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Closure properties?

Example: If p(x) and q(x) are polynomials then also p(x) + q(x),
p(x)q(x),

∫
p(x)dx,. . . are polynomials.

We say that the class of polynomial “is closed under addition,
multiplication, integration. . . ”.

Guessing?

Example: 0, 3, 8, 15, 24, 35, 48, 63, 80, 99. What’s next?

Interpolation of the first 5 terms gives n2 − 1, which also happens
to match the next 5 terms. If the pattern continues, the next will
be 120.
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Definition. A sequence (an) is called C-finite if it satisfies a linear
recurrence equation with constant coefficients:

c0 an + c1 an+1 + c2 an+2 + · · ·+ cr an+r = 0.

Example: Fibonacci numbers Fn are C-finite because they satisfy

Fn + Fn+1 − Fn+2 = 0.
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Theorem. A sequence (an) is C-finite if and only if it admits a
closed form representation

an = p1(n)φ
n
1 + p2(n)φ

n
2 + · · ·+ ps(n)φ

n
s

where φ1, . . . , φs are constants and p1(n), . . . , ps(n) are
polynomials.

Example: For the Fibonacci numbers we have

Fn =
1√
5

(1 +√5
2

)n
− 1√

5

(1−√5
2

)n
.
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Consequence: If (an) and (bn) are C-finite sequences, then so are
(an + bn) and (anbn).

Also (aαn+β) (for fixed α, β ∈ N) and (
∑n

k=0 akbn−k) are C-finite.

Example: an :=
∑n

k=0 Fk and bn := F 2
n + F2n are C-finite.

Indeed, they satisfy the recurrence equations

an − 2an+2 + an+3 = 0,

bn − 2bn+1 − 2bn+2 + bn+3 = 0
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Another argument. Suppose (an) and (bn) are C-finite, say

an+3 = an + 3an+1 − an+2,

bn+2 = bn + 2bn+1.

Then we have:

an+4 =

−an − 2an+1 + 4an+2

an+5 = 4an + 11an+1 − 6an+2

an+6 = −6an − 14an+1 + 17an+2

In general, each an+i can be written in terms of an, an+1, an+2.

Similarly, each bn+i can be written in terms of bn, bn+1.
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Make an ansatz for a recurrence

C0 anbn + C1 an+1bn+1 + · · ·+ C6 an+6bn+6 = 0.
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Make an ansatz for a recurrence

C0 anbn + C1 an+1bn+1 + · · ·+ C6 an+6bn+6 = 0.

Rewrite higher order shifts to lower order ones:

C0anbn

+ C1an+1bn+1

+ C2

(
an+2bn + 2an+2bn+1

)
+ C3

(
2anbn + 2an+1bn + 5anbn+1 + · · · − 5an+2bn+1

)
+ C4

(
−5anbn − 10an+1bn − 12anbn+1 + · · ·+ 48an+2bn+1

)
+ C5

(
48anbn + 132an+1bn + 116anbn+1 + · · · − 174an+2bn+1

)
+ C6

(
−174anbn − 406an+1bn + · · ·+ 1190an+2bn+1

)
= 0
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Make an ansatz for a recurrence

C0 anbn + C1 an+1bn+1 + · · ·+ C6 an+6bn+6 = 0.

Rewrite higher order shifts to lower order ones:

anbn
(
C0 + 2C3 − 5C4 + 48C5 − 174C6

)
+ an+1bn

(
6C3 − 10C4 + 132C5 − 406C6

)
+ an+2bn

(
C2 − 2C3 + 20C4 − 72C5 + 493C6

)
+ anbn+1

(
5C3 − 12C4 + 116C5 − 420C6

)
+ an+1bn+1

(
C1 + 15C3 − 24C4 + 319C5 − 980C6

)
+ an+2bn+1

(
2C2 − 5C3 + 48C4 − 174C5 + 1190C6

)
= 0.
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Make an ansatz for a recurrence

C0 anbn + C1 an+1bn+1 + · · ·+ C6 an+6bn+6 = 0.

Rewrite higher order shifts to lower order ones:



1 0 0 2 −5 48 −174
0 0 0 6 −10 132 −406
0 0 1 −2 20 −72 493
0 0 0 5 −12 116 −420
0 1 0 15 −24 319 −980
0 0 2 −5 48 −174 1190





C0

C1

C2

C3

C4

C5

C6


= 0

We have 7 variables and 6 equations.

⇒ There must be a nontrivial solution.
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Make an ansatz for a recurrence

C0 anbn + C1 an+1bn+1 + · · ·+ C6 an+6bn+6 = 0.

Here it is:

C0 = −1 C1 = 6 C2 = 15 C3 = −8
C4 = −19 C5 = 2 C6 = 1
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The arguments for the other operations are similar.

In all cases, a recurrence for the new sequence can be computed
with linear algebra.

So what!?

Algorithms for “executing closure properties” are useful for proving
identities among holonomic sequences and power series.

Note: If a sequence (an) satisfies a recurrence

c0 an + c1 an+1 + c2 an+2 + · · ·+ cr an+r = 0

then it is the zero sequence if and only if
a0 = a1 = · · · = ar−1 = 0.

This can be used for proving identities.
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Example. To prove the Fibonacci identity

(−1)n − 2F2n + 5FnFn+1 − F2n+1 = 0,

compute a recurrence for the left hand side using closure
properties.

This yields a C-finite recurrence of order 3, say.

Hence it suffices to check the identity for n = 0, 1, 2.

Every identity among C-finite sequences involving only of +, ×,
∑

and dilation can be automatically proven in this way.
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Definition (discrete case). A sequence (an)
∞
n=0 in a field K is

called holonomic (or P-finite or D-finite or P-recursive) if there
exist polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.
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exist polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Examples:

I 2n:

an+1 − 2an = 0

I n!:

an+1 − (n+ 1)an = 0

I
∑n

k=0
(−1)k
k! :

(n+ 2)an+2 − (n+ 1)an+1 − an = 0

I Fibonacci numbers, Harmonic numbers, Perrin numbers,
diagonal Delannoy numbers, Motzkin numbers, Catalan
numbers, Apery numbers, Schröder numbers, . . .

I Many sequences which have no name and no closed form.
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Definition (“continuous” case). A function f is called holonomic
(or D-finite or P-finite) if there exist polynomials p0, . . . , pr, not all
zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.
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(r)(x) = 0.

Examples:

I exp(x):

f ′(x)− f(x) = 0

I log(1− x):

(x− 1)f ′′(x)− f ′(x) = 0

I 1
1+
√
1−x2 :

(x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0

I Bessel functions, Hankel functions, Struve functions, Airy
functions, Polylogarithms, Elliptic integrals, the Error
function, Kelvin functions, Mathieu functions, . . .

I Many functions which have no name and no closed form.
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I exp(exp(x)− 1).

I The Riemann Zeta function.

I Many functions which have no name and no closed form.

This means that these functions can (provably) not be viewed as so-
lutions of a linear differential equation with polynomial coefficients.
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Definition (“continuous” case). A function f is called holonomic
(or D-finite or P-finite) if there exist polynomials p0, . . . , pr, not all
zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Approximately 60% of the
functions in Abramowitz
and Stegun’s handbook
fall into this category.
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Theorem. Let f(x) =
∑∞

n=0 anx
n. Then

f is holonomic as function ⇐⇒ (an) is holonomic as sequence.

Examples.

I f ′(x)− f(x) = 0 . . . . . . . . . . . . . . . . . . . . (n+ 1)an+1 − an = 0

I (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0 . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (n+ 4)an+2 − (n+ 1)an = 0

Given a differential equation, we can compute a corresponding
recurrence equation and vice versa.
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Warning: In the big class of holonomic sequences and power series,
we no longer have a canonical notion of “closed form”.
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Warning: In the big class of holonomic sequences and power series,
we no longer have a canonical notion of “closed form”.

This is similar as for algebraic numbers.

Naive question: What are the roots of the polynomial x5− 3x+1 ?

Expert answer: RootOf( Z5 − 3 Z + 1, index = 1),
RootOf( Z5 − 3 Z + 1, index = 2),
RootOf( Z5 − 3 Z + 1, index = 3),
RootOf( Z5 − 3 Z + 1, index = 4),
RootOf( Z5 − 3 Z + 1, index = 5).
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Warning: In the big class of holonomic sequences and power series,
we no longer have a canonical notion of “closed form”.

For holonomic sequences:

Naive question: What are the solutions of the recurrence

(3n+ 2)an+2 − 2(n+ 3)an+1 + (2n− 7)an = 0 ?

A holonomist’s answer: There is exactly one solution with a0 = 0,
a1 = 1, exactly one solution with a0 = 1, a1 = 0, and every other
solution is a linear combination of those two.
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Warning: In the big class of holonomic sequences and power series,
we no longer have a canonical notion of “closed form”.

Key property: Every holonomic sequence can be specified uniquely
by its recurrence and a finite number of initial values.

When computing with holonomic objects, we use this data rather
than closed form expressions.
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Closure properties:
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Closure properties:

Theorem. Let (an)
∞
n=0 and (bn)

∞
n=0 be holonomic sequences. Then:

I (an + bn)
∞
n=0 is holonomic.

I (anbn)
∞
n=0 is holonomic.

I (an+1)
∞
n=0 is holonomic.

I (
∑n

k=0 ak)
∞
n=0 is holonomic.

I if u, v ∈ Q are positive, then (abun+vc)
∞
n=0 is holonomic.

Recurrence equations for all these sequences can be computed from
given defining equations of (an)

∞
n=0 and (bn)

∞
n=0.
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Closure properties:

Theorem. Let a(x) and b(x) be holonomic power series. Then:

I a(x) + b(x) is holonomic.

I a(x)b(x) is holonomic.

I a′(x) is holonomic.

I
∫ x
0 a(t)dt is holonomic.

I if b(x) is algebraic and b(0) = 0, then a(b(x)) is holonomic.

Differential equations for all these functions can be computed from
given defining equations of a(x) and b(x).
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How?

Example. Let (an) and (bn) be such that

(2n+ 1)an+2 + (n+ 1)an+1 − (3n+ 2)an = 0

(n+ 3)bn+2 − 2(n+ 1)bn+1 + (n+ 8)bn = 0.

Let cn = anbn.

We want to find a recurrence of the form

P4(n) cn+4+P3(n) cn+3+P2(n) cn+2+P1(n) cn+1+P0(n) cn = 0.

18
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Observe:

cn = anbn

cn+1 = an+1bn+1

cn+2 = − (n+8)(3n+2)
(n+3)(2n+1)anbn +

2(3n+2)(n+1)
(n+3)(2n+1) anbn+1

+ (n+8)(n+1)
(n+3)(2n+1)an+1bn − 2(n+1)2

(n+3)(2n+1)an+1bn+1

cn+3 =
(···)
(···)anbn +

(···)
(···)anbn+1 +

(···)
(···)an+1bn +

(···)
(···)an+1bn+1

cn+4 =
(···)
(···)anbn +

(···)
(···)anbn+1 +

(···)
(···)an+1bn +

(···)
(···)an+1bn+1
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Therefore

P4(n) cn+4+P3(n) cn+3+P2(n) cn+2+P1(n) cn+1+P0(n) cn = 0
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Therefore

P4(n) cn+4+P3(n) cn+3+P2(n) cn+2+P1(n) cn+1+P0(n) cn = 0

can be rewritten into

P0(n)anbn

+P1(n)an+1bn+1

+P2(n)
(
− (n+8)(3n+2)

(n+3)(2n+1)anbn +
2(3n+2)(n+1)
(n+3)(2n+1) anbn+1

+ (n+8)(n+1)
(n+3)(2n+1)an+1bn − 2(n+1)2

(n+3)(2n+1)an+1bn+1

)
+P3(n)

(
(···)
(···)anbn +

(···)
(···)anbn+1 +

(···)
(···)an+1bn +

(···)
(···)an+1bn+1

)
+P4(n)

(
(···)
(···)anbn +

(···)
(···)anbn+1 +

(···)
(···)an+1bn +

(···)
(···)an+1bn+1

)
=0
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anbn

(
P0(n)− (n+8)(3n+2)

(n+3)(2n+1)P2(n) + (···)P3(n) + (···)P4(n)
)

+an+1bn

(
(···)P2(n) + (···)P3(n) + (···)P4(n)

)
+anbn+1

(
(···)P2(n) + (···)P3(n) + (···)P4(n)

)
+an+1bn+1

(
P1(n) + (···)P2(n) + (···)P3(n) + (···)P4(n)

)
= 0
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Therefore

P4(n) cn+4+P3(n) cn+3+P2(n) cn+2+P1(n) cn+1+P0(n) cn = 0

can be rewritten into
1 0 − (n+8)(3n+2)

(n+3)(2n+1) (···) (···)
0 0 (···) (···) (···)
0 0 (···) (···) (···)
0 1 (···) (···) (···)



P0(n)
P1(n)
P2(n)
P3(n)
P4(n)

 = 0

We have 5 variables and 4 equations.

⇒ There must be a nontrivial solution.
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Therefore

P4(n) cn+4+P3(n) cn+3+P2(n) cn+2+P1(n) cn+1+P0(n) cn = 0

Here it is:

P0(n) = (n+ 2)(n+ 3)(n+ 8)(n+ 9)(3n+ 2)(3n+ 5)(25n2 + 114n+ 136)

P1(n) = −2(n+ 1)(n+ 3)(n+ 9)(3n+ 5)

× (25n4 + 189n3 + 469n2 + 263n− 176)

P2(n) = −(n+ 2)(275n7 + 554n6 − 16919n5 − 118907n4

− 341694n3 − 497343n2 − 355526n− 95160)

P3(n) = 2(n+ 1)(n+ 3)(n+ 4)(2n+ 3)

× (25n4 + 189n3 + 576n2 + 992n+ 730)

P4(n) = (n+ 1)(n+ 2)(n+ 4)(n+ 5)(2n+ 3)(2n+ 5)(25n2 + 64n+ 47)

20



In general, if (an) satisfies a recurrence of order r and (bn) satisfies
a recurrence of order s, then

anbn, an+1bn+1, an+2bn+2, . . . , an+rsbn+rs

can all be expressed in terms of

anbn an+1bn . . . an+r−1bn
anbn+1 an+1bn+1 . . . an+r−1bn+1

...
...

. . .
...

anbn+s−1 an+1bn+s−1 . . . an+r−1bn+s−1

An ansatz for a recurrence equation of order rs leads to a linear
system with rs + 1 variables and rs equations.

This proves that (anbn) is holonomic.
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The arguments and algorithms for the other operations are similar.

Packages like gfun (for Maple) or GeneratingFunctions.m (for
Mathematica) do this for you.

So what!?

Algorithms for “executing closure properties” are useful for proving
identities among holonomic sequences and power series.

Basic idea: A = B ⇐⇒ A−B = 0

Once we have a recurrence equation for A−B, we can prove by
induction that it is identically zero.

Let’s see two examples.
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︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0
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tions of its building blocks.

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1

︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x) =

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−

︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)

= 0

How to prove this identity? −→ By induction!

Compute a recurrence for the left hand side from the defining equa-
tions of its building blocks.

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1

︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x)

=

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−

︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)
= 0

How to prove this identity? −→ By induction!

Compute a recurrence for the left hand side from the defining equa-
tions of its building blocks.

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1

︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x)

=

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−

︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)
= 0

How to prove this identity? −→ By induction!

Compute a recurrence for the left hand side from the defining equa-
tions of its building blocks.

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1

︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x)

=

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−

︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)
= 0

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1 ︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x)

=

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−

︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)
= 0

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1 ︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x)

=

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−

︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)
= 0

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1 ︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x)

=

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−

︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)
= 0

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1 ︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x)

=

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−

︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)
= 0

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1 ︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x)

=

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)− ︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)
= 0

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1 ︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x)

=

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)− ︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)
= 0

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1 ︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x)

=

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)− ︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)
= 0

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1 ︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x)

=

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)− ︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)
= 0

23



︸ ︷︷ ︸
recurrence of order 7

︸ ︷︷ ︸
recurrence of order 5

n∑
k=0

︸ ︷︷ ︸
recurrence of order 2

︸ ︷︷ ︸
recurrence
of order 1

2k + 1

k + 1

︸ ︷︷ ︸
recurrence
of order 2

P
(1,−1)
k (x)

=

−

︸ ︷︷ ︸
recurrence of order 3

1

1− x

(
2−

︸ ︷︷ ︸
recurrence of order 4

︸ ︷︷ ︸
recurrence
of order 2

Pn(x)−

︸ ︷︷ ︸
recurrence
of order 2

Pn+1(x)
)
= 0

lhsn+7 = (· · ·messy · · · ) lhsn+6

+ (· · ·messy · · · ) lhsn+5

+ (· · ·messy · · · ) lhsn+4

+ (· · ·messy · · · ) lhsn+3

+ (· · ·messy · · · ) lhsn+2

+ (· · ·messy · · · ) lhsn+1

+ (· · ·messy · · · ) lhsn

Therefore the identity holds for all n ∈ N
if and only if it holds for n = 0, 1, 2, . . . , 6.
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This is an identity between power series.

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.

Idea: Compute a recurrence for the series coefficients of LHS−RHS

Then prove by induction that they are all zero.

Then the power series is zero.
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If we write lhs(t) =
∑∞

n=0 lhsn t
n, then

lhsn+4 =
4xy
n+4 lhsn+3+

4(2n−2x2−2y2+5)
n+4 lhsn+2

+ 16xy
n+4 lhsn+1−16(n+1)

n+4 lhsn .

Because of lhs0 = lhs1 = lhs2 = lhs3 = 0, we have lhsn = 0 for
all n.

This completes the proof.
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What about

n∑
k=0

n+ 1

2(k + 1)

(
n+ 1

k

)(
n

k

)
− 2n+ 1

n+ 2

n∑
k=0

(
n

k

)2

= 0

Closure properties algorithms are insufficient for computing
recurrences for the sums, because the summands depend on the
summation bound n.

More advanced algorithms are needed for computing recurrences
for the sums (→ Chyzak’s talk).

But once this is done, closure properties algorithms come in handy
to complete the proof of the identity.

This is typical: closure properties algorithms are most useful in
combination with other tools.
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Summary
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I Holonomic objects are defined implicitly through linear
differential/recurrence equations with polynomial coefficients.

I The defining equation plus some finitely many initial values
are used to store holonomic objects in a computer.

I The class of holonomic objects is closed under addition,
multiplication, and various further operations.

I These closure properties are constructive and are used for
proving identities for holonomic objects with the computer.

I Typically this happens in combination with other (less trivial)
algorithms for summation and integration.
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Holonomic Closure Properties

and Guessing

Manuel Kauers
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Closure properties?

Example: If p(x) and q(x) are polynomials then also p(x) + q(x),
p(x)q(x),

∫
p(x)dx,. . . are polynomials.

We say that the class of polynomial “is closed under addition,
multiplication, integration. . . ”.

Guessing?

Example: 0, 3, 8, 15, 24, 35, 48, 63, 80, 99. What’s next?

Interpolation of the first 5 terms gives n2 − 1, which also happens
to match the next 5 terms. If the pattern continues, the next will
be 120.
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Holonomic?

Definition (discrete case). A sequence (an)
∞
n=0 in a field K is

called holonomic (or P-finite or D-finite or P-recursive) if there
exist polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Definition (“continuous” case). A function f is called holonomic
(or D-finite or P-finite) if there exist polynomials p0, . . . , pr, not all
zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.
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Part B Guessing
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Task: Given the first N terms a0, a1, . . . , aN of an infinite
sequence (an)

∞
n=0, as well as two numbers d, r ∈ N, find all the

recurrence equations

p0(n)an + p1(n)an+1 + · · ·+ pr(n)an+r = 0

with polynomial coefficients pi(n) of degree at most d, satisfied by
the sequence (an)

∞
n=0 (at least) for n = 0, . . . , N − r.

Example. (demo)
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Task: Given the first N terms a0 + a1x+ a2x
2 + · · ·+ aNx

N of a
power series f(x) =

∑∞
n=0 anx

n, as well as two numbers d, r ∈ N,
find all the differential equations

p0(x)f(x) + p1(x)f
′(x) + · · ·+ pr(x)f

(r)(x) = O(xN−r)

with polynomial coefficients pi(x) of degree at most d, satisfied by
the series f(x) (at least) up to order xN−r.

Example. (demo)
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What’s going on behind the curtain?
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What’s going on behind the curtain?

Suppose we are given the following data:

a0 = 1, a5 = 6802,

a1 = 2, a6 = 56190,

a2 = 14, a7 = 470010,

a3 = 106, a8 = 3968310,

a4 = 838, a9 = 33747490.
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What’s going on behind the curtain?

Let’s search for recurrences of order r = 2 and degree d = 1,

(c0,0 + c0,1n)an + (c1,0 + c1,1n)an+1 + (c2,0 + c2,1n)an+2 = 0

for constants ci,j yet to be determined.

We want the recurrence to be true for n = 0, . . . , 7 (at least).

n=0 : (c0,0 + c0,10)1 + (c1,0 + c1,10)2 + (c2,0 + c2,10)14 = 0

n=1 : (c0,0 + c0,11)2 + (c1,0 + c1,11)14 + (c2,0 + c2,11)106 = 0

n=2 : (c0,0 + c0,12)14 + (c1,0 + c1,12)106 + (c2,0 + c2,12)838 = 0

...

n=7 : (c0,0 + c0,17)470010 + (c1,0 + c1,17)3968310

+ (c2,0 + c2,17)33747490 = 0
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(c0,0 + c0,1n)an + (c1,0 + c1,1n)an+1 + (c2,0 + c2,1n)an+2 = 0

for constants ci,j yet to be determined.

We want the recurrence to be true for n = 0, . . . , 7 (at least).

1 0 2 0 14 0
2 2 14 14 106 106
14 28 106 212 838 1676
106 318 838 2514 6802 20406
838 3352 6802 27208 56190 224760
6802 34010 56190 280950 470010 2350050
56190 337140 470010 2820060 3968310 23809860
470010 3290070 3968310 27778170 33747490 236232430




c0,0
c0,1
c1,0
c1,1
c2,0
c2,1

 =


0
0
0
0
0
0



We have 8 equations but only 6 variables.

⇒ There ought to be no solution.
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c0,0
c0,1
c1,0
c1,1
c2,0
c2,1

 =


0
0
0
0
0
0



Unexpected solution: (0, 9,−14,−10, 2, 1).
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What’s going on behind the curtain?

Let’s search for recurrences of order r = 2 and degree d = 1,

(c0,0 + c0,1n)an + (c1,0 + c1,1n)an+1 + (c2,0 + c2,1n)an+2 = 0

for constants ci,j yet to be determined.

We have found that the recurrence

9nan + (−14− 10n) an+1 + (2n+ 1)an+2 = 0,

holds for n = 0, . . . , 7.
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Why should this recurrence hold for n > 7 ?

I A dense overdetermined linear system is very unlikely to have
a nonzero solution.

An underdetermined system
is certain to have solutions.
But these are just “noise.”
To get an overdetermined
system, choose r and d such
that N > (r + 1)(d+ 2).

I If it happens to have one, its coefficients are very unlikely to
have only a few digits.

(569882602384811268121321180079n −
530901107616794661282411766441) an +
(−575908347105430339890032818242n −
649120614815912027225868406121) an+1 +
(−695342431056845112278690590743n −
761582488475444696796352219546)an+2

looks suspicious.

I The recurrence enjoys some arithmetic properties which are
very unlikely to be observed for artefacts.

If we have some further terms, say a10, a11, a12, we can check
whether they match the recurrence to gain further confidence.

However: Without further knowledge about the origin of the
sequence, no finite amount of data will suffice to prove the
correctness of the guess.
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. . . no finite amount of data will suffice to prove the correctness of
the guess.

Then what’s the point?

Guessing is much faster than proving, and practically as reliable.
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Example. A problem by A. Rechnitzer.

Let F (z, q) be a solution of the algebraic equation

(q2 + 1)(q2z − 2qz − q + z)(q2z + 2qz − q + z)z F (z, q)3

− q(q4z2 + 6q2z2 − q2 + z2)F (z, q)2

− 3(q2 + 1)q2z F (z, q)− q3 = 0.

We have

F (z, q) = 1 + (q−1 + q)z + (q−2 + 4 + q2)z2

+ (q−3 + 7q−1 + 7q + q3)z3

+ (q−4 + 12q−2 + 28 + 12q2 + q4)z4 + · · ·

Task: find a differential equation for f(z) := [q0]F (z, q).
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Rigorous approach: Use Chyzak’s algorithm to compute a
differential equation for

f(z) =

∮
1

q
F (z, q) dq.

Good luck. . .

Experimental approach: Calculate the first few hundred terms in
the expansion of f(z), and use them to determine the differential
equation by guessing.

This needs 30sec, including the generation of data.
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Feature: The efficiency of scales well to larger problems, at least if
done properly.

The following tricks can sometimes be used to get a speed-up:

I Trade order against degree

I Use modular arithmetic

I Boot strapping
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If a sequence (an)
∞
n=0 is holonomic, it satisfies not only one

recurrence equation, but infinitely many.

Some are easier to find than others.

Mark a point (r, d) ∈ N2 if there is a
recurrence of order r and degree d.

We can reasonably search for equations
with N > (r + 1)(d+ 2).

Experience: equations with r ≈ d tend to
require the least number N of terms.

The interesting minimal order operator can (with high probability)
be obtained from two different nonminimal operators by taking
their greatest common right divisor as operators.
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Feature: The efficiency of scales well to larger problems, at least if
done properly.

The following tricks can sometimes be used to get a speed-up:

I Trade order against degree

I Use modular arithmetic

I Boot strapping
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Guessing requires solving large dense linear systems.

If this is done naively, it will produce extremely large intermediate
expressions.

A proper implementation will work with homomorphic images:

Q slow ///o/o/o/o/o/o/o/o/o/o

mod p
��

Q

Fp fast // Fp

CRA & RR

OO
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Example: Continuing on the technique described before, . . .

Compute the nonminimal operators only
modulo some primes.

Compute from them the minimal order
operator, also modulo prime.

Do Chinese remaindering only for the
minimal order operators.

This needs much fewer primes than re-
constructing the nonminimal operators.

Modern guessing programs do this automatically for you. (Demo.)

But also the user can sometimes take advantage of modular
computations.
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14734287943773226198 16693159135573847818 2788562657830915054 17719370099115195915

14351987686736218119

15483359934879899009 16119877770365982383 2471600991651671889 5095243575810575316

12472610336651567052

899837740350271794 11946950024840031118 14756123186994554460 11226634917845487051

13567859892950511514

6952192533371026338 13765592352507043696 11362094742791890224 6644727374610071491

3992711139584800062

17697300886138518812 7652266267821078126 16010169456545623593 5224069660619876239

13020528712638715163

14174304902082598370 11862232204708398073 1837996549587781514 1149810384458158270

6569058788386309488

9566720042687775664 6633630390749590552 1873712421652022656 15580979477818358327

7459210887944253892
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34028236692093846084393694896501188688162771017353866806831888684629452509144628567664324934960011157920892373161928122966630878287307901523170735192288537148450756536633034372135987035920910012340807717593254758583661964006908954235666935176520392717928060033632257354599

18446744073709551557 18446744073709551533 18446744073709551521 18446744073709551437 18446744073709551427
0 0 0 0 0
170 170 170 170 170
57125 57125 57125 57125 57125
48268101 48268101 48268101 48268101 48268101
34260690332 34260690332 34260690332 34260690332 34260690332
28950283288564 28950283288564 28950283288564 28950283288564 28950283288564
24602777889341700 24602777889341700 24602777889341700 24602777889341700 24602777889341700
3512004029335396264 3512004029335396288 3512004029335396300 3512004029335396384 3512004029335396394
4636941943446398583 4636941943446424575 4636941943446437571 4636941943446528543 4636941943446539373
16731901151034173887 16731901151058359959 16731901151070452995 16731901151155104247 16731901151165181777
13561571021375624155 13561571044217255635 13561571055638071375 13561571135583781555 13561571145101128005
18327681355361409199 18327703218332822743 18327714149818529515 18327790670218476919 18327799779789899229
14135275161253345008 14156428691527110768 14167005456663993648 14241042812622173808 14249856783569576208
5637819232275028612 7849868848795513175 18179265693910531235 16698067314877451907 6859153945430415570
6637602357189385604 14984004752674089390 710461876706909598 11476126187194330620 18028251197597986227
12482169677218181673 12488827142696955539 12492155875456012980 12515457005136597883 9443773603570734321
13064253343726879423 15658485480684595156 7732229531925667068 7588670477925634811 13281286656044656459
14625225362239686504 10758223940600306782 8824742898598764285 13737486829569602371 15200796479896019943
10738834608406986658 788602827186764443 5056674106894750910 16856311482456444934 17425730095808525587
961106949064586405 12251039281660517429 1050611245293959755 1730796780127391701 635703020769662299
2211804365157896289 15185001070958618575 127308807730230649 2923290836694930836 5446680587098832013
8829591048746708080 10856515003962139665 11318493766728410726 16555821147378467083 2644477152643434420
15009988290858134393 12838284889333222403 8119518874668080973 11805308573535485946 12562094561654048160
7627367407386026140 8420246272424470758 13169248223630974435 16982273330702579648 6264853543132966636
14734287943773226198 16693159135573847818 2788562657830915054 17719370099115195915 14351987686736218119
15483359934879899009 16119877770365982383 2471600991651671889 5095243575810575316 12472610336651567052
899837740350271794 11946950024840031118 14756123186994554460 11226634917845487051 13567859892950511514
6952192533371026338 13765592352507043696 11362094742791890224 6644727374610071491 3992711139584800062
17697300886138518812 7652266267821078126 16010169456545623593 5224069660619876239 13020528712638715163
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0 0 0 0
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48268101 48268101 48268101 48268101
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115792089237316192812296663087828730790152317073519228853714845075653663303437213598703592091001234080771759325475858366196400690895423566693517652039271792806003363225735459918446744073709551557 18446744073709551533 18446744073709551521
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0 0 0
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0 0
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15494275516175484896146558165069374931768650 9443773603570734321
15452119731275448721521690374123048169473745090 13281286656044656459
15492944429910290948927453354128640277129701928270 15200796479896019943
15608195638318139575397871729737310479957231181434400 17425730095808525587
15791696434663015062086294548870131152897244600962599710 635703020769662299
16039042304161558566190267565720083550110055872936313121300 5446680587098832013
16347221676787084843566201114528305144441011394615536628043480 2644477152643434420
16714327636344626391862041955812314792830121148741093212135914440 12562094561654048160
17139356963672793388669217006249699836555901801582671305065963412450 6264853543132966636
17622061542861347959625369356680682135593177881983900768539311826713472 14351987686736218119
18162841216793283422562091421291078521630723657702122424507756283808698700 12472610336651567052
18762665614999822007839830386311098144372506555360938018652662698220539694616 13567859892950511514
85739315027447066623349695032233960274282399822723913455610238505779125926029 3992711139584800062
2064728830981047793411634851943034475673596449669175636454501699351701964789 13020528712638715163
23492476077323556255109014236440192037570229930868243250459695379292868666014 6569058788386309488
111190808983862952620363685720790529707785524738898437692221876477166726606643 7459210887944253892
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3402823669209384608439369489650118868816277101735386680683188868462945250914462856766432493496001115792089237316192812296663087828730790152317073519228853714845075653663303437

2135987035920910012340807717593254758583661964006908954235666935176520392717928060033632257354599
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0
170
57125
48268101
34260690332
28950283288564
24602777889341700
21958748103044947821
19982460773770890734814
18589778412414172744395308
17556405435959384905586216420
16804193264871415986848637912866
16258906633984352510780895055898688
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17139356963672793388669217006249699836555901801582671305065963412450
17622061542861347959625369356680682135593177881983900768539311826713472
18162841216793283422562091421291078521630723657702122424507756283808698700
18762665614999822007839830386311098144372506555360938018652662698220539694616
19423018217659251266276892430699632002229719351100435132025989366139940897600008
20145857126504814155109603745644558012097546254998545662831506345299150654223844360
20933588899934099785719806412698545336726130412328111385454392939736508704575356754888
21789052707980917749010589339181187870108450716708413481060716254608148803460083665644160

46



For computing data using modular computations and Chinese
Remaindering, the number of primes you need is determined by the
longest number in the sample.

These may be many.

The longest number in the guessed recurrence is typically
much shorter.

Idea: Compute your data only modulo a few primes, then guess a
“modular recurrence” for each prime, and then do Chinese
remaindering on the coefficients of the recurrence rather than on
the data sample.

This will typically require much fewer primes in total. (Demo.)
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Feature: The efficiency of scales well to larger problems, at least if
done properly.

The following tricks can sometimes be used to get a speed-up:

I Trade order against degree

I Use modular arithmetic

I Boot strapping
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In many cases, the computation time for guessing is negligible
compared to the cost for generating enough data.

On the other hand, once we have a recurrence, generating data
(almost) for free.

Chicken-egg-problem: In order to find a recurrence, we sometimes
seem to already need to know it.

Boot-strapping sometimes helps to resolve this conflict.
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Example 1: Consider a sequence in four indices, ak,l,m,n.
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Example 1: Consider a sequence in four indices, ak,l,m,n.

Suppose ak,l,m,n is hypergeometric in all four indices, so that we
know four first order recurrence equations

ak+1,l,m,n = rat(k, l,m, n)ak,l,m,n

ak,l+1,m,n = rat(k, l,m, n)ak,l,m,n

ak,l,m+1,n = rat(k, l,m, n)ak,l,m,n

ak,l,m,n+1 = rat(k, l,m, n)ak,l,m,n
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Example 1: Consider a sequence in four indices, ak,l,m,n.

Suppose we want to find a recurrence for the diagonal an,n,n,n.

Calculating an,n,n,n recursively with the given equations requires
O(n4) time and space. We won’t be able to get 1000 terms in
this way.
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Example 1: Consider a sequence in four indices, ak,l,m,n.

Suppose we want to find a recurrence for the diagonal an,n,n,n.

Boot-strapping is more promising:

I First compute an,n,m,m for 0 ≤ n,m ≤ 25, say.

I Use this data to guess bivariate recurrence equations for
bn,m := an,n,m,m

I Use these guessed equations to compute an,n,n,n for
n = 0, . . . , 1000.

I Use this data to guess the recurrence for an,n,n,n.
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Example 2: Another problem from A. Rechnitzer’s collection.

Let F (z, q) be a solution of the algebraic equation

POLY
(
F (z, q), z, q

)
= 0

(where POLY is now too large to fit on this slide.)

We have

F (z, q) = 1 + (q−1 + q)z + (q−2 + 4 + q2)z2 + · · ·

Task: find a differential equation for f(z) := [q0]F (z, q).
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Example 2: Another problem from A. Rechnitzer’s collection.

Computing enough terms in the expansion of F (z, q) with Puiseux’
algorithm is too expensive when q is symbolic.

Boot-Strapping is more promising:

I Compute many terms for q = 1, 2, 3, . . . , 30, say.

I For each q, guess a recurrence for the expansion of F (z, q).

I Reconstruct from these a recurrence for symbolic q.

I Use this recurrence to generate many more terms.

I Pick the q0-coefficient of all of them.

I Use this data for guessing the differential equation.
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Feature: The efficiency of scales well to larger problems, at least if
done properly.

The following tricks can sometimes be used to get a speed-up:

I Trade order against degree

I Use modular arithmetic

I Boot strapping
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Summary
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I Computer algebra can produce rigorous proofs.

I Computer algebra can also produce conjectures.

I Conjectures are typically much cheaper than proofs.

I Computer generated conjectures are almost always true.
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