What’s new in Symbolic Summation

Manuel Kauers

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University (JKU)
Linz, Austria
The 2010s: Efficiency and complexity
applications with large input, rational integration exploiting fast
arithmetic, worst case bounds on the run time complexity, sharp
estimates on the output size, parallel algorithms, . . .

The 2000s: Extensions and generalizations
Refined \(\Pi \Sigma \)-theory, Takayama, Ore algebras and Gröbner bases,
Chyzak's algorithm, algorithms for identities involving Abel-
type terms or Bernoulli numbers or Stirling numbers, . . .

The 1990s: The stormy decade
Z's theory, Z's algorithm, Almkvist-Zeilberger algorithm, Pet-
kovšek's algorithm, WZ-pairs, \(A = B \), GFF, \(q \)-generalizations,
Wegschaider, Paule-Schorn package, gfun, Yen's bound, . . .

prehistory
Gosper's algorithm, Sister Celine's algorithm, Karr's algorithm,
hypergeometric transformations (nonalgorithmic), table lookup.
• **prehistory**
 Gosper’s algorithm, Sister Celine’s algorithm, Karr’s algorithm, hypergeometric transformations (nonalgorithmic), table lookup.
• **The 1990s: The stormy decade**

• **Prehistory**
 Gosper’s algorithm, Sister Celine’s algorithm, Karr’s algorithm, hypergeometric transformations (nonalgorithmic), table lookup.
• **The 2000s: Extensions and generalizations**
 Refined $\Pi\Sigma$-theory, Takayama, Ore algebras and Gröbner bases, Chyzak’s algorithm, algorithms for identities involving Abel-type terms or Bernoulli numbers or Stirling numbers, . . .

• **The 1990s: The stormy decade**

• **prehistory**
 Gosper’s algorithm, Sister Celine’s algorithm, Karr’s algorithm, hypergeometric transformations (nonalgorithmic), table lookup.
• **The 2010s: Efficiency and complexity**
 applications with large input, rational integration exploiting fast arithmetic, worst case bounds on the run time complexity, sharp estimates on the output size, parallel algorithms, . . .

• **The 2000s: Extensions and generalizations**
 Refined $\Pi\Sigma$-theory, Takayama, Ore algebras and Gröbner bases, Chyzak’s algorithm, algorithms for identities involving Abel-type terms or Bernoulli numbers or Stirling numbers, . . .

• **The 1990s: The stormy decade**

• **prehistory**
 Gosper’s algorithm, Sister Celine’s algorithm, Karr’s algorithm, hypergeometric transformations (nonalgorithmic), table lookup.
<table>
<thead>
<tr>
<th>1990s</th>
<th>2000s</th>
<th>2010s</th>
</tr>
</thead>
</table>

Plan of this talk:
▶ Address some developments which are now ready to use.
▶ Address some of the hot topics in the area.
<table>
<thead>
<tr>
<th>1990s</th>
<th>2000s</th>
<th>2010s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classics:</td>
<td>explored · available · well-known</td>
<td></td>
</tr>
</tbody>
</table>
Plan of this talk:
▶ Address some developments which are now ready to use.
▶ Address some of the hot topics in the area.

<table>
<thead>
<tr>
<th></th>
<th>1990s</th>
<th>2000s</th>
<th>2010s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classics:</td>
<td>explored</td>
<td>available</td>
<td>well-known</td>
</tr>
<tr>
<td>Extensions:</td>
<td>explored</td>
<td>available</td>
<td></td>
</tr>
</tbody>
</table>
Plan of this talk:

- Address some developments which are now ready to use.
- Address some of the hot topics in the area.

<table>
<thead>
<tr>
<th></th>
<th>1990s</th>
<th>2000s</th>
<th>2010s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classics:</td>
<td>explored</td>
<td>available</td>
<td>well-known</td>
</tr>
<tr>
<td>Extensions:</td>
<td></td>
<td>explored</td>
<td>available</td>
</tr>
<tr>
<td>High Performance:</td>
<td></td>
<td></td>
<td>explored</td>
</tr>
<tr>
<td></td>
<td>1990s</td>
<td>2000s</td>
<td>2010s</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Classics:</td>
<td>explored</td>
<td>available</td>
<td>well-known</td>
</tr>
<tr>
<td>Extensions:</td>
<td></td>
<td>explored</td>
<td>available</td>
</tr>
<tr>
<td>High Performance:</td>
<td></td>
<td></td>
<td>explored</td>
</tr>
</tbody>
</table>

Plan of this talk:
<table>
<thead>
<tr>
<th></th>
<th>1990s</th>
<th>2000s</th>
<th>2010s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classics:</td>
<td>explored · available · well-known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensions:</td>
<td>explored</td>
<td>available</td>
<td></td>
</tr>
<tr>
<td>High Performance:</td>
<td></td>
<td></td>
<td>explored</td>
</tr>
</tbody>
</table>

Plan of this talk:

- Address some developments which are now ready to use.
<table>
<thead>
<tr>
<th></th>
<th>1990s</th>
<th>2000s</th>
<th>2010s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classics:</td>
<td>explored</td>
<td>available</td>
<td>well-known</td>
</tr>
<tr>
<td>Extensions:</td>
<td></td>
<td>explored</td>
<td>available</td>
</tr>
<tr>
<td>High Performance:</td>
<td></td>
<td></td>
<td>explored</td>
</tr>
</tbody>
</table>

Plan of this talk:

- Address some developments which are now *ready to use*.
- Address some of the *hot topics* in the area.
A What’s old?
 ▶ Hypergeometric creative telescoping

B What’s new “on the market”?
 ▶ Techniques for nested sums and products
 ▶ Techniques for multivariate D-finite objects

C What’s new “in the labs”?
 ▶ Speedup by trading order against degree
A What’s old?
 ▶ Hypergeometric creative telescoping

B What’s new “on the market”?
 ▶ Techniques for nested sums and products
 ▶ Techniques for multivariate D-finite objects

C What’s new “in the labs”?
 ▶ Speedup by trading order against degree
INPUT: something like $f(n, k) := \binom{n}{k}^2 \binom{n+k}{k}^2$
INPUT: something like $f(n, k) := \binom{n}{k}^2 \binom{n+k}{k}^2$

OUTPUT: something like

$$(n + 1)^3 f(n, k) - (2n + 3)(17n^2 + 51n + 39) f(n + 1, k) + (n + 3)^3 f(n + 2, k) = g(n, k + 1) - g(n, k)$$

where $g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} f(n, k)$.
INPUT: something like $f(n, k) := \binom{n}{k}^2 (n+k)^2$

OUTPUT: something like

$$(n+1)^3 f(n, k) \quad \quad - (2n+3)(17n^2 + 51n + 39) f(n+1, k)$$

$$+ (n+3)^3 f(n+2, k) = g(n, k+1) - g(n, k)$$

where $g(n, k) = \frac{4k^4(2n+3)(4n^2 + 12n - 2k^2 + 3k + 8)}{(n-k+1)^2(n-k+2)^2} f(n, k)$.
Creative Telescoping

INPUT: polynomials in n only

OUTPUT: something like

\[
\begin{align*}
(n + 1)^3 f(n, k) - (2n + 3)(17n^2 + 51n + 39)f(n + 1, k) + (n + 3)^3 f(n + 2, k) &= g(n, k + 1) - g(n, k) \\
\end{align*}
\]

where

\[
g(n, k) = \frac{4k^2(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} f(n, k).
\]
Creative Telescoping

INPUT: polynomials in n only

\[f(n, k) := \binom{n}{k} \cdot (n + k)^2 \]

OUTPUT: something like

\[
\begin{align*}
(n + 1)^3 f(n, k) & \quad - (2n + 3)(17n^2 + 51n + 39) f(n + 1, k) \\
& \quad + (n + 3)^3 f(n + 2, k) = g(n, k + 1) - g(n, k)
\end{align*}
\]

where \(g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} f(n, k). \)
Creative Telescoping

INPUT: polynomials in \(n \) only

\[
\begin{align*}
\binom{n}{k} &:= \binom{n}{k}^2 \frac{(n+k)^2}{k^2} \\
\end{align*}
\]

OUTPUT: something like

\[
\begin{align*}
(n+1)^3 f(n, k) &- (2n+3)(17n^2 + 51n + 39) f(n+1, k) \\
+ (n+3)^3 f(n+2, k) = g(n, k+1) - g(n, k)
\end{align*}
\]

where \(g(n, k) = \frac{4k^4(2n+3)(4n^2 + 12n - 2k^2 + 3k + 8)}{(n-k+1)^2(n-k+2)^2} f(n, k) \).
Creative Telescoping

INPUT: something like

\[f(n, k) := \binom{n}{k}^2 \binom{n+k}{k}^2 \]

OUTPUT: something like

\[\begin{aligned}
&\left(n+1 \right)^3 f(n, k) \\
&\quad - (2n + 3)(17n^2 + 51n + 39)f(n + 1, k) \\
&\quad + (n + 3)^3 f(n + 2, k) = g(n, k + 1) - g(n, k)
\end{aligned} \]

where \(g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} f(n, k). \)
Creative Telescoping

INPUT: polynomials in \(n \) only

\[
\binom{n}{k} := \binom{n}{k}^2 \binom{n+k}{k}^2
\]

OUTPUT: something like

\[
\begin{align*}
(n + 1)^3 f(n, k) - (2n + 3)(17n^2 + 51n + 39) f(n + 1, k) \\
+ (n + 3)^3 f(n + 2, k) = g(n, k + 1) - g(n, k)
\end{align*}
\]

where \(g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} f(n, k) \).
INPUT: a hypergeometric term $f(n, k)$
INPUT: a hypergeometric term $f(n, k)$

i.e., \(\frac{f(n+1, k)}{f(n, k)} \in \mathbb{K}(n, k) \) and \(\frac{f(n, k+1)}{f(n, k)} \in \mathbb{K}(n, k) \)
INPUT: a hypergeometric term $f(n, k)$

OUTPUT: $T \in \mathbb{K}[n, S_n] \setminus \{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$T \cdot f(n, k) = (S_k - 1) \cdot Q \cdot f(n, k)$$
Creative Telescoping

INPUT: a hypergeometric term $f(n, k)$

OUTPUT: $T \in \mathbb{K}[n, S_n] \setminus \{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$T \cdot f(n, k) = (S_k - 1) \cdot Q f(n, k)$$
Creative Telescoping

INPUT: a hypergeometric term $f(n, k)$

OUTPUT: $T \in \mathbb{K}[n, S_n] \setminus \{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$T \cdot f(n, k) = (S_k - 1) \cdot Q f(n, k)$$
INPUT: a hypergeometric term $f(n, k)$

OUTPUT: $T \in \mathbb{K}[n, S_n] \setminus \{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$T \cdot f(n, k) = (S_k - 1) \cdot Q f(n, k)$$
INPUT: a hypergeometric term $f(n, k)$

OUTPUT: $T \in \mathbb{K}[n, S_n] \setminus \{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$T \cdot f(n, k) = (S_k - 1) \cdot Q \cdot f(n, k)$$
$T \cdot f(n, k) = (S_k - 1) \cdot Q f(n, k)$
\[T \cdot f(n, k) = (S_k - 1) \cdot Q \cdot f(n, k) \mid \sum_k \]
\[
\sum_{k} T \cdot f(n, k) = \sum_{k} (S_k - 1) \cdot Q f(n, k)
\]
$$T \cdot \sum_{k} f(n, k) = \sum_{k} (S_k - 1) \cdot Q f(n, k)$$
\[T \cdot \sum_{k} f(n, k) = 0 \text{ (usually)} \]
$T \cdot \sum_{k} f(n, k) = 0 \ (\text{usually})$

A telescoper for $f(n, k)$ is (usually) an annihilator for $\sum_{k} f(n, k)$.
Example. \(f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2 \).
Example. $f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2$.
$F(n) := \sum_k f(n, k)$.
Example. $f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2$. $F(n) := \sum_k f(n, k)$.

We have

$$p_0(n) f(n, k)$$

$$- p_1(n) f(n + 1, k)$$

$$+ p_2(n) f(n + 2, k)$$

$$= g(n, k + 1) - g(n, k)$$

with $g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} f(n, k)$.
Example. $f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2$. $F(n) := \sum_k f(n, k)$.

We have

$$\sum_k \left(p_0(n) f(n, k) - p_1(n) f(n + 1, k) + p_2(n) f(n + 2, k) \right) = \sum_k \left(g(n, k + 1) - g(n, k) \right)$$

with $g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} f(n, k)$.
Example. \(f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2 \). \(F(n) := \sum_k f(n, k) \).

We have

\[
\sum_k \left(p_0(n) f(n, k) \right) \\
- \sum_k \left(p_1(n) f(n + 1, k) \right) \\
+ \sum_k \left(p_2(n) f(n + 2, k) \right) \\
= \sum_k \left(g(n, k + 1) - g(n, k) \right)
\]

with \(g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} \) \(f(n, k) \).
Example. \(f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2 \). \(F(n) := \sum_k f(n, k) \).

We have

\[
\begin{align*}
& p_0(n) \sum_k f(n, k) \\
& - p_1(n) \sum_k f(n + 1, k) \\
& + p_2(n) \sum_k f(n + 2, k) \\
& = \sum_k \left(g(n, k + 1) - g(n, k) \right)
\end{align*}
\]

with \(g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} f(n, k) \).
Example. \(f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2 \). \(F(n) := \sum_k f(n, k) \).

We have
\[
p_0(n)F(n) - p_1(n)F(n + 1) + p_2(n)F(n + 2) = \sum_k \left(g(n, k + 1) - g(n, k) \right)
\]

with \(g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} f(n, k) \).
Example. $f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2$. $F(n) := \sum_k f(n, k)$.

We have

$$p_0(n) F(n) - p_1(n) F(n + 1) + p_2(n) F(n + 2) = g(n, +\infty) - g(n, -\infty)$$

with $g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} f(n, k)$.
Example. \(f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2. \quad F(n) := \sum_{k} f(n, k). \)

We have

\[
P_0(n) F(n) - P_1(n) F(n + 1) + P_2(n) F(n + 2) = g(n, +\infty) - 0
\]

with \(g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} f(n, k). \)
Example. \(f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2 \). \(F(n) := \sum_k f(n, k) \).

We have

\[
p_0(n) F(n) - p_1(n) F(n + 1) + p_2(n) F(n + 2) = g(n, +\infty) - 0
\]

with \(g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} f(n, k) \).
Example. \(f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2 \). \(F(n) := \sum_k f(n, k) \).

We have

\[
p_0(n) F(n) - p_1(n) F(n + 1) + p_2(n) F(n + 2) = g(n, +\infty) - 0
\]

with \(g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} (n-k)^2 \binom{n+k}{k}^2 \).
Example. $f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2$. \quad F(n) := \sum_{k} f(n, k).

We have

$$p_0(n)F(n)$$

$$- p_1(n)F(n + 1)$$

$$+ p_2(n)F(n + 2)$$

$$= g(n, +\infty) - 0$$

with $g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} \binom{n}{k}^2 \binom{n+k}{k}^2$.
Example. \(f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2. \) \(F(n) := \sum_k f(n, k). \)

We have

\[
p_0(n)F(n) - p_1(n)F(n + 1) + p_2(n)F(n + 2) = g(n, +\infty) - 0
\]

with \(g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n-k+1)^2(n-k+2)^2} \frac{(n-k+1)^2(n-k+2)^2}{(n+1)^2(n+2)^2} \binom{n+2}{k}^2 \binom{n+k}{k}^2. \)
Example. $f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2$. $F(n) := \sum_k f(n, k)$.

We have

$$p_0(n) F(n) - p_1(n) F(n + 1) + p_2(n) F(n + 2) = g(n, +\infty) - 0$$

with $g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n+1)^2(n+2)^2} \binom{n+2}{k}^2 \binom{n+k}{k}^2$.
Example. $f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2$. $F(n) := \sum_k f(n, k)$.

We have

$$p_0(n) F(n)$$

$$- p_1(n) F(n + 1)$$

$$+ p_2(n) F(n + 2)$$

$$= 0 - 0$$

with $g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n+1)^2(n+2)^2} \binom{n+2}{k}^2 \binom{n+k}{k}^2$.
Example. $f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2$. $F(n) := \sum_k f(n, k)$.

We have

$$p_0(n)F(n) - p_1(n)F(n + 1) + p_2(n)F(n + 2) = 0$$

with $g(n, k) = \frac{4k^4(2n+3)(4n^2+12n-2k^2+3k+8)}{(n+1)^2(n+2)^2} \binom{n+2}{k}^2 \binom{n+k}{k}^2$.

Example. $f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2$. $F(n) := \sum_k f(n, k)$.

We have

$$p_0(n)f(n, k) + p_1(n)f(n + 1, k) + p_2(n)f(n + 2, k) = g(n, k + 1) - g(n, k)$$

\[\Downarrow\]

$$p_0(n)F(n) + p_1(n)F(n + 1) + p_2(n)F(n + 2) = 0.$$
The recurrence for the $F(n) = \sum_k \binom{n}{k}^2 \binom{n+k}{k}^2$ plays a critical role in Apéry’s proof of the irrationality of $\zeta(3)$.
The recurrence for the $F(n) = \sum_k \binom{n}{k}^2 (\binom{n+k}{k})^2$ plays a critical role in Apéry’s proof of the irrationality of $\zeta(3)$.

van der Poorten on his struggles to check Apéry’s argument:

“We were quite unable to prove that the sequence $F(n)$ defined above did satisfy the recurrence (Apéry rather tartly pointed out to me in Helsinki that he regarded this more a compliment than a criticism of his method). But empirically (numerically) the evidence in favour was utterly compelling.”
The recurrence for the $F(n) = \sum_k \binom{n}{k}^2 \binom{n+k}{k}^2$ plays a critical role in Apéry’s proof of the irrationality of $\zeta(3)$.

For Zeilberger’s algorithm, this sum is a piece of cake.
The recurrence for the $F(n) = \sum_k \binom{n}{k}^2 \binom{n+k}{k}^2$ plays a critical role in Apéry’s proof of the irrationality of $\zeta(3)$.

For Zeilberger’s algorithm, this sum is a piece of cake.

But Apéry needs a second sum:

$$H(n) = \sum_{k} \binom{n}{k}^2 \binom{n+k}{k}^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i-1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right)$$
The recurrence for the $F(n) = \sum_k \binom{n}{k}^2 \binom{n+k}{k}^2$ plays a critical role in Apéry’s proof of the irrationality of $\zeta(3)$.

For Zeilberger’s algorithm, this sum is a piece of cake.

But Apéry needs a second sum:

$$H(n) = \sum_k \binom{n}{k}^2 \binom{n+k}{k}^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i-1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right)$$

Key step of his proof: $H(n)$ and $F(n)$ satisfy the same recurrence.
The recurrence for the $F(n) = \sum_k \binom{n}{k}^2 \binom{n+k}{k}^2$ plays a critical role in Apéry’s proof of the irrationality of $\zeta(3)$.

For Zeilberger’s algorithm, this sum is a piece of cake.

But Apéry needs a second sum:

$$H(n) = \sum_k \binom{n}{k}^2 \binom{n+k}{k}^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i-1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right)$$

Key step of his proof: $H(n)$ and $F(n)$ satisfy the same recurrence. Zeilberger’s algorithm can’t do this harder sum directly.
The recurrence for the $F(n) = \sum_k \binom{n}{k}^2 \binom{n+k}{k}^2$ plays a critical role in Apéry’s proof of the irrationality of $\zeta(3)$.

For Zeilberger’s algorithm, this sum is a piece of cake.

But Apéry needs a second sum:

$$H(n) = \sum_k \binom{n}{k}^2 \binom{n+k}{k}^2 \left(\sum_{i=1}^n \frac{1}{i^3} + \sum_{i=1}^k \frac{(-1)^{i-1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right)$$

Key step of his proof: $H(n)$ and $F(n)$ satisfy the same recurrence.

Zeilberger’s algorithm can’t do this harder sum directly.

We need appropriate generalizations.
Outline

A What’s old?
 - Hypergeometric creative telescoping

B What’s new “on the market”?
 - Techniques for nested sums and products
 - Techniques for multivariate D-finite objects

C What’s new “in the labs”?
 - Speedup by trading order against degree
Outline

A What’s old?
 ▶ Hypergeometric creative telescoping

B What’s new “on the market”?
 ▶ Techniques for nested sums and products
 ▶ Techniques for multivariate D-finite objects

C What’s new “in the labs”?
 ▶ Speedup by trading order against degree
hypergeometric
Outline

nested sums and products

hypergeometric
Outline

- nested sums and products
- hypergeometric
- D-finite/holonomic
Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+$, $-$, \cdot, $/$, \sum, \prod in such a way that each subexpression has at most one free variable.
\textit{ΠΣ}-expressions

\textit{Informal (and somewhat oversimplified)}: expressions which can be formed from constants, variables, $+$, $-$, \cdot, $/$, \sum, \prod in such a way that each subexpression has at most one free variable.

\textit{Examples}:
Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+, -, \cdot, /, \sum, \prod$ in such a way that each subexpression has at most one free variable.

Examples:

$$\sum_{k=1}^{n} \frac{1}{i} \sum_{i=1}^{k} \frac{1}{k}$$
ΠΣ-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+, -, \cdot, /, \sum, \prod$ in such a way that each subexpression has at most one free variable.

Examples:

\[
\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i} / k
\]
Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+, -, \cdot, /, \sum, \prod$ in such a way that each subexpression has at most one free variable.

Examples:

$$\sum_{i=1}^{n} \frac{1}{i}$$
Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, +, −, ·, /, ∑, ∏ in such a way that each subexpression has at most one free variable.

Examples:

\[\sum_{k=1}^{n} \frac{1}{i} \]
Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-,\cdot,\div,\sum,\prod$ in such a way that each subexpression has at most one free variable.

Examples:

\[
\sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \frac{1}{i}}{k}
\]
ΠΣ-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-,\cdot,\div,\sum,\prod$ in such a way that each subexpression has at most one free variable.

Examples:

$$\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i}$$

not OK.
$ΠΣ$-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+, -, \cdot, /, \sum, \prod$ in such a way that each subexpression has at most one free variable.

Examples:

\[
\sum_{k=1}^{n} \frac{1}{\sum_{i=1}^{k} \frac{1}{i}} \text{ OK}
\]
ΠΣ-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, \(+, -, \cdot, /, \sum, \prod \) in such a way that each subexpression has at most one free variable.

Examples:

\[
\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{i} \quad \text{OK}
\]

\[
\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{1 + i + n} \quad \text{not OK.}
\]
ΠΣ-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+, -, \cdot, /, \sum, \prod$ in such a way that each subexpression has at most one free variable.

Examples:

\[
\sum_{k=1}^{n} \frac{1}{i} \]

\[
\sum_{k=1}^{n} \frac{1}{1 + i + n}
\]
ΠΣ-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, +, −, ·, /, ∑, ∏ in such a way that each subexpression has at most one free variable.

Examples:

\[\sum_{k=1}^{n} \frac{1}{k} \] is OK.

\[\sum_{k=1}^{n} \sum_{i=1}^{k} \frac{1}{1 + i + n} \] is not OK.

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, +, −, ·, /, ∑, ∏ in such a way that each subexpression has at most one free variable.

Examples:

\[
\sum_{k=1}^{n} \prod_{i=1}^{k} \frac{i+\sum_{j=1}^{i} \frac{j^6+1}{2i+7}}{2i+7} + \sum_{i=1}^{k} \frac{5i^3-3i+2}{3i^2+5i+8} \quad \text{OK}
\]

\[
\sum_{k=1}^{n} \left(\sum_{i=1}^{k} \frac{3i^2+2i+5}{4i^3+3} \right)^2 - \frac{5k^2-3k+5}{3k+7} \prod_{i=1}^{k} \frac{5i+3}{7i-3} \quad \text{OK}
\]
\textbf{ΠΣ-expressions}

\textit{Informal (and somewhat oversimplified):} expressions which can be formed from constants, variables, $+, -, \cdot, /, \sum, \prod$ in such a way that each subexpression has at most one free variable.

\textbf{Examples:}

\begin{align*}
\sum_{k=1}^{n} \prod_{i=1}^{k} \frac{i + \sum_{j=1}^{i} \frac{j^{6}+1}{2j+7}}{2i+7} + \sum_{i=1}^{k} \frac{5i^{3}-3i+2}{3i^{2}+5i+8} & \quad \text{OK} \\
(n! := \prod_{k=1}^{n} k, \quad 2^{n} := \prod_{k=1}^{n} 2, \quad \sum_{k=1}^{n} 2) & \quad \text{all OK}
\end{align*}
ΠΣ-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, +, −, ·, /, Σ, Π in such a way that each subexpression has at most one free variable.

Examples:

1. \[\sum_{k=1}^{n} \left(\prod_{i=1}^{k} \frac{i + \sum_{j=1}^{i} \frac{j^6+1}{2j+7}}{k} \right)^2 - \frac{5k^2-3k+5}{3k+7} \prod_{i=1}^{k} \frac{5i+3}{7i-3} \]
 - OK

2. \[n! := \prod_{k=1}^{n} k, \quad 2^n := \prod_{k=1}^{n} 2, \quad H_n := \sum_{k=1}^{n} \frac{1}{k} \]
 - all OK

3. \[\binom{n}{k} \]
 - not OK if both \(n \) and \(k \) are variables.
ΠΣ-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+, -, \cdot, /, \sum, \prod$ in such a way that each subexpression has at most one free variable.

Examples:

\[
\sum_{k=1}^{n} \prod_{i=1}^{k} \left(\frac{i + \sum_{j=1}^{i} \frac{j^6+1}{2j+7}}{\sum_{i=1}^{k} \frac{3i^2+2i+5}{4i^3+3}} \right)^2 - \sum_{i=1}^{k} \frac{5i^3-3i+2}{3i^2+5i+8} \quad \text{OK}
\]

\[
\frac{\left(\sum_{i=1}^{k} \frac{3i^2+2i+5}{4i^3+3} \right)^2}{\prod_{i=1}^{k} \frac{5i^3+3}{7i-3}} - \frac{5k^2-3k+5}{3k+7} \quad \text{all OK}
\]

\[
\prod_{k=1}^{n} k, \quad 2^n := \prod_{k=1}^{n} 2, \quad H_n := \sum_{k=1}^{n} \frac{1}{k} \quad \text{all OK}
\]

\[
\binom{n}{k} \quad \text{not OK if both } n \text{ and } k \text{ are variables.}
\]

OK if either of them is regarded as constant.
\(\Pi\Sigma\)-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, \(+\), \(-\), \(.\), \(/\), \(\sum\), \(\prod\) in such a way that each subexpression has at most one free variable.

Note: \(\Pi\Sigma\)-expressions can be easily shifted (\(n \leadsto n + 1\)) using

\[
\sum_{k=1}^{n+1} a_k = \sum_{k=1}^{n} a_k + a_{n+1}
\]

\[
\prod_{k=1}^{n+1} a_k = a_{n+1} \prod_{k=1}^{n} a_k
\]
Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, +, −, ·, /, ∑, ∏ in such a way that each subexpression has at most one free variable.

Note: ΠΣ-expressions can be easily shifted \((n \mapsto n + 1)\) using

\[
\sum_{k=1}^{n+1} a_k = \sum_{k=1}^{n} a_k + a_{n+1}
\]
\[
\prod_{k=1}^{n+1} a_k = a_{n+1} \prod_{k=1}^{n} a_k
\]

Example:

\[
\sum_{k=1}^{n+1} \frac{H_k + k!}{2^k + k}
\]
ΠΣ-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+,-,\cdot,/,$ \sum, \prod in such a way that each subexpression has at most one free variable.

Note: ΠΣ-expressions can be easily shifted ($n \leadsto n + 1$) using

\[
\begin{align*}
\sum_{k=1}^{n+1} a_k &= \sum_{k=1}^{n} a_k + a_{n+1} \\
\prod_{k=1}^{n+1} a_k &= a_{n+1} \prod_{k=1}^{n} a_k
\end{align*}
\]

Example:

\[
\begin{align*}
\sum_{k=1}^{n+1} \frac{H_k + k!}{2^k + k} &= \sum_{k=1}^{n} \frac{H_k + k!}{2^k + k} + \frac{H_{k+1} + (k+1)!}{2^{k+1} + (k+1)}
\end{align*}
\]
ΠΣ-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+, −, ·, /, ∑, ∏$ in such a way that each subexpression has at most one free variable.

Note: $ΠΣ$-expressions can be easily shifted $(n \leadsto n + 1)$ using

\[
\sum_{k=1}^{n+1} a_k = \sum_{k=1}^{n} a_k + a_{n+1} \quad \prod_{k=1}^{n+1} a_k = a_{n+1} \prod_{k=1}^{n} a_k
\]

Example:

\[
\sum_{k=1}^{n+1} \frac{H_k + k!}{2^k + k} = \sum_{k=1}^{n} \frac{H_k + k!}{2^k + k} + \frac{H_k + \frac{1}{k+1} + (k + 1)k!}{2 \cdot 2^k + (k + 1)}
\]
ΠΣ-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, $+, -, \cdot, /, \sum, \prod$ in such a way that each subexpression has at most one free variable.

Note: ΠΣ-expressions can be easily shifted ($n \leadsto n + 1$) using

\[
\sum_{k=1}^{n+1} a_k = \sum_{k=1}^{n} a_k + a_{n+1} \quad \prod_{k=1}^{n+1} a_k = a_{n+1} \prod_{k=1}^{n} a_k
\]

Example:

\[
\sum_{k=1}^{n+1} \frac{H_k + k!}{2^k + k} = \sum_{k=1}^{n} \frac{H_k + k!}{2^k + k} + \frac{1 + (k + 1)H_k + k!(k + 1)^2}{(k + 1)(k + 1 + 2 \cdot 2^k)}
\]
ΠΣ-expressions

Informal (and somewhat oversimplified): expressions which can be formed from constants, variables, +, −, ·, /, ∑, ∏ in such a way that each subexpression has at most one free variable.

Note: ΠΣ-expressions can be easily shifted \((n \leadsto n + 1) \) using

\[
\sum_{k=1}^{n+1} a_k = \sum_{k=1}^{n} a_k + a_{n+1} \\
\prod_{k=1}^{n+1} a_k = a_{n+1} \prod_{k=1}^{n} a_k
\]

Observation: The field generated by a ΠΣ-expression and all its subexpressions is closed under shift.
More formal (but still somewhat oversimplified):
More formal (but still somewhat oversimplified):

- A **difference field** is a field F together with a distinguished field automorphism $\sigma : F \to F$, called the **shift** of F.

t_i represents a **product** if $\beta = 0$

t_i represents a **sum** if $\alpha = 1$
More formal (but still somewhat oversimplified):

- A **difference field** is a field \mathbb{F} together with a distinguished field automorphism $\sigma: \mathbb{F} \rightarrow \mathbb{F}$, called the **shift** of \mathbb{F}.

- A **$\Pi \Sigma$-field** is a difference field of the form $\mathbb{F} = \mathbb{K}(t_1, t_2, \ldots, t_r)$ where

 $\sigma(c) = c$ for all $c \in \mathbb{K}$ and each t_i satisfies an equation $\sigma(t_i) = \alpha t_i + \beta$ for some $\alpha, \beta \in \mathbb{K}(t_1, t_2, \ldots, t_{i-1})$ (plus some technical restrictions omitted here).
More formal (but still somewhat oversimplified):

- A **difference field** is a field \mathbb{F} together with a distinguished field automorphism $\sigma: \mathbb{F} \rightarrow \mathbb{F}$, called the **shift** of \mathbb{F}.
- A **$\Pi\Sigma$-field** is a difference field of the form

$$
\mathbb{F} = \mathbb{K}(t_1, t_2, \ldots, t_r)
$$

where $\sigma(c) = c$ for all $c \in \mathbb{K}$ and each t_i satisfies an equation

$$
\sigma(t_i) = \alpha t_i + \beta
$$

for some $\alpha, \beta \in \mathbb{K}(t_1, t_2, \ldots, t_{i-1})$.
More formal (but still somewhat oversimplified):

- A **difference field** is a field \mathbb{F} together with a distinguished field automorphism $\sigma : \mathbb{F} \to \mathbb{F}$, called the **shift** of \mathbb{F}.

- A **ΠΣ-field** is a difference field of the form

 $$\mathbb{F} = \mathbb{K}(t_1, t_2, \ldots, t_r)$$

 where $\sigma(c) = c$ for all $c \in \mathbb{K}$ and each t_i satisfies an equation

 $$\sigma(t_i) = \alpha t_i + \beta$$

 for some $\alpha, \beta \in \mathbb{K}(t_1, t_2, \ldots, t_{i-1})$ (plus some technical restrictions omitted here).
More formal (but still somewhat oversimplified):

- A **difference field** is a field \(F \) together with a distinguished field automorphism \(\sigma: F \to F \), called the **shift** of \(F \).

- A **\(\Pi\Sigma \)-field** is a difference field of the form

 \[
 F = K(t_1, t_2, \ldots, t_r)
 \]

 where \(\sigma(c) = c \) for all \(c \in K \) and each \(t_i \) satisfies an equation

 \[
 \sigma(t_i) = \alpha t_i + \beta
 \]

 for some \(\alpha, \beta \in K(t_1, t_2, \ldots, t_{i-1}) \) (plus some technical restrictions omitted here).

- \(t_i \) represents a **product** if \(\beta = 0 \)

- \(t_i \) represents a **sum** if \(\alpha = 1 \)
Example: To represent \(\sum_{k=1}^{n} \frac{H_k + k!}{2^k + k} \), we can take the \(\Pi \Sigma \)-field

\[
\mathbb{F} = \mathbb{Q}(t_1, t_2, t_3, t_4, t_5)
\]
Example: To represent \(\sum_{k=1}^{n} \frac{H_k + k!}{2^k + k} \), we can take the \(\Pi \Sigma \)-field

\[
F = \mathbb{Q}(t_1, t_2, t_3, t_4, t_5)
\]

where \(\sigma : F \to F \) is such that \(\sigma(c) = c \) for all \(c \in \mathbb{Q} \) and
ΠΣ-expressions

Example: To represent \(\sum_{k=1}^{n} \frac{H_k + k!}{2^k + k} \), we can take the ΠΣ-field

\[F = \mathbb{Q}(t_1, t_2, t_3, t_4, t_5) \]

where \(\sigma: F \to F \) is such that \(\sigma(c) = c \) for all \(c \in \mathbb{Q} \) and

\[\sigma(t_1) = t_1 + 1 \]

\[t_1 \sim n \]
Example: To represent \[\sum_{k=1}^{n} \frac{H_k + k!}{2^k + k} \], we can take the \(\Pi\Sigma \)-field

\[F = \mathbb{Q}(t_1, t_2, t_3, t_4, t_5) \]

where \(\sigma: F \to F \) is such that \(\sigma(c) = c \) for all \(c \in \mathbb{Q} \) and

\[
\begin{align*}
\sigma(t_1) &= t_1 + 1 & t_1 &\sim n \\
\sigma(t_2) &= 2t_2 & t_2 &\sim 2^n
\end{align*}
\]
Example: To represent \(\sum_{k=1}^{n} \frac{H_k + k!}{2^k + k} \), we can take the \(\Pi \Sigma \)-field

\[
F = \mathbb{Q}(t_1, t_2, t_3, t_4, t_5)
\]

where \(\sigma : F \rightarrow F \) is such that \(\sigma(c) = c \) for all \(c \in \mathbb{Q} \) and

\[
\begin{align*}
\sigma(t_1) &= t_1 + 1 & t_1 &\sim n \\
\sigma(t_2) &= 2t_2 & t_2 &\sim 2^n \\
\sigma(t_3) &= t_3 + \frac{1}{t_1+1} & t_3 &\sim H_n
\end{align*}
\]
Example: To represent \(\sum_{k=1}^{n} \frac{H_k + k!}{2^k + k} \), we can take the \(\Pi \Sigma \)-field

\[
\mathbb{F} = \mathbb{Q}(t_1, t_2, t_3, t_4, t_5)
\]

where \(\sigma : \mathbb{F} \to \mathbb{F} \) is such that \(\sigma(c) = c \) for all \(c \in \mathbb{Q} \) and

\[
\begin{align*}
\sigma(t_1) &= t_1 + 1 & \quad & t_1 \sim n \\
\sigma(t_2) &= 2t_2 & \quad & t_2 \sim 2^n \\
\sigma(t_3) &= t_3 + \frac{1}{t_1+1} & \quad & t_3 \sim H_n \\
\sigma(t_4) &= (t_1 + 1)t_4 & \quad & t_4 \sim n!
\end{align*}
\]
Example: To represent \(\sum_{k=1}^{n} \frac{H_k + k!}{2^k + k} \), we can take the \(\Pi\Sigma \)-field

\[F = \mathbb{Q}(t_1, t_2, t_3, t_4, t_5) \]

where \(\sigma : F \rightarrow F \) is such that \(\sigma(c) = c \) for all \(c \in \mathbb{Q} \) and

\[
\begin{align*}
\sigma(t_1) &= t_1 + 1 & t_1 &\sim n \\
\sigma(t_2) &= 2t_2 & t_2 &\sim 2^n \\
\sigma(t_3) &= t_3 + \frac{1}{t_1+1} & t_3 &\sim H_n \\
\sigma(t_4) &= (t_1 + 1)t_4 & t_4 &\sim n! \\
\sigma(t_5) &= t_5 + \frac{1+(t_1+1)t_3+(t_1+1)^2t_4}{(t_1+1)(t_1+1+2t_2)} & t_5 &\sim \sum_{k=1}^{n} \frac{H_k + k!}{2^k + k}
\end{align*}
\]
Karr’s algorithm (1982): Given a ΠΣ-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g) - g = f$, or prove that no such element g exists in \mathbb{F}.
ΠΣ-expressions

Karr’s algorithm (1982): Given a ΠΣ-field F and an element $f \in F$, find $g \in F$ with $\sigma(g) - g = f$, or prove that no such element g exists in F.

Informally: Express, if at all possible, a given sum in terms of its subexpressions.
Karr’s algorithm (1982): Given a $\Pi\Sigma$-field F and an element $f \in F$, find $g \in F$ with $\sigma(g) - g = f$, or prove that no such element g exists in F.

Informally: Express, if at all possible, a given sum in terms of its subexpressions.

Examples:
Karr’s algorithm (1982): Given a $ΠΣ$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g) - g = f$, or prove that no such element g exists in \mathbb{F}.

Informally: Express, if at all possible, a given sum in terms of its subexpressions.

Examples:

1. $\sum_{k=1}^{n} H_k = (n + 1)H_n - n$
ΠΣ-expressions

Karr’s algorithm (1982): Given a ΠΣ-field \(\mathbb{F} \) and an element \(f \in \mathbb{F} \), find \(g \in \mathbb{F} \) with \(\sigma(g) - g = f \), or prove that no such element \(g \) exists in \(\mathbb{F} \).

Informally: Express, if at all possible, a given sum in terms of its subexpressions.

Examples:

- \[\sum_{k=1}^{n} H_k = (n + 1)H_n - n \]
- \[\sum_{k=1}^{n} H_k^2 = 2n - (2n + 1)H_n + (n + 1)H_n^2 \]
ΠΣ-expressions

Karr’s algorithm (1982): Given a ΠΣ-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g) - g = f$, or prove that no such element g exists in \mathbb{F}.

Informally: Express, if at all possible, a given sum in terms of its subexpressions.

Examples:

- $\sum_{k=1}^{n} H_k = (n + 1)H_n - n$
- $\sum_{k=1}^{n} H_k^2 = 2n - (2n + 1)H_n + (n + 1)H_n^2$
- $\sum_{k=1}^{n} H_k^3$ cannot be written as rational function of n and H_n.
ΠΣ-expressions

Karr’s algorithm (1982): Given a ΠΣ-field F and an element $f \in F$, find $g \in F$ with $\sigma(g) - g = f$, or prove that no such element g exists in F.

Vastly extended by *Schneider* since 2001. Some of the key features of his Mathematica package *Sigma* are:
$\Pi\Sigma$-expressions

Karr’s algorithm (1982): Given a $\Pi\Sigma$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g) - g = f$, or prove that no such element g exists in \mathbb{F}.

Vastly extended by *Schneider* since 2001. Some of the key features of his Mathematica package *Sigma* are:

- For a given $\Pi\Sigma$-expression, find an equivalent $\Pi\Sigma$-expression in which the **nesting depth** is as small as can be.
Karr’s algorithm (1982): Given a $\Pi\Sigma$-field \mathbb{F} and an element $f \in \mathbb{F}$, find $g \in \mathbb{F}$ with $\sigma(g) - g = f$, or prove that no such element g exists in \mathbb{F}.

Vastly extended by Schneider since 2001. Some of the key features of his Mathematica package Sigma are:

- For a given $\Pi\Sigma$-expression, find an equivalent $\Pi\Sigma$-expression in which the nesting depth is as small as can be.
- Find recurrence equations for definite sums involving $\Pi\Sigma$-expressions by creative telescoping.
ΠΣ-expressions

Karr’s algorithm (1982): Given a ΠΣ-field F and an element $f \in F$, find $g \in F$ with $\sigma(g) - g = f$, or prove that no such element g exists in F.

Vastly extended by *Schneider* since 2001. Some of the key features of his Mathematica package *Sigma* are:

- For a given ΠΣ-expression, find an equivalent ΠΣ-expression in which the **nesting depth** is as small as can be.
- Find recurrence equations for definite sums involving ΠΣ-expressions by **creative telescoping**.
- **Solve** a given linear recurrence equation in terms of ΠΣ-expressions.
For a given $\Pi\Sigma$-expression, find an equivalent $\Pi\Sigma$-expression in which the **nesting depth** is as small as can be.
ΠΣ-expressions

For a given ΠΣ-expression, find an equivalent ΠΣ-expression in which the nesting depth is as small as can be.

Examples:
For a given $\Pi\Sigma$-expression, find an equivalent $\Pi\Sigma$-expression in which the **nesting depth** is as small as can be.

Examples:

\[
\sum_{k=1}^{n} H_k^3 = -6n + \frac{3}{2}(2n+1)(2H_n - H_n^2) + (n+1)H_n^3 + \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^2}
\]
$\Pi\Sigma$-expressions

For a given $\Pi\Sigma$-expression, find an equivalent $\Pi\Sigma$-expression in which the **nesting depth** is as small as can be.

Examples:

\[
\sum_{k=1}^{n} H_k^3 = -6n + \frac{3}{2}(2n + 1)(2H_n - H_n^2) + (n + 1)H_n^3 + \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^2}
\]

This new single sum is not a subexpression of the left hand side.
For a given $\Pi\Sigma$-expression, find an equivalent $\Pi\Sigma$-expression in which the **nesting depth** is as small as can be.

Examples:

1. $\sum_{k=1}^{n} H_k^3 = -6n + \frac{3}{2}(2n + 1)(2H_n - H_n^2) + (n + 1)H_n^3 + \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^2}$
2. $\sum_{k=1}^{n} H_k^4$ cannot be expressed as at all in terms of single sums.
For a given $\Pi\Sigma$-expression, find an equivalent $\Pi\Sigma$-expression in which the **nesting depth** is as small as can be.

Examples:

▶ $\sum_{k=1}^{n} H_k^3 = -6n + \frac{3}{2}(2n + 1)(2H_n - H_n^2) + (n + 1)H_n^3 + \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^2}$

▶ $\sum_{k=1}^{n} H_k^4$ cannot be expressed as **at all** in terms of single sums.

▶ Also not.

▶ $\sum_{m=1}^{k} \frac{1}{m^2}$

▶ $\sum_{l=1}^{n} \frac{l}{k}$
For a given $\Pi\Sigma$-expression, find an equivalent $\Pi\Sigma$-expression in which the **nesting depth** is as small as can be.

Examples:

\[\sum_{k=1}^{\infty} H_k^3 = -6n + \frac{3}{2}(2n+1)(2H_n - H_n^2) + (n+1)H_n^3 + \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^2} \]

\[\sum_{k=1}^{n} H_k^4 \] cannot be expressed as at all in terms of single sums.

\[\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{1}{j} \cdot \sum_{i=1}^{m} \frac{1}{i} \cdot \sum_{i=1}^{m} \frac{1}{m^2} \]

\[\sum_{k=1}^{n} \sum_{l=1}^{\infty} \frac{1}{l} \] also not. But in **double sums**...
ΠΣ-expressions

For a given ΠΣ-expression, find an equivalent ΠΣ-expression in which the nesting depth is as small as can be.

Examples:

\[
\cdots = \frac{1}{4} \left(\frac{1}{3} \left(\sum_{k=1}^{n} \frac{1}{k^2} \right)^3 \right) + \left(\sum_{k=1}^{n} \frac{1}{k^4} + \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i} \right)^2}{k^2} \right) \sum_{k=1}^{n} \frac{1}{k^2} + \frac{2}{3} \sum_{k=1}^{n} \frac{1}{k^6} - \\
\sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i^4} \right) \left(\sum_{i=1}^{k} \frac{1}{i} \right)}{k} - \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i^2} \right)^2 \sum_{i=1}^{k} \frac{1}{i}}{k} + 2 \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i} \right)^2}{k^4} + \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i} \right)^4}{k^2} + \\
\left(\sum_{k=1}^{n} \frac{1}{k} \right)^2 \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i} \right)^2}{k^2} - \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i^2} \right) \left(\sum_{i=1}^{k} \frac{1}{i} \right)^2}{k^2} - 2 \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i} \right)^3}{k^3} + \\
\left(\sum_{k=1}^{n} \frac{1}{k} \right) \left(\sum_{k=1}^{n} \frac{\sum_{i=1}^{k} \frac{1}{i^4}}{k} \right) + \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i^2} \right)^2}{k} + 2 \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i} \right)^2}{k^3} - 2 \sum_{k=1}^{n} \frac{\left(\sum_{i=1}^{k} \frac{1}{i} \right)^3}{k^2} \right)
\]
Find recurrence equations for definite sums involving $\Pi\Sigma$-expressions by\textbf{ creative telescoping}.
Find recurrence equations for definite sums involving \(\Pi\Sigma \)-expressions by **creative telescoping**.

This requires that the summand \(f(n, k) \) is such that \(f(n, k), f(n + 1, k), f(n + 2, k), \ldots \) all are \(\Pi\Sigma \)-expressions with respect to \(k \) when \(n \) is viewed as a (symbolic) constant.
Find recurrence equations for definite sums involving ΠΣ-expressions by **creative telescoping**.

This requires that the summand $f(n, k)$ is such that $f(n, k)$, $f(n + 1, k)$, $f(n + 2, k)$, ... all are ΠΣ-expressions with respect to k when n is viewed as a (symbolic) constant.

Examples:
Find recurrence equations for definite sums involving ΠΣ-expressions by **creative telescoping**.

This requires that the summand $f(n, k)$ is such that $f(n, k)$, $f(n + 1, k)$, $f(n + 2, k)$, \ldots all are ΠΣ-expressions with respect to k when n is viewed as a (symbolic) constant.

Examples:

- $f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2$
\(\Pi\Sigma \)-expressions

Find recurrence equations for definite sums involving \(\Pi\Sigma \)-expressions by **creative telescoping**.

This requires that the summand \(f(n, k) \) is such that \(f(n, k), f(n + 1, k), f(n + 2, k), \ldots \) all are \(\Pi\Sigma \)-expressions with respect to \(k \) when \(n \) is viewed as a (symbolic) constant.

Examples:

- \(f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2 \)

- \(f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right) \)
Solve a given linear recurrence equation in terms of ΠΣ-expressions.
Solve a given linear recurrence equation in terms of \(\Pi \Sigma \)-expressions.

Example.
ΠΣ-expressions

Solve a given linear recurrence equation in terms of ΠΣ-expressions.

Example.

\[(n + 1)^3 F(n) - (2n + 3)(17n^2 + 51n + 39)F(n + 1) + (n + 3)^3 F(n + 2) = 0 \]

\[\implies \text{no non-constant } \Pi\Sigma\text{-solutions} \]
Solve a given linear recurrence equation in terms of $\Pi\Sigma$-expressions.

Example.

1. $(n + 1)^3 F(n) - (2n + 3)(17n^2 + 51n + 39)F(n + 1) + (n + 3)^3 F(n + 2) = 0$
 \Rightarrow no non-constant $\Pi\Sigma$-solutions

2. $2(2n + 5)(3n + 5)F(n) - (6n^3 + 49n^2 + 124n + 98)F(n + 1) + (n + 2)(2n + 3)(3n + 8)F(n + 2) = 0$
 \Rightarrow solutions 1 and $8 \sum_{k=1}^{n} \prod_{i=1}^{k} \frac{2}{i} - \sum_{k=0}^{n} \prod_{i=1}^{k} \frac{2}{3k+2}$
ΠΣ-expressions

Solve a given linear recurrence equation in terms of ΠΣ-expressions.

Example.

\[(n^2H_n + 3nH_n + 2H_n + 2n + 3)F(n) \]
\[- (n^3H_n + 6n^2H_n + 11nH_n + 6H_n + n^2 + 6n + 7)F(n + 1) \]
\[+ (n + 2)^2(nH_n + H_n + 1)F(n + 2) = 0 \]

\[\leadsto \text{solutions } 1 \text{ and } \sum_{k=0}^{n} H_k \prod_{i=1}^{k} \frac{1}{i} \]
ΠΣ-expressions

Suggested workflow for iterated definite sums:

\[
\sum_{k_1} \sum_{k_2} \sum_{k_3} \text{ΠΣ-expression in } k_3 \text{ with parameters } n, k_1, k_2
\]
Suggested workflow for iterated definite sums:

\[\sum_{k_1} \sum_{k_2} \sum_{k_3} \text{ΠΣ-expression in } k_3 \text{ with parameters } n, k_1, k_2 \]
$\Pi\Sigma$-expressions

Suggested workflow for iterated definite sums:

\[\sum_{k_1} \sum_{k_2} \sum_{k_3} \Pi\Sigma\text{-expression in } k_3 \]

with parameters n, k_1, k_2

\[\text{creative telescoping} \rightarrow \text{linear recurrence with shifts in } k_2\]

and coefficients involving n, k_1, k_2
Suggested workflow for iterated definite sums:

\[\sum_{k_1} \sum_{k_2} \sum_{k_3} \text{ΠΣ-expression in } k_3 \text{ with parameters } n, k_1, k_2 \]

\[\text{creative telescoping} \rightarrow \text{linear recurrence with shifts in } k_2 \]
\[\text{and coefficients involving } n, k_1, k_2 \]

\[\text{solve (if possible)} \rightarrow \text{ΠΣ-expression in } k_2 \]
\[\text{with parameters } n, k_1 \]
Suggested workflow for iterated definite sums:

\[\sum_{k_1} \sum_{k_2} \sum_{k_3} \text{\(\Pi\Sigma\)-expression in } k_3 \text{ with parameters } n, k_1, k_2 \]

- creative telescoping \(\rightarrow\) linear recurrence with shifts in \(k_2\) and coefficients involving \(n, k_1, k_2\)
- solve (if possible) \(\rightarrow\) \(\Pi\Sigma\)-expression in \(k_2\) with parameters \(n, k_1\)
- simplify \(\rightarrow\) depth-optimal \(\Pi\Sigma\)-expression in \(k_2\) with parameters \(n, k_1\)
ΠΣ-expressions

Suggested workflow for iterated definite sums:

\[
\sum_{k_1} \sum_{k_2} \text{ΠΣ-expression in } k_2
\]

with parameters \(n, k_1\)
Suggested workflow for iterated definite sums:

\[
\sum_{k_1} \left(\sum_{k_2} \text{\textit{\textit{\Pi\Sigma}}-expression in } k_2 \\
\quad \text{with parameters } n, k_1 \right)
\]
Suggested workflow for iterated definite sums:

$$\sum_{k_1} \sum_{k_2} \Pi\Sigma\text{-expression in } k_2$$

with parameters n, k_1

creative telescoping \rightarrow linear recurrence with shifts in k_1

and coefficients involving n, k_1

solve (if possible) \rightarrow $\Pi\Sigma\text{-expression in } k_1$

with parameter n

simplify \rightarrow depth-optimal $\Pi\Sigma\text{-expression in } k_1$

with parameter n
ΠΣ-expressions

Suggested workflow for iterated definite sums:

\[
\sum_{k_1} \text{ΠΣ-expression in } k_1 \\
\text{with parameter } n
\]
Suggested workflow for iterated definite sums:

\[\sum_{k_1} \Pi\Sigma\text{-expression in } k_1 \]
with parameter \(n \)
Suggested workflow for iterated definite sums:

\[
\sum_{k_1} \text{\(\Pi\Sigma\)-expression in } k_1 \\
\text{with parameter } n
\]

creative telescoping \(\rightarrow\) linear recurrence with shifts in \(k_1\) and coefficients involving \(n, k_1\)

solve (if possible) \(\rightarrow\) \(\Pi\Sigma\)-expression in \(k_1\) with parameter \(n\)

simplify \(\rightarrow\) depth-optimal \(\Pi\Sigma\)-expression in \(k_1\) with parameter \(n\)
$\Pi\Sigma$-expressions

Suggested workflow for iterated definite sums:

1. $\Pi\Sigma$-expression in n

2. Creative telescoping \rightarrow linear recurrence with shifts in k

3. Solve (if possible) \rightarrow $\Pi\Sigma$-expression in k

4. Simplify \rightarrow depth-optimal $\Pi\Sigma$-expression in k

5. Creative telescoping \rightarrow linear recurrence with shifts in k

6. Solve (if possible) \rightarrow $\Pi\Sigma$-expression in k

7. Simplify \rightarrow depth-optimal $\Pi\Sigma$-expression in k

8. Creative telescoping \rightarrow linear recurrence with shifts in k

9. Solve (if possible) \rightarrow $\Pi\Sigma$-expression in k

10. Simplify \rightarrow depth-optimal $\Pi\Sigma$-expression in k
Outline

nested sums and products

hypergeometric

D-finite/holonomic
Outline

nested sums and products

hypergeometric

D-finite/holonomic
Consider a product \(\prod_{k=1}^{n} a_k \).

Observe that the shift \(\prod_{k=1}^{n} a_k^{n+1} \) is linear in the product.

Therefore, also the vector space generated by the product over some difference field for the subexpressions is closed under shift. It is a vector space of dimension 1.
Consider a product \(\prod_{k=1}^{n} a_k \).

Observe that the shift \(\prod_{k=1}^{n+1} a_k = a_{n+1} \prod_{k=1}^{n} a_k \) is linear in the product.
Consider a product \(\prod_{k=1}^{n} a_k \).

Observe that the shift \(\prod_{k=1}^{n+1} a_k = a_{n+1} \prod_{k=1}^{n} a_k \) is linear in the product.

Therefore, also the vector space generated by the product over some difference field for the subexpressions is closed under shift.
Consider a product \(\prod_{k=1}^{n} a_k \).

Observe that the shift \(\prod_{k=1}^{n+1} = a_{n+1} \prod_{k=1}^{n} a_k \) is linear in the product.

Therefore, also the **vector space** generated by the product over some difference field for the subexpressions is closed under shift.

It is a vector space of dimension 1.
Consider a sum $\sum_{k=1}^{n} a_k$. Therefore, also the vector space generated by 1 and the sum over some difference field for the subexpressions is closed under shift. It is a vector space of dimension (at most) 2.
Consider a sum $\sum_{k=1}^{n} a_k$.

Here we have $\sum_{k=1}^{n+1} a_k = \sum_{k=1}^{n} a_k + a_{n+1}$.
Consider a sum $\sum_{k=1}^{n} a_k$.

Here we have $\sum_{k=1}^{n+1} a_k = \sum_{k=1}^{n} a_k + a_{n+1}$.

Therefore, also the vector space generated by 1 and the sum over some difference field for the subexpressions is closed under shift.
Consider a sum $\sum_{k=1}^{n} a_k$.

Here we have $\sum_{k=1}^{n+1} a_k = \sum_{k=1}^{n} a_k + a_{n+1}$.

Therefore, also the vector space generated by 1 and the sum over some difference field for the subexpressions is closed under shift. It is a vector space of dimension (at most) 2.
D-finite objects

Consider a sum $\sum_{k=1}^{n} a_k$.

Alternative:
Consider a sum $\sum_{k=1}^{n} a_k$.

Alternative:

$$\sum_{k=1}^{n+1} a_k - \sum_{k=1}^{n} a_k = a_{n+1}$$
Consider a sum \(\sum_{k=1}^{n} a_k \).

Alternative:

\[
\begin{align*}
\sum_{k=1}^{n+1} a_k - \sum_{k=1}^{n} a_k &= a_{n+1} \\
\sum_{k=1}^{n+2} a_k - \sum_{k=1}^{n+1} a_k &= a_{n+2}
\end{align*}
\]
Consider a sum \(\sum_{k=1}^{n} a_k \).

Alternative:

\[
\begin{align*}
\sum_{k=1}^{n+1} a_k - \sum_{k=1}^{n} a_k &= a_{n+1} \\
\sum_{k=1}^{n+2} a_k - \sum_{k=1}^{n+1} a_k &= a_{n+2}
\end{align*}
\]
Consider a sum $\sum_{k=1}^{n} a_k$.

Alternative:

\[
\begin{align*}
\sum_{k=1}^{n+1} a_k - \sum_{k=1}^{n} a_k &= a_{n+1} \\
\sum_{k=1}^{n+2} a_k - \sum_{k=1}^{n+1} a_k &= a_{n+2} \\
\end{align*}
\]

$$a_{n+1} \sum_{k=1}^{n+2} a_k - \left(a_{n+1} + a_{n+2} \right) \sum_{k=1}^{n+1} a_k + a_{n+2} \sum_{k=1}^{n} a_k = 0$$
Consider a sum \(\sum_{k=1}^{n} a_k \).

Therefore, also the vector space generated by \(\sum_{k=1}^{n} a_k \) and \(\sum_{k=1}^{n+1} a_k \) over some difference field for the subexpressions is closed under shift.
Consider a sum \(\sum_{k=1}^{n} a_k \).

Therefore, also the vector space generated by \(\sum_{k=1}^{n} a_k \) and \(\sum_{k=1}^{n+1} a_k \) over some difference field for the subexpressions is closed under shift. It is a vector space of dimension (at most) 2.
D-finite objects

Definition. An object \(a_n \) is called **D-finite** (or **P-recursive** or **holonomic**) if it lives in some **finite-dimensional** \(\mathbb{K}(n) \)-vector space which is closed under shift.
Definition. An object a_n is called **D-finite** (or **P-recursive** or **holonomic**) if it lives in some **finite-dimensional** $\mathbb{K}(n)$-vector space which is closed under shift.

Equivalently: An object a_n is called **D-finite** if it satisfies a recurrence equation

$$p_0(n)a_n + p_1(n)a_{n+1} + \cdots + p_r(n)a_{n+r} = 0$$

with polynomial coefficients $p_i(n) \in \mathbb{K}[n]$, $p_r(n) \neq 0$.
D-finite objects

Definition. An object a_n is called **D-finite** (or **P-recursive** or **holonomic**) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Equivalently: An object a_n is called **D-finite** if it satisfies a recurrence equation

$$p_0(n)a_n + p_1(n)a_{n+1} + \cdots + p_r(n)a_{n+r} = 0$$

with polynomial coefficients $p_i(n) \in \mathbb{K}[n]$, $p_r(n) \neq 0$.

Then a_n, \ldots, a_{n+r-1} generate the vector space. (Possibly fewer.)
Definition. An object a_n is called \textbf{D-finite} (or \textbf{P-recursive} or \textbf{holonomic}) if it lives in some \textbf{finite-dimensional} $\mathbb{K}(n)$-vector space which is closed under shift.

Examples:
D-finite objects

Definition. An object a_n is called **D-finite** (or **P-recursive** or **holonomic**) if it lives in some **finite-dimensional** $\mathbb{K}(n)$-vector space which is closed under shift.

Examples:

- $a_n = \frac{2^n}{n!}$ satisfies $2a_n - (n + 1)a_{n+1} = 0$
Definition. An object \(a_n \) is called **D-finite** (or **P-recursive** or **holonomic**) if it lives in some **finite-dimensional** \(\mathbb{K}(n) \)-vector space which is closed under shift.

Examples:

- \(a_n = \frac{2^n}{n!} \) satisfies \(2a_n - (n + 1)a_{n+1} = 0 \)
- \(a_n = H_n = \sum_{k=1}^{n} \frac{1}{k} \) satisfies

\[
(n + 1)a_n - (2n + 3)a_{n+1} + (n + 2)a_{n+2} = 0.
\]
D-finite objects

Definition. An object a_n is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Examples:

- $a_n = 2^n/n!$ satisfies $2a_n - (n + 1)a_{n+1} = 0$
- $a_n = H_n = \sum_{k=1}^{n} \frac{1}{k}$ satisfies $(n + 1)a_n - (2n + 3)a_{n+1} + (n + 2)a_{n+2} = 0$.
- $a_n = \sum_k \binom{n}{k}^2 \binom{n+k}{k}^2$ satisfies (less obviously) $(n+1)^3a_n - (2n+3)(17n^2 + 51n + 39)a_{n+1} + (n+2)^3a_{n+2} = 0$.

Definition. An object a_n is called **D-finite** (or **P-recursive** or **holonomic**) if it lives in some **finite-dimensional** $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.
Definition. An object a_n is called **D-finite** (or **P-recursive** or **holonomic**) if it lives in some **finite-dimensional** $K(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.

They are represented through the equations they satisfy, just like algebraic numbers:
Definition. An object a_n is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.

They are represented through the equations they satisfy, just like algebraic numbers:

Naive question: What are the roots of the polynomial $x^5 - 3x + 1$?
Definition. An object \(a_n \) is called **D-finite** (or **P-recursive** or **holonomic**) if it lives in some **finite-dimensional** \(\mathbb{K}(n) \)-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.

They are represented through the equations they satisfy, just like algebraic numbers:

Naive question: What are the roots of the polynomial \(x^5 - 3x + 1 \) ?

Expert answer: \(\text{RootOf}(x^5 - 3x + 1, \text{index} = 1) \),
\(\text{RootOf}(x^5 - 3x + 1, \text{index} = 2) \),
\(\text{RootOf}(x^5 - 3x + 1, \text{index} = 3) \),
\(\text{RootOf}(x^5 - 3x + 1, \text{index} = 4) \),
\(\text{RootOf}(x^5 - 3x + 1, \text{index} = 5) \).
D-finite objects

Definition. An object a_n is called **D-finite** (or **P-recursive** or **holonomic**) if it lives in some **finite-dimensional** $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.

They are represented through the equations they satisfy, just like algebraic numbers:
Definition. An object a_n is called **D-finite** (or **P-recursive** or **holonomic**) if it lives in some **finite-dimensional** $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.

They are represented through the equations they satisfy, just like algebraic numbers:

Naive question: What are the solutions of the recurrence

$$(3n + 2)a_{n+2} - 2(n + 3)a_{n+1} + (2n - 7)a_n = 0 ?$$
Definition. An object a_n is called **D-finite** (or **P-recursive** or **holonomic**) if it lives in some **finite-dimensional** $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.

They are represented through the equations they satisfy, just like algebraic numbers:

Naive question: What are the solutions of the recurrence

$$(3n + 2)a_{n+2} - 2(n + 3)a_{n+1} + (2n - 7)a_n = 0$$

Expert answer: The solutions form a \mathbb{K}-vector space V of dimension two. Each solution is uniquely determined by its first two terms, and each choice of two initial terms gives rise to a solution.
Definition. An object a_n is called D-finite (or P-recursive or holonomic) if it lives in some finite-dimensional $\mathbb{K}(n)$-vector space which is closed under shift.

Warning: D-finite objects may not have a closed form.
D-finite objects

Several variables: An object $a_{n_1, n_2, \ldots, n_p}$ in p variables is **D-finite** if it lives in some **finite-dimensional** $\mathbb{K}(n_1, \ldots, n_p)$-vector space which is closed under shift *for each variable.*
Several variables: An object $a_{n_1,n_2,...,n_p}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}(n_1,\ldots,n_p)$-vector space which is closed under shift for each variable.

Examples:

- $a_{n,k} = \binom{n}{k}^2 \binom{n+k}{k}^2$ is D-finite in n and k.

D-finite objects
D-finite objects

Several variables: An object $a_{n_1,n_2,...,n_p}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}(n_1,\ldots,n_p)$-vector space which is closed under shift for each variable.

Examples:

- $a_{n,k} = \binom{n}{k}^2 \binom{n+k}{k}^2$ is D-finite in n and k.
- $a_{n,k} = 2^k H_{n+2k}$ is D-finite in n and k.
Several variables: An object $a_{n_1,n_2,...,n_p}$ in p variables is **D-finite** if it lives in some **finite-dimensional** $\mathbb{K}(n_1,\ldots,n_p)$-vector space which is closed under shift **for each variable**.

Examples:

- $a_{n,k} = \binom{n}{k}^2 \binom{n+k}{k}^2$ is D-finite in n and k.
- $a_{n,k} = 2^k H_{n+2k}$ is D-finite in n and k.
- $a_{n,k} = n^k$ is D-finite in n for every fixed choice $k \in \mathbb{Z}$, but it is **not D-finite** in n and k.
Several variables: An object $a_{n_1,n_2,...,n_p}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}(n_1, \ldots, n_p)$-vector space which is closed under shift for each variable.
Several variables: An object $a_{n_1, n_2, \ldots, n_p}$ in p variables is **D-finite** if it lives in some **finite-dimensional** $\mathbb{K}(n_1, \ldots, n_p)$-vector space which is closed under shift for each variable.
Several variables: An object $a_{n_1,n_2,...,n_p}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}(n_1,\ldots,n_p)$-vector space which is closed under shift for each variable.
D-finite objects

Several variables: An object $a_{n_1, n_2, \ldots, n_p}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}(n_1, \ldots, n_p)$-vector space which is closed under shift for each variable.

\[\ldots \text{then everything else can be reduced to them.} \]
Several variables: An object $a_{n_1,n_2,...,n_p}$ in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}(n_1,\ldots,n_p)$-vector space which is closed under shift for each variable.
Several variables: An object a_{n_1,n_2,\ldots,n_p} in p variables is \textbf{D-finite} if it lives in some \textbf{finite-dimensional} $\mathbb{K}(n_1, \ldots, n_p)$-vector space which is closed under shift \textbf{for each variable}.

It is enough to know how to reduce the \textbf{corner points}.
Several variables: An object a_{n_1,n_2,\ldots,n_p} in p variables is D-finite if it lives in some finite-dimensional $\mathbb{K}(n_1,\ldots,n_p)$-vector space which is closed under shift for each variable.

The corresponding equations are called a Gröbner basis.
D-finite objects

Several variables: An object $a_{n_1,n_2,...,n_p}$ in p variables is **D-finite** if it lives in some **finite-dimensional** $\mathbb{K}(n_1,\ldots,n_p)$-vector space which is closed under shift for each variable.

Examples:

- A Gröbner basis for $a_{n,k} = \binom{n}{k}^2 \binom{n+k}{k}^2$:

\[
\begin{align*}
 a_{n+1,k} &= \frac{(k+n+1)^2}{(n-k+1)^2} a_{n,k}, \\
 a_{n,k+1} &= \frac{(n-k)^2(k+n+1)^2}{(k+1)^4} a_{n,k}
\end{align*}
\]
Several variables: An object $a_{n_1,n_2,...,n_p}$ in p variables is **D-finite** if it lives in some **finite-dimensional** $\mathbb{K}(n_1,\ldots,n_p)$-vector space which is closed under shift **for each variable**.

Examples:

- A Gröbner basis for $a_{n,k} = 2^k H_{n+2k}$:

\[
\begin{align*}
 a_{n,k+1} &= -\frac{2(2k+n+1)}{2k+n+2} a_{n,k} + \frac{2(4k+2n+3)}{2k+n+2} a_{n+1,k}, \\
 a_{n+2,k} &= -\frac{2k+n+1}{2k+n+2} a_{n,k} + \frac{4k+2n+3}{2k+n+2} a_{n+1,k}
\end{align*}
\]
D-finite objects

Several variables: An object $a_{n_1, n_2, \ldots, n_p}$ in p variables is **D-finite** if it lives in some **finite-dimensional** $\mathbb{K}(n_1, \ldots, n_p)$-vector space which is closed under shift for each variable.

More generally: An object $a(n_1, n_2, \ldots, n_p, x_1, x_2, \ldots, x_r)$ in p discrete (or q-discrete) variables n_1, \ldots, n_p and r continuous (or q-continuous) variables x_1, \ldots, x_r is called **D-finite** if all the infinitely many mixed (q)-shifts and (q)-derivatives

$$S_{n_1}^{e_1} S_{n_2}^{e_2} \cdots S_{n_p}^{e_p} D_{x_1}^{f_1} D_{x_2}^{f_2} \cdots D_{x_r}^{f_r} \cdot a(n_1, \ldots, n_p, x_1, x_2, \ldots, x_r)$$

$(e_1, \ldots, e_p, f_1, \ldots, f_r \in \mathbb{N})$ generate only a **finite dimensional** vector space over $\mathbb{K}(n_1, \ldots, n_p, x_1, \ldots, x_r)$.

Closure properties: If \(a(n_1, \ldots, n_p, x_1, \ldots, x_r) \) and \(b(n_1, \ldots, n_p, x_1, \ldots, x_r) \) are D-finite, then so are

- their sum \(a + b \) and product \(a \cdot b \),
- their shifts \(a(n_1 + 1, n_2, \ldots, n_p, x_1, \ldots, x_r) \),
- their derivatives \(D_{x_1} \cdot a(n_1, \ldots, n_p, x_1, \ldots, x_r) \),
- translates \(a(u_1n_1 + u_2n_2 + \cdots + u_pn_p, n_2, \ldots, n_p, x_1, \ldots, x_r) \) for any fixed integers \(u_1, u_2, \ldots, u_p \in \mathbb{Z}, \, u_1 \neq 0 \).
- compositions \(a(n_1, \ldots, n_r, u(x_1, \ldots, x_r), x_2, \ldots, x_r) \) with algebraic functions \(u \) free of \(n_1, \ldots, n_r \), not free of \(x_1 \).

Creative telescoping (Zeilberger’s algorithm):

INPUT: a hypergeometric term \(f(n, k) \)

OUTPUT: \(T \in \mathbb{K}[n, S_n] \setminus \{0\} \) and \(Q \in \mathbb{K}(n, k) \) such that

\[
T \cdot f(n, k) = (S_k - 1)Q \cdot f(n, k)
\]
Creative telescoping (Zeilberger’s algorithm):

INPUT: a hypergeometric term $f(n, k)$

OUTPUT: $T \in \mathbb{K}[n, S_n] \setminus \{0\}$ and $Q \in \mathbb{K}(n, k)$ such that

$$T \cdot f(n, k) = (S_k - 1)Q \cdot f(n, k)$$
Creative telescoping (Zeilberger’s algorithm):

INPUT: a hypergeometric term \(f(n, k) \)

OUTPUT: \(T \in \mathbb{K}[n, S_n] \setminus \{0\} \) and \(Q \in \mathbb{K}(n, k) \) such that

\[
T \cdot f(n, k) = (S_k - 1)Q \cdot f(n, k)
\]
D-finite objects

Creative telescoping (Zeilberger’s algorithm):

INPUT: a hypergeometric term \(f(n, k) \)

OUTPUT: \(T \in \mathbb{K}[n, S_n] \setminus \{0\} \) and \(Q \in \mathbb{K}(n, k)[S_n, S_k] \) such that

\[
T \cdot f(n, k) = (S_k - 1)Q \cdot f(n, k)
\]

If there are several free variables \(n_1, n_2, \ldots \), we compute a Gröbner basis \(\{T_1, T_2, \ldots\} \subseteq \mathbb{K}[n_1, n_2, \ldots][S_{n_1}, S_{n_2}, \ldots] \) of telescopers, each of them coming with its own certificate \(Q_i \in \mathbb{K}(n_1, n_2, \ldots)[S_k, S_{n_1}, S_{n_2}, \ldots] \).

Existence of telescopers is guaranteed whenever input is not only D-finite but also “holonomic”. This is usually the case.
D-finite objects

Creative telescoping (Zeilberger’s algorithm):

INPUT: a hypergeometric term \(f(n, k) \)

OUTPUT: \(T \in \mathbb{K}[n, S_n] \setminus \{0\} \) and \(Q \in \mathbb{K}(n, k)[S_n, S_k] \) such that

\[
T \cdot f(n, k) = (S_k - 1)Q \cdot f(n, k)
\]

If there are several free variables \(n_1, n_2, \ldots \), we compute a Gröbner basis \(\{T_1, T_2, \ldots \} \subseteq \mathbb{K}[n_1, n_2, \ldots][S_{n_1}, S_{n_2}, \ldots] \) of telescopers, each of them coming with its own certificate \(Q_i \in \mathbb{K}(k, n_1, n_2, \ldots)[S_k, S_{n_1}, S_{n_2}, \ldots] \).
Creative telescoping (Zeilberger’s algorithm):

INPUT: a hypergeometric term \(f(n, k) \)

OUTPUT: \(T \in \mathbb{K}[n, S_n] \setminus \{0\} \) and \(Q \in \mathbb{K}(n, k) \) such that

\[
T \cdot f(n, k) = (S_k - 1)Q \cdot f(n, k)
\]

- If there are several free variables \(n_1, n_2, \ldots \), we compute a Gröbner basis \(\{T_1, T_2, \ldots \} \subseteq \mathbb{K}[n_1, n_2, \ldots][S_{n_1}, S_{n_2}, \ldots] \) of telescopers, each of them coming with its own certificate \(Q_i \in \mathbb{K}(k, n_1, n_2, \ldots)[S_k, S_{n_1}, S_{n_2}, \ldots] \).
- Existence of telescopers is guaranteed whenever input is not only D-finite but also “holonomic”. This is usually the case.
D-finite objects

Example:

\[f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right) \]
Example:

\[f(n, k) = \binom{n}{k}^2 \left(\binom{n + k}{k} \right)^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right) \]
D-finite objects

Example:

\[
f(n, k) = \binom{n}{k}^2 \binom{n + k}{k}^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right)
\]
Example:

\[f(n, k) = \binom{n}{k}^2 \left(\binom{n+k}{k} \right)^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right) \]
Example:

\[f(n, k) = \binom{n}{k}^2 \left(\binom{n + k}{k} \right)^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right) \]
Example:

\[
f(n, k) = \binom{n}{k}^2 \left(\binom{n+k}{k}\right)^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}}\right)
\]
D-finite objects

Example:

\[
f(n, k) = \binom{n}{k}^2 \binom{n + k}{k}^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right)
\]
Example:

\[f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3(n\binom{i}{i} (n+i)} \right) \]
D-finite objects

Example:

\[
 f(n, k) = \binom{n}{k}^2 \binom{n + k}{k}^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right)
\]

- The packages of Koutschan (for Mathematica) and Chyzak (for Maple) can do these calculations for you.
Example:

\[f(n, k) = \left(\binom{n}{k} \right)^2 \left(\binom{n + k}{k} \right)^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right) \]

- The packages of Koutschan (for Mathematica) and Chyzak (for Maple) can do these calculations for you.
- **Note:** Their outputs are not necessarily minimal.
Example:

\[
f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right)
\]

- The packages of Koutschan (for Mathematica) and Chyzak (for Maple) can do these calculations for you.

- **Note:** Their outputs are not necessarily minimal.

For example, \(f(n, k) \) satisfies the additional relation

\[
2(k+2)(k+1)^4 f(n, k + 1) - \text{(messy)} f(n, k) (n+2)^2(k-n-1)^2(k-n) f(n + 1, k) = 0.
\]
D-finite objects

Example:

\[f(n, k) = \binom{n}{k}^2 \binom{n+k}{k}^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right) \]

- The packages of Koutschan (for Mathematica) and Chyzak (for Maple) can do these calculations for you.
- **Note:** Their outputs are not necessarily minimal.

For example, \(f(n, k) \) satisfies the additional relation

\[
2(k+2)(k+1)^4 f(n, k + 1) - (\text{messy}) f(n, k) \\
(n+2)^2(k-n-1)^2(k-n) f(n + 1, k) = 0.
\]
Example:

\[f(n, k) = \left(\binom{n}{k} \right)^2 \left(\binom{n+k}{k} \right)^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3(n\binom{i}{i})(n+i)} \right) \]

- The packages of Koutschan (for Mathematica) and Chyzak (for Maple) can do these calculations for you.
- **Note:** Their outputs are not necessarily minimal.

For example, \(f(n, k) \) satisfies the additional relation

\[
2(k+2)(k+1)^4 f(n, k + 1) - (\text{messy}) f(n, k) - (n+2)^2(k-n-1)^2(k-n) f(n + 1, k) = 0.
\]

Such extra knowledge can make calculations much faster.
Example:

\[f(n, k) = \binom{n}{k}^2 \left(\binom{n+k}{k} \right)^2 \left(\sum_{i=1}^{n} \frac{1}{i^3} + \sum_{i=1}^{k} \frac{(-1)^{i+1}}{2i^3 \binom{n}{i} \binom{n+i}{i}} \right) \]

- Computing a recurrence for \(\sum_{k} f(n, k) \) not using the additional relation takes **40sec** and yields a recurrence of **order 4**.
- Computing a recurrence for \(\sum_{k} f(n, k) \) using the additional relation takes **0.2sec** and yields a recurrence of **order 2**.
nested sums and products

hypergeometric

D-finite/holonomic
A What’s old?
 ▶ Hypergeometric creative telescoping

B What’s new “on the market”?
 ▶ Techniques for nested sums and products
 ▶ Techniques for multivariate D-finite objects

C What’s new “in the labs”?
 ▶ Speedup by trading order against degree
Outline

A What’s old?
 ▶ Hypergeometric creative telescoping

B What’s new “on the market”?
 ▶ Techniques for nested sums and products
 ▶ Techniques for multivariate D-finite objects

C What’s new “in the labs”?
 ▶ Speedup by trading order against degree
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSSP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSSP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSP formulation.

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSSP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSSP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSSP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSSP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPPP-formula

$$\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k$$
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]

Okada’s determinant formula

\[\forall n \in \mathbb{N} : \det((a_{i,j}))_{n \times n} = \prod_{k=1}^{n} b_{2k} \]

a certain D-finite summation identity

\[\forall i, n \in \mathbb{N}, 1 \leq i < n : \sum_{k=1}^{n} a_{i,k} c_{n,k} = 0 \]

a creative telescoping relation with a certificate \(Q \) of size 7Gb.

(Koutschan, MK, Zeilberger, PNAS 2011)
Andrews’ and Robbins’ qTSSP-formula

$$\forall \ n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k$$

Okada’s determinant formula

$$\forall \ n \in \mathbb{N} : \det((a_{i,j}))_{n \times n} = \prod_{k=1}^{n} b_{2^k}$$

A certain D-finite summation identity

$$\forall \ i, n \in \mathbb{N}, 1 \leq i < n : \sum_{k=1}^{n} a_{i,k} c_{n,k} = 0$$

A creative telescoping relation with a certificate Q of size 7Gb. (Koutschan, MK, Zeilberger, PNAS 2011)
Andrews’ and Robbins’ qTSPPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]

\[\iff \text{Okada’s determinant formula} \]

\[\forall n \in \mathbb{N} : \det((a_{i,j}))_{i,j=1}^{n} = \prod_{k=1}^{n} b_k^2 \]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]

\[\Leftarrow \text{Okada’s determinant formula} \]

\[\forall n \in \mathbb{N} : \det((a_{i,j}))_{i,j=1}^{n} = \prod_{k=1}^{n} b_k^2 \]

\[\Leftarrow \text{a certain D-finite summation identity} \]

\[\forall i, n \in \mathbb{N}, 1 \leq i < n : \sum_{k=1}^{n} a_{i,k} c_{n,k} = 0 \]
Andrews’ and Robbins’ qTSSP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]

\(\Leftarrow \) Okada’s determinant formula

\[\forall n \in \mathbb{N} : \det((a_{i,j})_{i,j=1}^{n}) = \prod_{k=1}^{n} b_k^2 \]

\(\Leftarrow \) a certain D-finite summation identity

\[\forall i, n \in \mathbb{N}, 1 \leq i < n : \sum_{k=1}^{n} a_{i,k} c_{n,k} = 0 \]
Andrews’ and Robbins’ qTSPP-formula

\[
\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k
\]

\[\Leftarrow\] Okada’s determinant formula

\[
\forall n \in \mathbb{N} : \det((a_{i,j}))_{i,j=1}^{n} = \prod_{k=1}^{n} b_2^2
\]

\[\Leftarrow\] a certain D-finite summation identity

\[
\forall i, n \in \mathbb{N}, 1 \leq i < n : \sum_{k=1}^{n} a_{i,k} c_{n,k} = 0
\]
Andrews’ and Robbins’ qTSPP-formula

\[\forall n \in \mathbb{N} : \sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{k=1}^{n} b_k \]

\[\iff \text{Okada’s determinant formula} \]

\[\forall n \in \mathbb{N} : \det((a_{i,j}))_{i,j=1}^{n} = \prod_{k=1}^{n} b_k^2 \]

\[\iff \text{a certain D-finite summation identity} \]

\[\forall i, n \in \mathbb{N}, 1 \leq i < n : \sum_{k=1}^{n} a_{i,k} c_{n,k} = 0 \]

\[\iff \text{a creative telescoping relation with a certificate } Q \text{ of size } 7 \text{Gb.} \ (\text{Koutschan, MK, Zeilberger, PNAS 2011}) \]
Why are these expressions so big?

How big are they actually?

Can we calculate them more efficiently?
Creative telescoping (Zeilberger’s algorithm):

INPUT: a hypergeometric term \(f(n, k) \)

OUTPUT: \(T \in \mathbb{K}[n, S_n] \setminus \{0\} \) and \(Q \in \mathbb{K}(n, k) \) such that

\[
T \cdot f(n, k) = (S_k - 1)Q \cdot f(n, k)
\]
Focus on the Telescopeter:

\[T = \left(a_{0,0} + a_{0,1}n + a_{0,2}n^2 + \cdots + a_{0,d}n^d \right) \]
\[+ \left(a_{1,0} + a_{1,1}n + a_{1,2}n^2 + \cdots + a_{1,d}n^d \right) S_n \]
\[+ \left(a_{2,0} + a_{2,1}n + a_{2,2}n^2 + \cdots + a_{2,d}n^d \right) S_n^2 \]
\[+ \ldots \]
\[+ \left(a_{r,0} + a_{r,1}n + a_{r,2}n^2 + \cdots + a_{r,d}n^d \right) S_n^r \]
Focus on the Telescopor:

\[T = \left(a_{0,0} + a_{0,1}n + a_{0,2}n^2 + \cdots + a_{0,d}n^d \right) + \left(a_{1,0} + a_{1,1}n + a_{1,2}n^2 + \cdots + a_{1,d}n^d \right) S_n \]
\[+ \left(a_{2,0} + a_{2,1}n + a_{2,2}n^2 + \cdots + a_{2,d}n^d \right) S_{n^2} \]
\[+ \cdots \]
\[+ \left(a_{r,0} + a_{r,1}n + a_{r,2}n^2 + \cdots + a_{r,d}n^d \right) S_{n^r} \]
Focus on the Telescopner:

\[T = (a_{0,0} + a_{0,1}n + a_{0,2}n^2 + \cdots + a_{0,d}n^d) + (a_{1,0} + a_{1,1}n + a_{1,2}n^2 + \cdots + a_{1,d}n^d)S_n + (a_{2,0} + a_{2,1}n + a_{2,2}n^2 + \cdots + a_{2,d}n^d)S_n^2 + \cdots + (a_{r,0} + a_{r,1}n + a_{r,2}n^2 + \cdots + a_{r,d}n^d)S_n^r \]
Question: For a given hypergeometric term $f(n, k)$, what are the order r and the degree d of the corresponding telescoper?
Question: For a given hypergeometric term $f(n, k)$, what are the order r and the degree d of the corresponding telescoper?

Answer: This is not a good question. “The” telescoper is not uniquely determined by $f(n, k)$!
Question: For a given hypergeometric term $f(n, k)$, what are the order r and the degree d of the corresponding telescoper?

Answer: This is not a good question. “The” telescoper is not uniquely determined by $f(n, k)$!

Instead, the set of all telescopers for a fixed term $f(n, k)$ forms a **left ideal** in the operator algebra $\mathbb{K}[n, S_n]$.
Trading Order for Degree
A telescoper of order r and degree d can be depicted like this.
A telescoper of order r and degree d can be depicted like this.
A telescoper of order r and degree d can be depicted like this.
We will however depict it just by its upper right corner \((r, d)\).
We will however depict it just by its upper right corner (r, d).
Multiplication by powers of n gives further telescopers.
Multiplication by powers of S_n gives even more telescopers.
The set of all telescopers is still bigger.
Want: A **curve** describing the shape of the blue region.
Theorem (MK and Shaoshi Chen, 2012)
Theorem (MK and Shaoshi Chen, 2012)

Consider a proper hypergeometric term

\[f(n, k) = \text{pol}(n, k) x^n y^k \prod_{m=1}^{M} \frac{\Gamma(a_m n + a'_m k + a''_m)}{\Gamma(u_m n + u'_m k + u''_m)} \frac{\Gamma(b_m n - b'_m k + b''_m)}{\Gamma(v_m n - v'_m k + v''_m)}. \]
Theorem (MK and Shaoshi Chen, 2012)

- Consider a proper hypergeometric term

\[f(n, k) = \text{pol}(n, k) \ x^n y^k \prod_{m=1}^{M} \frac{\Gamma(a_m n + a'_m k + a''_m)}{\Gamma(u_m n + u'_m k + u''_m)} \frac{\Gamma(b_m n - b'_m k + b''_m)}{\Gamma(v_m n - v'_m k + v''_m)}. \]

- There exists a telescopper of order \(r \) and degree \(d \) whenever
Theorem (MK and Shaoshi Chen, 2012)

- Consider a proper hypergeometric term
 \[f(n, k) = pol(n, k) x^n y^k \prod_{m=1}^{M} \frac{\Gamma(a_m n + a'_m k + a''_m)}{\Gamma(u_m n + u'_m k + u''_m)} \frac{\Gamma(b_m n - b'_m k + b''_m)}{\Gamma(v_m n - v'_m k + v''_m)}. \]

- There exists a telescopener of order \(r \) and degree \(d \) whenever
 \[d > \frac{A r + B}{r + C} \]

where
Theorem (MK and Shaoshi Chen, 2012)

Consider a proper hypergeometric term

\[f(n, k) = pol(n, k) x^n y^k \prod_{m=1}^{M} \frac{\Gamma(a_m n + a'_m k + a''_m)}{\Gamma(b_m n - b'_m k + b''_m)} \frac{\Gamma(b_m n - b'_m k + b''_m)}{\Gamma(u_m n + u'_m k + u''_m)} \frac{\Gamma(v_m n - v'_m k + v''_m)}{\Gamma(v_m n - v'_m k + v''_m)}. \]

There exists a telescopper of order \(r \) and degree \(d \) whenever

\[d > \frac{A r + B}{r + C} \]

where

\[A = \phi \nu - 1, \quad B = 2 \deg pol + |\mu| + 3 - (1 + |\mu|) \nu, \quad C = 1 - \nu. \]
Theorem (MK and Shaoshi Chen, 2012)

- Consider a proper hypergeometric term
 \[f(n, k) = \text{pol}(n, k) x^n y^k \prod_{m=1}^{M} \frac{\Gamma(a_m n + a'_m k + a''_m)}{\Gamma(b_m n - b'_m k + b''_m)} \frac{\Gamma(b_m n - b'_m k + b''_m)}{\Gamma(u_m n + u'_m k + u''_m)} \frac{\Gamma(v_m n - v'_m k + v''_m)}{\Gamma(v_m n - v'_m k + v''_m)}. \]

- There exists a telescopper of order \(r \) and degree \(d \) whenever
 \[d > \frac{A r + B}{r + C} \]
 where
 \[A = \varphi \nu - 1, \quad B = 2 \deg \text{pol} + |\mu| + 3 - (1 + |\mu|) \nu, \quad C = 1 - \nu. \]
 \[\mu = \sum_{m=1}^{M} (a_m + b_m - u_m - v_m) \]
Theorem (MK and Shaoshi Chen, 2012)

Consider a proper hypergeometric term

\[f(n, k) = pol(n, k) \ x^n y^k \ \prod_{m=1}^{M} \ \frac{\Gamma(a_m n + a'_m k + a''_m)}{\Gamma(b_m n - b'_m k + b''_m)} \frac{\Gamma(u_m n + u'_m k + u''_m)}{\Gamma(v_m n - v'_m k + v''_m)}. \]

There exists a telescopener of order \(r \) and degree \(d \) whenever

\[d > \frac{A \ r + B}{r + C} \]

where

- \(A = \vartheta \nu - 1 \), \(B = 2 \ \text{deg} \ pol + |\mu| + 3 - (1 + |\mu|) \nu \), \(C = 1 - \nu \).
- \(\mu = \sum_{m=1}^{M} (a_m + b_m - u_m - v_m) \)
- \(\nu = \max \left\{ \sum_{m=1}^{M} (a'_m + v'_m), \sum_{m=1}^{M} (u'_m + b'_m) \right\} \)
Theorem (MK and Shaoshi Chen, 2012)

Consider a proper hypergeometric term
\[f(n, k) = pol(n, k) x^n y^k \prod_{m=1}^{M} \frac{\Gamma(a_m n + a'_m k + a''_m)}{\Gamma(b_m n + b'_m k + b''_m)} \frac{\Gamma(b_m n - b'_m k + b''_m)}{\Gamma(u_m n + u'_m k + u''_m)} \frac{\Gamma(v_m n - v'_m k + v''_m)}{\Gamma(\mu(n, k))}. \]

There exists a telescopers of order \(r \) and degree \(d \) whenever
\[d > \frac{A r + B}{r + C} \]
where
\[A = \vartheta \nu - 1, \quad B = 2 \deg pol + |\mu| + 3 - (1 + |\mu|) \nu, \quad C = 1 - \nu. \]
\[\mu = \sum_{m=1}^{M} (a_m + b_m - u_m - v_m) \]
\[\nu = \max \left\{ \sum_{m=1}^{M} (a'_m + v'_m), \sum_{m=1}^{M} (u'_m + b'_m) \right\} \]
\[\vartheta = \max \left\{ \sum_{m=1}^{M} (a_m + b_m), \sum_{m=1}^{M} (u_m + v_m) \right\} \]
Example 1: \((n^2 + k^2 + 1) \frac{\Gamma(2n+3k)}{\Gamma(2n-k)}\)

Example 2: \(\frac{\Gamma(2n+k)\Gamma(n-k+2)}{\Gamma(2n-k)\Gamma(n+2k)}\)
Trading Order for Degree

Example 1: \((n^2 + k^2 + 1) \frac{\Gamma(2n+3k)}{\Gamma(2n-k)}\)

\[d > \frac{7r + 5}{r - 3}\]

Example 2: \(\frac{\Gamma(2n+k)\Gamma(n-k+2)}{\Gamma(2n-k)\Gamma(n+2k)}\)

\[d > \frac{8r - 1}{r - 2}\]
Example 1: \((n^2 + k^2 + 1) \frac{\Gamma(2n+3k)}{\Gamma(2n-k)}\)

\[d > \frac{7r + 5}{r - 3}\]

Example 2: \(\frac{\Gamma(2n+k)\Gamma(n-k+2)}{\Gamma(2n-k)\Gamma(n+2k)}\)

\[d > \frac{8r - 1}{r - 2}\]
Example 1: \((n^2 + k^2 + 1) \frac{\Gamma(2n+3k)}{\Gamma(2n-k)}\)

\[d > \frac{7r + 5}{r - 3} \]

Example 2: \(\frac{\Gamma(2n+k)\Gamma(n-k+2)}{\Gamma(2n-k)\Gamma(n+2k)}\)

\[d > \frac{8r - 1}{r - 2} \]
Example 1: \[(n^2 + k^2 + 1) \frac{\Gamma(2n+3k)}{\Gamma(2n-k)}\]

\[d > \frac{7r + 5}{r - 3}\]

Example 2: \[\frac{\Gamma(2n+k)\Gamma(n-k+2)}{\Gamma(2n-k)\Gamma(n+2k)}\]

\[d > \frac{8r - 1}{r - 2}\]
Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopes, before computing them.
Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopes, before computing them.
Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopers, before computing them.
Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopers, before computing them.
Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopers, before computing them.
Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopers, before computing them.
Even if may not be accurate, we can use the curve to estimate the shapes of the most interesting telescopers, before computing them.
For currently feasible input sizes, the minimal cost telescoper agrees with minimal order telescoper.
For currently feasible input sizes, the **minimal cost** telescoper agrees with **minimal order** telescoper.

We expect that the separation becomes measurable within the coming few years.
For currently feasible input sizes, the \textbf{minimal cost} telescoper agrees with \textbf{minimal order} telescoper.

We expect that the separation becomes measurable within the coming few years.

For asymptotically large input size, the difference is significant.
For currently feasible input sizes, the **minimal cost** telescoper agrees with **minimal order** telescoper.

We expect that the separation becomes measurable within the coming few years.

For asymptotically large input size, the difference is significant. For $\tau \geq \max\{\vartheta, \nu\}$ and any fixed constant $\alpha > 1$ we have:

- $O(\tau^9)$... cost for telescoper of expected minimal order r_{min}
For currently feasible input sizes, the **minimal cost** telescoper agrees with **minimal order** telescoper.

We expect that the separation becomes measurable within the coming few years.

For asymptotically large input size, the difference is significant. For $\tau \geq \max\{\vartheta, \nu\}$ and any fixed constant $\alpha > 1$ we have:

- $O(\tau^9)$... cost for telescoper of expected minimal order r_{min}
- $O(\tau^8)$... cost for telescoper of order αr_{min}.

Under appropriate assumptions, the optimal choice of α turns out to be $1/2$.

Similar effects have already been reported in other circumstances.
For currently feasible input sizes, the **minimal cost** telescopener agrees with **minimal order** telescopener.

We expect that the separation becomes measurable within the coming few years.

For asymptotically large input size, the difference is significant. For \(\tau \geq \max\{\vartheta, \nu\} \) and any fixed constant \(\alpha > 1 \) we have:

- \(O(\tau^9) \ldots \) cost for telescopener of expected minimal order \(r_{\min} \)
- \(O(\tau^8) \ldots \) cost for telescopener of order \(\alpha r_{\min} \).

Under appropriate assumptions, the optimal choice of \(\alpha \) turns out to be 1.2.
For currently feasible input sizes, the **minimal cost** telescoper agrees with **minimal order** telescoper.

We expect that the separation becomes measurable within the coming few years.

For asymptotically large input size, the difference is significant. For $\tau \geq \max\{\vartheta, \nu\}$ and any fixed constant $\alpha > 1$ we have:

- $O(\tau^9)$... cost for telescoper of expected minimal order r_{\min}
- $O(\tau^8)$... cost for telescoper of order αr_{\min}.

Under appropriate assumptions, the optimal choice of α turns out to be 1.2.

Similar effects have already been reported in other circumstances.
Open Questions:
Open Questions:

- What is the smallest problem size for which it pays off to compute a non-minimal telescoper?
Open Questions:

- What is the smallest problem size for which it pays off to compute a non-minimal telescoper?
- What is the “true curve” which (generically) does not overshoot? Is it also a hyperbola?
Open Questions:

▶ What is the smallest problem size for which it pays off to compute a non-minimal telescoper?
▶ What is the “true curve” which (generically) does not overshoot? Is it also a hyperbola?
▶ What is the deeper reason behind all these order/degree phenomena discovered recently?
Open Questions:

- What is the smallest problem size for which it pays off to compute a non-minimal telescoper?
- What is the “true curve” which (generically) does not overshoot? Is it also a hyperbola?
- What is the deeper reason behind all these order/degree phenomena discovered recently?
- What is the right question to be asked in the case of several variables?
A What’s old?
 ▶ Hypergeometric creative telescoping

B What’s new “on the market”?
 ▶ Techniques for nested sums and products
 ▶ Techniques for multivariate D-finite objects

C What’s new “in the labs”?
 ▶ Speedup by trading order against degree
• **The 2010s: Efficiency and complexity**
 applications with large input, rational integration exploiting fast arithmetic, worst case bounds on the run time complexity, sharp estimates on the output size, parallel algorithms, . . .

• **The 2000s: Extensions and generalizations**
 Refined ΠΣ-theory, Takayama, Ore algebras and Gröbner bases, Chyzak’s algorithm, algorithms for identities involving Abel-type terms or Bernoulli numbers or Stirling numbers, . . .

• **The 1990s: The stormy decade**

• **prehistory**
 Gosper’s algorithm, Sister Celine’s algorithm, Karr’s algorithm, hypergeometric transformations (nonalgorithmic), table lookup.