
Restricted Lattice Walks and
Creative Telescoping

Manuel Kauers
RISC

joint work with

A. Bostan, F. Chyzak, L. Pech, M. van Hoeij (part 1)
and S. Chen (part 2)



Symbolic Combinatorics

= Symbolic Computation

∪∩+ Enumerative Combinatorics

In this talk:

I Lattice Walk Counting

∈ Enumerative Combinatorics

I Creative Telescoping

∈ Symbolic Computation

I And what one has to do with the other

In this session:
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1. The Combinatorics Part.

Enumeration of Restricted Lattice Walks









































Let an,i,j be the number of walks

I starting at (0, 0)

I ending at (i, j)

I consisting of n steps

I never stepping out of the quarter plane.

Example: a5,3,2 = 200.

Let

a(t, x, y) :=
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n=0

∞∑
i,j=0

an,i,jx
iyjtn

be the generating function of an,i,j .

Question: What is a(t, x, y)?
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It immediately implies the recurrence equation
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Observe: resuDuc(u) = 0 for every series c(u).

Therefore: if we can find a differential operator

P = p0(t, x, y) + p1(x, y, t)Dt + p2(t, x, y)D
2
t + · · ·+ pr(t, x, y)D

r
t

and two rational functions Q1, Q2 ∈ Q(t, u, v, x, y) with

P R+DuQ1 +DvQ2 = 0

Note: Knowing P , we can compute a closed form for a(t, x, y).

But: Computing P , Q1, Q2 is quite costly.
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Simplify the problem by setting x = y = 1.

Note: The coefficients of tn in a(t, 1, 1) count the number of walks
with n steps and arbitrary endpoint.

Integration software (e.g., by C. Koutschan) finds the equation

(t+ 1)(2t− 1)(4t+ 1)(8t− 1)t2D3
t a(t, 1, 1)

+ (576t4 + 200t3 − 252t2 − 33t+ 5)D2
t a(t, 1, 1)

+ (288t4 + 22t3 − 117t2 − 12t+ 1)Dta(t, 1, 1)

+ 12(32t3 − 6t2 − 12t− 1)a(t, 1, 1) = 0.

From here follows the final result

a(t, 1, 1) = −1

t

∫
t

16t2+24t−1
(1+4x)5 2F1

(
5/4 5/4

2

∣∣∣ −2t(t+1)(t−1/8)
(t+1/4)4

)
.
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Variation: What happens if we forbid steps into certain directions?

I Different step sets lead to
different generating
functions.

I Different generating
functions have different
algebraic properties.

I Kreweras walks: The
generating function is
algebraic.
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Variation: What happens if we forbid steps into certain directions?

I Different step sets lead to
different generating
functions.

I Different generating
functions have different
algebraic properties.

I Gessel walks: The
generating function is
algebraic.



Variation: What happens if we forbid steps into certain directions?

I Different step sets lead to
different generating
functions.

I Different generating
functions have different
algebraic properties.

I Mishna-Rechnitzer walks:
The generating function is
not D-finite.



Variation: What happens if we forbid steps into certain directions?

I Bousquet-Melou-Mishna classification: We know for every
step set whether the corresponding generating function is
algebraic, D-finite transcendental, or not D-finite

I Our contribution: For the cases where the generating function
is D-finite transcendental, we find an explicit 2F1

representation.
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2. The Computer Algebra Part.

Fine Tuning Creative Telescoping



Creative telescoping. (Differential case, one free variable)

Given: a rational function R(x, y)
Find: a differential operator P , free of y and Dy, and a rational
function Q in x and y such that

P R+DyQ = 0.

I This is called a creative telescoping relation for R.

I The operator P is called its telescoper .

I The rational function Q is called its certificate.

I There are algorithms for computing (P,Q) for given R.
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Question: How to make these algorithms faster?

Where are the degrees of freedom?

The solution (P,Q) is not unique.

Are some solutions cheaper than others?

If so, what is the cheapest?

Every telescoper P has a certain order r and degree d.

Example: For

P = (5x4 − 6x2 + 5x+ 8)D2
x + (9x4 − 10x3 + 4x2 + 8)Dx

+ (8x4 + 10x3 − 8x+ 9)

we have r = 2 and d = 4.
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Question: What is the shape of the gray area?

Answer: We can construct a univariate hyperbola which passes
approximately along the boundary of the area.
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Using this hyperbola, we can choose what we want to compute.

Question: Which point (r, d) is optimal?

Answer: Depends on what you want to optimize. . .

As for computational complexity:

I For small input, the minimal order operator is the cheapest.

I For “industrial size input”, operators of [slightly] nonminimal
order are cheaper.

I For astronomic input, it is most efficient to compute the
operator of order 1

4(1 +
√
17)rmin, where rmin is the size of

the minimal operator.
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3. Conclusion.

Symbolic Computation

+ Enumerative Combinatorics



Combinatorics pushes computer algebra:

I Complicated expressions arising in combinatorics generate a
demand for algorithms for dealing with them.

I If you really want to compute something, these algorithms
should better terminate before your NFS grant.

Computer algebra pushes combinatorics:

I The existence of powerful computational machinery suggests
to rephrase a combinatorial problem as input for them.

I Unexpected output may lead to combinatorial insight or raise
new questions.
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