,b_{d-1})=(1,y,\ldots,y^{d-1}).$
- 2 If there exists an integral element a which does not belong to $k[x]b_0+\cdots+k[x]b_{d-1}$, say of degree i with respect to y, replace b_i by a and goto 2.
- **3** Otherwise, return b_0, \ldots, b_{d-1} and stop.

Facts:

$$\mathbf{a} = \frac{1}{\mathbf{x} - \alpha} (\beta_0 \mathbf{b}_0 + \dots + \beta_{i-1} \mathbf{b}_{i-1} + \mathbf{b}_i)$$

 Existence of an element α can be decided by making a suitable ansatz, equating coefficients in the Puiseux series, and solving a linear system.

- 1 Start with the basis $(b_0,b_1,\ldots,b_{d-1})=(1,y,\ldots,y^{d-1}).$
- 2 If there exists an integral element a which does not belong to $k[x]b_0+\cdots+k[x]b_{d-1}$, say of degree i with respect to y, replace b_i by a and goto 2.
- **3** Otherwise, return b_0, \ldots, b_{d-1} and stop.

Facts:

$$a = \frac{1}{x-\alpha}(\beta_0 b_0 + \dots + \beta_{i-1} b_{i-1} + b_i)$$

Existence of an element α can be decided by making a suitable ansatz, equating coefficients in the Puiseux series, and solving a linear system.

- 1 Start with the basis $(b_0,b_1,\ldots,b_{d-1})=(1,y,\ldots,y^{d-1}).$
- 2 If there exists an integral element a which does not belong to $k[x]b_0+\cdots+k[x]b_{d-1}$, say of degree i with respect to y, replace b_i by a and goto 2.
- **3** Otherwise, return b_0, \ldots, b_{d-1} and stop.

Facts:

$$a = \frac{1}{x-\alpha}(\beta_0 b_0 + \dots + \beta_{i-1} b_{i-1} + b_i)$$

- Existence of an element α can be decided by making a suitable ansatz, equating coefficients in the Puiseux series, and solving a linear system. around α
- Termination of the algorithm can be shown by considering a certain polynomial whose degree decreases whenever some b_i is replaced by an α.

- 1 Start with the basis $(b_0,b_1,\ldots,b_{d-1})=(1,y,\ldots,y^{d-1}).$
- 2 If there exists an integral element a which does not belong to $k[x]b_0+\cdots+k[x]b_{d-1}$, say of degree i with respect to y, replace b_i by a and goto 2.
- **3** Otherwise, return b_0, \ldots, b_{d-1} and stop.

Facts:

$$a = \frac{1}{x-\alpha}(\beta_0 b_0 + \dots + \beta_{i-1} b_{i-1} + b_i)$$

- Existence of an element α can be decided by making a suitable ansatz, equating coefficients in the Puiseux series, and solving a linear system. around α
- Termination of the algorithm can be shown by considering a certain polynomial whose degree decreases whenever some b_i is replaced by an a.
 disc(b_0,...,b_{d-1})

\end{old}

\begin{new}

For any α , such an operator L admits a fundamental system of generalized series solutions of the form

$$\exp\bigl(\mathsf{P}((x-\alpha)^{1/s})\bigr)(x-\alpha)^{\nu}Q\bigl((x-\alpha)^{1/s},\log(x-\alpha)\bigr)$$

for some $s \in \mathbb{N}$, $P \in k[t]$, $\nu \in k$, and $Q \in k[[u]][\nu]$.

For any α , such an operator L admits a fundamental system of generalized series solutions of the form

$$\exp\bigl(\mathsf{P}((x-\alpha)^{1/s})\bigr)(x-\alpha)^{\nu}Q\bigl((x-\alpha)^{1/s},\log(x-\alpha)\bigr)$$

for some $s \in \mathbb{N}$, $P \in k[t]$, $v \in k$, and $Q \in k[[u]][v]$.

We restrict the attention to operators L where P = 0 and s = 1 for all its solutions.

For any α , such an operator L admits a fundamental system of generalized series solutions of the form

$$\exp(\mathbb{P}((x-\alpha)^{1/s}))(x-\alpha)^{\nu}Q((x-\alpha)^{1/s},\log(x-\alpha))$$

for some $s \in \mathbb{N}$, $P \in k[t]$, $v \in k$, and $Q \in k[[u]][v]$.

We restrict the attention to operators L where P = 0 and s = 1 for all its solutions.

For any α , such an operator L admits a fundamental system of generalized series solutions of the form

$$\exp(\mathbb{P}((x-\alpha)^{1/s}))(x-\alpha)^{\mathbf{v}}Q((x-\alpha)^{1/s},\log(x-\alpha))$$

for some $s \in \mathbb{N}$, $P \in k[t]$, $v \in k$, and $Q \in k[[u]][v]$.

We restrict the attention to operators L where P = 0 and s = 1 for all its solutions.

We call such a series integral if $\nu \geq 0$.

For any α , such an operator L admits a fundamental system of generalized series solutions of the form

$$\exp(\mathbb{P}((x-\alpha)^{1/s}))(x-\alpha)^{\mathbf{v}}Q((x-\alpha)^{1/s},\log(x-\alpha))$$

for some $s \in \mathbb{N}$, $P \in k[t]$, $v \in k$, and $Q \in k[[u]][v]$.

We restrict the attention to operators L where P = 0 and s = 1 for all its solutions.

We call such a series integral if $\nu \ge 0$. (Well, ν might not be real; see the paper for a more careful definition.)

This is a k(x)-vector space generated by $1, \partial, \ldots, \partial^{r-1}$.

This is a k(x)-vector space generated by $1, \partial, \dots, \partial^{r-1}$.

An element $q_0 + q_1 \partial + \cdots + q_{r-1} \partial^{r-1} \in A$ is called integral if for every series solution f of L at any $\alpha \in k$ the corresponding series

$$q_0 f + q_1 f' + \dots + q_{r-1} f^{(r-1)}$$

is integral.

This is a k(x)-vector space generated by $1, \partial, \dots, \partial^{r-1}$.

An element $q_0 + q_1 \partial + \cdots + q_{r-1} \partial^{r-1} \in A$ is called integral if for every series solution f of L at any $\alpha \in k$ the corresponding series

$$q_0 f + q_1 f' + \dots + q_{r-1} f^{(r-1)}$$

is integral.

Fact: The integral elements of A form a k[x]-submodule of A.

This is a k(x)-vector space generated by $1, \partial, \dots, \partial^{r-1}$.

An element $q_0 + q_1 \partial + \cdots + q_{r-1} \partial^{r-1} \in A$ is called integral if for every series solution f of L at any $\alpha \in k$ the corresponding series

$$q_0 f + q_1 f' + \dots + q_{r-1} f^{(r-1)}$$

is integral.

Fact: The integral elements of A form a k[x]-submodule of A. Want: A k[x]-module basis of this module. Example: $L = 2x(2x-1)\partial^2 - (4x^2+1)\partial + (2x+1)$.

$\mathbf{x} = 0$	1	
1st sol	$1 + x + \frac{1}{2}x^2 + \cdots$	
2nd sol	$x^{1/2} + \cdots$	

Example:
$$L = 2x(2x-1)\partial^2 - (4x^2+1)\partial + (2x+1)$$
.

$\mathbf{x} = 0$	1	6	
1st sol	$1 + x + \frac{1}{2}x^2 + \cdots$	$1 + x + \cdots$	
2nd sol	$x^{1/2} + \cdots$	$\frac{1}{2}x^{-1/2}+\cdots$	

Example:
$$L = 2x(2x-1)\partial^2 - (4x^2+1)\partial + (2x+1)$$
.

x = 0	1	6	хð
1st sol	$1 + x + \frac{1}{2}x^2 + \cdots$	$1 + x + \cdots$	$x + x^2 + \cdots$
2nd sol	$x^{1/2} + \cdots$	$\frac{1}{2}x^{-1/2}+\cdots$	$\frac{1}{2}x^{1/2} + \cdots$

Example: $L = 2x(2x - 1)\partial^2 - (4x^2 + 1)\partial + (2x + 1)$.

Example: $L = 2x(2x - 1)\partial^2 - (4x^2 + 1)\partial + (2x + 1)$.

$\mathbf{x} = 0$	1	6	хð
1st sol	$1+x+\tfrac{1}{2}x^2+\cdots$	$1 + x + \cdots$	$x + x^2 + \cdots$
2nd sol	$x^{1/2} + \cdots$	$\frac{1}{2}x^{-1/2}+\cdots$	$\frac{1}{2}x^{1/2} + \cdots$

1 and x ∂ are integral elements of $k(x)[\partial]/\langle L \rangle$, but ∂ is not.

Example:	L = 2x(2x -	$1)\partial^2 - (4)$	$(4x^2 + 1)\partial +$	-(2x+1).
----------	-------------	----------------------	------------------------	----------

x = 1/2	1	хð	
1st sol	$\frac{1}{2} + (\mathbf{x} - \frac{1}{2}) + \cdots$	$\frac{1}{4} + \frac{3}{4}(x - \frac{1}{2}) + \cdots$	
2nd sol	$1+(x-\frac{1}{2})+\cdots$	$\frac{1}{2} + \frac{3}{2}(x - \frac{1}{2}) + \cdots$	

Example:	L = 2x(2x -	$1)\partial^{2} -$	$(4x^2 +$	$1) \partial +$	(2x + 1)).
----------	-------------	--------------------	-----------	-----------------	----------	----

x = 1/2	1	хð	$2x\partial - 1$
1st sol	$\frac{1}{2} + (\mathbf{x} - \frac{1}{2}) + \cdots$	$\frac{1}{4} + \frac{3}{4}(x - \frac{1}{2}) + \cdots$	$\frac{1}{2}(\mathbf{x}-\frac{1}{2})+\cdots$
2nd sol	$1+(x-\frac{1}{2})+\cdots$	$\frac{1}{2} + \frac{3}{2}(x - \frac{1}{2}) + \cdots$	$2(x-\frac{1}{2})+\cdots$

Example:	L = 2x(2x -	$1)\partial^2 -$	$(4x^2 +$	$1)\partial +$	(2x+1).	
----------	-------------	------------------	-----------	----------------	---------	--

x = 1/2	1	хð	$\frac{1}{2x-1}(2x\partial-1)$
1st sol	$\frac{1}{2} + (\mathbf{x} - \frac{1}{2}) + \cdots$	$\frac{1}{4} + \frac{3}{4}(x - \frac{1}{2}) + \cdots$	$\frac{1}{4} + \cdots$
2nd sol	$1+(x-\frac{1}{2})+\cdots$	$\frac{1}{2} + \frac{3}{2}(x - \frac{1}{2}) + \cdots$	$1+\cdots$

Example:
$$L = 2x(2x-1)\partial^2 - (4x^2+1)\partial + (2x+1)$$
.

 $\frac{1}{2x-1}(2x\partial - 1)$ is an integral element of $k(x)[\partial]/\langle L \rangle$, but does not belong to $k[x] + k[x] x\partial$

Main result: The idea of van Hoeij's algorithm carries over from the algebraic case to the D-finite case.

Main result: The idea of van Hoeij's algorithm carries over from the algebraic case to the D-finite case.

In view of ALGEBRAIC \subseteq D-FINITE, our version may be viewed as a generalization of van Hoeij's original algorithm.

• Trager uses integral bases to integrate algebraic functions.

• Trager uses integral bases to integrate algebraic functions.

• Trager uses integral bases to integrate algebraic functions.

- Trager uses integral bases to integrate algebraic functions.
- Is there a similar integration algorithm for D-finite functions?

- Trager uses integral bases to integrate algebraic functions.
- Is there a similar integration algorithm for D-finite functions? Maybe.

Example. $L = 2x(2x-1)\partial^2 - (4x^2+1)\partial + (2x+1).$

Example. $L = 2x(2x-1)\partial^2 - (4x^2+1)\partial + (2x+1)$. An integral basis of $k(x)[\partial]/\langle L \rangle$ is $\left\{1, \frac{1}{2x-1}(2x\partial - 1)\right\}$. Example. L = $2x(2x-1)\partial^2 - (4x^2+1)\partial + (2x+1)$. An integral basis of $k(x)[\partial]/\langle L \rangle$ is $\left\{1, \frac{1}{2x-1}(2x\partial - 1)\right\}$. For a solution y of L, let $\omega_0 := 1 \cdot y$, $\omega_1 := \frac{1}{2x-1}(2x\partial - 1) \cdot y$ and consider

$$f = \frac{(4x^2 + 37x - 11)\omega_0 - (28x^3 - 40x^2 + x + 1)\omega_1}{4(x - 1)^2 x^2}$$

Example. L = $2x(2x - 1)\partial^2 - (4x^2 + 1)\partial + (2x + 1)$. An integral basis of $k(x)[\partial]/\langle L \rangle$ is $\{1, \frac{1}{2x-1}(2x\partial - 1)\}$. For a solution y of L, let $\omega_0 := 1 \cdot y$, $\omega_1 := \frac{1}{2x-1}(2x\partial - 1) \cdot y$ and consider

$$f = \frac{(4x^2 + 37x - 11)\omega_0 - (28x^3 - 40x^2 + x + 1)\omega_1}{4(x - 1)^2 x^2}$$

Then a Hermite-reduction-like calculation can find

$$f = \vartheta \cdot \frac{(11+4x)\omega_0 + 5(2x-1)\omega_1}{8(1-x)^2x^2} + 0$$

Example. L = $2x(2x - 1)\partial^2 - (4x^2 + 1)\partial + (2x + 1)$. An integral basis of $k(x)[\partial]/\langle L \rangle$ is $\{1, \frac{1}{2x-1}(2x\partial - 1)\}$. For a solution y of L, let $\omega_0 := 1 \cdot y$, $\omega_1 := \frac{1}{2x-1}(2x\partial - 1) \cdot y$ and consider

$$f = \frac{(4x^2 + 37x - 11)\omega_0 - (28x^3 - 40x^2 + x + 1)\omega_1}{4(x - 1)^2 x^2}$$

Then a Hermite-reduction-like calculation can find

$$\int f = -\frac{(11+4x)\omega_0 + 5(2x-1)\omega_1}{8(1-x)^2x^2}$$

Example. L = $2x(2x-1)\partial^2 - (4x^2+1)\partial + (2x+1)$. An integral basis of $k(x)[\partial]/\langle L \rangle$ is $\left\{1, \frac{1}{2x-1}(2x\partial - 1)\right\}$. For a solution y of L, let $\omega_0 := 1 \cdot y$, $\omega_1 := \frac{1}{2x-1}(2x\partial - 1) \cdot y$ and consider

$$f = \frac{(4x^2 + 37x - 11)\omega_0 - (28x^3 - 40x^2 + x + 1)\omega_1}{4(x - 1)^2 x^2}$$

Then a Hermite-reduction-like calculation can find

$$\int f = \frac{(11+4x)\omega_0 + 5(2x-1)\omega_1}{8(1-x)^2x^2}$$

So far, we have not worked out whether this works in general.