
The Holonomic Toolkit

Manuel Kauers

Abstract This is an overview over standard techniques for holonomic functions,
written for readers who are new to the subject. We state the definition for holon-
omy in a couple of different ways, including some concrete special cases as well as
a more abstract and more general version. We give a collection of standard exam-
ples and state several fundamental properties of holonomic objects. Two techniques
which are most useful in applications are explained in some more detail: closure
properties, which can be used to prove identities among holonomic functions, and
guessing, which can be used to generate plausible conjectures for equations satisfied
by a given function.

1 What is this all about?

This tutorial is an attempt to further advertize a concept which already is quite pop-
ular in some communities, but still not as popular in others. It is about the concept
of holonomic functions and what computations can be done with them. The part of
symbolic computation which is concerned with algorithms for transcendental func-
tions faces a fundamental dilemma. On the one hand, problems arising from appli-
cations seem to induce a demand for algorithms that can answer questions about
given analytic functions, or about given infinite sequences. On the other hand, gen-
eral algorithms that take an “arbitrary” analytic functions or infinite sequences as
input cannot exist, because the objects in question do in general not admit a finite
representation on which an algorithm could operate. The dilemma is resolved by
introducing classes of “nice” functions whose members admit a uniform finite de-
scription which can serve as data structure for algorithms.
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A class being small means that strong assumptions are imposed on its elements.
This makes the design of algorithms easier. A typical example for a small class
is the set of all polynomial functions. They clearly admit a finite representation
(for instance, the finite list of coefficients), and many questions about the elements
of this class can be answered algorithmically. Implementations of these algorithms
form the heart of every computer algebra system. The disadvantage of a small class
is that quantities arising in applications are too often beyond the scope of the class.

Algorithms for bigger classes are more likely to be useful. An example for an ex-
tremely big class is the set of all functions y which admit a power series expansion
y = ∑

∞
n=0 anxn whose coefficients are algebraic numbers and for which there exists

an algorithm that computes for a given index n the corresponding coefficient an.
Elements of this class clearly admit a finite representation (for instance, a piece of
code implementing the algorithm for computing the nth coefficient), but hardly any
interesting questions can be answered algorithmically for the functions in this class.
It is for example impossible to decide algorithmically whether two representations
actually represent the same function. So although the class contains virtually every-
thing we may ever encounter in practical applications, it is not very useful.

The class of holonomic functions has proven to be a good compromise between
these two extremes. On the one hand, it is small enough that algorithms could be
designed for efficiently answering many important questions for a given element of
the class. In particular, there are algorithms for proving identities among holonomic
functions, for computing asymptotic expansions of them, and for evaluating them
numerically to any desired accuracy. On the other hand, the class is big enough that
it contains a lot of quantities that arise in applications. In particular, many Feynman
integrals [7] and many generalized harmonic sums are holonomic. Every general-
ized polylogarithm and every hypergeometric term is holonomic. Every algebraic
function and every quasi-polynomial is holonomic. According to Salvy [36], more
than 60% of the entries of Abramowitz/Stegun’s table of mathematical functions [1]
are holonomic, as well as some 25% of the entries of Sloane’s online encyclopedia
of integer sequences (OEIS) [38].

The concept of holonomy was introduced in the 1970s by Bernstein [4] in the
theory of D-modules (see Björk’s book [5] for this part of the story). Its relevance
to symbolic computation and the theory of special functions was first recognized by
Zeilberger [43]. His 1990 article, which is still a good first reading for readers not
familiar with the theory, has initiated a great amount of work both in combinatorics
and in computer algebra. Stanley discusses the case of a single variable [39, 40]
(see also Chapter 7 of [28]). Salvy and Zimmermann [37] and Mallinger [32] pro-
vide implementations for Maple and Mathematica, respectively. Algorithms for the
case of several variables [43, 41, 16, 14] were implemented by Chyzak [14] for
Maple and more recently by Koutschan [30, 31] for Mathematica. The applications
in combinatorics are meanwhile too numerous to list a reasonable selection.

In this tutorial, it is not our aim to explain (or advertize) any particular software
package. The goal is rather to give an overview over the various definitions of holon-
omy, the key properties of holonomic functions, and the most important algorithms
for working with them. The text should provide any reader new to the topic with
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the necessary background for reading the manual of some software package without
wondering how to make use of the functionality it provides. for.

2 What is a Holonomic Function?

2.1 Definitions and Basic Examples

We give several variants of the definition of holonomy, discussing the most impor-
tant special cases separately, before we describe the concept in more general (and
more abstract) terms.

Definition 1. An infinite sequence (an)
∞
n=0 of numbers is called holonomic (or P-

finite or P-recursive or, rarely, D-finite) if there exists an integer r ∈N, independent
of n, and univariate polynomials p0, . . . , pr, not all identically zero, such that for all
n ∈N we have p0(n)an + p1(n)an+1 + · · ·+ pr(n)an+r = 0.

Example 1. 1. The sequence an =
5n−3
3n+5 is holonomic, because it satisfies the recur-

rence equation (3n+5)(5n+2)an− (5n−3)(3n+8)an+1 = 0.
2. The sequence an = n! is holonomic, because it satisfies the recurrence equation

an+1− (n+1)an = 0.
3. The sequence Hn = ∑

n
k=1

1
k of harmonic numbers is holonomic, because it satis-

fies the recurrence equation (n+1)Hn− (2n+3)Hn+1 +(n+2)Hn+2 = 0.

4. The sequence an =∑k
(n

k

)2(n+k
k

)2
arising in Apery’s proof [34] of the irrationality

of ζ (3) is holonomic, because it satisfies the recurrence equation (n+ 1)3an−
(2n+3)(17n2 +51n+39)an+1 +(n+2)3an+2 = 0.

5. The sequence an =
∫ 1

0
∫ 1

0
w−1−ε/2(1−z)ε/2z−ε/2

(z+w−wz)1−ε

(
1−wn+1− (1−w)n+1

)
dwdz com-

ing from some Feynman diagram [30, p. 94f] is holonomic (regarding ε as a fixed
parameter) because it satisfies the 3rd order recurrence equation−(ε−n−3)(ε−
n− 2)(ε + 2n+ 4)(ε + 2n+ 6)an+3 +(ε − n− 2)(ε + 2n+ 4)(ε2 + 2εn+ 5ε −
6n2− 28n− 34)an+2− (n+ 2)(ε3− 3ε2n− 6ε2− 8εn2− 30εn− 28ε + 12n3 +
64n2 +116n+72)an+1−2(n+1)(n+2)2(ε−2n−2)an = 0.

6. For n∈N, define Hn(x) as the (uniquely determined) polynomial of degree n with
the property

∫
∞

−∞
Hn(x)Hk(x)e−x2

dx =
√

π2nn!δn,k for all n,k ∈N, where δn,k is
the Kronecker symbol. The Hn(x) are called Hermite polynomials. Regarding
them as a sequence with respect to n where x is some fixed parameter, the Her-
mite polynomials are holonomic, because they satisfy the recurrence equation
Hn+2(x)−2xHn+1(x)+(2+2n)Hn(x) = 0.

7. The sequence (an)
∞
n=0 defined recursively by a0 = 0, a1 = 1, a2 = 17, and an+3 =

(100+99n+97n2)an+2 +(96+95n+94n2)an+1 +(93+92n+91n2)an has no
particular significance, but it is nevertheless holonomic.

8. The sequences an =
√

n, bn = p(n), cn = ζ (n), dn = nn where p(n) is the nth
prime number and ζ denotes the Riemann zeta function are not holonomic,
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i.e., none of them satisfies a linear recurrence equation with polynomial coef-
ficients [20].

According to Definition 1, a sequence is holonomic if it can be viewed as a solution
of some linear recurrence equation with polynomial coefficients. The definition for
analytic functions is analogous:

Definition 2. An analytic function y : U → C defined on some domain U ⊆ C (or
more generally, any object y for which multiplication by polynomials, addition, and
repeated differentiation is defined) is called holonomic (or D-finite or P-finite) if
there exists an integer r∈N and univariate polynomials p0, . . . , pr, not all identically
zero, such that p0(z)y(z)+ p1(z)y′(z)+ · · ·+ pr(z)y(r)(z) = 0.

Example 2. 1. The function y(z) = 5z−3
3z+5 is holonomic, because it satisfies the dif-

ferential equation (5z−3)(3z+5)y′(z)−34y(z) = 0.
2. The functions exp(z) and log(z) are holonomic, because they satisfy the differ-

ential equations exp′(z)− exp(z) = 0 and z log′′(z)+ log′(z) = 0, respectively.
3. The function y(z) = 1/(1+

√
1− z2) is holonomic, because it satisfies the differ-

ential equation (z3− z)y′′(z)+(4z2−3)y′(z)+2zy(z) = 0.
4. The function y(z) = ∑

∞
n=0 anzn where an is the sequence from Example 1.4 is

holonomic because it satisfies the differential equation (z2− 34z+ 1)z2y′′′(z)+
3(2z2−51z+1)zy′′(z)+(7z2−112z+1)y′(z)+(z−5)y(z) = 0.

5. The function y : [−1,1]→ R uniquely determined by the conditions y(0) = 0,
y′(0) = 17, y′′(z) = (100+99z+98z2)y′(z)+ (97+96z+95z2)y(z) has no par-
ticular significance, but is nevertheless holonomic.

6. The functions exp(exp(z)), 1/(1+ exp(z)), ζ (z), Γ (z), W (z) (the Lambert W
function [17]) are not holonomic, i.e., neither of them satisfies a linear differen-
tial equation with polynomial coefficients.

Note that as introduced in the two definitions above, the word “holonomic” is am-
biguous. We need to distinguish between discrete variables and continuous vari-
ables. If a function depends on a discrete variable (typically named n, m, or k), then
it is called holonomic if it satisfies a recurrence, and if it depends on a continuous
variable (typically named x, t, or z), then it is called holonomic if it satisfies a dif-
ferential equation. For example, the Gamma function is holonomic if we regard its
argument as a discrete variable, but it is not holonomic if we regard its argument as
a continuous variable. For a connection of the two notions, see Theorem 1 below.

The definition for the differential case extends as follows to functions in several
variables.

Definition 3. An analytic function y : U → C, defined on some domain U ⊆ Cq

(q ∈ N fixed) is called holonomic (or D-finite or P-finite) if for every variable zi
(i = 1, . . . ,q) there exists an integer r ∈N and polynomials p0, . . . , pr, possibly de-
pending on all q variables z1, . . . ,zq but not all identically zero, such that for all
z = (z1, . . . ,zq) ∈U we have p0(z)y(z)+ p1(z) ∂

∂ zi
y(z)+ · · ·+ pr(z) ∂ r

∂ zr
i
y(z) = 0.
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In other words, a multivariate analytic function is holonomic if it can be viewed as
a solution of a system of q linear differential equations with polynomial. The poly-
nomial coefficients may involve all the variables, but there is a restriction on the
derivatives: the ith equation (i = 1, . . . ,q) may only contain differentiations with re-
spect to the variable zi. Again, in addition to analytic functions the definition extends
more generally to any objects y for which multiplication by polynomials, addition,
and repeated partial differentiation is defined.

For sequences with several indices, and more generally for functions depending
on some discrete as well as some continuous variables, several different extensions
of Definition 1 are in use. We give here two of them. Assigning the words “holo-
nomic” and “D-finite” to these two properties seems to be in accordance with most
of the recent literature. However, it should be observed that other authors use slightly
different definitions.

Definition 4. Let U ⊆Cq be a domain, and let

y = y(n1, . . . ,np,z1, . . . ,zq) : Np×U →C

be a function which is analytic in z1, . . . ,zq for every fixed choice of n1, . . . ,np ∈Np.

1. y is called D-finite (or P-finite) if for every i (i = 1, . . . , p) there exists a num-
ber r ∈N and polynomials u0, . . . ,ur, possibly depending on n1, . . . ,np,z1, . . . ,zq
and not all identically zero, such that for all n = (n1, . . . ,np) ∈ Np and all
z = (z1, . . . ,zq) ∈U we have

u0(n,z)y(n1, . . . ,ni−1,ni,ni+1, . . . ,np,z)

+u1(n,z)y(n1, . . . ,ni−1,ni +1,ni+1, . . . ,np,z)

+u2(n,z)y(n1, . . . ,ni−1,ni +2,ni+1, . . . ,np,z)
...

+ur(n,z)y(n1, . . . ,ni−1,ni + r,ni+1, . . . ,np,z) = 0,

and for every j ( j = 1, . . . ,q) there exists a number r ∈ N and polynomials
u0, . . . ,ur, possibly depending on n1, . . . ,np,z1, . . . ,zq and not all identically zero,
such that for all n = (n1, . . . ,np) ∈Np and all z = (z1, . . . ,zq) ∈U we have

u0(n,z)y(n,z)+u1(n,z)
∂

∂ zi
y(n,z)+ · · ·+ur(n,z)

∂ r

∂ zr
i
y(n,z) = 0.

2. y is called holonomic if the (formal) power series

ỹ(x1, . . . ,xp,z1, . . . ,zq) :=
∞

∑
n1=1

∞

∑
n2=1
· · ·

∞

∑
np=1

y(n1, . . . ,np,z1, . . . ,zq)x
n1
1 xn2

2 · · ·x
np
p

is holonomic as function of x1, . . . ,xp,z1, . . . ,zq in the sense of Definition 3.
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Example 3. 1. The bivariate function f (x,y) = 1
1−y−xy is D-finite and holonomic

because it satisfies the differential equations (1− y− xy) ∂

∂x f (x,y)− y f (x,y) = 0
and (1− y− xy) ∂

∂y f (x,y)− (x+1) f (x,y) = 0.
2. The bivariate sequence an,k =

(n
k

)
is D-finite, because it satisfies the recurrence

equations (n−k+1)an+1,k− (n+1)an,k = 0 and (n−k)an,k+1− (k+1)an,k = 0,
and it is holonomic because f (x,y) = ∑

∞
n=0 ∑

∞
k=0
(n

k

)
xkyn = 1

1−y−xy is holonomic.
3. Regarded as a function of one discrete variable n and a continuous variable x,

the Hermite polynomials Hn(x) are D-finite because they satisfy the equations
Hn+2(x)−2xHn+1(x)+2(n+1)Hn(x) = 0 and H ′′n (x)−2xH ′n(x)+2nHn(x) = 0.
They are also holonomic because the formal power series f (x,z) :=∑

∞
n=0 Hn(x)zn

satisfies the differential equations z ∂ 3

∂x3 f (x,z)+(1−4xz) ∂ 2

∂x2 f (x,z)+(4x2z−4z−
2x) ∂

∂x f (x,z) + 4xz f (x,z) = 0 and 2z3 ∂ 3

∂ z3 f (x,z) + (14z2 − 2xz + 1) ∂ 2

∂ z2 f (x,z) +

(20z−4x) ∂

∂ z f (x,z)+4 f (x,z) = 0.

4. The integrand w−1−ε/2(1−z)ε/2z−ε/2

(z+w−wz)1−ε

(
1−wn+1− (1−w)n+1

)
of the Feynman inte-

gral in Example 1.5 is D-finite when w and z are regarded as continuous and n
and ε are regarded as discrete variables.

5. The Kronecker symbol δn,k, viewed as a bivariate sequence in n and m, is holo-
nomic but not D-finite. The bivariate sequence 1/(n2 + k2) is D-finite but not
holonomic [41].

6. The bivariate sequence S1(n,k) of Stirling numbers of the first kind is not D-finite
although it satisfies the recurrence equation S1(n + 1,k + 1) + nS1(n,k + 1)−
S1(n,k) = 0. This recurrence equation does not suffice to establish D-finiteness
because it involves shifts in both variables. It can be shown that S1(n,k) does not
satisfy any recurrence equations containing only shifts in n or only shifts in k.

Although the two properties in Definition 4 are not equivalent, the difference does
not play a big role in practice: multivariate functions arising in applications typically
either have both properties or none of the two.

It is sometimes more transparent to work with operators acting on functions
rather than with functional equations. In order to rephrase the previous definition
using operators, consider the algebra

A :=C(n1, . . . ,np,z1, . . . ,zq)[S1, . . . ,Sp,D1, . . . ,Dq]

consisting of all the multivariate polynomials in the variables S1, . . . ,Sp, D1, . . . ,Dq
with coefficients that are rational functions (i.e., quotients of polynomials) in the
variables n1, . . . ,np,z1, . . . ,zq. We regard the elements of A as operators and let
them act in the natural way on functions y: application of Si corresponds to a shift
ni ni+1, application of Di causes a partial derivation ∂

∂ zi
, and application of some

rational function u maps y to the function uy. We write A · y for the result obtained
by applying an operator A ∈A to the function y.

If A,B are operators and y is a function, then (A+B) · y = A · y+B · y (the + on
the left hand side being the addition in A, and the + on the right hand side being
the pointwise addition of functions). For the product of two operators, we want to
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have (AB) ·y = A · (B ·y), i.e., multiplication of operators should be compatible with
composition of application. This is not the case for the usual multiplication, but it
works if we use a noncommutative multiplication which is such that for a rational
function u(n1, . . . ,np,z1, . . . ,zq) we have

Si u(n1, . . . ,np,z1, . . . ,zq) = u(n1, . . . ,ni−1,ni +1,ni+1, . . . ,np,z1, . . . ,zq)Si

for every i (i = 1, . . . , p), and

D j u(n1, . . . ,np,z1, . . . ,zq) = u(n1, . . . ,np,z1, . . . ,zq)D j

+
∂

∂ zi
u(n1, . . . ,np,z1, . . . ,zq)

for every j ( j = 1, . . . ,q). These rules for example imply Sini =(ni+1)Si and D jz j =
z jD j +1 for i = 1, . . . , p and j = 1, . . . ,q. By furthermore requiring that SiS j = S jSi
and SiD j = D jSi and DiD j = D jDi for all i and j, the multiplication is uniquely
determined. With this multiplication, we have for example

D2 a(z) = D(Da(z)) = D(a(z)D+a′(z))

= Da(z)D+Da′(z)

= (a(z)D+a′(z))D+(a′(z)D+a′′(z))

= a(z)D2 +2a′(z)D+a′′(z).

In terms of operators, part 1 of Definition 4 can be stated as follows: Let y be a
function as in Def. 4, and let a ⊆A be the set of all operators which map y to the
zero function. Then y is called D-finite if

• For all i = 1, . . . , p we have a∩C(n1, . . . ,np,z1, . . . ,zq)[Si] 6= {0}, and
• For all j = 1, . . . ,q we have a∩C(n1, . . . ,np,z1, . . . ,zq)[D j] 6= {0}.

The set a is called the annihilator of y. It has the algebraic structure of an ideal ofA,
i.e., it has the properties A,B ∈ a⇒ A+B ∈ a and A ∈ a,B ∈A⇒ BA ∈ a.

Operator algebras can be used to abstract away the difference between shift and
derivation, and to allow other operations as well. We will not use this most general
form in the remainder of this tutorial, but only quote the definition of D-finiteness
in this language. Let R be a commutative ring (for example, the set C(x1, . . . ,xm)
of all rational functions in m variables x1, . . . ,xm with coefficients in C), and con-
sider the algebra A = R[∂1, . . . ,∂n] of multivariate polynomials in the indetermi-
nates ∂1, . . . ,∂n with coefficients in R. Let σ1, . . . ,σn : R→ R be automorphisms
(i.e., σi(a+ b) = σi(a) +σi(b) and σi(ab) = σi(a)σi(b) for all a,b ∈ R) and for
each i, let δi : R→ R be a so-called skew-derivation for σi. A skew-derivation is
a map which satisfies δi(a + b) = δi(a) + δi(b) and the generalized Leibniz law
δi(ab) = δi(a)b+σi(a)δi(b). Then consider the (noncommutative) multiplication
on A defined through the properties ab = ba for all a ∈ R, ∂i∂ j = ∂ j∂i for all
i, j = 1, . . . ,n and ∂ia = σi(a)∂i + δi(a) for all a ∈ R and all i = 1, . . . ,n. Such an
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algebra A is called an Ore algebra. Details about arithmetic for such algebras are
explained in a nice tutorial by Bronstein and Petkovšek [10].

Observe that the generators ∂i of an Ore algebra can be used to represent shift
operators (by choosing σi such that σi(x) = x+1 for a variable x in R and δi the zero
function) as well as derivations (by choosing σi the identity function and δi =

∂

∂x for
a variable x in R). In addition, further operations can be encoded, for example the
q-shift (set σi(x) := qx where x is a variable and q some fixed element of R).

We let the elements of an Ore algebra act (“operate”) on the elements of some
set F of “functions”. To make this action precise, we need to assume that F is an
R-module (i.e., there is an addition in F and a multiplication of elements in R by
elements in F which is compatible with the addition), and that there are functions
d1, . . . ,dn : F→ F (“partial pseudo-derivations”) which satisfy certain compatibility
conditions with the addition, the multiplication, and the σi and δi so as to ensure that
the action of some A∈A on some y∈F , written A ·y, has the properties (A+B) ·y=
(A ·y)+(B ·y) and (AB) ·y = A · (B ·y) for all A,B ∈A, a ·y = ay for all a ∈ R⊆A,
and ∂i · y = di(y) for all i. As an example, if A is a ring of differential operators, a
natural choice for F would be the set of all meromorphic functions, and ifA is a ring
of shift operators, a natural choice for F may be some vector space of sequences.

Definition 5. Let A= R[∂1, . . . ,∂n] be an Ore algebra whose elements act on some
set F as described above, and let y ∈ F . Let a := {A ∈A : A · y = 0} be the set of
all operators which map y to the zero element of F . Then y is called ∂ -finite if for
all i = 1, . . . ,n we have a∩R[∂i] 6= {0}.
Example 4. 1. Set R = C(n1, . . . ,np,z1, . . . ,zq) and consider the Ore algebra A =

R[∂1, . . . ,∂p,∂p+1, . . . ,∂p+q] defined by the automorphisms σ1, . . . ,σp+q : R→ R,
and the skew-derivations δ1, . . . ,δp+q : R→ R satisfying σi(c) = c and δi(c) = 0
for i = 1, . . . , p+q and all c ∈C, and

σi(ni) = ni +1, σi(n j) = n j (i 6= j), σi(z j) = z j ( j = 1, . . . ,q)
δi(n j) = 0 ( j = 1, . . . , p), δi(z j) = 0 ( j = 1, . . . ,q)

for i = 1, . . . , p, and

σi(n j) = n j ( j = 1, . . . , p), σi(z j) = z j ( j = 1, . . . ,q)
δi(n j) = 0 ( j = 1, . . . , p), δi(zi−p) = 1, δi(z j−p) = 0 (i 6= j)

for i = p+ 1, . . . , p+ q. Then ∂1, . . . ,∂p act as shift operators for the variables
n1, . . . ,np, respectively, and ∂p+1, . . . ,∂p+q act as derivations for the variables
z1, . . . ,zq, respectively.
For this choice ofA, Definition 5 reduces to part 1 of Definition 4.

2. Let R =Q(q,Q) and define σ : R→ R by σ(c) = c for all c ∈Q(q) and σ(Q) =
qQ, so that σ acts on Q like the shift n n+ 1 acts on qn. Consider the Ore
algebraA= R[∂ ] with δ = 0 and this σ .
Let F denote the vector space of all sequences over Q(q) and let A act on F
by ∂ · (an)

∞
n=0 := (an+1)

∞
n=0 and r(q,Q) · (an)

∞
n=0 := (r(q,qn)an)

∞
n=0 for r(q,Q) ∈

Q(q,Q) and (an)
∞
n=0 ∈ F .
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Consider the sequence an := ∏
n
k=1

1−qk

1−q , which is known as q-analog of the fac-
torial in the literature [2, Chapter 10]. Because of(

(1−qQ)− (1−Q)∂
)
·an = (1−qn+1)an− (1−qn)an+1 = 0

it is ∂ -finite with respect to the algebraA.

Most of the algorithms and features explained below for the shift and/or differential
case generalize to objects that are D-finite with respect to arbitrary Ore algebrasA.
Even more, it has recently been observed [15] that for some of the properties a
weaker assumption than D-finiteness is sufficient. However, the underlying ideas
can best be explained for the univariate case, and for reasons of simplicity we will
focus on this case.

2.2 Fundamental Properties

A key property of holonomic functions is that they can be described by a finite
amount of data, and hence faithfully represented in a computer. This is almost ob-
vious for univariate holonomic sequences: all the (infinitely many) terms of such
a sequence are uniquely determined by the linear recurrence and a suitable (finite)
number of initial values. If (an)

∞
n=0 satisfies the recurrence

p0(n)an + p1(n)an+1 + · · ·+ pr−1(n)an+r−1 + pr(n)an+r = 0

for all n ∈N, where p0, . . . , pr are certain polynomials, and pr is not the zero poly-
nomial, then the recurrence uniquely determines the value of an+r once we know the
values of an, . . . ,an+r−1, unless n is a root of the polynomial pr. In order to fix a par-
ticular solution of the recurrence, it is therefore enough to fix the values a0, . . . ,ar−1
as well as the values an+r for every positive integer root n of pr. Note that pr is a
univariate polynomial, so it can have only finitely many roots.

The situation is not much different for holonomic functions in a continuous vari-
able. In order to fix a particular solution of a given differential equation

q0(z)y(z)+q1(z)y′(z)+ · · ·+qs−1(z)y(s−1)(z)+qs(z)y(s)(z) = 0,

where q0, . . . ,qs are polynomials, it suffices to fix the initial conditions y(0), y′(0),
. . . , y(s−1)(0), plus possibly some finitely many further values y(n)(0). For which in-
dices n the value of y(n)(0) does not follow from the earlier values by the differential
equation is not as obvious as in the case of a recurrence equation. One possibility
is to make use of the following theorem, which associates to a given differential
equation a recurrence equation from which the relevant indices n can then be read
off as described before.

Theorem 1. Let (an)
∞
n=0 be a sequence and y(z) = ∑

∞
n=0 anzn the (formal) power se-

ries whose coefficient sequence is (an)
∞
n=0. Then (an)

∞
n=0 is holonomic in the sense
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of Definition 1 if and only if y(z) is holonomic in the sense of Definition 2. A differ-
ential equation satisfied by y(z) can be computed from a known recurrence equation
for (an)

∞
n=0 and vice versa.

The theorem is based on the observation that multiplying a series by z−1 corresponds
to a forward shift of the coefficient sequence, and a differentiation followed by a
multiplication with z corresponds to a multiplication by n. Here is an example for
obtaining a recurrence equation for (an)

∞
n=0 from a given differential equation for

the power series y(z) = ∑
∞
n=0 anzn.

(z−2)y′′(z)+5zy′(z)− y(z) = 0

⇒ (z−2)
∞

∑
n=0

ann(n−1)zn−2 +5z
∞

∑
n=0

annzn−1−
∞

∑
n=0

anzn = 0

⇒
∞

∑
n=0

ann(n−1)zn−1−2
∞

∑
n=0

ann(n−1)zn−2 +5
∞

∑
n=0

annzn−
∞

∑
n=0

anzn = 0

⇒
∞

∑
n=0

an+1(n+1)nzn−2
∞

∑
n=0

an+2(n+2)(n+1)zn +5
∞

∑
n=0

annzn−
∞

∑
n=0

anzn = 0

⇒
∞

∑
n=0

(
(n+1)nan+1−2(n+2)(n+1)an+2 +5nan−an

)
zn = 0

⇒ −2(n+2)(n+1)an+2 +(n+1)nan+1 +(5n−1)an = 0 (n≥ 0).

See The Concrete Tetrahedron [28, Thm. 7.1] for the general case. The reverse di-
rection works similarly.

Theorem 1 does not generalize to multivariate D-finite functions, it does however
hold (by definition) for holonomic functions in several variables. In fact, Theorem 1
is the motivation for defining multivariate holonomy as in Definition 4.

A second useful feature of holonomic functions is that their asymptotic behaviour
can be described easily. We say that two sequences (an)

∞
n=0,(bn)

∞
n=0 are asymptoti-

cally equivalent if an/bn converges to 1 for n→∞. Similary, two functions f (z),g(z)
are called asymptotically equivalent at some point ζ if f (z)/g(z) converges to 1 for
z→ ζ . The following theorem describes the possible asymptotic behaviour of holo-
nomic sequences and functions. Unlike Theorem 1, it is not straightforward.

Theorem 2. [42, 18, 27]

1. If (an)
∞
n=0 is a holonomic sequence, then there exist constants c1, . . . ,cm, poly-

nomials p1, . . . , pm, natural numbers r1, . . . ,rm, constants γ1, . . . ,γm, φ1, . . . ,φm,
α1, . . . ,αm and natural numbers β1, . . . ,βm such that

an ∼
m

∑
k=1

ck epk(n1/rk)nγkn
φ

n
k nαk log(n)βk (n→ ∞).

2. If y(z) is a holonomic analytic function with a singularity at ζ ∈C, then there ex-
ist constants c1, . . . ,cm, polynomials p1, . . . , pm, natural numbers r1, . . . ,rm, con-
stants α1, . . . ,αm, and natural numbers β1, . . . ,βm such that
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y(x)∼
m

∑
k=1

ck epk((z−ζ )−1/rk)(z−ζ )αk log(z−ζ )βk (z→ ζ ).

Typically, one of the terms in the sum dominates all the others, so we can take
m = 1. As an example, for the sequence (an)

∞
n=0 from Example 1.4 we have an ∼

c(12+17
√

2)nn−3/2 where

c≈ 0.220043767112643037850689759810486656678158042907.

All the data in the asymptotic expression can be calculated exactly from a given
recurrence or differential equation, except for the multiplicative constants ck. These
can however calculated numerically to arbitrarily high precision. In typical exam-
ples, it is easy to compute at least a few dozen decimal digits for them.

It is also possible to compute numerically the values of an analytic holonomic
function to arbitrary precision, as stated in part 2 of the following theorem. The
statement about sequences in part 1 is trivial (all terms of the sequence can be com-
puted using the recurrence), but part 2 is not because it also covers the case where
the evaluation point is outside of the disk of convergence of the series. This is known
as effective analytic continuation.

Theorem 3. 1. If a holonomic sequence (an)
∞
n=0 is given in terms of recurrence

equation and a suitable number of initial values a0,a1, . . . ,ak, then we can effi-
ciently compute the nth term an of the sequence for every given index n.

2. [13, 22, 23, 33] If a holonomic analytic function y(z) is given in terms of a dif-
ferential equation and a suitable number of initial values y(0),y′(0), . . . ,y(k)(0),
and if we are given some complex number ζ with rational real and imaginary
part and a polygonal path from 0 to ζ whose vertices have rational real and
imaginary path, and some positive rational number ε , then we can efficiently
compute a number ỹ such that for the value y(ζ ) of the analytic continuation of y
along the given path to ζ we have |y(ζ )− ỹ|< ε .

3 What are Closure Properties?

If p and q are polynomials, then also their sum p+ q, their product pq, the com-
position p◦q, the derivative p′, and the indefinite integral

∫
p are polynomials. We

say that the class of polynomials is closed under these operations. Also the class of
holonomic functions is closed under a number of operations.

Theorem 4. [43, 40, 28]

1. If (an)
∞
n=0 and (bn)

∞
n=0 are holonomic sequences, then so are (an + bn)

∞
n=0 and

(anbn)
∞
n=0 and

(
∑

n
k=0 akbn−k

)∞

n=0.
2. If a(z) and b(z) are holonomic functions, then so are a(z)+b(z) and a(z)b(z).
3. If (an)

∞
n=0 is a holonomic sequence and α,β ∈Q are nonnegative constants then

(abαn+βc)
∞
n=0 is a holonomic sequence.
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4. If a(z) is a holonomic function, then so are a′(z) and
∫

a(z)dz.
5. If a(z) is a holonomic function and b(z) is an algebraic function, i.e., there is a

nonzero bivariate polynomial p(z,y) such that p(z,b(z)) is identically zero, then
the composition a(b(z)) is holonomic.

The theorem is most useful for recognizing a quantity given in terms of some ex-
pression as holonomic. For example, using the theorem, it is easy to see that

y(z) = exp
(
1−
√

1− z2
)
+
∫

log(1− z)2dz

is holonomic: the innermost functions exp(z) and log(z) are holonomic (Exam-
ple 2.2), by part 3 of the theorem exp(1−

√
1− z2) and log(1−z) are holonomic (the

arguments are algebraic because they satisfy the equations (1− y)2− (1− z2) = 0
and y− (1− z) = 0, respectively), then by part 2 also log(1− z)2 is holonomic, and
then by part 4 also

∫
log(1− z)2dz is holonomic. Finally, using once more part 2 it

follows that y(z) is holonomic.
By a similar reasoning, it is clear by inspection that

an =
n

∑
k=1

1+2k

3+ k2 k!− (2n+5)!+
n

∑
k=1

k

∑
i=1

i

∑
j=1

1
j

i

k

is holonomic.
By just looking at an expression, the closure properties in Theorem 4 are often

sufficient to assert that some quantity is holonomic, which means that there does
exist some differential equation or recurrence which has the object in question as
solution. The equations can usually not be read off directly, but it is possible to
compute them with computer algebra. For the two examples above, computer alge-
bra packages for holonomic functions need virtually no time to find a differential
equation for y(z) of order 5 with polynomial coefficients of degree 14 and a recur-
rence for an of order 7 with polynomial coefficients of order 37.

The idea behind these algorithms is as follows. Consider for example two se-
quences (an)

∞
n=0 and (bn)

∞
n=0 satisfying recurrence equations

an+2 = u1(n)an+1 +u0(n)an, bn+2 = v1(n)bn+1 + v0(n)bn

for some known rational functions u0,v0,u1,v1. Let (cn)
∞
n=0 be the sum of these two

sequences, i.e., cn = an +bn for all n ∈N. Our goal is to compute a recurrence for
(cn)

∞
n=0. Let us make an ansatz for a recurrence of order 4,

p0(n)cn + p1(n)cn+1 + p2(n)cn+2 + p3(n)cn+3 + p4(n)cn+4 = 0,

with undetermined polynomials p0, . . . , p4. We will see in a moment that 4 is a good
choice. By definition of the cn, in order for the recurrence to hold, we must have
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p0(n)
(
an +bn

)
+ p1(n)

(
an+1 +bn+1

)
+ p2(n)

(
an+2 +bn+2

)
+ p3(n)

(
an+3 +bn+3

)
+ p4(n)

(
an+4 +bn+4

)
= 0.

Using the known recurrences, we can reduce the higher order shifts to lower order
shifts:

an+2 = u1(n)an+1 +u0(n)an

an+3 = u1(n+1)an+2 +u0(n+1)an+1

= u1(n+1)
(
u1(n)an+1 +u0(n)an

)
+u0(n+1)an+1

=
(
u1(n+1)u1(n)+u0(n+1)

)
an+1 +u1(n+1)u0(n)an

an+4 = u1(n+2)an+3 +u0(n+2)an+2

= u1(n+2)
((

u1(n+1)u1(n)+u0(n+1)
)
an+1 +u1(n+1)u0(n)an

)
+u0(n+2)

(
u1(n)an+1 +u0(n)an

)
=
(
u0(n+2)u1(n)+u0(n+1)u1(n+2)+u1(n)u1(n+1)u1(n+2)

)
an+1

+u0(n)
(
u0(n+2)+u1(n+1)u1(n+2)

)
an,

and analogously for the shifted versions of bn. After applying these substitutions,
the ansatz for the recurrence for cn takes the form

p0(n)
(
an +bn

)
+ p1(n)

(
an+1 +bn+1

)
+ p2(n)

(
an+1 + an + bn+1 + bn

)
+ p3(n)

(
an+1 + an + bn+1 + bn

)
+ p4(n)

(
an+1 + an + bn+1 + bn

)
= 0,

where the symbol represents certain expressions involving the known rational
functions u0,u1,v0,v1 as indicated above. Reordering the equation leads to(

p0(n)+ p2(n)+ p3(n)+ p4(n)
)
an

+
(

p1(n)+ p2(n)+ p3(n)+ p4(n)
)
an+1

+
(

p0(n)+ p2(n)+ p3(n)+ p4(n)
)
bn

+
(

p1(n)+ p2(n)+ p3(n)+ p4(n)
)
bn+1 = 0,

where we write again to denote certain expressions of the u0,u1,v0,v1 which
are a bit too messy to be spelled out here explicitly. This latter equation is certainly
valid if we choose polynomials p0, . . . , p4 that turn the four expressions in front
of an,an+1,bn,bn+1 to zero. Such polynomials can be found by solving the linear
system
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1 0
0 1
1 0
0 1




p0
p1
p2
p3
p4

= 0.

This is an underdetermined homogeneous linear system with 4 equations and 5 vari-
ables, so it must have a nontrivial solution vector, and the coordinates of this vector
correspond do the coefficients of the recurrence we want to compute. Note that the
system involves the variable n as parameter, and it has to be solved with this param-
eter kept symbolic.

The order 4 in the ansatz for the recurrence of (cn)
∞
n=0 was chosen such as to en-

sure that the resulting linear system has more variables than equations. In general,
if (an)

∞
n=0 satisfies a recurrence of order r and (bn)

∞
n=0 satisfies a recurrence of or-

der s, the linear system obtained for constructing a recurrence for the sum will have
at most r+ s equations, and therefore it must have a nontrivial solution as soon as
we have at least r+ s+1 variables p0, . . . , pr+s. Likewise, for the product sequence
(anbn)

∞
n=0 a similar construction leads to a linear system with rs equations, which

hence has a nontrivial solution once we supply at least rs+ 1 variables p0, . . . , prs.
The arguments for the other operations listed in Theorem 4 are similar.

Holonomic closure properties are not only interesting for finding appropriate
holonomic descriptions of objects that are given in some other form. They can also
be used for proving identities. If two holonomic objects A and B are given in some
form, it may not be obvious at first glance whether they are actually equal. Using
closure properties, we can compute a recurrence for A−B (or, if A and B depend on
a continuous variable, a recurrence for the Taylor coefficients of A−B by way of
Theorem 1). Then if the identity is valid for a certain finite number of initial values,
it follows by induction that it is true.

Example 5. Consider the following identity for Hermite polynomials. We regard it
as a (formal) power series with respect to t, where x and y are viewed as constant
parameters. In the first term on the left the expression Hn(x)Hn(y) 1

n! is regarded as
a sequence in the discrete variable n, with x and y as parameters. Apply the closure
properties algorithms as indicated by the braces to obtain a linear recurrence for the
coefficients in the series expansion of the whole left hand side.
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︸ ︷︷ ︸
differential equation of order 5

 recurrence equation of order 4

︸ ︷︷ ︸
differential equation of order 5

∞

∑
n=0

︸ ︷︷ ︸
rec. of order 4

︸ ︷︷ ︸
rec. of
ord. 2

Hn(x)︸ ︷︷ ︸
rec. of
ord. 2

Hn(y)︸︷︷︸
rec. of
ord. 1

1
n!

tn −

︸ ︷︷ ︸
differential equation of order 1

︸ ︷︷ ︸
diff.eq.

of ord. 1

︸ ︷︷ ︸
alg.eq.

of deg. 2

1√
1−4t2

︸ ︷︷ ︸
differential equation of order 1

︸︷︷︸
diff.eq.

of ord. 1

exp
(
︸ ︷︷ ︸

alg.eq. of degree 1

4t(xy− t(x2 + y2))

1−4t2

)
= 0

If cn denotes the coefficient of tn in the series expansion of the left hand side, we
obtain the recurrence

(n+4)cn+4−4xycn+3−4(2n−2x2−2y2 +5)cn+2−16xycn+1 +16(n+1)cn = 0

for all n≥ 0. Direct calculation confirms that c0 = c1 = c2 = c3 = 0, which together
with the recurrence implies inductively that cn = 0 for all n ≥ 0. This proves the
identity.

In general, once a recurrence of a holonomic sequence is known, it always suffices
to check a certain finite number of initial values for being zero in oder to decide
whether the whole sequence is zero. The number of terms needed is the maximum
of the order of the recurrence and the largest integer root of the leading coefficient
(if there is any such root). Although integer roots in the leading coefficient are not
common, their possible existence must always be taken into account. It is in general
not sufficient to only estimate the order of a recurrence (which could be done very
quickly) without actually computing it.

The example above is a typical application of the holonomic toolkit, except that
it is usually not possible to prove an identity using only Theorems 1 and 4 and the
mere definitions of the objects involved. A more realistic scenario is that we want
to prove an identity, say of the form A = BC, which involves holonomic quantities
A, B, C for which we calculated defining equations using other techniques, and then
the algorithms behind Theorem 4 are only used to complete the proof by combining
the partial results into a defining equation for the whole equation.

Closure properties are also available in several variables. The class of D-finite
functions in several (discrete or continuous) variables is closed under addition and
multiplication, under linear translates n bαn+βc of discrete variables n (for fixed
positive rational numbers α,β ), and under compositions z y(z) of continuous
variables z by some multivariate algebraic functions y that must not be constant with
respect to z, may or may not depend on the other continuous variables, and must not
depend on any of the discrete variables. The underlying ideas of the algorithms is
the same as in the univariate case.
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Also the class of holonomic functions in several variables enjoys these closure
properties, as well as some further ones which in general do not apply to D-finite
functions.

Theorem 5. [43] Let a = a(n1, . . . ,np,z1, . . . ,zq) and b = b(n1, . . . ,np,z1, . . . ,q) be
holonomic with respect to the discrete variables n1, . . . ,np and the continuous vari-
ables z1, . . . ,zq. Then:

1. The sum a+b and the product ab are holonomic,
2. If b is algebraic, not constant with respect to z1, and independent of n1, . . . ,np,

then a(n1, . . . ,np,b,z2, . . . ,zq) is holonomic,
3. a(bαn1 +βc,n2, . . . ,np,z1, . . . ,zq) is holonomic for any fixed positive constants

α,β ∈Q.
4. a(0,n2, . . . ,np,z1, . . . ,zq) and a(n1, . . . ,np,0,z2, . . . ,zq) are holonomic,

5.
n1
∑

k=0
a(k,n2, . . . ,np,z1, . . . ,zq) and

∫ z1
0 a(n1, . . . ,np, t,z2, . . . ,zq)dt are holonomic

(provided the integral converges),

6.
∞

∑
k=−∞

a(k,n2, . . . ,np,z1, . . . ,zq) and
∫

∞

−∞
a(n1, . . . ,np, t,z2, . . . ,zq)dt are holonomic

as functions in n2, . . . ,np,z1, . . . ,zp and n1, . . . ,np,z2, . . . ,zq, respectively (pro-
vided these quantities are meaningful),

This theorem is considerably more deep than Theorem 4, and the algorithms be-
hind it are less straightforward than those sketched before for the univariate case.
See the chapter on symbolic summation and integration in this volume for further
information about these algorithms.

4 What is Guessing?

We have seen that closure properties are useful for finding the holonomic repre-
sentation of holonomic objects which are given in terms of holonomic functions
for which defining equations are known (possibly recursively descending a nested
expression). But when no such relation to known functions is available (yet), we
cannot obtain defining equations in this way. We may in fact be faced with objects
of which we do not know whether they are holonomic or not.

How can we check an arbitrary object for being holonomic? Of course, this ques-
tion makes only sense relative to some choice of assumptions we are willing to make
about how the object is “given”, or more generally, what information about it we
want to consider known. A very weak assumption which is almost always satisfied
in practice is that we can calculate for every specific index n the nth term of the
sequence (or the nth term of the power series) of interest. For example, suppose the
first few terms of a sequence (an)

∞
n=0 are known to be

5, 12, 21, 32, 45, 180, 797, 2616, 6837, 15260, 30405, 55632, 95261, 154692.
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How can we check whether this sequence is, say, a polynomial sequence? Strictly
speaking, we cannot tell this at all without taking into account all the terms of the
sequence. But from the available finite amount of data we can at least get an idea.
By means of interpolation [19], we can easily compute for any tuple of n+1 num-
bers x0, . . . ,xn the (unique) polynomial p of degree at most n such that p(0) = x0,
p(1) = x1, . . . , p(n) = xn. For example, for the first two terms we find p(n) = 7n+5,
which however cannot be correct for all n≥ 0 because already p(2) = 19 6= 21. The
interpolating polynomial for the first three points is p(n) = n2+6n+5, which is cor-
rect (by construction) for n = 0,1,2, happens to be correct also for n = 3 and n = 4,
although these values had not been used in the construction of p. However, also this
polynomial cannot be correct for all n≥ 0 because we have p(5) = 60 6= 180. Inter-
polation of the first six terms gives p(n) = n5−10n4+35n3−49n2+30n+5 which
turns out to match all the terms listed above. Of course, this does not prove that
the polynomial is correct for all greater indices as well, but the more terms match,
the more tempting it becomes to believe so. Interpolating polynomials based on a
finite number of terms of some infinite sequence can therefore be considered as a
guess for a possible description of the entire sequence, and the difference between
the number of terms taken into account and the degree of the resulting interpolating
polynomial can be considered as measuring the confidence of the guess (e.g., 0: no
evidence, 1: somewhat reliable, 10: reasonably trustworthy, 100: almost certain).

In a similar fashion, it is also possible to come up with reliable guesses for recur-
rence equations possibly satisfied by some infinite sequence of which only a finite
number of terms are known, or for differential equations possibly satisfied by a func-
tion of which the first few terms of the series expansion are known. To illustrate the
technique, suppose we are given a sequence (an)

∞
n=0 starting like

1, 2, 14, 106, 838, 6802, 56190, 470010, 3967310, 33747490.

Let us search for a recurrence of order r = 2 with polynomial coefficients of degree
d = 1, i.e., a recurrence of the form

(c0,0 + c0,1n)an +(c1,0 + c1,1n)an+1 +(c2,0 + c2,1n)an+2 = 0

for constants ci, j yet to be determined. Since the recurrence is supposed to hold for
n = 0, . . . ,7 (at least), we obtain the following system of linear constraints:

n=0 : (c0,0 + c0,10)1+(c1,0 + c1,10)2+(c2,0 + c2,10)14 = 0
n=1 : (c0,0 + c0,11)2+(c1,0 + c1,11)14+(c2,0 + c2,11)106 = 0
n=2 : (c0,0 + c0,12)14+(c1,0 + c1,12)106+(c2,0 + c2,12)838 = 0

...
n=7 : (c0,0 + c0,17)470010+(c1,0 + c1,17)3968310+(c2,0 + c2,17)33747490 = 0.

In other words, any choice of the ci, j which corresponds to a recurrence that holds
for all n ∈N must in particular correspond to recurrence that holds for n = 0, . . . ,7,
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and the choices for ci, j that correspond to a recurrence valid for n = 0, . . . ,7 are
precisely the solutions of the following homogeneous linear system:

1 0 2 0 14 0
2 2 14 14 106 106
14 28 106 212 838 1676
106 318 838 2514 6802 20406
838 3352 6802 27208 56190 224760
6802 34010 56190 280950 470010 2350050
56190 337140 470010 2820060 3968310 23809860
470010 3290070 3968310 27778170 33747490 236232430




c0,0
c0,1
c1,0
c1,1
c2,0
c2,1

= 0

This system has the solution (0,9,−14,−10,2,1), which means that the infinite
sequence (an)

∞
n=0 of which we were given the first 10 terms above satisfies the re-

currence
9nan +(−14−10n)an+1 +(2n+1)an+2 = 0,

at least for n = 0,1, . . . ,7. Note that the linear system had more equations than vari-
ables so that a priori we would not have expected that it has a nonzero solution at all.
This makes it reasonable to guess that the recurrence we found is not just a match
of the given data, but in fact a “true” recurrence, valid for all n ∈N. The reliability
of such a guess can be estimated by the difference between number of variables and
number of equations in the linear system (e.g. 0: already some indication, 10: con-
vincing evidence, 100: strong evidence).

Guessing is a very popular technique in experimental mathematics, it is cer-
tainly a more widely used (and known?) part of the holonomic toolkit than the
algorithms for closure properties. Several software packages provide efficient im-
plementations of the algorithm sketched above, or of more sophisticated algorithms
based on Hermite-Pade approximation [3]. Maple users can use gfun [37], Mathe-
matica users can use the old package of Mallinger [32] or Kauers’s package [26],
which also supports multivariate guessing. For Axiom there is a package by Hebisch
and Rubey [21]. Recent versions of these packages have no trouble processing hun-
dreds or even thousands of terms.

Note the computational difference between the linear algebra problems for guess-
ing and closure properties: For guessing, we solve large overdetermined systems
with constant coefficients, whereas for closure properties we solve small underde-
termined systems with polynomial coefficients.

Note also that if no equation can be found by guessing, then there definitely
does not exist an equation of the specified order and degree. On the other hand, a
guessed equation may be incorrect, although this very rarely happens in practice.
The requirement that a dense overdetermined linear system should have a nontrivial
solution acts as a strong filter against false guesses. In case of doubt, there are some
other tests which can be applied to a guessing result to estimate how plausible it
is [9].
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4.1 Trading Order for Degree

The first step in the guessing procedure is to make a choice for the order r and the
degree d of the equation to be searched. The possible choices are limited by the
number N of available terms, because we want to end up with an overdetermined
linear system. (An underdetermined system will always have nontrivial solutions,
but these have no reason to have any significance for the infinite object from which
the data sample originates.) An overdetermined system is obtained for r and d such
that (d + 2)(r+ 1) < N. The possible choices for r and d are thus the points (r,d)
under a hyperbola determined by the number of available terms.

If for some point (r,d) below the hyperbola no equation is found, it may still
be that there is an equation for some other point (r′,d′) (unless r′ ≤ r and d′ ≤ d).
An exhaustive search needs to go through all the integer points right below the
hyperbola. These are only finitely many.

If an object is holonomic, it satisfies not only a single equation but infinitely
many of them. First of all we can pass from any given equation to a higher degree
one by simply multiplying it by n or z, respectively, and we can produce higher order
equations by shifting or differentiating, respectively. This means that if there is an
equation of order r and degree d, then there is also one of order r′ and degree d′

for every (r′,d′) with r′ ≥ r and d′ ≥ d. In addition, in examples coming from
applications, there usually exist further equations. A typical shape for the region of
all points (r,d) for which there exists an equation of order r and degree d is shown
in Figure 2. As indicated by the curves in this figure, the equations which can be
recovered with the smallest amount of data are those for which r/d ≈ 1. In contrast,
the minimal order operator tends to require the maximal number of terms. This is
unfortunate because this operator is for many applications the most interesting one.
Modern guessing packages [26] use an algorithm which guesses several nonminimal
order recurrences (taking advantage of their small size) and construct from them a
guess for the minimal order operator (which is most interesting to the user) [6, 8].
Very recent results [11, 12, 24] offer further improvements by giving precise a priori
knowledge about the shape of the region where equations can be found.

Example 6. The technique explained above has been utilized for certain sequences
arising in particle physics [6]. A certain quantity arising in this context (named
C(2)

2,q,C3
F

in Table 5 of [6]) satisfies a recurrence of order 35 and degree 938. This
is the minimal order recurrence for this sequence. In order to guess it directly, at
least 33841 terms of the sequence are needed. However, by first guessing a smaller
recurrence with nonminimal order (in this case, order 51 and degree 92), it was
sufficient to know 5114 terms of the sequence. See Figure 1 for an illustration.
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Fig. 1 For the sequence
mentioned in Example 6, it
turns out that there exists
a recurrence of order r and
degree d whenever (r,d)
is above the solid curve.
With 5114 terms available,
guessing can find recurrence
equations of order r and
degree d whenever (r,d) is
below the dashed curve. With
33841 terms, guessing can
find recurrences of order r
and degree d for all (r,d)
below the dotted curve. The
two dots mark the position of
the minimal order recurrence
and the recurrences which
were actually guessed, and
from which the minimal order
recurrence was constructed.
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4.2 Modular Techniques

A common problem in computer algebra is the intermediate growth of expressions
during a calculation. In the context of holonomic functions, it is not unusual that
the output of a calculation is much longer than the input, and yet the intermediate
expressions can still be much longer than that, thereby causing severe time and
memory problems. A classical technique in computer algebra for dealing with this
problem is the use of homomorphic images (a.k.a. modular arithmetic) [19, 25]. The
basic idea is that instead of solving a problem involving polynomials, one evaluates
the polynomials at several points, then solves the resulting small problems, which no
longer involve polynomials but only numbers, and afterwards combines the various
solutions by interpolation to a solution of the original problem. To the same effect,
problems involving rational numbers are mapped to problems in finite fields, solved
in these fields, and afterwards the modular solutions are combined to a rational
solution using the Chinese remainder algorithm and rational reconstruction.

Implementations use this technique internally to speed up the computations and
to save memory. The user does not see this, and does not need to care. Modular
techniques are however also useful for the user, because in large problems the hard
part of the computation is usually not the guessing itself but the generation of suf-
ficiently many terms of the sequence or series. It is typically about one order of
magnitude faster to compute the terms only modulo some fixed prime. Therefore,
one should first compute the data only modulo some fixed prime p (for instance
p = 231− 1 = 2147483647), and then apply the guesser modulo this prime. If it
does not find anything, then (with high probability) it would also not find any equa-
tion for the actual data, and there is no point in computing it.
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On the other hand, if a modular equation for the modular data is found, then one
can still go ahead and calculate the data modulo many other primes, reconstruct the
non-modular data from the results, and apply the guesser to those in order to get
the non-modular equation. This is possible, but there is a better way: calculate the
data modulo several other primes, then for each prime guess an equation modulo the
prime, and in the end reconstruct the non-modular equation from the modular ones.
In practice, this strategy tends to require much fewer primes, and is therefore much
more efficient.

Example 7. Consider the sequence an = ∑
n
k=0(n+ k)334k

(n
k

)2. It satisfies a recur-
rence of order 2 and degree 4 which a guesser can recover from the first 20 terms
of the sequence. The example is so small that both the computation of these twenty
terms via the sum and the guessing can be done in virtually no time. The arithmetic
effect described above can nevertheless be observed already here.

The term a20, which is the largest in the sample, has 42 decimal digits, so if we
work with primes of 11 decimal digits, we need four of them in order to reconstruct
the values of a0, . . . ,a20 from their images modulo the primes.

On the other hand, the largest coefficient in the recurrence has only 12 decimal
digits. (It is a fraction with a 7-digit numerator and a 5-digit denominator.) Therefore
we can already recover it if we know the coefficients of the recurrence modulo two
different primes. See Figure 2 for an illustration.

Example 8. For the sequence from Example 6, the largest among the first 5114 terms
is a fraction with 13388 decimal digits in the numerator and 13381 digits in the
denominator. In contrast, the largest coefficient in the minimal order recurrence is a
fraction with 1187 decimal digits in the numerator and 7 digits in the denominator.
The resulting speed-up is a factor of (13388+13381)/(1187+7)≈ 22.4.

4.3 Boot Strapping

We have remarked that the generation of a sufficient amount of data is often more
expensive than guessing an equation from the data. Of course, once we have an
equation, it is very cheap to calculate as much data as we please—this is one of the
fundamental properties of holonomic objects. But if we already know an equation,
we don’t need to guess one. To some extent, the situation has the character of a
chicken/egg problem: in order to guess a recurrence most efficiently, the best thing
would be if we could already use it for generating data. Sometimes the conflict
can be resolved by guessing auxiliary equations: in a first step, use a naive way to
compute a small number of terms, then use them to guess some equation which can
be used to generate further terms, and iterate until you have enough terms to guess
the equation of interest. We conclude with two examples for this strategy.

Example 9. [29] Consider the lattice N4. We are interested in walks starting at
(0,0,0,0) and going to (i, j,k, l) which may consist of any number of steps, where
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mod mod mod mod
100000000003 100000000019 100000000057 100000000063
0 0 0 0
325 325 325 325
107896 107896 107896 107896
20619774 20619774 20619774 20619774
3180175360 3180175360 3180175360 3180175360
39281494338 39281494274 39281494122 39281494098
44150634536 44150625448 44150603864 44150600456
21005523377 21004395297 21001716107 21001293077
47849449427 47713597155 47390948009 47340003407
10040664517 94031491240 56009704700 50006264720
21985378201 66674685234 60311791810 64570282631
33735899035 69655913193 79966218922 18436302163
43166832072 5147734490 89883154498 50634811944
44406348808 99474064104 33709016642 55347756722
50094685503 23789791408 32316196105 19843824994
48089246095 80233657716 43056414134 27698338095
46630298409 55837852211 47226351528 21769511873
28184365337 25424314762 78343837230 83639568961
97965056397 76012039079 60755450198 76086130993
82688649229 13097788119 92702069386 96377809322
19000479750 73020719731 24797347614 67792308900

︸ ︷︷ ︸ ︸ ︷︷ ︸

mod mod
100000000003 100000000019
0 0
325 325
107896 107896
20619774 20619774
3180175360 3180175360
39281494338 39281494274
44150634536 44150625448
21005523377 21004395297
47849449427 47713597155
10040664517 94031491240
21985378201 66674685234
33735899035 69655913193
43166832072 5147734490
44406348808 99474064104
50094685503 23789791408
48089246095 80233657716
46630298409 55837852211
28184365337 25424314762
97965056397 76012039079
82688649229 13097788119
19000479750 73020719731

mod mod
10000000002200000000057 10000000012000000003591
0 0
325 325
107896 107896
20619774 20619774
3180175360 3180175360
439281494350 439281494350
56844150636240 56844150636240
7050521005734892 7050521005734892
849076747874921728 849076747874921728
100057333113042384510 100057333113042384510
1595691831469856133143 1595691821669856129609
6025499912914500896416 6025498619314500429928
3987619360762795412890 3987472380362742409958
9655826781634081152247 9639354343828140989473
7039405589661276853185 5207872858000803723455
4174097428373312168941 1922634602838958137103
8692452790707403882121 8757614004539066331243
6892250317634951874859 1578404473178034386384
8887206360264581247194 8077821996665113985638
9184942883958236935737 6605404342457782542388
9037373502190121684807 9283417323516345218988

︸ ︷︷ ︸

↓

Guessed equation
modulo 100000000003:

(n4 +12337892631n3 +
24675785259n2 +

12337892629n)an+2 +
(99999999839n4 +
76585608333n3 +
24849274151n2 +

43356113667n)an+1 +
(6400n4 +

62512855233n3 +
50051350526n2 +
12564160956n+

25025659263)an = 0

↓

Guessed equation
modulo 100000000019:

(n4 +17278992424n3 +
34557984845n2 +

17278992422n)an+2 +
(99999999855n4 +
66245242769n3 +
40899461546n2 +

16817950742n)an+1 +
(6400n4 +

85551511805n3 +
42205976763n2 +
27757443749n+

71102972391)an = 0

mod
100000000142000000062880000008584200000204687
0
325
107896
20619774
3180175360
439281494350
56844150636240
7050521005734892
849076747874921728
100057333113042384510
11595691833669856133200
1326025500203314500903940
149983987652356362796267776
16808619659524675834176961324
1868910957450565998671929645600
206379043919577487080949672719000
22652994757462351298463229473971200
2473240118789349718278365703625872670
268742205192237274018023266433839996880
29076651329353997890401249406299092602900
3133800494309454721113304131063624227776000

︸ ︷︷ ︸

↓ ↓
(n4 + 260983

104329 n3 + 208979
104329 n2 + 52325

104329 n)an+2− (164n4 + 68466146
104329 n3 + 4539888

6137 n2 + 17371256
104329 n)an+1 +

(6400n4 + 3673408000
104329 n3 + 7348870400

104329 n2 + 6348339200
104329 n+ 2005171200

104329 )an = 0

Fig. 2 Two ways of using modular arithmetic in guessing, illustrated with the data of Example 7.
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a single step can be of the form (m,0,0,0) or (0,m,0,0) or (0,0,m,0) or (0,0,0,m)
for some positive integer m. If ai, j,k,l denotes the number of walks ending at the
lattice point (i, j,k, l), we are interested in the sequence an,n,n,n counting the walks
that end on the diagonal. There is a simple way to compute these numbers, but this
algorithm is costly. It would be somewhat hard to generate 1000 terms with it.

Therefore we proceed as follows: compute the terms an,n,k,k for 0 ≤ n,k ≤ 25,
say, and use bivariate guessing to guess recurrence equations for this sequence with
respect to n and k. Using these recurrences, it is much easier to calculate an,n,n,n
for n = 0, . . . ,1000. These terms can finally be used to guess the desired recurrence
for an,n,n,n.

Example 10. [35] For a certain application in combinatorial group theory, it was nec-
essary to find a differential equation for the power series [q0] f (q,z), where f (q,z) is
a certain power series with respect to z whose coefficients are Laurent polynomials
in q. The notation [q0] is meant to pick the constant term of each coefficient:

f (q,z) = 1+(q−1 +q)z+(q−2 +4+q2)z2 + · · ·
[q0] f (q,z) = 1+0z+4z2 + · · · .

The power series f (q,z) was given in terms of a defining equation p(q,z, f (q,z)) =
0, where p is a polynomial in three variables which is too large to be printed here.
Using Newton polygons [28, Chapter 6], it is possible to compute from p the first
terms in the expansion of f (q,z) with respect to z. But it is hard to generate enough
terms to recover the differential equation for [q0] f (z).

Therefore we proceed as follows: compute the first 30 terms in the expansion of
f (q,z) for symbolic q, and use these to guess a general recurrence of the coefficients
of f (q,z) with symbolic q. Using this recurrence, generate many further terms of
f (q,z) with symbolic q, pick the constant terms and apply guessing to the result.
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