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Abstract

We present guesses, based on intensive computer algebra calculations, for re-
currence equations of the sequences enumerating rook walks in up to twelve
dimensions ending on the main diagonal. Computer proofs can in principle be
constructed for all of them. For the moment, however, these computations are
feasible only for low dimensions. We pose it as a challenge to develop algorithms
which can also certify the correctness of the equations we found for the higher
dimensions.
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1. Introduction

Consider a rook placed on the lower left corner (0, 0) of a chess board. On
how many paths can the rook reach the upper right corner (n, n) if in a single
step it may move an arbitrary number of fields upwards or to the right (but
not downwards or to the left)? For rectangular chess boards of size n×m, the
number of paths is given by the coefficient an,m in the rational series expansion

∞∑
n,m=0

an,mx
nym =

1
1− x

1−x −
y

1−y
.

The case of square chess boards is consequently the diagonal series of this
rational function, which happens to be

∞∑
n=0

an,nx
n =

1
2

+
1− x

2
√

1− 10x+ 9x2
.

Email addresses: mkauers@risc.jku.at (Manuel Kauers), zeilberg@math.rutgers.edu
(Doron Zeilberger)

1Partially supported by the Austrian FWF grant Y464-N18.
2Partially supported by the USA National Science Foundation.

Preprint submitted to Elsevier March 13, 2011



From here, all sorts of information about the numbers an,n can be easily ex-
tracted by means of computer algebra, for instance the initial terms

1, 2, 14, 106, 838, 6802, . . . (A051708),

or the recurrence equation

(n+ 2)an+2,n+2 − (10n+ 14)an+1,n+1 + 9nan,n = 0 (n ≥ 0),

or the asymptotic formula an,n ∼
√

2
πn32n−1 (n → ∞). Computer algebra can

also find the algebraic representation of the diagonal series given the bivariate
rational series as input, so there is altogether no need to do any calculation by
hand.
At a marvelous meeting at Nankai University in August 2010 on the occasion
of the second author’s 60th birthday, Frédéric Chyzak reported that he and his
colleagues had succeeded in doing the analogous computation for 3D [3], i.e.,
they determined the number of paths a rook can take on a 3D chessboard from
(0, 0, 0) to (n, n, n) moving in each step an arbitrary positive integer distance
into one of the three directions, i.e., moving either by (i, 0, 0) or by (0, i, 0) or
by (0, 0, i) for some positive integer i. Denoting now the number of this kind of
walks by an, Martin Erickson, Suren Fernando, and Khang Tran [4] computed
the initial terms

1, 6, 222, 9918, 486924, 25267236, . . . (A144045),

conjectured the recurrence equation

2(2 + n)(3 + n)2(53 + 35n)an+3

− (2 + n)(43362 + 63493n+ 30114n2 + 4655n3)an+2

+ (1 + n)(54864 + 100586n+ 59889n2 + 11305n3)an+1

− 192n2(1 + n)(88 + 35n)an = 0 (n ≥ 0),

and proved asymptotic formula an ∼ 9
√

3
40πn64n (n→∞) using using a powerful

analytical method of Robin Pemantle and Mark C. Wilson [7]. Chyzak and
colleagues obtained a fully rigorous proof of the recurrence, including so-called
certificates which allow for an independent formal verification of the obtained
results. While it is clear in theory that computer algebra is able to obtain
this information, it is remarkable that it is possible to actually carry out these
calculations in practice, because the 3D case requires far more computational
power than the 2D case.
If we don’t insist on a fully rigorous formal verification, the diagonal recurrence
can be obtained with much less effort: it suffices to compute some 25 terms of
the sequence and use automated guessing to find a recurrence which matches
them. This is also how Erickson and colleagues came up with their conjecture.
For recent developments and references to classical versions of automated guess-
ing, see [2, 5]. For the present paper we applied this technique to empirically

2



find recurrence equations for rook paths in dimensions greater than three, and
we pose it as a challenge to provide rigorous certificates for them. While at
least for the very high dimensions this seems totally hopeless for now, we do
expect that the coming years (or decades?) will see not only faster and big-
ger computers but also more advanced algorithms which can certify our claims
within a reasonable amount of computing time. At least we intend to encour-
age progress in the development of more efficient algorithms. We see no other
reason to ask for a certification. The question cannot be whether our claims are
correct—the empirical evidence is way too strong to leave any reasonable doubt
about that. Nor can the question be whether there actually exist certificates
for our claims—it is clear by theory that recurrences of diagonal sequences of
multivariate rational series can always be certified. Nor can the question be
whether a proof may provide some insight or understanding—certificates are
usually just messy polynomials. The interesting questions instead are: how big
are the certificates, what is the computational cost for constructing them, and
which techniques can be used to minimize the computational cost.

2. An Alternative Route for Turning our Semi-rigorous proofs to Full-
Fledged Rigorous Proofs

We know a priori that there is a recurrence, this follows from general holonomic
nonsense. But by the work of Moa Apagodu and Zeilberger [1] one can derive
a priori upper bounds for the promised recurrences. The recurrences for d-
dimensional rook walks turn out (empirically) to have order d (for 2 ≤ d ≤ 12).
It is very possible that it won’t be too hard to prove this sharp upper bound in
general, or even a weaker—but still realistic—one. This may enable one to give
a “soft” proof that the empirically “guessed” recurrences are indeed rigorously
proved.
If one would be able to find (realistic!) a priori bounds for the degrees of the
coefficients as well, then by plain linear algebra the “guessed” recurrences would
be rigorously proved.

3. A short interlude: Why is this problem So important?

The harsh and/or sceptical critic may say: Who cares? Not that many people
(or machines) play 12-dimensional chess, and even the vast majority of the
many people that do play traditional 2D, 8 × 8 chess, couldn’t care less about
the number of ways a rook can walk.
But everyone owes money, and usually to many creditors! The number of ways
a rook can walk, in the d-dimensional cubic lattice, from the origin to [n, . . . , n]
is also the number of ways of repaying all your creditors if you currently owe
n dollars to each of d different creditors, and a single payment consists of pay-
ing any positive amount of dollars (up to the whole debt) to any one of your
creditors. Now this is a very practical problem.
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4. Fast Computation of Sufficiently Many Sequence Terms

As the dimension increases, so does the order of the diagonal recurrence and the
degree of the polynomials appearing in it. The larger a recurrence is in terms
of order and degree, the more sequence terms are needed to recover it from
sequence data. For instance, in dimension d = 12, we needed 1600 diagonal
terms in order to find the recurrence. To modern guessing software (we used
code written by the first author [6]), this is still a moderate problem size. Much
harder than guessing the recurrence is the computation of sufficiently many
terms on the diagonals, which are needed as input for the guesser. The naive
way is to start from the rational function

p(x1, . . . , xd)
q(x1, . . . , xd)

=
1

1− x1
1−x1

− x2
1−x2

− · · · − xd

1−xd

=
∞∑

n1,...,nd=0

an1,...,nd
xn1

1 · · ·x
nd

d .

Its denominator q(x1, . . . , xd) gives rise to a multivariate linear recurrence with
constant coefficients, which can be used to compute the an1,...,nd

recursively.
For example, for d = 2, the rational function

1
1− x

1−x −
y

1−y
=

(x− 1)(y − 1)
1− 2x− 2y + 3xy

implies the recurrence

3an,m − 2an+1,m − 2an,m+1 + an+1,m+1 = 0.

Together with suitable boundary conditions, this allows the computation of an,m
for arbitrary n,m, and hence for an,n for arbitrary n.
But this is very costly. In dimension d, in order to compute the nth diag-
onal term, the recurrence forces us to compute all terms an1,...,nd

with 0 ≤
n1, . . . , nd ≤ n, altogether more than nd terms. If n = 1000, a computer won’t
mind doing this for d = 2, but for d = 3 it is already getting painful, and for
d > 3 either the memory requirements will exceed the computer’s capacity or
the runtime will exceed the user’s patience. Or both. For d ≥ 10 the naive
method will not even suffice for computing the first n = 10 diagonal terms
within a reasonable amount of time.
Of course, once we know a linear recurrence for the diagonal, we can compute
the terms on the diagonal very efficiently. But this is of little use: if we knew
linear recurrences for the diagonals already, we would not need to compute them.
Fortunately, there are other recurrence equations, which are both efficient and
easy to find. For arbitrary dimension d, we have

ndan1,...,nd−2,nd−1,nd
= (nd−1 − 1)an1,...,nd−2,nd−1−1,nd−1

+ (nd−1 + 1)an1,...,nd−2,nd−1+1,nd−1

+ (2− nd)an1,...,nd−2,nd−1,nd−2

+ (2nd − 2nd−1 − 2)an1,...,nd−2,nd−1,nd−1.
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The recurrence was discovered by multivariate automated guessing, and, once
found, is easily proved in general. The key feature of this recurrence is that
it leaves the indices n1, . . . , nd−2 fixed, increases nd−1 and decreases nd. This
special form breaks the exponential complexity. It is not difficult to show that
computing the first n diagonal terms via this recurrence requires only O(n2d3)
operations. For d ≤ 7, this method was efficient enough to produce enough
terms to obtain the recurrence for the diagonal.
For d ≥ 8, an additional improvement was needed. Here instead of directly
computing the terms on the main diagonal, we first used the previous method
for computing the terms of the bivariate auxiliary sequence

bn,m := an,...,n,m,

up to n,m ≤ 200 or so. Then we used a multivariate guesser to discover some
bivariate recurrences in n and m for bn,m and used these to compute the diagonal
terms bn,n = an,...,n,n for n as far as needed.

5. Recurrence Equations

Most of the recurrences we found are too big to be reproduced here. We make
them available online at

http://www.risc.jku.at/people/mkauers/walks/.

Here we only give a table with some statistics on their order, the maximal degree
of their polynomial coefficients, and the length of the longest integer appearing
in them, measured in decimal digits (dd). The computation of this data took
several weeks on a machine with eight processors and 32Gb of memory.

dim ord deg maxint OEIS tag comment

2 2 1 2 dd A051708 easy

3 3 4 6 dd A144045 Chyzak et al.’s result

4 4 9 12 dd A181749

5 5 18 31 dd A181750

6 6 31 51 dd A181751

7 7 50 94 dd A181752

8 8 75 149 dd A181754

9 9 108 236 dd A181725

10 10 149 306 dd A181726

11 11 200 462 dd A181727

12 12 261 609 dd A181728
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6. Queens

We have also computed recurrences for the analogous problem of Queen walks,
but so far we were only able to go up to dimension 5. The relevant output can
be found in the above-mentioned webpage.

7. Higher Order Asymptotics

The leading-term asymptotics for diagonals of rook walks has been derived by
Ericson et al. [4] using the powerful analytic method of Pemantle and Wilson [7].
It turns out to be

√
αd(nπ)(1−d)/2(d+ 1)dn (n→∞),

where αd is given by

αd =
dd+2

(d+ 2)d−1(d+ 1)22d−1
.

This result matches well with the numbers produced by the recurrences we
discovered. For instance, for d = 12 and n = 500000 we find

√
αd(nπ)(1−d)/2(d+ 1)dn

A181728(n)
= 1.0000020411 . . .

And this not all. Thanks to the Maple package AsyRec available from

http://www.math.rutgers.edu/~zeilberg/tokhniot/AsyRec

(see [8]) one can very easily get higher-order asymptotics from the recurrences,
using the Birkhoff-Trjitznisky method.
The order-10 asymptotic formulas for the sequences for 2 ≤ d ≤ 9 can be gotten
from

http://www.math.rutgers.edu/~zeilberg/tokhniot/oRookAsymptotics

which is based on the input file

http://www.math.rutgers.edu/~zeilberg/tokhniot/inRookAsymptotics

which uses AsyRec and of course, the recurrences obtained by the first-named
author’s computer.
A cross check with d = 12 and n = 500000 now yields the very convincing
quotient
√
αd(nπ)(1−d)/2((d+ 1)d)n(1 + � 1

n + � 1
n2 + · · ·+ � 1

n10 )
A181728(n)

= 0.999999999999999999999999999999999999999999999999999999999999999963446 . . .
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where the � symbol suppresses some explicit rational numbers which are too
lengthy to be reproduced here but which can be also found on the website above.
And this is still not all. By looking at the output of AsyRec for the sequences
for specific d, it appears that we have the more refined asymptotic expression for
the number of rook-walks from [0d] to [nd] for fixed, but arbitrary (symbolic!) d

√
αd(nπ)(1−d)/2(d+ 1)dn

×
(

1− (d−1)(d+1)(d3+6d2+18d+12)
12d(d+2)3 · 1

n

+ (d−1)(d+1)2(d8+11d7+60d6+168d5−108d4−564d3−1632d2−1584d−576)
288d3(d+2)6 · 1

n2

+ O(
1
n3

)
)

.

We leave the rigorous proof of this as another challenge to the reader.

8. Fixed n, variable dimension

Let wn(d) be the number of ways a rook can positively walk from [0d] to [nd].
So far, we fixed d and let n vary. But what if we fix n and let d vary? Of course
w0(d) ≡ 1 and w1(d) = d!, Sloane’s A000142. The sequence w2(d) is of more
recent vintage, it is Bob Proctor’s sequence A105749. But a search on Nov. 19,
2010, did not find w3(d) in Sloane, or elsewhere.
The Maple package RookWalks available from

http://www.math.rutgers.edu/~zeilberg/tokhniot/RookWalks

handles these sequences, and the webpage

http://www.math.rutgers.edu/~zeilberg/tokhniot/oRookWalks

lists the first 150 terms of wn(d) for 1 ≤ n ≤ 4, as well as guessed recurrences
and implied asymptotics. The asymptotic formulas for the individual n (for
1 ≤ n ≤ 4) lead one to conjecture that the leading asymptotics for wn(d) as
d→∞ is

en−1 (nd)!
n!d

(
1 + O(

1
d

)
)

.

We leave the rigorous proof of this as yet another challenge to the reader.
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