Holonomic Closure Properties and Guessing

Manuel Kauers

Research Institute for Symbolic Computation (RISC) Johannes Kepler University (JKU) Linz, Austria

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

We say that the class of polynomial "is closed under addition, multiplication, integration...".

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

We say that the class of polynomial "is closed under addition, multiplication, integration...".

Guessing?

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

We say that the class of polynomial "is closed under addition, multiplication, integration...".

Guessing?

Example: 0, 3, 8, 15, 24, 35, 48, 63, 80, 99. What's next?

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

We say that the class of polynomial "is closed under addition, multiplication, integration...".

Guessing?

Example: 0, 3, 8, 15, 24, 35, 48, 63, 80, 99. What's next?

Interpolation of the first 5 terms gives $n^2 - 1$, which also happens to match the next 5 terms. If the pattern continues, the next will be 120.

Part A Holonomic Closure Properties

Definition. A sequence (a_n) is called C-finite if it satisfies a linear recurrence equation with constant coefficients:

$$c_0 a_n + c_1 a_{n+1} + c_2 a_{n+2} + \dots + c_r a_{n+r} = 0.$$

Definition. A sequence (a_n) is called C-finite if it satisfies a linear recurrence equation with constant coefficients:

$$c_0 a_n + c_1 a_{n+1} + c_2 a_{n+2} + \dots + c_r a_{n+r} = 0.$$

Example: Fibonacci numbers F_n are C-finite because they satisfy

$$F_n + F_{n+1} - F_{n+2} = 0.$$

Theorem. A sequence (a_n) is C-finite **if and only if** it admits a closed form representation

$$a_n = p_1(n)\phi_1^n + p_2(n)\phi_2^n + \dots + p_s(n)\phi_s^n$$

where ϕ_1, \ldots, ϕ_s are constants and $p_1(n), \ldots, p_s(n)$ are polynomials.

Theorem. A sequence (a_n) is C-finite **if and only if** it admits a closed form representation

$$a_n = p_1(n)\phi_1^n + p_2(n)\phi_2^n + \dots + p_s(n)\phi_s^n$$

where ϕ_1, \ldots, ϕ_s are constants and $p_1(n), \ldots, p_s(n)$ are polynomials.

Example: For the Fibonacci numbers we have

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

Also $(a_{\alpha n+\beta})$ (for fixed $\alpha, \beta \in \mathbb{N}$) and $(\sum_{k=0}^{n} a_k b_{n-k})$ are C-finite.

Also $(a_{\alpha n+\beta})$ (for fixed $\alpha, \beta \in \mathbb{N}$) and $(\sum_{k=0}^{n} a_k b_{n-k})$ are C-finite.

Example: $a_n := \sum_{k=0}^n F_k$ and $b_n := F_n^2 + F_{2n}$ are C-finite.

Also $(a_{\alpha n+\beta})$ (for fixed $\alpha, \beta \in \mathbb{N}$) and $(\sum_{k=0}^{n} a_k b_{n-k})$ are C-finite.

Example: $a_n := \sum_{k=0}^n F_k$ and $b_n := F_n^2 + F_{2n}$ are C-finite. Indeed, they satisfy the recurrence equations

$$a_n - 2a_{n+2} + a_{n+3} = 0,$$

 $b_n - 2b_{n+1} - 2b_{n+2} + b_{n+3} = 0$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+4} = a_{n+1} + 3a_{n+2} - a_{n+3}$$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$
$$a_{n+5} = -a_{n+1} - 2a_{n+2} + 4a_{n+3}$$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$
$$a_{n+5} = 4a_n + 11a_{n+1} - 6a_{n+2}$$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$
$$a_{n+5} = 4a_n + 11a_{n+1} - 6a_{n+2}$$
$$a_{n+6} = 4a_{n+1} + 11a_{n+2} - 6a_{n+3}$$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$

$$a_{n+5} = 4a_n + 11a_{n+1} - 6a_{n+2}$$

$$a_{n+6} = -6a_n - 14a_{n+1} + 17a_{n+2}$$

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

Then we have:

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$
$$a_{n+5} = 4a_n + 11a_{n+1} - 6a_{n+2}$$
$$a_{n+6} = -6a_n - 14a_{n+1} + 17a_{n+2}$$

In general, each a_{n+i} can be written in terms of a_n, a_{n+1}, a_{n+2} .

$$a_{n+3} = a_n + 3a_{n+1} - a_{n+2},$$

 $b_{n+2} = b_n + 2b_{n+1}.$

Then we have:

$$a_{n+4} = -a_n - 2a_{n+1} + 4a_{n+2}$$
$$a_{n+5} = 4a_n + 11a_{n+1} - 6a_{n+2}$$
$$a_{n+6} = -6a_n - 14a_{n+1} + 17a_{n+2}$$

In general, each a_{n+i} can be written in terms of a_n, a_{n+1}, a_{n+2} . Similarly, each b_{n+i} can be written in terms of b_n, b_{n+1} .

 $C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$

$$C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$$

Rewrite higher order shifts to lower order ones:

$$\begin{aligned} & C_0 a_n b_n \\ &+ C_1 a_{n+1} b_{n+1} \\ &+ C_2 (a_{n+2} b_n + 2 a_{n+2} b_{n+1}) \\ &+ C_3 (2 a_n b_n + 2 a_{n+1} b_n + 5 a_n b_{n+1} + \dots - 5 a_{n+2} b_{n+1}) \\ &+ C_4 (-5 a_n b_n - 10 a_{n+1} b_n - 12 a_n b_{n+1} + \dots + 48 a_{n+2} b_{n+1}) \\ &+ C_5 (48 a_n b_n + 132 a_{n+1} b_n + 116 a_n b_{n+1} + \dots - 174 a_{n+2} b_{n+1}) \\ &+ C_6 (-174 a_n b_n - 406 a_{n+1} b_n + \dots + 1190 a_{n+2} b_{n+1}) = 0 \end{aligned}$$

$$C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$$

Rewrite higher order shifts to lower order ones:

$$a_{n}b_{n}(C_{0} + 2C_{3} - 5C_{4} + 48C_{5} - 174C_{6}) + a_{n+1}b_{n}(6C_{3} - 10C_{4} + 132C_{5} - 406C_{6}) + a_{n+2}b_{n}(C_{2} - 2C_{3} + 20C_{4} - 72C_{5} + 493C_{6}) + a_{n}b_{n+1}(5C_{3} - 12C_{4} + 116C_{5} - 420C_{6}) + a_{n+1}b_{n+1}(C_{1} + 15C_{3} - 24C_{4} + 319C_{5} - 980C_{6}) + a_{n+2}b_{n+1}(2C_{2} - 5C_{3} + 48C_{4} - 174C_{5} + 1190C_{6}) = 0.$$

$$C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$$

Rewrite higher order shifts to lower order ones:

$$\begin{pmatrix} 1 & 0 & 0 & 2 & -5 & 48 & -174 \\ 0 & 0 & 0 & 6 & -10 & 132 & -406 \\ 0 & 0 & 1 & -2 & 20 & -72 & 493 \\ 0 & 0 & 0 & 5 & -12 & 116 & -420 \\ 0 & 1 & 0 & 15 & -24 & 319 & -980 \\ 0 & 0 & 2 & -5 & 48 & -174 & 1190 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \end{pmatrix} = 0$$

$$C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$$

Rewrite higher order shifts to lower order ones:

$$\begin{pmatrix} 1 & 0 & 0 & 2 & -5 & 48 & -174 \\ 0 & 0 & 0 & 6 & -10 & 132 & -406 \\ 0 & 0 & 1 & -2 & 20 & -72 & 493 \\ 0 & 0 & 0 & 5 & -12 & 116 & -420 \\ 0 & 1 & 0 & 15 & -24 & 319 & -980 \\ 0 & 0 & 2 & -5 & 48 & -174 & 1190 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \end{pmatrix} = 0$$

We have 7 variables and 6 equations.

$$C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$$

Rewrite higher order shifts to lower order ones:

$$\begin{pmatrix} 1 & 0 & 0 & 2 & -5 & 48 & -174 \\ 0 & 0 & 0 & 6 & -10 & 132 & -406 \\ 0 & 0 & 1 & -2 & 20 & -72 & 493 \\ 0 & 0 & 0 & 5 & -12 & 116 & -420 \\ 0 & 1 & 0 & 15 & -24 & 319 & -980 \\ 0 & 0 & 2 & -5 & 48 & -174 & 1190 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \end{pmatrix} = 0$$

We have 7 variables and 6 equations.

 \Rightarrow There must be a nontrivial solution.
Make an ansatz for a recurrence

$$C_0 a_n b_n + C_1 a_{n+1} b_{n+1} + \dots + C_6 a_{n+6} b_{n+6} = 0.$$

Here it is:

$$C_0 = -1$$
 $C_1 = 6$ $C_2 = 15$ $C_3 = -8$
 $C_4 = -19$ $C_5 = 2$ $C_6 = 1$

In all cases, a recurrence for the new sequence can be computed with linear algebra.

In all cases, a recurrence for the new sequence can be computed with linear algebra.

So what!?

In all cases, a recurrence for the new sequence can be computed with linear algebra.

So what!?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

In all cases, a recurrence for the new sequence can be computed with linear algebra.

So what!?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

Note: If a sequence (a_n) satisfies a recurrence

$$c_0 a_n + c_1 a_{n+1} + c_2 a_{n+2} + \dots + c_r a_{n+r} = 0$$

then it is the zero sequence if and only if

 $a_0 = a_1 = \dots = a_{r-1} = 0.$

In all cases, a recurrence for the new sequence can be computed with linear algebra.

So what!?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

Note: If a sequence (a_n) satisfies a recurrence

$$c_0 a_n + c_1 a_{n+1} + c_2 a_{n+2} + \dots + c_r a_{n+r} = 0$$

then it is the **zero sequence** if and only if $a_0 = a_1 = \cdots = a_{r-1} = 0.$

This can be used for proving identities.

$$(-1)^n - 2F_{2n} + 5F_nF_{n+1} - F_{2n+1} = 0,$$

compute a recurrence for the left hand side using closure properties.

$$(-1)^n - 2F_{2n} + 5F_nF_{n+1} - F_{2n+1} = 0,$$

compute a recurrence for the left hand side using closure properties.

This yields a C-finite recurrence of order 3, say.

$$(-1)^n - 2F_{2n} + 5F_nF_{n+1} - F_{2n+1} = 0,$$

compute a recurrence for the left hand side using closure properties.

This yields a C-finite recurrence of order 3, say.

Hence it suffices to check the identity for n = 0, 1, 2.

$$(-1)^n - 2F_{2n} + 5F_nF_{n+1} - F_{2n+1} = 0,$$

compute a recurrence for the left hand side using closure properties.

This yields a C-finite recurrence of order 3, say.

Hence it suffices to check the identity for n = 0, 1, 2.

Every identity among C-finite sequences involving only of +, \times , \sum and dilation can be automatically proven in this way.

 $p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

►
$$2^n$$
: $a_{n+1} - 2a_n = 0$

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Examples:

▶ 2^n : $a_{n+1} - 2a_n = 0$ ▶ n!:

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Examples:

▶ 2^n : $a_{n+1} - 2a_n = 0$ ▶ n!: $a_{n+1} - (n+1)a_n = 0$

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Examples:

2ⁿ: a_{n+1} − 2a_n = 0
n!: a_{n+1} − (n + 1)a_n = 0
∑ⁿ_{k=0} (−1)^k/_{k!}:

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Examples:

2ⁿ: a_{n+1} − 2a_n = 0
n!: a_{n+1} − (n + 1)a_n = 0
∑ⁿ_{k=0} (-1)^k/k!: (n + 2)a_{n+2} − (n + 1)a_{n+1} − a_n = 0

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

- ► 2^n : $a_{n+1} 2a_n = 0$
- ► n!: $a_{n+1} (n+1)a_n = 0$
- $\sum_{k=0}^{n} \frac{(-1)^k}{k!} : \qquad (n+2)a_{n+2} (n+1)a_{n+1} a_n = 0$
- Fibonacci numbers, Harmonic numbers, Perrin numbers, diagonal Delannoy numbers, Motzkin numbers, Catalan numbers, Apery numbers, Schröder numbers, ...

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

- ► 2^n : $a_{n+1} 2a_n = 0$
- ► n!: $a_{n+1} (n+1)a_n = 0$
- $\sum_{k=0}^{n} \frac{(-1)^k}{k!} : \qquad (n+2)a_{n+2} (n+1)a_{n+1} a_n = 0$
- Fibonacci numbers, Harmonic numbers, Perrin numbers, diagonal Delannoy numbers, Motzkin numbers, Catalan numbers, Apery numbers, Schröder numbers, ...
- Many sequences which have no name and no closed form.

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Not holonomic:

 $p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$

Not holonomic:

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Not holonomic:

 $\triangleright 2^{2^n}$

The sequence of prime numbers.

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Not holonomic:

- ► 2^{2^n} .
- The sequence of prime numbers.
- Many sequences which have no name and no closed form.

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Not holonomic:

- ► 2^{2^n} .
- The sequence of prime numbers.
- Many sequences which have no name and no closed form.

This means that these sequences can (provably) not be viewed as solutions of a linear recurrence equation with polynomial coefficients.

 $p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$

Approximately 25% of the sequences in Sloane's Online Encyclopedia of Integer Sequences fall into this category.

 $p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

Examples:

 $\blacktriangleright \exp(x)$:

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

•
$$\exp(x)$$
: $f'(x) - f(x) = 0$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

•
$$\exp(x)$$
: $f'(x) - f(x) = 0$

$$\blacktriangleright \log(1-x):$$
$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

•
$$\exp(x)$$
: $f'(x) - f(x) = 0$
• $\log(1-x)$: $(x-1)f''(x) - f'(x) = 0$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

Examples:

•
$$\exp(x)$$
: $f'(x) - f(x) = 0$

►
$$\log(1-x)$$
: $(x-1)f''(x) - f'(x) = 0$

►
$$\frac{1}{1+\sqrt{1-x^2}}$$
: $(x^3-x)f''(x) + (4x^2-3)f'(x) + 2xf(x) = 0$

 Bessel functions, Hankel functions, Struve functions, Airy functions, Polylogarithms, Elliptic integrals, the Error function, Kelvin functions, Mathieu functions, ...

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

•
$$\exp(x)$$
: $f'(x) - f(x) = 0$

►
$$\log(1-x)$$
: $(x-1)f''(x) - f'(x) = 0$

►
$$\frac{1}{1+\sqrt{1-x^2}}$$
: $(x^3-x)f''(x) + (4x^2-3)f'(x) + 2xf(x) = 0$

- Bessel functions, Hankel functions, Struve functions, Airy functions, Polylogarithms, Elliptic integrals, the Error function, Kelvin functions, Mathieu functions, ...
- Many functions which have no name and no closed form.

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

►
$$\exp(\exp(x) - 1)$$
.

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

- ► $\exp(\exp(x) 1)$.
- The Riemann Zeta function.

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

- $\exp(\exp(x) 1)$.
- The Riemann Zeta function.
- ► Many functions which have no name and no closed form.

 $p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$

Not holonomic:

- ► $\exp(\exp(x) 1)$.
- The Riemann Zeta function.

Many functions which have no name and no closed form.

This means that these functions can (provably) not be viewed as solutions of a linear differential equation with polynomial coefficients.

 $p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$

Approximately 60% of the functions in Abramowitz and Stegun's handbook fall into this category.

f is holonomic as function $\iff (a_n)$ is holonomic as sequence.

f is holonomic as function $\iff (a_n)$ is holonomic as sequence.

Examples.

f is holonomic as function $\iff (a_n)$ is holonomic as sequence.

Examples.

•
$$f'(x) - f(x) = 0$$
 $(n+1)a_{n+1} - a_n = 0$

f is holonomic as function $\iff (a_n)$ is holonomic as sequence.

Examples.

▶
$$f'(x) - f(x) = 0$$
 $(n+1)a_{n+1} - a_n = 0$
▶ $(x^3 - x)f''(x) + (4x^2 - 3)f'(x) + 2xf(x) = 0$ $(n+4)a_{n+2} - (n+1)a_n = 0$

f is holonomic as function $\iff (a_n)$ is holonomic as sequence.

Examples.

▶
$$f'(x) - f(x) = 0$$
 $(n+1)a_{n+1} - a_n = 0$
▶ $(x^3 - x)f''(x) + (4x^2 - 3)f'(x) + 2xf(x) = 0$ $(n+4)a_{n+2} - (n+1)a_n = 0$

Given a differential equation, we can compute a corresponding recurrence equation and vice versa.

This is similar as for algebraic numbers.

This is similar as for algebraic numbers.

Naive question: What are the roots of the polynomial $x^5 - 3x + 1$?

This is similar as for algebraic numbers.

Naive question: What are the roots of the polynomial $x^5 - 3x + 1$?

Expert answer: RootOf($_Z^5 - 3_Z + 1$, index = 1), RootOf($_Z^5 - 3_Z + 1$, index = 2), RootOf($_Z^5 - 3_Z + 1$, index = 3), RootOf($_Z^5 - 3_Z + 1$, index = 4), RootOf($_Z^5 - 3_Z + 1$, index = 5).

For holonomic sequences:

For holonomic sequences:

Naive question: What are the solutions of the recurrence

$$(3n+2)a_{n+2} - 2(n+3)a_{n+1} + (2n-7)a_n = 0 ?$$

For holonomic sequences:

Naive question: What are the solutions of the recurrence

$$(3n+2)a_{n+2} - 2(n+3)a_{n+1} + (2n-7)a_n = 0 ?$$

A holonomist's answer: There is exactly one solution with $a_0 = 0$, $a_1 = 1$, exactly one solution with $a_0 = 1$, $a_1 = 0$, and every other solution is a linear combination of those two.

Key property: Every holonomic sequence can be specified uniquely by its recurrence and a finite number of initial values.

Key property: Every holonomic sequence can be specified uniquely by its recurrence and a finite number of initial values.

When computing with holonomic objects, we use this data rather than closed form expressions.

•
$$(a_n + b_n)_{n=0}^{\infty}$$
 is holonomic.

•
$$(a_n + b_n)_{n=0}^{\infty}$$
 is holonomic.

•
$$(a_n b_n)_{n=0}^{\infty}$$
 is holonomic.

- $(a_n + b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_n b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_{n+1})_{n=0}^{\infty}$ is holonomic.

- $(a_n + b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_n b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_{n+1})_{n=0}^{\infty}$ is holonomic.
- $(\sum_{k=0}^{n} a_k)_{n=0}^{\infty}$ is holonomic.

•
$$(a_n + b_n)_{n=0}^{\infty}$$
 is holonomic.

- $(a_n b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_{n+1})_{n=0}^{\infty}$ is holonomic.
- $(\sum_{k=0}^{n} a_k)_{n=0}^{\infty}$ is holonomic.
- ▶ if $u, v \in \mathbb{Q}$ are positive, then $(a_{|un+v|})_{n=0}^{\infty}$ is holonomic.

Theorem. Let $(a_n)_{n=0}^{\infty}$ and $(b_n)_{n=0}^{\infty}$ be holonomic sequences. Then:

- $(a_n + b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_n b_n)_{n=0}^{\infty}$ is holonomic.
- $(a_{n+1})_{n=0}^{\infty}$ is holonomic.
- $(\sum_{k=0}^{n} a_k)_{n=0}^{\infty}$ is holonomic.
- ▶ if $u, v \in \mathbb{Q}$ are positive, then $(a_{\lfloor un+v \rfloor})_{n=0}^{\infty}$ is holonomic.

Recurrence equations for all these sequences can be computed from given defining equations of $(a_n)_{n=0}^{\infty}$ and $(b_n)_{n=0}^{\infty}$.

Theorem. Let a(x) and b(x) be holonomic power series. Then:

Theorem. Let a(x) and b(x) be holonomic power series. Then: • a(x) + b(x) is holonomic.

Theorem. Let a(x) and b(x) be holonomic power series. Then:

- a(x) + b(x) is holonomic.
- a(x)b(x) is holonomic.
Theorem. Let a(x) and b(x) be holonomic power series. Then:

- a(x) + b(x) is holonomic.
- a(x)b(x) is holonomic.
- a'(x) is holonomic.

Theorem. Let a(x) and b(x) be holonomic power series. Then:

- a(x) + b(x) is holonomic.
- a(x)b(x) is holonomic.
- a'(x) is holonomic.
- $\int_0^x a(t) dt$ is holonomic.

Theorem. Let a(x) and b(x) be holonomic power series. Then:

- a(x) + b(x) is holonomic.
- a(x)b(x) is holonomic.
- ► a'(x) is holonomic.
- $\int_0^x a(t) dt$ is holonomic.
- if b(x) is algebraic and b(0) = 0, then a(b(x)) is holonomic.

Theorem. Let a(x) and b(x) be holonomic power series. Then:

- a(x) + b(x) is holonomic.
- a(x)b(x) is holonomic.
- ► a'(x) is holonomic.
- $\int_0^x a(t) dt$ is holonomic.

• if b(x) is algebraic and b(0) = 0, then a(b(x)) is holonomic.

Differential equations for all these functions can be computed from given defining equations of a(x) and b(x).

Example. Let (a_n) and (b_n) be such that

$$(2n+1)a_{n+2} + (n+1)a_{n+1} - (3n+2)a_n = 0$$

(n+3)b_{n+2} - 2(n+1)b_{n+1} + (n+8)b_n = 0.

Example. Let (a_n) and (b_n) be such that

$$(2n+1)a_{n+2} + (n+1)a_{n+1} - (3n+2)a_n = 0$$

(n+3)b_{n+2} - 2(n+1)b_{n+1} + (n+8)b_n = 0.

Let $c_n = a_n b_n$.

Example. Let (a_n) and (b_n) be such that

$$(2n+1)a_{n+2} + (n+1)a_{n+1} - (3n+2)a_n = 0$$

(n+3)b_{n+2} - 2(n+1)b_{n+1} + (n+8)b_n = 0.

Let $c_n = a_n b_n$.

We want to find a recurrence of the form

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0.$

$$c_n = a_n b_n$$

$$c_n = a_n b_n$$
$$c_{n+1} = a_{n+1} b_{n+1}$$

$$c_n = a_n b_n$$
$$c_{n+1} = a_{n+1} b_{n+1}$$
$$c_{n+2} = a_{n+2} b_{n+2}$$

$$c_{n} = a_{n}b_{n}$$

$$c_{n+1} = a_{n+1}b_{n+1}$$

$$c_{n+2} = -\frac{(n+8)(3n+2)}{(n+3)(2n+1)}a_{n}b_{n} + \frac{2(3n+2)(n+1)}{(n+3)(2n+1)}a_{n}b_{n+1}$$

$$+ \frac{(n+8)(n+1)}{(n+3)(2n+1)}a_{n+1}b_{n} - \frac{2(n+1)^{2}}{(n+3)(2n+1)}a_{n+1}b_{n+1}$$

$$c_n = a_n b_n$$

$$c_{n+1} = a_{n+1} b_{n+1}$$

$$c_{n+2} = -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} a_n b_n + \frac{2(3n+2)(n+1)}{(n+3)(2n+1)} a_n b_{n+1}$$

$$+ \frac{(n+8)(n+1)}{(n+3)(2n+1)} a_{n+1} b_n - \frac{2(n+1)^2}{(n+3)(2n+1)} a_{n+1} b_{n+1}$$

$$c_{n+3} = a_{n+3} b_{n+3}$$

$$\begin{aligned} c_n &= a_n b_n \\ c_{n+1} &= a_{n+1} b_{n+1} \\ c_{n+2} &= -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} a_n b_n + \frac{2(3n+2)(n+1)}{(n+3)(2n+1)} a_n b_{n+1} \\ &+ \frac{(n+8)(n+1)}{(n+3)(2n+1)} a_{n+1} b_n - \frac{2(n+1)^2}{(n+3)(2n+1)} a_{n+1} b_{n+1} \\ c_{n+3} &= \frac{(\cdots)}{(\cdots)} a_n b_n + \frac{(\cdots)}{(\cdots)} a_n b_{n+1} + \frac{(\cdots)}{(\cdots)} a_{n+1} b_n + \frac{(\cdots)}{(\cdots)} a_{n+1} b_{n+1} \end{aligned}$$

$$\begin{split} c_n &= a_n b_n \\ c_{n+1} &= a_{n+1} b_{n+1} \\ c_{n+2} &= -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} a_n b_n + \frac{2(3n+2)(n+1)}{(n+3)(2n+1)} a_n b_{n+1} \\ &+ \frac{(n+8)(n+1)}{(n+3)(2n+1)} a_{n+1} b_n - \frac{2(n+1)^2}{(n+3)(2n+1)} a_{n+1} b_{n+1} \\ c_{n+3} &= \frac{(\cdots)}{(\cdots)} a_n b_n + \frac{(\cdots)}{(\cdots)} a_n b_{n+1} + \frac{(\cdots)}{(\cdots)} a_{n+1} b_n + \frac{(\cdots)}{(\cdots)} a_{n+1} b_{n+1} \\ c_{n+4} &= \frac{(\cdots)}{(\cdots)} a_n b_n + \frac{(\cdots)}{(\cdots)} a_n b_{n+1} + \frac{(\cdots)}{(\cdots)} a_{n+1} b_n + \frac{(\cdots)}{(\cdots)} a_{n+1} b_{n+1} \end{split}$$

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$

can be rewritten into

 $P_0(n)a_nb_n$

$$+ P_{1}(n)a_{n+1}b_{n+1} + P_{2}(n) \left(-\frac{(n+8)(3n+2)}{(n+3)(2n+1)}a_{n}b_{n} + \frac{2(3n+2)(n+1)}{(n+3)(2n+1)}a_{n}b_{n+1} \right. \\ \left. + \frac{(n+8)(n+1)}{(n+3)(2n+1)}a_{n+1}b_{n} - \frac{2(n+1)^{2}}{(n+3)(2n+1)}a_{n+1}b_{n+1} \right) \\ + P_{3}(n) \left(\frac{(\cdots)}{(\cdots)}a_{n}b_{n} + \frac{(\cdots)}{(\cdots)}a_{n}b_{n+1} + \frac{(\cdots)}{(\cdots)}a_{n+1}b_{n} + \frac{(\cdots)}{(\cdots)}a_{n+1}b_{n+1} \right) \\ \left. + P_{4}(n) \left(\frac{(\cdots)}{(\cdots)}a_{n}b_{n} + \frac{(\cdots)}{(\cdots)}a_{n}b_{n+1} + \frac{(\cdots)}{(\cdots)}a_{n+1}b_{n} + \frac{(\cdots)}{(\cdots)}a_{n+1}b_{n+1} \right) = 0$$

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$ can be rewritten into

$$a_{n}b_{n}\left(P_{0}(n) - \frac{(n+8)(3n+2)}{(n+3)(2n+1)}P_{2}(n) + (\cdots)P_{3}(n) + (\cdots)P_{4}(n)\right)$$
$$+a_{n+1}b_{n}\left((\cdots)P_{2}(n) + (\cdots)P_{3}(n) + (\cdots)P_{4}(n)\right)$$
$$+a_{n}b_{n+1}\left((\cdots)P_{2}(n) + (\cdots)P_{3}(n) + (\cdots)P_{4}(n)\right)$$
$$+a_{n+1}b_{n+1}\left(P_{1}(n) + (\cdots)P_{2}(n) + (\cdots)P_{3}(n) + (\cdots)P_{4}(n)\right) = 0$$

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$

can be rewritten into

$$\begin{pmatrix} 1 & 0 & -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} & (\cdots) & (\cdots) \\ 0 & 0 & (\cdots) & (\cdots) & (\cdots) \\ 0 & 0 & (\cdots) & (\cdots) & (\cdots) \\ 0 & 1 & (\cdots) & (\cdots) & (\cdots) \end{pmatrix} \begin{pmatrix} P_0(n) \\ P_1(n) \\ P_2(n) \\ P_3(n) \\ P_4(n) \end{pmatrix} = 0$$

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$

can be rewritten into

$$\begin{pmatrix} 1 & 0 & -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} & (\cdots) & (\cdots) \\ 0 & 0 & (\cdots) & (\cdots) & (\cdots) \\ 0 & 0 & (\cdots) & (\cdots) & (\cdots) \\ 0 & 1 & (\cdots) & (\cdots) & (\cdots) \end{pmatrix} \begin{pmatrix} P_0(n) \\ P_1(n) \\ P_2(n) \\ P_3(n) \\ P_4(n) \end{pmatrix} = 0$$

We have 5 variables and 4 equations.

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$

can be rewritten into

$$\begin{pmatrix} 1 & 0 & -\frac{(n+8)(3n+2)}{(n+3)(2n+1)} & (\cdots) & (\cdots) \\ 0 & 0 & (\cdots) & (\cdots) & (\cdots) \\ 0 & 0 & (\cdots) & (\cdots) & (\cdots) \\ 0 & 1 & (\cdots) & (\cdots) & (\cdots) \end{pmatrix} \begin{pmatrix} P_0(n) \\ P_1(n) \\ P_2(n) \\ P_3(n) \\ P_4(n) \end{pmatrix} = 0$$

We have ${\bf 5}$ variables and ${\bf 4}$ equations.

 \Rightarrow There must be a nontrivial solution.

 $P_4(n) c_{n+4} + P_3(n) c_{n+3} + P_2(n) c_{n+2} + P_1(n) c_{n+1} + P_0(n) c_n = 0$ Here it is:

$$\begin{split} P_0(n) &= (n+2)(n+3)(n+8)(n+9)(3n+2)(3n+5)(25n^2+114n+136) \\ P_1(n) &= -2(n+1)(n+3)(n+9)(3n+5) \\ &\times (25n^4+189n^3+469n^2+263n-176) \\ P_2(n) &= -(n+2)(275n^7+554n^6-16919n^5-118907n^4 \\ &\quad -341694n^3-497343n^2-355526n-95160) \\ P_3(n) &= 2(n+1)(n+3)(n+4)(2n+3) \\ &\times (25n^4+189n^3+576n^2+992n+730) \\ P_4(n) &= (n+1)(n+2)(n+4)(n+5)(2n+3)(2n+5)(25n^2+64n+47) \end{split}$$

In general, if $\left(a_{n}\right)$ satisfies a recurrence of order r and $\left(b_{n}\right)$ satisfies a recurrence of order s, then

$$a_n b_n, a_{n+1} b_{n+1}, a_{n+2} b_{n+2}, \ldots, a_{n+rs} b_{n+rs}$$

In general, if (a_n) satisfies a recurrence of order r and (b_n) satisfies a recurrence of order s, then

$$a_n b_n, a_{n+1} b_{n+1}, a_{n+2} b_{n+2}, \ldots, a_{n+rs} b_{n+rs}$$

can all be expressed in terms of

In general, if (a_n) satisfies a recurrence of order r and (b_n) satisfies a recurrence of order s, then

$$a_n b_n, a_{n+1} b_{n+1}, a_{n+2} b_{n+2}, \ldots, a_{n+rs} b_{n+rs}$$

can all be expressed in terms of

An ansatz for a recurrence equation of order rs leads to a linear system with rs + 1 variables and rs equations.

In general, if $\left(a_{n}\right)$ satisfies a recurrence of order r and $\left(b_{n}\right)$ satisfies a recurrence of order s, then

$$a_n b_n, a_{n+1} b_{n+1}, a_{n+2} b_{n+2}, \ldots, a_{n+rs} b_{n+rs}$$

can all be expressed in terms of

An ansatz for a recurrence equation of order rs leads to a linear system with rs + 1 variables and rs equations.

This proves that $(a_n b_n)$ is holonomic.

The arguments and algorithms for the other operations are similar. Packages like gfun (for Maple) or GeneratingFunctions.m (for Mathematica) do this for you. The arguments and algorithms for the other operations are similar. Packages like gfun (for Maple) or GeneratingFunctions.m (for Mathematica) do this for you.

So what !?

The arguments and algorithms for the other operations are similar. Packages like gfun (for Maple) or GeneratingFunctions.m (for Mathematica) do this for you.

So what!?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

Packages like gfun (for Maple) or GeneratingFunctions.m (for Mathematica) do this for you.

So what !?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

Basic idea: $A = B \iff A - B = 0$

Packages like gfun (for Maple) or GeneratingFunctions.m (for Mathematica) do this for you.

So what !?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

Basic idea: $A = B \iff A - B = 0$

Once we have a recurrence equation for A - B, we can prove by induction that it is identically zero.

Packages like gfun (for Maple) or GeneratingFunctions.m (for Mathematica) do this for you.

So what !?

Algorithms for "executing closure properties" are useful for proving identities among holonomic sequences and power series.

Basic idea: $A = B \iff A - B = 0$

Once we have a recurrence equation for A - B, we can prove by induction that it is identically zero.

Let's see two examples.

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x)\right)$$

Legendre polynomials:

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \Big)$$

▶ $P_0(x) = 1$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \Big)$$

►
$$P_0(x) = 1$$

 $\blacktriangleright P_1(x) = x$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \Big)$$

- ► $P_0(x) = 1$
- $\blacktriangleright P_1(x) = x$
- ► $P_2(x) = \frac{1}{2}(3x^2 1)$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \right)$$

- ► $P_0(x) = 1$
- $\blacktriangleright P_1(x) = x$
- $P_2(x) = \frac{1}{2}(3x^2 1)$
- ► $P_3(x) = \frac{1}{2}(5x^3 3x)$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \Big)$$

- $\blacktriangleright P_0(x) = 1$
- $\blacktriangleright P_1(x) = x$
- $P_2(x) = \frac{1}{2}(3x^2 1)$
- ► $P_3(x) = \frac{1}{2}(5x^3 3x)$
- $P_4(x) = \frac{1}{8}(35x^4 30x^2 + 3)$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - \frac{P_n(x)}{1-x} - P_{n+1}(x) \right)$$

▶ $P_0(x) = 1$ ▶ $P_1(x) = x$ ▶ $P_2(x) = \frac{1}{2}(3x^2 - 1)$ ▶ $P_3(x) = \frac{1}{2}(5x^3 - 3x)$ ▶ $P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$ ▶ $P_5(x) = \frac{1}{8}(15x - 70x^3 + 63x^5)$ ▶

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \Big)$$

$$P_{n+2}(x) = -\frac{n+1}{n+2}P_n(x) + \frac{2n+3}{n+2}xP_{n+1}(x)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - \frac{P_n(x)}{P_n(x)} - P_{n+1}(x) \Big)$$

$$P_{n+2}(x) = -\frac{n+1}{n+2}P_n(x) + \frac{2n+3}{n+2}xP_{n+1}(x)$$
$$P_0(x) = 1$$
$$P_1(x) = x$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_{k}^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_{n}(x) - P_{n+1}(x) \Big)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

►
$$P_0^{(1,-1)}(x) = 1$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x)\Big)$$

• $P_0^{(1,-1)}(x) = 1$ • $P_1^{(1,-1)}(x) = 1 + x$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x)\Big)$$

• $P_0^{(1,-1)}(x) = 1$ • $P_1^{(1,-1)}(x) = 1 + x$ • $P_2^{(1,-1)}(x) = \frac{3}{2}(x + x^2)$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_{k}^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_{n}(x) - P_{n+1}(x) \Big)$$

$$P_{n+2}^{(1,-1)}(x) = -\frac{n}{n+1}P_n^{(1,-1)}(x) + \frac{2n+3}{n+2}xP_{n+1}^{(1,-1)}(x)$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_{k}^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_{n}(x) - P_{n+1}(x) \Big)$$

$$\begin{aligned} P_{n+2}^{(1,-1)}(x) &= -\frac{n}{n+1} P_n^{(1,-1)}(x) + \frac{2n+3}{n+2} x P_{n+1}^{(1,-1)}(x) \\ P_0^{(1,-1)}(x) &= 1 \\ P_1^{(1,-1)}(x) &= 1+x \end{aligned}$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

How to prove this identity?

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x) \Big)$$

How to prove this identity? \longrightarrow By induction!

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x)\right) = 0$$

How to prove this identity? \longrightarrow By induction!

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x)\Big) = 0$$

How to prove this identity? \longrightarrow By induction!

Compute a recurrence for the left hand side from the defining equations of its building blocks.

$$\sum_{k=0}^{n} \underbrace{\frac{2k+1}{k+1}}_{\substack{\text{recurrence} \\ \text{of order 1}}} P_k^{(1,-1)}(x) - \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x)\Big) = 0$$

$$\sum_{k=0}^{n} \underbrace{\frac{2k+1}{k+1}}_{\substack{\text{recurrence} \\ \text{of order 1}}} \underbrace{P_{k}^{(1,-1)}(x)}_{\substack{\text{recurrence} \\ \text{of order 2}}} - \frac{1}{1-x} \Big(2 - P_{n}(x) - P_{n+1}(x)\Big) = 0$$

$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) -$	$\frac{1}{1-x}\left(2-P_n(x)-P_{n+1}(x)\right)=0$
recurrence recurrence of order 1 of order 2	
recurrence of order 2	
recurrence of order 5	

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x)\Big) = 0$$

$$\begin{split} \mathrm{lhs}_{n+7} &= (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_{n+6} \\ &+ (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_{n+5} \\ &+ (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_{n+4} \\ &+ (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_{n+3} \\ &+ (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_{n+2} \\ &+ (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_{n+1} \\ &+ (\cdots \mathsf{messy} \cdots) \, \mathrm{lhs}_n \end{split}$$

$$\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \Big(2 - P_n(x) - P_{n+1}(x)\Big) = 0$$

$$\begin{aligned} \mathrm{lhs}_{n+7} &= (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_{n+6} \\ &+ (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_{n+5} \\ &+ (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_{n+4} \\ &+ (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_{n+3} \\ &+ (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_{n+2} \\ &+ (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_{n+1} \\ &+ (\cdots \mathsf{messy} \cdots) \mathrm{lhs}_n \end{aligned}$$

Therefore the identity holds for all $n \in \mathbb{N}$ if and only if it holds for $n = 0, 1, 2, \dots, 6$.

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \ \frac{1}{n!} \ t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

Hermite polynomials:

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

Hermite polynomials:

 $\blacktriangleright H_0(x) = 1$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

Hermite polynomials:

 $\blacktriangleright H_0(x) = 1$

$$\blacktriangleright H_1(x) = 2x$$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

 $\blacktriangleright H_0(x) = 1$

$$\blacktriangleright H_1(x) = 2x$$

► $H_2(x) = 4x^2 - 2$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

- $\blacktriangleright H_0(x) = 1$
- $\blacktriangleright H_1(x) = 2x$
- ► $H_2(x) = 4x^2 2$
- ► $H_3(x) = 8x^3 12x$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

- $\blacktriangleright H_0(x) = 1$
- $\blacktriangleright H_1(x) = 2x$
- ► $H_2(x) = 4x^2 2$
- ► $H_3(x) = 8x^3 12x$
- $H_4(x) = 16x^4 48x^2 + 12$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

- $\blacktriangleright H_0(x) = 1$
- $\blacktriangleright H_1(x) = 2x$

►
$$H_2(x) = 4x^2 - 2$$

•
$$H_3(x) = 8x^3 - 12x$$

- $H_4(x) = 16x^4 48x^2 + 12$
- $H_5(x) = 32x^5 160x^3 + 120x$

••••

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

$$H_{n+2}(x) = 2xH_{n+1}(x) - 2(n+1)H_n(x)$$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

$$\begin{split} H_{n+2}(x) &= 2x H_{n+1}(x) - 2(n+1) H_n(x) \\ H_0(x) &= 1 \\ H_1(x) &= 2x \end{split}$$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \ \frac{1}{n!} \ t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \ \frac{1}{n!} \ t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

Consider x and y as fixed parameters.

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \ \frac{1}{n!} \ t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \ \frac{1}{n!} \ t^n = \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right)$$

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.

Idea: Compute a recurrence for the series coefficients of $\rm LHS-RHS$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.

Idea: Compute a recurrence for the series coefficients of $\rm LHS-RHS$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.

Idea: Compute a recurrence for the series coefficients of LHS – RHS

Then prove by induction that they are all zero.

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.

Idea: Compute a recurrence for the series coefficients of LHS - RHS

Then prove by induction that they are all zero.

Then the power series is zero.

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \ \frac{1}{n!} \ t^n \ - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

$$\sum_{n=0}^{\infty} \underbrace{H_n(x)H_n(y)}_{\substack{n! \\ \text{ord. 2}}} \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

$$\sum_{n=0}^{\infty} \underbrace{H_n(x)H_n(y)}_{\substack{\text{rec. of}\\ \text{ord. 2} \text{ ord. 2}}} \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

rec. of order 4

rec. of order 4

$$\sum_{n=0}^{\infty} \underbrace{H_n(x)H_n(y)}_{\text{rec. of rec. of rec. of ord. 2 ord. 2 ord. 1}}_{\text{rec. of order 4}} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

differential equation of order 5

differential equation of order 5

 \rightsquigarrow recurrence equation of order 4

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

If we write $hs(t) = \sum_{n=0}^{\infty} hs_n t^n$, then

$$\begin{aligned} \text{lhs}_{n+4} &= \frac{4xy}{n+4} \, \text{lhs}_{n+3} + \frac{4(2n-2x^2-2y^2+5)}{n+4} \, \text{lhs}_{n+2} \\ &+ \frac{16xy}{n+4} \, \text{lhs}_{n+1} - \frac{16(n+1)}{n+4} \, \text{lhs}_n \, . \end{aligned}$$

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

If we write $hs(t) = \sum_{n=0}^{\infty} hs_n t^n$, then

$$\begin{aligned} \text{lhs}_{n+4} &= \frac{4xy}{n+4} \, \text{lhs}_{n+3} + \frac{4(2n-2x^2-2y^2+5)}{n+4} \, \text{lhs}_{n+2} \\ &+ \frac{16xy}{n+4} \, \text{lhs}_{n+1} - \frac{16(n+1)}{n+4} \, \text{lhs}_n \, . \end{aligned}$$

Because of $lhs_0 = lhs_1 = lhs_2 = lhs_3 = 0$, we have $lhs_n = 0$ for all n.

$$\sum_{n=0}^{\infty} H_n(x) H_n(y) \frac{1}{n!} t^n - \frac{1}{\sqrt{1-4t^2}} \exp\left(\frac{4t(xy-t(x^2+y^2))}{1-4t^2}\right) = 0$$

If we write $hs(t) = \sum_{n=0}^{\infty} hs_n t^n$, then

$$\begin{aligned} \text{lhs}_{n+4} &= \frac{4xy}{n+4} \, \text{lhs}_{n+3} + \frac{4(2n-2x^2-2y^2+5)}{n+4} \, \text{lhs}_{n+2} \\ &+ \frac{16xy}{n+4} \, \text{lhs}_{n+1} - \frac{16(n+1)}{n+4} \, \text{lhs}_n \, . \end{aligned}$$

Because of $lhs_0 = lhs_1 = lhs_2 = lhs_3 = 0$, we have $lhs_n = 0$ for all n.

This completes the proof.

$$\sum_{k=0}^{n} \frac{n+1}{2(k+1)} \binom{n+1}{k} \binom{n}{k} - \frac{2n+1}{n+2} \sum_{k=0}^{n} \binom{n}{k}^{2} = 0$$

$$\sum_{k=0}^{n} \frac{n+1}{2(k+1)} \binom{n+1}{k} \binom{n}{k} - \frac{2n+1}{n+2} \sum_{k=0}^{n} \binom{n}{k}^{2} = 0$$

Closure properties algorithms are insufficient for computing recurrences for the sums, because the summands depend on the summation bound n.

$$\sum_{k=0}^{n} \frac{n+1}{2(k+1)} \binom{n+1}{k} \binom{n}{k} - \frac{2n+1}{n+2} \sum_{k=0}^{n} \binom{n}{k}^{2} = 0$$

Closure properties algorithms are insufficient for computing recurrences for the sums, because the summands depend on the summation bound n.

More advanced algorithms are needed for computing recurrences for the sums (\rightarrow Chyzak's talk).

$$\sum_{k=0}^{n} \frac{n+1}{2(k+1)} \binom{n+1}{k} \binom{n}{k} - \frac{2n+1}{n+2} \sum_{k=0}^{n} \binom{n}{k}^{2} = 0$$

Closure properties algorithms are insufficient for computing recurrences for the sums, because the summands depend on the summation bound n.

More advanced algorithms are needed for computing recurrences for the sums (\rightarrow Chyzak's talk).

But once this is done, closure properties algorithms come in handy to complete the proof of the identity.

$$\sum_{k=0}^{n} \frac{n+1}{2(k+1)} \binom{n+1}{k} \binom{n}{k} - \frac{2n+1}{n+2} \sum_{k=0}^{n} \binom{n}{k}^{2} = 0$$

Closure properties algorithms are insufficient for computing recurrences for the sums, because the summands depend on the summation bound n.

More advanced algorithms are needed for computing recurrences for the sums (\rightarrow Chyzak's talk).

But once this is done, closure properties algorithms come in handy to complete the proof of the identity.

This is typical: closure properties algorithms are most useful in combination with other tools.

Summary
Holonomic objects are defined implicitly through linear differential/recurrence equations with polynomial coefficients.

- Holonomic objects are defined implicitly through linear differential/recurrence equations with polynomial coefficients.
- The defining equation plus some finitely many initial values are used to store holonomic objects in a computer.

- Holonomic objects are defined implicitly through linear differential/recurrence equations with polynomial coefficients.
- The defining equation plus some finitely many initial values are used to store holonomic objects in a computer.
- The class of holonomic objects is closed under addition, multiplication, and various further operations.

- Holonomic objects are defined implicitly through linear differential/recurrence equations with polynomial coefficients.
- The defining equation plus some finitely many initial values are used to store holonomic objects in a computer.
- The class of holonomic objects is closed under addition, multiplication, and various further operations.
- These closure properties are constructive and are used for proving identities for holonomic objects with the computer.

- Holonomic objects are defined implicitly through linear differential/recurrence equations with polynomial coefficients.
- The defining equation plus some finitely many initial values are used to store holonomic objects in a computer.
- The class of holonomic objects is closed under addition, multiplication, and various further operations.
- These closure properties are constructive and are used for proving identities for holonomic objects with the computer.
- Typically this happens in combination with other (less trivial) algorithms for summation and integration.

Holonomic Closure Properties and Guessing

Manuel Kauers

Research Institute for Symbolic Computation (RISC) Johannes Kepler University (JKU) Linz, Austria

Closure properties?

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

We say that the class of polynomial "is closed under addition, multiplication, integration...".

Closure properties?

Example: If p(x) and q(x) are polynomials then also p(x) + q(x), p(x)q(x), $\int p(x)dx$,... are polynomials.

We say that the class of polynomial "is closed under addition, multiplication, integration...".

Guessing?

Example: 0, 3, 8, 15, 24, 35, 48, 63, 80, 99. What's next?

Interpolation of the first 5 terms gives $n^2 - 1$, which also happens to match the next 5 terms. If the pattern continues, the next will be 120.

Holonomic?

Holonomic?

Definition (discrete case). A sequence $(a_n)_{n=0}^{\infty}$ in a field K is called holonomic (or *P*-finite or *D*-finite or *P*-recursive) if there exist polynomials p_0, \ldots, p_r , not all zero, such that

 $p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$

Holonomic?

Definition (discrete case). A sequence $(a_n)_{n=0}^{\infty}$ in a field K is called holonomic (or *P*-finite or *D*-finite or *P*-recursive) if there exist polynomials p_0, \ldots, p_r , not all zero, such that

$$p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} + \dots + p_r(n)a_{n+r} = 0.$$

Definition ("continuous" case). A function f is called *holonomic* (or *D*-finite or *P*-finite) if there exist polynomials p_0, \ldots, p_r , not all zero, such that

$$p_0(x)f(x) + p_1(x)f'(x) + p_2(x)f''(x) + \dots + p_r(x)f^{(r)}(x) = 0.$$

Part B Guessing

Task: Given the first N terms a_0, a_1, \ldots, a_N of an infinite sequence $(a_n)_{n=0}^{\infty}$, as well as two numbers $d, r \in \mathbb{N}$, find all the recurrence equations

$$p_0(n)a_n + p_1(n)a_{n+1} + \dots + p_r(n)a_{n+r} = 0$$

with polynomial coefficients $p_i(n)$ of degree at most d, satisfied by the sequence $(a_n)_{n=0}^{\infty}$ (at least) for $n = 0, \ldots, N - r$.

Task: Given the first N terms a_0, a_1, \ldots, a_N of an infinite sequence $(a_n)_{n=0}^{\infty}$, as well as two numbers $d, r \in \mathbb{N}$, find all the recurrence equations

$$p_0(n)a_n + p_1(n)a_{n+1} + \dots + p_r(n)a_{n+r} = 0$$

with polynomial coefficients $p_i(n)$ of degree at most d, satisfied by the sequence $(a_n)_{n=0}^{\infty}$ (at least) for $n = 0, \ldots, N - r$. *Example.* (demo) *Task:* Given the first N terms $a_0 + a_1x + a_2x^2 + \cdots + a_Nx^N$ of a power series $f(x) = \sum_{n=0}^{\infty} a_n x^n$, as well as two numbers $d, r \in \mathbb{N}$, find all the differential equations

$$p_0(x)f(x) + p_1(x)f'(x) + \dots + p_r(x)f^{(r)}(x) = O(x^{N-r})$$

with polynomial coefficients $p_i(x)$ of degree at most d, satisfied by the series f(x) (at least) up to order x^{N-r} .

Example. (demo)

Suppose we are given the following data:

$a_0 = 1,$	$a_5 = 6802,$
$a_1 = 2,$	$a_6 = 56190,$
$a_2 = 14,$	$a_7 = 470010,$
$a_3 = 106,$	$a_8 = 3968310,$
$a_4 = 838,$	$a_9 = 33747490.$

Let's search for recurrences of order r = 2 and degree d = 1,

 $(\mathbf{c_{0,0}} + \mathbf{c_{0,1}}n)a_n + (\mathbf{c_{1,0}} + \mathbf{c_{1,1}}n)a_{n+1} + (\mathbf{c_{2,0}} + \mathbf{c_{2,1}}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

Let's search for recurrences of order r = 2 and degree d = 1,

 $(\mathbf{c_{0,0}} + \mathbf{c_{0,1}}n)a_n + (\mathbf{c_{1,0}} + \mathbf{c_{1,1}}n)a_{n+1} + (\mathbf{c_{2,0}} + \mathbf{c_{2,1}}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

Let's search for recurrences of order r = 2 and degree d = 1,

 $(c_{0,0} + c_{0,1}n)a_n + (c_{1,0} + c_{1,1}n)a_{n+1} + (c_{2,0} + c_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We want the recurrence to be true for $n = 0, \ldots, 7$ (at least).

 $n=0: \ (c_{0,0}+c_{0,1}0)1+(c_{1,0}+c_{1,1}0)2+(c_{2,0}+c_{2,1}0)14=0$

Let's search for recurrences of order r = 2 and degree d = 1,

 $(c_{0,0} + c_{0,1}n)a_n + (c_{1,0} + c_{1,1}n)a_{n+1} + (c_{2,0} + c_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

$$\begin{split} n = 0: & (c_{0,0} + c_{0,1}0)1 + (c_{1,0} + c_{1,1}0)2 + (c_{2,0} + c_{2,1}0)14 = 0 \\ n = 1: & (c_{0,0} + c_{0,1}1)2 + (c_{1,0} + c_{1,1}1)14 + (c_{2,0} + c_{2,1}1)106 = 0 \end{split}$$

Let's search for recurrences of order r = 2 and degree d = 1,

 $(c_{0,0} + c_{0,1}n)a_n + (c_{1,0} + c_{1,1}n)a_{n+1} + (c_{2,0} + c_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

$$\begin{split} n = 0: & (c_{0,0} + c_{0,1}0)1 + (c_{1,0} + c_{1,1}0)2 + (c_{2,0} + c_{2,1}0)14 = 0\\ n = 1: & (c_{0,0} + c_{0,1}1)2 + (c_{1,0} + c_{1,1}1)14 + (c_{2,0} + c_{2,1}1)106 = 0\\ n = 2: & (c_{0,0} + c_{0,1}2)14 + (c_{1,0} + c_{1,1}2)106 + (c_{2,0} + c_{2,1}2)838 = 0 \end{split}$$

Let's search for recurrences of order r = 2 and degree d = 1,

 $(c_{0,0} + c_{0,1}n)a_n + (c_{1,0} + c_{1,1}n)a_{n+1} + (c_{2,0} + c_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

÷

$$n=0: (c_{0,0}+c_{0,1}0)1 + (c_{1,0}+c_{1,1}0)2 + (c_{2,0}+c_{2,1}0)14 = 0$$

$$n=1: (c_{0,0}+c_{0,1}1)2 + (c_{1,0}+c_{1,1}1)14 + (c_{2,0}+c_{2,1}1)106 = 0$$

$$n=2: (c_{0,0}+c_{0,1}2)14 + (c_{1,0}+c_{1,1}2)106 + (c_{2,0}+c_{2,1}2)838 = 0$$

$$n=7: (c_{0,0} + c_{0,1}7)470010 + (c_{1,0} + c_{1,1}7)3968310 + (c_{2,0} + c_{2,1}7)33747490 = 0$$

Let's search for recurrences of order r = 2 and degree d = 1,

 $(\mathbf{c}_{0,0} + \mathbf{c}_{0,1}n)a_n + (\mathbf{c}_{1,0} + \mathbf{c}_{1,1}n)a_{n+1} + (\mathbf{c}_{2,0} + \mathbf{c}_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

1	1	0	2	0	14	0)			
1	2	2	14	14	106	106	/c0,0)		$\langle 0 \rangle$
l	14	28	106	212	838	1676	$c_{0,1}$		0
I	106	318	838	2514	6802	20406	$c_{1,0}$	_	0
ł	838	3352	6802	27208	56190	224760	$c_{1,1}$	_	0
ł	6802	34010	56190	280950	470010	2350050	$c_{2,0}$		0
ł	56190	337140	470010	2820060	3968310	23809860	$\langle c_{2,1} \rangle$		\0/
1	470010	3290070	3968310	27778170	33747490	236232430/			

Let's search for recurrences of order r = 2 and degree d = 1,

 $(c_{0,0} + c_{0,1}n)a_n + (c_{1,0} + c_{1,1}n)a_{n+1} + (c_{2,0} + c_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We want the recurrence to be true for n = 0, ..., 7 (at least).

,	/ 1	0	2	0	14	0)			
1	2	2	14	14	106	106	/c0.0	/(ΟŊ
	14	28	106	212	838	1676	$c_{0,1}$	1 10	5)
	106	318	838	2514	6802	20406	$c_{1,0}$		0
	838	3352	6802	27208	56190	224760	$c_{1,1}$	= (0
	6802	34010	56190	280950	470010	2350050	$c_{2,0}$		0
	56190	337140	470010	2820060	3968310	23809860	$\langle c_{2,1} \rangle$	1	o/
1	470010	3290070	3968310	27778170	33747490	236232430/	· · · ·		

We have 8 equations but only 6 variables.

Let's search for recurrences of order r = 2 and degree d = 1,

 $(\mathbf{c}_{0,0} + \mathbf{c}_{0,1}n)a_n + (\mathbf{c}_{1,0} + \mathbf{c}_{1,1}n)a_{n+1} + (\mathbf{c}_{2,0} + \mathbf{c}_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We want the recurrence to be true for n = 0, ..., 7 (at least).

,	/ 1	0	2	0	14	0)			
1	2	2	14	14	106	106	/c0.0		(0)
	14	28	106	212	838	1676	$c_{0,1}$	1 (0
	106	318	838	2514	6802	20406	$c_{1,0}$		0
	838	3352	6802	27208	56190	224760	$c_{1,1}$	=	0
	6802	34010	56190	280950	470010	2350050	$c_{2,0}$	1	0
l	56190	337140	470010	2820060	3968310	23809860	$\langle c_{2,1} \rangle$		\0/
1	470010	3290070	3968310	27778170	33747490	236232430/			

We have 8 equations but only 6 variables.

 \Rightarrow There ought to be **no solution**.

Let's search for recurrences of order r = 2 and degree d = 1,

 $(c_{0,0} + c_{0,1}n)a_n + (c_{1,0} + c_{1,1}n)a_{n+1} + (c_{2,0} + c_{2,1}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We want the recurrence to be true for n = 0, ..., 7 (at least).

	/ 1	0	2	0	14	0)			
1	2	2	14	14	106	106	/c0.0		$\langle 0 \rangle$
	14	28	106	212	838	1676	$c_{0,1}$		0
	106	318	838	2514	6802	20406	$c_{1,0}$		0
	838	3352	6802	27208	56190	224760	$c_{1,1}$	=	0
	6802	34010	56190	280950	470010	2350050	$c_{2,0}$		0
ł	56190	337140	470010	2820060	3968310	23809860	$\langle c_{2,1} \rangle$		\0/
1	470010	3290070	3968310	27778170	33747490	236232430/	· · · ·		

Unexpected solution: (0, 9, -14, -10, 2, 1).

Let's search for recurrences of order r = 2 and degree d = 1,

 $(\mathbf{c_{0,0}} + \mathbf{c_{0,1}}n)a_n + (\mathbf{c_{1,0}} + \mathbf{c_{1,1}}n)a_{n+1} + (\mathbf{c_{2,0}} + \mathbf{c_{2,1}}n)a_{n+2} = 0$

for constants $c_{i,j}$ yet to be determined.

We have found that the recurrence

$$9n a_n + (-14 - 10n) a_{n+1} + (2n+1)a_{n+2} = 0,$$

holds for $n = 0, \ldots, 7$.

► A dense overdetermined linear system is **very unlikely** to have a nonzero solution.

- ► A dense overdetermined linear system is very unlikely to have
 - a nonzero solution.

An underdetermined system is **certain** to have solutions. But these are just "noise." To get an overdetermined system, choose r and d such that N > (r + 1)(d + 2).

- A dense overdetermined linear system is very unlikely to have a nonzero solution.
- If it happens to have one, its coefficients are very unlikely to have only a few digits.

- ► A dense overdetermined linear system is **very unlikely** to have a nonzero solution.
- If it happens to have one, its coefficients are very unlikely to have only a few digits.

- A dense overdetermined linear system is very unlikely to have a nonzero solution.
- If it happens to have one, its coefficients are very unlikely to have only a few digits.
- The recurrence enjoys some arithmetic properties which are very unlikely to be observed for artefacts.
Why should this recurrence hold for n>7 ?

- ► A dense overdetermined linear system is **very unlikely** to have a nonzero solution.
- If it happens to have one, its coefficients are very unlikely to have only a few digits.
- The recurrence enjoys some arithmetic properties which are very unlikely to be observed for artefacts.

If we have some further terms, say a_{10}, a_{11}, a_{12} , we can check whether they match the recurrence to gain further confidence.

Why should this recurrence hold for n>7 ?

- ► A dense overdetermined linear system is **very unlikely** to have a nonzero solution.
- If it happens to have one, its coefficients are very unlikely to have only a few digits.
- The recurrence enjoys some arithmetic properties which are very unlikely to be observed for artefacts.

If we have some further terms, say a_{10}, a_{11}, a_{12} , we can check whether they match the recurrence to gain further confidence.

However: Without further knowledge about the origin of the sequence, no finite amount of data will suffice to prove the correctness of the guess.

 \ldots no finite amount of data will suffice to prove the correctness of the guess.

 \ldots no finite amount of data will suffice to prove the correctness of the guess.

Then what's the point?

 \ldots no finite amount of data will suffice to prove the correctness of the guess.

Then what's the point?

Guessing is much faster than proving, and practically as reliable.

Let ${\cal F}(z,q)$ be a solution of the algebraic equation

$$\begin{split} (q^2+1)(q^2z-2qz-q+z)(q^2z+2qz-q+z)z\,F(z,q)^3\\ &-q(q^4z^2+6q^2z^2-q^2+z^2)F(z,q)^2\\ &-3(q^2+1)q^2z\,F(z,q)-q^3=0. \end{split}$$

Let ${\cal F}(z,q)$ be a solution of the algebraic equation

$$\begin{split} (q^2+1)(q^2z-2qz-q+z)(q^2z+2qz-q+z)z\,F(z,q)^3\\ &-q(q^4z^2+6q^2z^2-q^2+z^2)F(z,q)^2\\ &-3(q^2+1)q^2z\,F(z,q)-q^3=0. \end{split}$$

We have

$$F(z,q) = 1 + (q^{-1} + q)z + (q^{-2} + 4 + q^2)z^2 + (q^{-3} + 7q^{-1} + 7q + q^3)z^3 + (q^{-4} + 12q^{-2} + 28 + 12q^2 + q^4)z^4 + \cdots$$

Let F(z,q) be a solution of the algebraic equation

$$\begin{split} (q^2+1)(q^2z-2qz-q+z)(q^2z+2qz-q+z)z\,F(z,q)^3\\ &-q(q^4z^2+6q^2z^2-q^2+z^2)F(z,q)^2\\ &-3(q^2+1)q^2z\,F(z,q)-q^3=0. \end{split}$$

We have

$$F(z,q) = 1 + (q^{-1} + q)z + (q^{-2} + 4 + q^2)z^2 + (q^{-3} + 7q^{-1} + 7q + q^3)z^3 + (q^{-4} + 12q^{-2} + 28 + 12q^2 + q^4)z^4 + \cdots$$

Task: find a differential equation for $f(z) := [q^0]F(z,q)$.

Let F(z,q) be a solution of the algebraic equation

$$\begin{split} (q^2+1)(q^2z-2qz-q+z)(q^2z+2qz-q+z)z\,F(z,q)^3\\ &-q(q^4z^2+6q^2z^2-q^2+z^2)F(z,q)^2\\ &-3(q^2+1)q^2z\,F(z,q)-q^3=0. \end{split}$$

We have

$$F(z,q) = \mathbf{1} + (q^{-1} + q)z + (q^{-2} + 4 + q^2)z^2 + (q^{-3} + 7q^{-1} + 7q + q^3)z^3 + (q^{-4} + 12q^{-2} + \mathbf{28} + 12q^2 + q^4)z^4 + \cdots$$

Task: find a differential equation for $f(z) := [q^0]F(z,q)$.

$$f(z) = \oint \frac{1}{q} F(z,q) \, dq.$$

$$f(z) = \oint \frac{1}{q} F(z,q) \, dq.$$

Good luck...

$$f(z) = \oint \frac{1}{q} F(z,q) \, dq.$$

Good luck...

Experimental approach: Calculate the first few hundred terms in the expansion of f(z), and use them to determine the differential equation by guessing.

$$f(z) = \oint \frac{1}{q} F(z,q) \, dq.$$

Good luck...

Experimental approach: Calculate the first few hundred terms in the expansion of f(z), and use them to determine the differential equation by guessing.

This needs 30sec, including the generation of data.

The following tricks can sometimes be used to get a speed-up:

Trade order against degree

- Trade order against degree
- Use modular arithmetic

- Trade order against degree
- Use modular arithmetic
- Boot strapping

- Trade order against degree
- Use modular arithmetic
- Boot strapping

Some are easier to find than others.

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

We can reasonably search for equations with N > (r+1)(d+2).

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

We can reasonably search for equations with N > (r+1)(d+2).

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

We can reasonably search for equations with N > (r+1)(d+2).

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

We can reasonably search for equations with N > (r+1)(d+2).

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

We can reasonably search for equations with N > (r+1)(d+2).

Some are easier to find than others.

Mark a point $(r, d) \in \mathbb{N}^2$ if there is a recurrence of order r and degree d.

We can reasonably search for equations with N > (r+1)(d+2).

Experience: equations with $r \approx d$ tend to require the least number N of terms.

The interesting minimal order operator can (with high probability) be obtained from two different nonminimal operators by taking their greatest common right divisor as operators.

- Trade order against degree
- Use modular arithmetic
- Boot strapping

- Trade order against degree
- Use modular arithmetic
- Boot strapping

Guessing requires solving large dense linear systems.

Guessing requires solving large dense linear systems.

If this is done naively, it will produce extremely large intermediate expressions.
Guessing requires solving large dense linear systems.

If this is done naively, it will produce extremely large intermediate expressions.

A proper implementation will work with homomorphic images:

Compute the nonminimal operators only modulo some primes.

Compute the nonminimal operators only modulo some primes.

Compute from them the minimal order operator, also modulo prime.

Compute the nonminimal operators only modulo some primes.

Compute from them the minimal order operator, also modulo prime.

Do Chinese remaindering only for the minimal order operators.

Compute the nonminimal operators only modulo some primes.

Compute from them the minimal order operator, also modulo prime.

Do Chinese remaindering only for the minimal order operators.

This needs much fewer primes than reconstructing the nonminimal operators.

Compute the nonminimal operators only modulo some primes.

Compute from them the minimal order operator, also modulo prime.

Do Chinese remaindering only for the minimal order operators.

This needs much fewer primes than reconstructing the nonminimal operators.

Modern guessing programs do this automatically for you. (Demo.)

Compute the nonminimal operators only modulo some primes.

Compute from them the minimal order operator, also modulo prime.

Do Chinese remaindering only for the minimal order operators.

This needs much fewer primes than reconstructing the nonminimal operators.

Modern guessing programs do this automatically for you. (Demo.) But also the user can sometimes take advantage of modular computations.

0	0	0
170	170	170
57125	57125	57125
48268101	48268101	48268101
34260690332	34260690332	34260690332
28950283288564	28950283288564	28950283288564
24602777889341700	24602777889341700	24602777889341700
3512004029335396264	3512004029335396288	3512004029335396300
4636941943446398583	4636941943446424575	4636941943446437571
16731901151034173887	16731901151058359959	16731901151070452995
13561571021375624155	13561571044217255635	13561571055638071375
18327681355361409199	18327703218332822743	18327714149818529515
14135275161253345008	14156428691527110768	14167005456663993648
5637819232275028612	7849868848795513175	18179265693910531235
6637602357189385604	14984004752674089390	710461876706909598
12482169677218181673	12488827142696955539	12492155875456012980
13064253343726879423	15658485480684595156	7732229531925667068
14625225362239686504	10758223940600306782	8824742898598764285
10738834608406986658	788602827186764443	5056674106894750910
961106949064586405	12251039281660517429	1050611245293959755
2211804365157896289	15185001070958618575	127308807730230649
8829591048746708080	10856515003962139665	11318493766728410726
15009988290858134393	12838284889333222403	8119518874668080973
7627367407386026140	8420246272424470758	13169248223630974435
14734287943773226198	16693159135573847818	2788562657830915054
15483359934879899009	16119877770365982383	2471600991651671889
899837740350271794	11946950024840031118	14756123186994554460
6952192533371026338	13765592352507043696	11362094742791890224
17697300886138518812	7652266267821078126	16010169456545623593
14174304902082598370	11862232204708398073	1837996549587781514
9566720042687775664	6633630390749590552	1873712421652022656

0	0	0	0
170	170	170	170
57125	57125	57125	57125
48268101	48268101	48268101	48268101
34260690332	34260690332	34260690332	34260690332
28950283288564	28950283288564	28950283288564	28950283288564
24602777889341700	24602777889341700	24602777889341700	24602777889341700
3512004029335396264	3512004029335396288	3512004029335396300	3512004029335396384
4636941943446398583	4636941943446424575	4636941943446437571	4636941943446528543
16731901151034173887	16731901151058359959	16731901151070452995	16731901151155104247
13561571021375624155	13561571044217255635	13561571055638071375	13561571135583781555
18327681355361409199	18327703218332822743	18327714149818529515	18327790670218476919
14135275161253345008	14156428691527110768	14167005456663993648	14241042812622173808
5637819232275028612	7849868848795513175	18179265693910531235	16698067314877451907
6637602357189385604	14984004752674089390	710461876706909598	11476126187194330620
12482169677218181673	12488827142696955539	12492155875456012980	12515457005136597883
13064253343726879423	15658485480684595156	7732229531925667068	7588670477925634811
14625225362239686504	10758223940600306782	8824742898598764285	13737486829569602371
10738834608406986658	788602827186764443	5056674106894750910	16856311482456444934
961106949064586405	12251039281660517429	1050611245293959755	1730796780127391701
2211804365157896289	15185001070958618575	127308807730230649	2923290836694930836
8829591048746708080	10856515003962139665	11318493766728410726	16555821147378467083
15009988290858134393	12838284889333222403	8119518874668080973	11805308573535485946
7627367407386026140	8420246272424470758	13169248223630974435	16982273330702579648
14734287943773226198	16693159135573847818	2788562657830915054	17719370099115195915
15483359934879899009	16119877770365982383	2471600991651671889	5095243575810575316
899837740350271794	11946950024840031118	14756123186994554460	11226634917845487051
6952192533371026338	13765592352507043696	11362094742791890224	6644727374610071491
17697300886138518812	7652266267821078126	16010169456545623593	5224069660619876239
14174304902082598370	11862232204708398073	1837996549587781514	1149810384458158270
9566720042687775664	6633630390749590552	1873712421652022656	15580979477818358327

0	0	0	0	0
170	170	170	170	170
57125	57125	57125	57125	57125
48268101	48268101	48268101	48268101	48268101
34260690332	34260690332	34260690332	34260690332	34260690332
28950283288564	28950283288564	28950283288564	28950283288564	28950283288564
24602777889341700	24602777889341700	24602777889341700	24602777889341700	24602777889341700
3512004029335396264	3512004029335396288	3512004029335396300	3512004029335396384	3512004029335396394
4636941943446398583	4636941943446424575	4636941943446437571	4636941943446528543	4636941943446539373
16731901151034173887	716731901151058359959	16731901151070452995	16731901151155104247	16731901151165181777
13561571021375624155	513561571044217255635	13561571055638071375	13561571135583781555	513561571145101128005
18327681355361409199	918327703218332822743	318327714149818529515	18327790670218476919	18327799779789899229
14135275161253345008	314156428691527110768	314167005456663993648	14241042812622173808	14249856783569576208
5637819232275028612	7849868848795513175	18179265693910531235	16698067314877451907	6859153945430415570
6637602357189385604	14984004752674089390	710461876706909598	11476126187194330620	18028251197597986227
12482169677218181673	312488827142696955539	12492155875456012980	12515457005136597883	39443773603570734321
13064253343726879423	315658485480684595156	7732229531925667068	7588670477925634811	13281286656044656459
14625225362239686504	10758223940600306782	8824742898598764285	13737486829569602371	15200796479896019943
10738834608406986658	3788602827186764443	5056674106894750910	16856311482456444934	17425730095808525587
961106949064586405	12251039281660517429	1050611245293959755	1730796780127391701	635703020769662299
2211804365157896289	15185001070958618575	5127308807730230649	2923290836694930836	5446680587098832013
8829591048746708080	10856515003962139665	511318493766728410726	16555821147378467083	32644477152643434420
15009988290858134393	312838284889333222403	8119518874668080973	11805308573535485946	12562094561654048160
7627367407386026140	8420246272424470758	13169248223630974435	16982273330702579648	6264853543132966636
14734287943773226198	316693159135573847818	2788562657830915054	17719370099115195915	14351987686736218119
15483359934879899009	916119877770365982383	32471600991651671889	5095243575810575316	12472610336651567052
899837740350271794	11946950024840031118	314756123186994554460	11226634917845487051	13567859892950511514
6952192533371026338	13765592352507043696	511362094742791890224	6644727374610071491	3992711139584800062
17697300886138518812	27652266267821078126	16010169456545623593	5224069660619876239	13020528712638715163
14174304902082598370	11862232204708398073	1837996549587781514	1149810384458158270	6569058788386309488
9566720042687775664	6633630390749590552	1873712421652022656	15580979477818358327	7459210887944253892

mod 340282366920938460843936948965011886881 184467440737095515211844674407370955143718446744073709551427

0	0	0
170	170	170
57125	57125	57125
48268101	48268101	48268101
34260690332	34260690332	34260690332
28950283288564	28950283288564	28950283288564
24602777889341700	24602777889341700	24602777889341700
3512004029335396300	3512004029335396384	3512004029335396394
4636941943446437571	4636941943446528543	4636941943446539373
16731901151070452995	16731901151155104247	16731901151165181777
13561571055638071375	13561571135583781555	13561571145101128005
18327714149818529515	18327790670218476919	18327799779789899229
14167005456663993648	14241042812622173808	14249856783569576208
18179265693910531235	16698067314877451907	6859153945430415570
710461876706909598	11476126187194330620	18028251197597986227
12492155875456012980	12515457005136597883	9443773603570734321
7732229531925667068	7588670477925634811	13281286656044656459
8824742898598764285	13737486829569602371	15200796479896019943
5056674106894750910	16856311482456444934	17425730095808525587
1050611245293959755	1730796780127391701	635703020769662299
127308807730230649	2923290836694930836	5446680587098832013
11318493766728410726	16555821147378467083	2644477152643434420
8119518874668080973	11805308573535485946	12562094561654048160
13169248223630974435	16982273330702579648	6264853543132966636
2788562657830915054	17719370099115195915	14351987686736218119
2471600991651671889	5095243575810575316	12472610336651567052
14756123186994554460	11226634917845487051	13567859892950511514
11362094742791890224	6644727374610071491	3992711139584800062
16010169456545623593	5224069660619876239	13020528712638715163
1837996549587781514	1149810384458158270	6569058788386309488
1873712421652022656	15580979477818358327	7459210887944253892
	0 170 57125 48268101 34260690332 28950283288564 24602777889341700 3512004029335396300 4636941943446437571 16731901151070452995 13561571055638071375 14167005456663993648 18179265693910531235 710461876706909598 12492155875456012980 7732229531925667068 8224742898598764285 5056674106894750910 1050611245293959755 5056674106894750910 1050611245293959755 5056674106894750910 1050611245293959755 5056674106894750910 1050611245293959755 13169248223630974435 2788562657830915054 2471600991651671889 14756123166994554460 11362094742791890224 10010169456545623553 183791649587781514 1873712421652022656	0 0 170 170 57125 57125 48268101 48268101 34260690332 34260690332 28950283288564 28950283288564 28950283288564 28950283288564 24602777889341700 24602777889341700 3512004029335396300 3512004029335396384 463694194344637571 463694194344528543 16731901151070452995 16731901151155104247 13827714149818529515 1332770670218476919 14167005456663993648 14241042812622173808 18179265693910531235 1698067314877451907 1704618767060905958 1137016871482956602371 270458077060905958 137374862956602371 5056674106894750910 16856311482456444934 1050611245293959755 1337096780127391701 127308807730230649 292329086694393686 1138493766728410726 1555821147378467083 8119518874668080973 118053085735345946 1316294252363074435 16982273730702579648 27885626783015054 17713370091151515915 247160039165167188 505

mod	6277101735386680683188868462945250914462856766432493496001	1844674407370955143	7 18446744073709551427
	0	0	0
	170	170	170
	57125	57125	57125
	48268101	48268101	48268101
	34260690332	34260690332	34260690332
	28950283288564	28950283288564	28950283288564
	24602777889341700	24602777889341700	24602777889341700
	21958748103044947821	3512004029335396384	3512004029335396394
	19982460773770890734814	4636941943446528543	4636941943446539373
	18589778412414172744395308	16731901151155104247	7 16731901151165181777
	17556405435959384905586216420	13561571135583781559	513561571145101128005
	16804193264871415986848637912866	18327790670218476919	918327799779789899229
	16258906633984352510780895055898688	14241042812622173808	314249856783569576208
	15878645003134966488517342432611820340	16698067314877451907	76859153945430415570
	15631047178991661938104976711572278528840	11476126187194330620	18028251197597986227
	15494275516175484896146558165069374931768650	12515457005136597883	39443773603570734321
	15452119731275448721521690374123048169473745090	7588670477925634811	13281286656044656459
	15492944429910290948927453354128640277129701928270	1373748682956960237	15200796479896019943
	15608195638318139575397871729737310479957231181434400	16856311482456444934	17425730095808525587
	15791696434663015062086294548870131152897244600962599710	1730796780127391701	635703020769662299
	3484838833388197199812530639829581721184342340071326129298	2923290836694930836	5446680587098832013
	1648757840168344542387637018871763179732374825323564456876	16555821147378467083	32644477152643434420
	98850683949423615211578699701347807145350036885633235694	11805308573535485946	512562094561654048160
	526520284143404569767963343550807344171168366801172331356	16982273330702579648	36264853543132966636
	424185829625587809592566352271431402775173490353367407331	1771937009911519591	514351987686736218119
	4536991382758228630399221995435899884055743908863240725052	5095243575810575316	12472610336651567052
	3136412773560944376264550097061623603163416527516137221129	11226634917845487053	13567859892950511514
	5967388207129134077295313527201750659161648724805358750622	6644727374610071491	3992711139584800062
	853298661596862590652819419782007714434001836607900281638	5224069660619876239	13020528712638715163
	58401078608611669601836308424511522173492016757242657971	1149810384458158270	6569058788386309488
	1566681274568203485091061424628061282383374029659900022897	1558097947781835832	77459210887944253892

mod	115792089237316192812296663087828730790152317073519228853714845075653663303437	18446744073709551427
	0	0
	170	170
	57125	57125
	48268101	48268101
	34260690332	34260690332
	28950283288564	28950283288564
	24602777889341700	24602777889341700
	21958748103044947821	3512004029335396394
	19982460773770890734814	4636941943446539373
	18589778412414172744395308	16731901151165181777
	17556405435959384905586216420	13561571145101128005
	16804193264871415986848637912866	18327799779789899229
	16258906633984352510780895055898688	14249856783569576208
	15878645003134966488517342432611820340	6859153945430415570
	15631047178991661938104976711572278528840	18028251197597986227
	15494275516175484896146558165069374931768650	9443773603570734321
	15452119731275448721521690374123048169473745090	13281286656044656459
	15492944429910290948927453354128640277129701928270	15200796479896019943
	15608195638318139575397871729737310479957231181434400	17425730095808525587
	15791696434663015062086294548870131152897244600962599710	635703020769662299
	16039042304161558566190267565720083550110055872936313121300	5446680587098832013
	16347221676787084843566201114528305144441011394615536628043480	2644477152643434420
	16714327636344626391862041955812314792830121148741093212135914440	12562094561654048160
	17139356963672793388669217006249699836555901801582671305065963412450	6264853543132966636
	17622061542861347959625369356680682135593177881983900768539311826713472	14351987686736218119
	18162841216793283422562091421291078521630723657702122424507756283808698700	12472610336651567052
	18762665614999822007839830386311098144372506555360938018652662698220539694616	13567859892950511514
	85739315027447066623349695032233960274282399822723913455610238505779125926029	3992711139584800062
	2064728830981047793411634851943034475673596449669175636454501699351701964789	13020528712638715163
	23492476077323556255109014236440192037570229930868243250459695379292868666014	6569058788386309488
	111190808983862952620363685720790529707785524738898437692221876477166726606643	7459210887944253892

These may be many.

These may be many.

The **longest number in the guessed recurrence** is typically much shorter.

These may be many.

The **longest number in the guessed recurrence** is typically much shorter.

Idea: Compute your data only modulo a few primes, then guess a "modular recurrence" for each prime, and then do Chinese remaindering on the coefficients of the recurrence rather than on the data sample.

These may be many.

The **longest number in the guessed recurrence** is typically much shorter.

Idea: Compute your data only modulo a few primes, then guess a "modular recurrence" for each prime, and then do Chinese remaindering on the coefficients of the recurrence rather than on the data sample.

This will typically require much fewer primes in total.

These may be many.

The **longest number in the guessed recurrence** is typically much shorter.

Idea: Compute your data only modulo a few primes, then guess a "modular recurrence" for each prime, and then do Chinese remaindering on the coefficients of the recurrence rather than on the data sample.

This will typically require much fewer primes in total. (Demo.)

Feature: The efficiency of scales well to larger problems, at least if done properly.

The following tricks can sometimes be used to get a speed-up:

- Trade order against degree
- Use modular arithmetic
- Boot strapping

Feature: The efficiency of scales well to larger problems, at least if done properly.

The following tricks can sometimes be used to get a speed-up:

- Trade order against degree
- Use modular arithmetic
- Boot strapping

On the other hand, once we have a recurrence, generating data (almost) for free.

On the other hand, once we have a recurrence, generating data (almost) for free.

Chicken-egg-problem: In order to find a recurrence, we sometimes seem to already need to know it.

On the other hand, once we have a recurrence, generating data (almost) for free.

Chicken-egg-problem: In order to find a recurrence, we sometimes seem to already need to know it.

Boot-strapping sometimes helps to resolve this conflict.

Example 1: Consider a sequence in four indices, $a_{k,l,m,n}$.

Example 1: Consider a sequence in four indices, $a_{k,l,m,n}$.

Suppose $a_{k,l,m,n}$ is hypergeometric in all four indices, so that we know four first order recurrence equations

$$a_{k+1,l,m,n} = \operatorname{rat}(k, l, m, n)a_{k,l,m,n}$$
$$a_{k,l+1,m,n} = \operatorname{rat}(k, l, m, n)a_{k,l,m,n}$$
$$a_{k,l,m+1,n} = \operatorname{rat}(k, l, m, n)a_{k,l,m,n}$$
$$a_{k,l,m,n+1} = \operatorname{rat}(k, l, m, n)a_{k,l,m,n}$$

Example 1: Consider a sequence in four indices, $a_{k,l,m,n}$.

Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$.
Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$.

Calculating $a_{n,n,n,n}$ recursively with the given equations requires $O(n^4)$ time and space. We won't be able to get 1000 terms in this way.

Example 1: Consider a sequence in four indices, $a_{k,l,m,n}$. Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$. *Boot-strapping* is more promising:

Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$.

Boot-strapping is more promising:

• First compute $a_{n,n,m,m}$ for $0 \le n, m \le 25$, say.

Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$.

- First compute $a_{n,n,m,m}$ for $0 \le n, m \le 25$, say.
- ► Use this data to guess bivariate recurrence equations for b_{n,m} := a_{n,n,m,m}

Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$. Boot-strapping is more promising:

- First compute $a_{n,n,m,m}$ for $0 \le n, m \le 25$, say.
- ► Use this data to guess bivariate recurrence equations for b_{n,m} := a_{n,n,m,m}
- Use these guessed equations to compute $a_{n,n,n,n}$ for $n = 0, \ldots, 1000$.

Suppose we want to find a recurrence for the diagonal $a_{n,n,n,n}$. Boot-strapping is more promising:

- First compute $a_{n,n,m,m}$ for $0 \le n, m \le 25$, say.
- ► Use this data to guess bivariate recurrence equations for b_{n,m} := a_{n,n,m,m}
- Use these guessed equations to compute $a_{n,n,n,n}$ for $n = 0, \ldots, 1000$.
- Use this data to guess the recurrence for $a_{n,n,n,n}$.

Example 2: Another problem from A. Rechnitzer's collection. Let F(z,q) be a solution of the algebraic equation

$$\operatorname{POLY}(F(z,q),z,q) = 0$$

(where POLY is now too large to fit on this slide.)

Example 2: Another problem from A. Rechnitzer's collection. Let F(z,q) be a solution of the algebraic equation

$$\operatorname{POLY}(F(z,q), z, q) = 0$$

(where POLY is now too large to fit on this slide.) We have

$$F(z,q) = 1 + (q^{-1} + q)z + (q^{-2} + 4 + q^2)z^2 + \cdots$$

Example 2: Another problem from A. Rechnitzer's collection. Let F(z,q) be a solution of the algebraic equation

$$\operatorname{POLY}(F(z,q), z, q) = 0$$

(where POLY is now too large to fit on this slide.) We have

$$F(z,q) = 1 + (q^{-1} + q)z + (q^{-2} + 4 + q^2)z^2 + \cdots$$

Task: find a differential equation for $f(z) := [q^0]F(z,q)$.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

Boot-Strapping is more promising:

• Compute many terms for $q = 1, 2, 3, \ldots, 30$, say.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

- Compute many terms for $q = 1, 2, 3, \ldots, 30$, say.
- For each q, guess a recurrence for the expansion of F(z,q).

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

- Compute many terms for $q = 1, 2, 3, \ldots, 30$, say.
- For each q, guess a recurrence for the expansion of F(z,q).
- ▶ Reconstruct from these a recurrence for symbolic *q*.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

- Compute many terms for $q = 1, 2, 3, \ldots, 30$, say.
- For each q, guess a recurrence for the expansion of F(z,q).
- ▶ Reconstruct from these a recurrence for symbolic *q*.
- Use this recurrence to generate many more terms.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

- Compute many terms for $q = 1, 2, 3, \ldots, 30$, say.
- For each q, guess a recurrence for the expansion of F(z,q).
- ▶ Reconstruct from these a recurrence for symbolic *q*.
- Use this recurrence to generate many more terms.
- Pick the q^0 -coefficient of all of them.

Computing enough terms in the expansion of F(z,q) with Puiseux' algorithm is too expensive when q is symbolic.

- Compute many terms for $q = 1, 2, 3, \ldots, 30$, say.
- For each q, guess a recurrence for the expansion of F(z,q).
- ▶ Reconstruct from these a recurrence for symbolic *q*.
- Use this recurrence to generate many more terms.
- Pick the q^0 -coefficient of all of them.
- Use this data for guessing the differential equation.

Feature: The efficiency of scales well to larger problems, at least if done properly.

The following tricks can sometimes be used to get a speed-up:

- Trade order against degree
- Use modular arithmetic
- Boot strapping

Summary

• Computer algebra can produce rigorous proofs.

- Computer algebra can produce rigorous proofs.
- Computer algebra can also produce conjectures.

- Computer algebra can produce rigorous proofs.
- Computer algebra can also produce conjectures.
- Conjectures are typically much cheaper than proofs.

- Computer algebra can produce rigorous proofs.
- Computer algebra can also produce conjectures.
- Conjectures are typically much cheaper than proofs.
- Computer generated conjectures are almost always true.