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Abstract. We describe a simple package for computing a fundamental system of certain
formal series solutions, up to a prescribed order, of a given P-finite recurrence equation.
These solutions can be viewed as describing the asymptotic behavior of sequences satisfying
the recurrence.

1. The Problem

The Mathematica code described below solves the following problem:

• Given a linear recurrence equation of order r with polynomial coefficients (also known
as a P-finite recurrence)

p0(n)an + p1(n)an+1 + · · · + pr(n)an+r = 0,

• Find r linearly independent solutions of the form
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where α, γ, ρ, βi,j are constants, r, s, k are positive integers, and u is a polynomial.

It is well known and not difficult to compute this data [6], and besides our implementation
described below, there are several others which do the same job [7, 1]. The Mathematica code
I programmed a couple of years ago was originally intended for private use only, but over the
time, I have also given copies to other users, and this often raised the question on how to use
the package and how exactly to interpret its output. The purpose of this technical report is
to answer these questions.

A priori, the output is only correct in some formal algebraic sense. But according to Birkhoff
and Trjitzinsky [2], it is also correct analytically in the sense that every sequence (an) sat-
isfying the input recurrence has a linear combination of the output series as its asymptotic
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expansion. This means in particular that we can obtain asymptotic estimates of the form

an = cnγneu(n1/r)ρnnα
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+ · · · + β0,N

nN
+ O

( 1

nN+1

))

+ · · · +
(

1 +
βk−1,1

n
+ · · · + βk−1,N

nN
+ O

( 1

nN+1

))

log(n)k−1
)

(n → ∞)

for any prescribed N and some constant c which can be determined numerically to high
accuracy. Then also

an ∼ cnγneu(n1/r)ρnnα log(n)k−1 (n → ∞)

where an ∼ bn means asymptotic equivalence in the sense that lim
n→∞

an
bn

= 1.

Unlike the “algebraic correctness”, the “analytic correctness” is not easy to show. It should
be remarked that the arguments given by Birkhoff and Trjitzinsky are long and complicated,
and that some people hesitate to believe in them. On concrete examples, however, I have
never observed any mismatch between the actual asymptotic behavior of a solution (an) and
the formal expansions.

An alternative approach, whose underlying analytic theory is more widely accepted but
which would require more programming effort, is to go via the generating function A(z) :=
∑

∞

n=0 anzn of the sequence (an) under consideration. Flajolet and Sedgewick [3] give a com-
prehensive account on the correspondence between the asymptotic behavior of A(z) near its
singularities closest to the origin and the asymptotic behavior of the sequence (an). Salvy’s
Maple package gdev [5] follows this approach.

2. The Package

The package is available for download at the URL

http://www.risc.jku.at/research/combinat/software/

It was written and tested for Mathematica 6 and 7.

Two commands are provided by the package. The first, Asymptotics, takes a recurrence as
input and returns the dominant term of all its (formal) asymptotic solutions.

In[1]:= << Asymptotics.m
Asymptotics Package by Manuel Kauers – c© RISC Linz – V 0.3 (2011-03-31)

In[2]:= Asymptotics[(n + 1)f [n + 2] − (3n + 2)f [n + 1] + (n + 2)f [n], f [n]]

Out[2]=
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For processing this output further, it can at times be more convenient to get it not as an
expression. For this case, we offer the possibility to receive the output in an internal format:

In[3]:= Asymptotics[(n+1)f [n+2]−(3n+2)f [n+1]+(n+2)f [n], f [n], Return → ”internal”]

Out[3]=

{
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√
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√
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In this format, a solution
(n
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is represented in the form
{

γ, {µ1, . . . , µr−1}, ρ, α, {0, β0,1 , . . . }, . . . , {1, βk−1,1, . . . }
}

Here is an example with a logarithmic term:

In[4]:= Asymptotics[(n + 2)f [n + 2] − (2n + 3)f [n + 1] + (n + 1)f [n], f [n]]

Out[4]=
{

1,
1

2n
+ log(n)

}

In[5]:= Asymptotics[(n+2)f [n+2]−(2n+3)f [n+1]+(n+1)f [n], f [n], Return → ”internal”]

Out[5]= {{0, 1, {}, 0, {1}}, {0, 1, {}, 0, {0, 1
2}, {1, 0}}

By default, the command determines only the dominant terms of the solution. If more terms
of the expansion are desired, they can be requested by explicitly specifying the order.

In[6]:= Asymptotics[(n + 1)f [n + 2] − (3n + 2)f [n + 1] + (n + 2)f [n], f [n], Order → 3]

Out[6]=

{
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√
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√
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√
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}

In[7]:= Asymptotics[(n + 1)f [n + 2] − (3n + 2)f [n + 1] + (n + 2)f [n], f [n], Order → 5]

Out[7]=

{
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,
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5

2

)n
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√
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(
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√

5
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√
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5
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}

Often, only the higher order terms of one of the solutions are of interest, or one computes with
big effort the first terms of an expansion and realizes only afterwards that some additional
terms are needed. For these cases, instead of wasting computation time into the computation
of uninteresting data, or into the recomputation of data which is already known, there is the
second command of the package, FurtherTerms, which takes as input one truncated series
solution in the internal format and completes it to a truncated series solution of the specified
order.

In[8]:= sols = Asymptotics[(n + 1)f [n + 2] − (3n + 2)f [n + 1] + (n + 2)f [n], f [n],
Order → 3, Return → ”internal”]

Out[8]=

{

{

0, 3−
√

5
2 , { }, 1+

√

5
2 , {1, 10+

√

5
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√

5
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√

5
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}

,

{

0, 3+
√

5
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√
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5
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√

5
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}

}

In[9]:= FurtherTerms[(n + 1)f [n + 2] − (3n + 2)f [n + 1] + (n + 2)f [n], f [n], sols[[2]],5]

Out[9]=

{

0, 3+
√

5
2 , { }, 1−

√

5
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5
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√

5
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√
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√
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}
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In[10]:= FurtherTerms[(n + 1)f [n + 2] − (3n + 2)f [n + 1] + (n + 2)f [n], f [n], %, 15]

Out[10]=

{

0, 3+
√

5
2 , { }, 1−

√

5
2 , {1, 10−

√

5
10 , 75+22

√

5
120 , 236+107

√

5
240 , 14299+6372

√

5
5760 , 2182610+977941

√

5
288000 ,

1984202199+886596290
√

5
72576000 , 16416301672+7344565027

√

5
145152000 , 18418650257095+8235259190664

√

5
34836480000 ,

191695190194310+85740010937053
√

5
69672960000 , 65957125132720881+29494472549469338

√

5
4180377600000 ,

4129665208154118620+1846942946631003389
√

5
41803776000000 , 183675686643321718887535+82139222334350902866012

√

5
273898340352000000 ,

2686550605050123303910226+1201493204379434008345249
√

5
547796680704000000 ,

252700769952367203719466267+113009100980753634847297058
√

5
6573560168448000000 ,

105657485223696176457683146240+47252117076548673341670250231
√

5
328678008422400000000 }

}

3. The Multiplicative Constant

The sequence solutions of a P-finite recurrence equation

p0(n)an + p1(n)an+1 + · · · + pr(n)an+r = 0

form a vector space of finite dimension. A particular solution (an) can therefore be charac-
terized uniquely by a finite number of initial values a0, a1, . . . , aN . Given such a particular
solution, we may wonder about its asymptotic behavior.

Clearly, if we know r linearly independent asymptotic solutions (b
(1)
n ), . . . , (b

(r)
n ) (e.g., from

the Asymptotics command), then we have

an ∼ c1b
(1)
n + · · · + crb

(r)
n (n → ∞)

for certain constants c1, . . . , cr. In general, these constants cannot be computed in “closed
form”, but it is possible to obtain very accurate numerical approximations to them. Here is
how.

3.1. A Single Dominant Term. First assume for simplicity that the asymptotic solu-

tions (b
(1)
n ), . . . , (b

(r)
n ) are such that one of them asymptotically dominates all the others,

say lim
n→∞

b
(1)
n

nkb
(i)
n

= 0 for all k ∈ N and i = 2, . . . , r. Then the terms (b
(2)
n ), . . . , (b

(r)
n ) are too

small to contribute to the asymptotics and we have in fact

an ∼ c1b
(1)
n (n → ∞),

i.e., there is only a single constant c1 to be determined. Also if finer asymptotic estimates

with higher order terms are considered, only those coming from (b
(1)
n ) will play a role.

In this case, the computation of c1 is easy. Since we have lim
n→∞

b
(1)
n
an

= c1, we can obtain decent

approximations for c1 by computing the quotient b
(1)
n /an for some large index n. The higher

the index n, and the more terms of the asymptotic expansion (b
(1)
n ) are taken into account,

the more digits of the quotient b
(1)
n /an will agree with the digits of the actual constant c1.

In the following typical example session, we define the sequence (an) by two initial values
and a recurrence of second order. This allows to compute an for every specific index n (e.g.,
for n = 50). Next, we determine the dominant terms of the two asymptotic solutions of
the recurrence. The second dominates the first, because the basis of its exponential term is
greater than in the first. Next, we determine 15 terms of the asymptotic expansion. The
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approximate value of the constant is finally obtained by computing the quotient b[n]/a[n] for
large indices n.

In[11]:= a[0] = 1; a[1] = 2; a[n Integer] := a[n] = ((3(n − 2)+2)a[n− 1]− na[n− 2])/(n − 1);
In[12]:= a[50]

Out[12]=
1186544239849910921327361664987469245407040910230707560999458562839

202953993161104429868240025737871154064438329344
In[13]:= Asymptotics[(n + 1)f [n + 2] − (3n + 2)f [n + 1] + (n + 2)f [n], f [n]]

Out[13]=

{

(3 −
√

5

2

)n

n(1+
√

5)/2,
(3 +

√
5

2

)n

n(1−
√

5)/2

}

In[14]:= {N[(3 −
√

5)/2], N[(3 +
√

5)/2]}
Out[14]= {0.381966, 2.61803}
In[15]:= terms = Last[FurtherTerms[(n + 1)f [n + 2] − (3n + 2)f [n + 1] + (n + 2)f [n], f [n],

{0, 3+
√

5
2

, { }, 1−

√

5
2

, {1}}, 15]];

In[16]:= b[n Integer] :=
(

3+
√

5
2

)n
n(1−

√

5)/2Sum[terms[[k + 1]]n−k, {k, 0, 15}];
In[17]:= $RecursionLimit = 105;
In[18]:= N[b[n]/a[n] /. n → 500, 50]

Out[18]= 12.266833273781396098205342055952765464292852811984

In[19]:= N[b[n]/a[n] /. n → 5000, 50]

Out[19]= 12.266833273781396098205342055952770138038305952280

Which of these digits can we trust? It is instructive to compute the quotient for several indices
and see which digits remain fixed. The calculation above strongly suggests that at least the
first 30 digits are OK. The convergence is very quick because 15 terms of the expansion were
taken into account. This means the error decays to zero in speed O(n−16). More terms will
lead to even faster convergence.

The figure below illustrates how for the present example the number of correct decimal digits
(vertical axis) grows with n (horizontal axis) when 15 terms of the expansion are used (left)
and when 30 terms of the expansion are used (right).

2000 4000 6000 8000 10 000 12 000 14 000
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2000 4000 6000 8000 10 000 12 000

20

40

60

80

100

As can be seen from this example, doubling the number of terms in the expansion tends to
double the the accuracy of the estimate, while doubling the evaluation index n will usually
not double the accuracy.

3.2. Several Dominant Terms. When no single term dominates all others, then several
constants have to be determined. Two terms are of the same growth for example when the
exponential parts have the same absolute value (like 2n and (−2)n) or when they differ by
a polynomial multiple (like 2n and n32n; although the latter grows more quickly than the
former, both terms have to be taken into account because the higher order terms of their
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expansions may interfere with each other). Suppose that

an ∼ c1b
(1)
n + · · · + crb

(r)
n (n → ∞)

is such that (b
(1)
n ), . . . , (b

(m)
n ) are such that b

(i)
n

b
(j)
n

= O(nk) for all 1 ≤ i, j ≤ m and some k, and

such that lim
n→∞

b
(1)
n

nkb
(i)
n

= 0 for i = m + 1, . . . , r and all k. Then the first m terms contribute

significantly to the asymptotic behavior of (an), and the contribution of the remaining terms
can be neglected:

an ∼ c1b
(1)
n + · · · + cmb(m)

n (n → ∞)

We have to determine approximations for the constants c1, . . . , cm. This can be done by
solving a suitable system of linear equations, as illustrated in the following typical example
session. In this example, there are two dominant terms: the second and the third. For both
of them, we compute the first 15 terms of the expansion. Then we set up a linear system for
the desired constants c2, c3 and solve it.

In[20]:= ClearAll[a, b];
In[21]:= a[0] = 2; a[1] = −1; a[2] = 7;
In[22]:= a[n Integer] := a[n] = ((40 − 24n + 4n2)a[−3 + n] + (−177 + 120n − 20n2)a[−2 +

n] + (288 − 198n + 33n2)a[−1 + n])/(161 − 108n + 18n2);
In[23]:= a[10]

Out[23]=
215985179409378417

14273864605491407
In[24]:= rec = −4(1+n2)f [n]+(−3+20n2)f [1+n]−3(−3+11n2)f [2+n]+(−1+18n2)f [3+n];
In[25]:= Asymptotics[rec, f [n]]

Out[25]=

{

(1

2

)n
,

(2

3

)n
n(3−

√

71)/6,
(2

3

)n
n(3+

√

71)/6

}

In[26]:= terms2 = Last[FurtherTerms[rec, f [n], {0, 2
3
, {}, 3−

√

71
6

, {1}, 15]];

In[27]:= b2[n Integer] := (2
3
)nn(3−

√

71)/6Sum[terms2[[k + 1]]n−k, {k, 0, 15}];

In[28]:= terms3 = Last[FurtherTerms[rec, f [n], {0, 2
3
, {}, 3+

√

71
6

, {1}, 15]];

In[29]:= b3[n Integer] := (2
3
)nn(3+

√

71)/6Sum[terms3[[k + 1]]n−k, {k, 0, 15}];
In[30]:= $RecursionLimit = 105;
In[31]:= A = N[{b2[n]/a[n], b3[n]/a[n]} /. {{n → 1000}, {n → 2000}}, 50];
In[32]:= LinearSolve[A, {1, 1}]

Out[32]= {391.15187878877879622004978270550757884703178680750,
5.0351128647438169746248587210892143931134296563537}

In[33]:= A = N[{b2[n]/a[n], b3[n]/a[n]} /. {{n → 2000}, {n → 3000}}, 50];
In[34]:= LinearSolve[A, {1, 1}]

Out[34]= {391.15187878877879621999941384812407488923243890678,
5.0351128647438169746248587211162138325823069815638}

The number of correct digits is now less than before, because some accuracy is lost during the
linear system solving. But still, the number of correct digits can be increased by taking into
account more terms of the expansion. The figure blow shows for this example the number of
correct digits in dependence of the evaluation index (n, n + 1000) when 15 (left) or 30 (right)
terms of the expansions are used.
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3.3. When you need more terms than you can compute. The best way of getting an
accurate estimate for the multiplicative constant(s) is to use as many terms of the expansion as
possible. Sometimes, one would like to use even more terms than can be computed explicitly
with reasonable effort. For this situation, there exists a simple way to use higher order
terms without even knowing them explicitly. This is known as Richardson’s convergence
acceleration [4]. The idea is that if

an ∼ c
(

1 +
βk

nk
+

βk+1

nk+1
+ · · ·

)

(n → ∞)

then

a2n ∼ c
(

1 +
βk

2knk
+

βk+1

2k+1nk+1
+ · · ·

)

(n → ∞),

and therefore
2ka2n − an

2k − 1
∼ c

(

1 +
0

nk
+ O(n−(k+1))

)

(n → ∞).

This means that (2ka2n−an

2k
−1

) converges to the same limit as (an), but one order of magnitude

faster. Of course, the scheme can be iterated such as to eliminate several terms at once. Here
is some Mathematica code for doing this.

In[35]:= Richardson[expr , n , k Integer] := Together[
2k(expr /. n → 2n) − expr

2k − 1
];

In[36]:= Richardson[expr , n , {k0 Integer, k1 Integer}] :=
Fold[Richardson[#1, n, #2]&, expr, Range[k0, k1]]

In the following example, we redo the calculation of Section 3.1 by computing only 12 terms
of the expansion explicitly and eliminating three more terms with the command just defined.

In[37]:= ClearAll[a, b];
In[38]:= a[0] = 1; a[1] = 2; a[n Integer] := a[n] = ((3(n − 2)+2)a[n− 1]− na[n− 2])/(n − 1);
In[39]:= terms = Last[FurtherTerms[(n + 1)f [n + 2] − (3n + 2)f [n + 1] + (n + 2)f [n], f [n],

{0, 3+
√

5
2

, { }, 1−

√

5
2

, {1}}, 12]];

In[40]:= b[n Integer] :=
(

3+
√

5
2

)n
n(1−

√

5)/2Sum[terms[[k + 1]]n−k, {k, 0, 12}];
In[41]:= $RecursionLimit = 105;
In[42]:= u[n Integer] = Richardson[b[n]/a[n], n, {13, 15}];
In[43]:= N[u[500],50]

Out[43]= 12.266833273781396098205342055952770138038305952602

4. Possible Issues

• There seems to be a bug related to the construction of logarithmic terms. When a
result is returned, it seems correct, but in some instances, the computation aborts
with an error when it should not. This bug will be fixed in a future version.
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• In some examples, Mathematica has trouble handling algebraic numbers. Typically,
these troubles become more likely for higher order terms. In such situations, it can
help to compute only low order terms first, then to rephrase all Root expressions
in terms of AlgebraicNumber expressions of a common number field, and then to
apply FurtherTerms to this. This is not only more stable but also more efficient.

• Please report other problems to mkauers@risc.jku.at
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