Inequalities

Manuel Kauers
RISC-Linz
I. What?

II. How?

III. Why?
I. What?

II. How?

III. Why?
THE AMERICAN MATHEMATICAL MONTHLY
Volume 113, Number 1 January 2006

Andrew Granville John W. Hagood Brian S. Thomson
Greg Martin Recovering a Function from a Dini Derivative
Marc Frantz Some Graphical Solutions of the Kepler Problem

NOTES
Henry Cohn A Short Proof of the Simple Continued Fraction Expansion of e
Thomas J. Östler A Proof of the Continued Fraction Expansion of \(e^{1/m} \)
Xionping Dai Continuous Differentiability of Solutions of ODEs with Respect to Initial Conditions
Stephen Boyd Fastest Mixing Markov Chain on a Path
Peru Dacorogna
Jun Sun
Lin Xiao

THE EVOLUTION OF...
Pavel Streit

PROBLEMS AND SOLUTIONS

REVIEWS
Charles Radin

The Pursuit of Perfect Packing
By Tomaso Aste and Denis Weaire.
Kepler's Conjecture.
By George G. Szpiro.

Complexities: Women in Mathematics
Edited by Bettye Anne Case and Anne M. Leggett.

AN OFFICIAL PUBLICATION OF THE MATHEMATICAL ASSOCIATION OF AMERICA
Some Recent Monthly Problems
11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let $a, b,$ and c be the side-lengths of a triangle, and let $f(x, y, z) = xy(y + z - 2x)(y + z - x)^2$. Prove that

$$f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.$$
Some Recent Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b, \text{ and } c$, let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a + b + c = x + y + z$ and $abc = xyz$. Show that if $\max\{x, y, z\} \geq \max\{a, b, c\}$ then $\min\{x, y, z\} \geq \min\{a, b, c\}$.
Claims
Each of these problems can be solved by just typing one or two commands into a computer algebra system.
Claims

- Each of these problems can be solved by just typing one or two commands into a computer algebra system.
- The computation time is no more than a few seconds per problem (not counting the time for typing the commands).
Claims

- Each of these problems can be solved by just typing one or two commands into a computer algebra system.
- The computation time is no more than a few seconds per problem (not counting the time for typing the commands).
- The algorithm is not easy to program, but easy to apply.
Claims

- Each of these problems can be solved by just typing one or two commands into a computer algebra system.
- The computation time is no more than a few seconds per problem (not counting the time for typing the commands).
- The algorithm is not easy to program, but easy to apply.
- Its applicability extends far beyond Monthly problems.
Claims

- Each of these problems can be solved by just typing one or two commands into a computer algebra system.
- The computation time is no more than a few seconds per problem (not counting the time for typing the commands).
- The algorithm is not easy to program, but easy to apply.
- Its applicability extends far beyond Monthly problems.
- It is not as widely known as it deserves.
Cylindrical Algebraic Decomposition (CAD)
Cylindrical Algebraic Decomposition (CAD)

- invented by George E. Collins in 1975.
Cylindrical Algebraic Decomposition (CAD)

- invented by George E. Collins in 1975.
- improved by H. Hong, C. Brown, S. McCallum, and others.
Cylindrical Algebraic Decomposition (CAD)

- invented by George E. Collins in 1975.
- improved by H. Hong, C. Brown, S. McCallum, and others.
- implemented by A. Strzebonski in Mathematica (e.g.).
Cylindrical Algebraic Decomposition (CAD)

- invented by George E. Collins in 1975.
- improved by H. Hong, C. Brown, S. McCallum, and others.
- implemented by A. Strzebonski in Mathematica (e.g.).
- applied by many different people in many different areas.
Cylindrical Algebraic Decomposition (CAD)

- invented by George E. Collins in 1975.
- improved by H. Hong, C. Brown, S. McCallum, and others.
- implemented by A. Strzebonski in Mathematica (e.g.).
- applied by many different people in many different areas.
- promoted by MK for your consideration.
Cylindrical Algebraic Decomposition (CAD)
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which
- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which
 ▶ is provably equivalent to the system given as input, and
 ▶ has a nice structural property which allows for answering a
 variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Clarifying Some Notions
A **polynomial inequality** is an expression of the form

\[f(x_1, x_2, \ldots, x_n) \diamond g(x_1, x_2, \ldots, x_n) \]

where

- \(\diamond \) is one of \(=, \neq, <, >, \leq, \geq \)
- \(f \) and \(g \) are polynomials in \(x_1, x_2, \ldots, x_n \) with coefficients in \(\mathbb{Q} \).
A **polynomial inequality** is an expression of the form

\[f(x_1, x_2, \ldots, x_n) \diamond g(x_1, x_2, \ldots, x_n) \]

where

- \(\diamond \) is one of \(=, \neq, <, >, \leq, \geq \)
- \(f \) and \(g \) are polynomials in \(x_1, x_2, \ldots, x_n \) with coefficients in \(\mathbb{Q} \).
- More generally \(f \) and \(g \) may be algebraic functions in \(x_1, \ldots, x_n \) defined by annihilating polynomials in \(x_1, \ldots, x_n, Y \) with coefficients in \(\mathbb{Q} \).
A **polynomial inequality** is an expression of the form

\[f(x_1, x_2, \ldots, x_n) \diamond g(x_1, x_2, \ldots, x_n) \]

where

- \(\diamond \) is one of \(=, \neq, <, >, \leq, \geq \)
- \(f \) and \(g \) are polynomials in \(x_1, x_2, \ldots, x_n \) with coefficients in \(\mathbb{Q} \).
- More generally, \(f \) and \(g \) may be algebraic functions in \(x_1, \ldots, x_n \) defined by annihilating polynomials in \(x_1, \ldots, x_n, Y \) with coefficients in \(\mathbb{Q} \).

Examples: \(x > 0, \ x^2 + y^2 < 1, \ \sqrt{1 - x^2} < \frac{3}{\sqrt{y}} \)
Clarifying Some Notions

A **system** is a formula of propositional logic with polynomial inequalities as atoms.
A **system** is a formula of propositional logic with polynomial inequalities as atoms.

Examples:

\((-1 \leq x \land y \leq 1) \Rightarrow (x + y)^2 > \frac{1}{2} \lor x \neq y,\
(x \geq 0 \land y \geq x \land z \geq x) \Rightarrow x^2 + y^2 + z^2 \geq 0.\)
A **system** is a formula of propositional logic with polynomial inequalities as atoms.

Examples:

\[(-1 \leq x \land y \leq 1) \Rightarrow (x + y)^2 > \frac{1}{2} \lor x \neq y, \]
\[(x \geq 0 \land y \geq x \land z \geq x) \Rightarrow x^2 + y^2 + z^2 \geq 0. \]

Examples involving shorthand notation:

\[|x| \leq 1 \]
\[1 \leq \max\{x, y\} \leq x^2 + y^2 \]
A **system** is a formula of propositional logic with polynomial inequalities as atoms.

Examples:

\[-1 \leq x \land y \leq 1 \Rightarrow (x + y)^2 > \frac{1}{2} \lor x \neq y,\]

\[(x \geq 0 \land y \geq x \land z \geq x) \Rightarrow x^2 + y^2 + z^2 \geq 0.\]

Examples involving shorthand notation:

\[|x| \leq 1 \quad \iff \quad x \geq -1 \land x \leq 1\]

\[1 \leq \max\{x, y\} \leq x^2 + y^2 \quad \iff \quad x \geq y \land \left(1 \leq x \land x \leq x^2 + y^2\right) \lor x < y \land \left(1 \leq y \land y \leq x^2 + y^2\right)\]
Clarifying Some Notions

“over the reals” means that we regard the variables x_1, x_2, \ldots, x_n as variables ranging over \mathbb{R}.
Clarifying Some Notions

“over the reals” means that we regard the variables x_1, x_2, \ldots, x_n as variables ranging over \mathbb{R}.

Examples:
The formula $x^2 + 1 = 0$ is always false.
The formula $x^2 - 2 = 0$ may be true or false.
The formula $x^2 \geq 0$ is always true.
Clarifying Some Notions

Two systems $\Phi(x_1, \ldots, x_n)$ and $\Psi(x_1, \ldots, x_n)$ are equivalent if

$$\forall x_1, x_2, \ldots, x_n \in \mathbb{R} : \Phi(x_1, \ldots, x_n) \iff \Psi(x_1, \ldots, x_n)$$

is true.
Clarifying Some Notions

Two systems $\Phi(x_1, \ldots, x_n)$ and $\Psi(x_1, \ldots, x_n)$ are equivalent if

$$\forall x_1, x_2, \ldots, x_n \in \mathbb{R} : \Phi(x_1, \ldots, x_n) \iff \Psi(x_1, \ldots, x_n)$$

is true.

Examples:

- $x^2 < 1$ and $-1 < x \land x < 1$ are equivalent.
- $x^2 + y^2 + z^2 < 0$ and false are equivalent.
- $x^2 + y^2 + z^2 \geq 0$ and true are equivalent.
Geometric Interpretation

At a specific point \((x_1, \ldots, x_n) \in \mathbb{R}^n\), a system of polynomial inequalities becomes either true or false.
Geometric Interpretation

At a specific point \((x_1, \ldots, x_n) \in \mathbb{R}^n\), a system of polynomial inequalities becomes either true or false.

To every system of polynomial inequalities, we can associate the set of all points \((x_1, \ldots, x_n) \in \mathbb{R}^n\) where the system is true.
Geometric Interpretation

At a specific point \((x_1, \ldots, x_n) \in \mathbb{R}^n\), a system of polynomial inequalities becomes either true or false.

To every system of polynomial inequalities, we can associate the set of all points \((x_1, \ldots, x_n) \in \mathbb{R}^n\) where the system is true.

Example:
\[(x - 1)(y - 1) > 1 \land x^2 + y^2 < 1\]
Geometric Interpretation

At a specific point \((x_1, \ldots, x_n) \in \mathbb{R}^n\), a system of polynomial inequalities becomes either true or false.

To every system of polynomial inequalities, we can associate the set of all points \((x_1, \ldots, x_n) \in \mathbb{R}^n\) where the system is true.

Example:
\((x - 1)(y - 1) > 1 \land x^2 + y^2 < 1\)
Geometric Interpretation

At a specific point \((x_1, \ldots, x_n) \in \mathbb{R}^n\), a system of polynomial inequalities becomes either true or false.

To every system of polynomial inequalities, we can associate the set of all points \((x_1, \ldots, x_n) \in \mathbb{R}^n\) where the system is true.

Example:
\[(x - 1)(y - 1) > 1 \land x^2 + y^2 < 1\]

Sets defined by systems of polynomial inequalities are called **semialgebraic sets.**
Geometric Interpretation

At a specific point \((x_1, \ldots, x_n) \in \mathbb{R}^n\), a system of polynomial inequalities becomes either true or false.

To every system of polynomial inequalities, we can associate the set of all points \((x_1, \ldots, x_n) \in \mathbb{R}^n\) where the system is true.

Example:
\[(x - 1)(y - 1) > 1 \land x^2 + y^2 < 1\]

Sets defined by systems of polynomial inequalities are called **semialgebraic sets**.

“Given a semialgebraic set” means “given a defining system of polynomial inequalities”.

Some Questions that CAD can Answer
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
- determine a tight bounding box of a given bounded s.alg. set
Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
- determine a tight bounding box of a given bounded s.alg. set
- determine the connected components of a given s.alg. set
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

▶ decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
▶ decide whether or not a given s.alg. sets is contained in another one
▶ determine the (topologic) dimension of a given s.alg. set
▶ determine a sample point of a given nonempty s.alg. set
▶ determine the number of points of a given finite s.alg. set
▶ determine a tight bounding box of a given bounded s.alg. set
▶ determine the connected components of a given s.alg. set
▶ determine the boundary, the closure, or the interior of a given s.alg. set
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
- decide whether a given system is universal
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
- decide whether a given system is universal
- decide whether a given system implies another one
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
- decide whether a given system is universal
- decide whether a given system implies another one
- determine a certificate point for a given satisfiable system
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
- decide whether a given system is universal
- decide whether a given system implies another one
- determine a certificate point for a given satisfiable system
- determine the s.alg. set of all points \((x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}\) such that there exists a number \(x_n \in \mathbb{R}\) where a given system is true at \((x_1, \ldots, x_{n-1}, x_n)\)
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
- decide whether a given system is universal
- decide whether a given system implies another one
- determine a certificate point for a given satisfiable system
- determine the s.alg. set of all points \((x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}\) such that there exists a number \(x_n \in \mathbb{R}\) where a given system is true at \((x_1, \ldots, x_{n-1}, x_n)\)
- determine the s.alg. set of all points \((x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}\) such that for all numbers \(x_n \in \mathbb{R}\), a given system is true at \((x_1, \ldots, x_{n-1}, x_n)\).
Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
- decide whether a given system is universal
- decide whether a given system implies another one
- determine a certificate point for a given satisfiable system
- determine the s.alg. set of all points \((x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}\) such that there exists a number \(x_n \in \mathbb{R}\) where a given system is true at \((x_1, \ldots, x_{n-1}, x_n)\)
- determine the s.alg. set of all points \((x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}\) such that for all numbers \(x_n \in \mathbb{R}\), a given system is true at \((x_1, \ldots, x_{n-1}, x_n)\).
Back to the Monthly Problems
11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a + b + c = x + y + z$ and $abc = xyz$. Show that if $\max\{x, y, z\} \geq \max\{a, b, c\}$ then $\min\{x, y, z\} \geq \min\{a, b, c\}$.
11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a + b + c = x + y + z$ and $abc = xyz$. Show that if $\max\{x, y, z\} \geq \max\{a, b, c\}$ then $\min\{x, y, z\} \geq \min\{a, b, c\}$.

Because of symmetry, we may assume

$$a \geq b \geq c > 0 \text{ and } x \geq y \geq z > 0.$$
Back to the Monthly Problems

11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a + b + c = x + y + z$ and $abc = xyz$. Show that if $\max\{x, y, z\} \geq \max\{a, b, c\}$ then $\min\{x, y, z\} \geq \min\{a, b, c\}$.

Because of symmetry, we may assume

$$a \geq b \geq c > 0 \text{ and } x \geq y \geq z > 0.$$

Then

$$\max\{x, y, z\} = x, \quad \max\{a, b, c\} = a,$$

$$\min\{x, y, z\} = z, \quad \max\{a, b, c\} = c.$$
11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a + b + c = x + y + z$ and $abc = xyz$. Show that if $\max\{x, y, z\} \geq \max\{a, b, c\}$ then $\min\{x, y, z\} \geq \min\{a, b, c\}$.

To do: prove

$$\forall \ a, b, c, x, y, z : (a \geq b \geq c > 0 \land x \geq y \geq z > 0$$
$$\land a + b + c = x + y + z \land abc = xyz \land x \geq a)$$
$$\Rightarrow z \geq c.$$
11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let \(a, b, c, x, y, z \) be positive numbers such that \(a + b + c = x + y + z \) and \(abc = xyz \). Show that if \(\max\{x, y, z\} \geq \max\{a, b, c\} \) then \(\min\{x, y, z\} \geq \min\{a, b, c\} \).

To do: prove

\[\forall a, b, c, x, y, z : (a \geq b \geq c > 0 \land x \geq y \geq z > 0 \land a + b + c = x + y + z \land abc = xyz \land x \geq a) \Rightarrow z \geq c. \]

CAD can do that.
11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let \(a, b,\) and \(c\) be the side-lengths of a triangle, and let \(f(x, y, z) = xy(y + z - 2x)(y + z - x)^2.\) Prove that

\[f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.\]
11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let $a, b,$ and c be the side-lengths of a triangle, and let $f(x, y, z) = xy(y + z - 2x)(y + z - x)^2$. Prove that

$$f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.$$

For geometric reasons, we have

$$a + b \geq c \geq 0$$
$$a + c \geq b \geq 0$$
$$b + c \geq a \geq 0.$$
11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let a, b, and c be the side-lengths of a triangle, and let $f(x, y, z) = xy(y + z - 2x)(y + z - x)^2$. Prove that

$$f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.$$

To do: prove

$$\forall a, b, c : (a + b \geq c \geq 0 \land a + c \geq b \geq 0 \land b + c \geq a \geq 0) \Rightarrow f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.$$
11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let $a, b,$ and c be the side-lengths of a triangle, and let $f(x, y, z) = xy(y + z - 2x)(y + z - x)^2$. Prove that

$$f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.$$

To do: prove

$$\forall a, b, c : (a + b \geq c \geq 0 \land a + c \geq b \geq 0 \land b + c \geq a \geq 0)$$

$$\Rightarrow f(a, b, c) + f(b, c, a) + f(c, a, b) \geq 0.$$

CAD can do that.
Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.

Back to the Monthly Problems
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b,$ and c, let

\[E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}. \]

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b,$ and c, let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b,$ and c, let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b,$ and $c,$ let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples $(a, b, c),$ other than $(2, 2, 2),$ at which $abc = a + b + c + 2.$
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b,$ and c, let

$$E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b, \text{ and } c$, let

$$E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive \(a, b, \) and \(c, \) let

\[
E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.
\]

Find the minimum value of \(E(a, b, c) \) on the set \(D \) consisting of all positive triples \((a, b, c), \) other than \((2, 2, 2), \) at which \(abc = a + b + c + 2. \)
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b, \text{ and } c$, let

$$ E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}. $$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b,$ and $c,$ let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples $(a, b, c),$ other than $(2, 2, 2),$ at which $abc = a + b + c + 2.$
11297. Proposed by Marian Tetiva, Bârlad, Romania. For positive $a, b,$ and c, let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b,$ and c, let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.

Back to the Monthly Problems
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b, \text{ and } c$, let

$$E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11297. *Proposed by Marian Tetiva, Bîrlad, Romania.* For positive $a, b, \text{ and } c$, let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.

\[
\]
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b,$ and c, let

$$E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive \(a, b,\) and \(c,\) let

\[
E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.
\]

Find the minimum value of \(E(a, b, c)\) on the set \(D\) consisting of all positive triples \((a, b, c),\) other than \((2, 2, 2),\) at which \(abc = a + b + c + 2.\)
11297. *Proposed by Marian Tetiva, Bîrlad, Romania.* For positive $a, b,$ and $c,$ let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples $(a, b, c),$ other than $(2, 2, 2),$ at which $abc = a + b + c + 2.$
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive \(a, b,\) and \(c,\) let

\[
E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.
\]

Find the minimum value of \(E(a, b, c)\) on the set \(D\) consisting of all positive triples \((a, b, c),\) other than \((2, 2, 2),\) at which \(abc = a + b + c + 2.\)
Proposed by Marian Tetiva, Bîrlad, Romania. For positive \(a, b,\) and \(c,\) let

\[
E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.
\]

Find the minimum value of \(E(a, b, c)\) on the set \(D\) consisting of all positive triples \((a, b, c),\) other than \((2, 2, 2),\) at which \(abc = a + b + c + 2.\)
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b, \text{ and } c$, let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b, \text{ and } c$, let

$$E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b, $ and c, let

$$E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive \(a, b,\) and \(c,\) let

\[
E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.
\]

Find the minimum value of \(E(a, b, c)\) on the set \(D\) consisting of all positive triples \((a, b, c),\) other than \((2, 2, 2),\) at which \(abc = a + b + c + 2.\)
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive \(a, b, \) and \(c, \) let
\[
E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.
\]

Find the minimum value of \(E(a, b, c) \) on the set \(D \) consisting of all positive triples \((a, b, c)\), other than \((2, 2, 2)\), at which \(abc = a + b + c + 2 \).

Todo: find all \(e \) with
\[
\exists a, b, c : a > 0 \land b > 0 \land c > 0 \land abc = a + b + c + 2
\]
\[
\land e = \frac{a^2 b^2 c^2 - 64}{(a+1)(b+1)(c+1)-27}.
\]
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive \(a, b, \) and \(c, \) let

\[
E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.
\]

Find the minimum value of \(E(a, b, c) \) on the set \(D \) consisting of all positive triples \((a, b, c), \) other than \((2, 2, 2), \) at which \(abc = a + b + c + 2. \)

Todo: find all \(e \) with

\[
\exists a, b, c : a > 0 \land b > 0 \land c > 0 \land abc = a + b + c + 2
\]

\[
\land e = \frac{a^2 b^2 c^2 - 64}{(a+1)(b+1)(c+1)-27}.
\]
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b,$ and c, let

$$E(a, b, c) = \frac{a^2b^2c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2, 2, 2)$, at which $abc = a + b + c + 2$.

CAD can do that.
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive \(a, b, \) and \(c, \) let

\[
E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.
\]

Find the minimum value of \(E(a, b, c) \) on the set \(D \) consisting of all positive triples \((a, b, c), \) other than \((2, 2, 2), \) at which \(abc = a + b + c + 2. \)

CAD can do that.

Answer: \(e \geq \frac{23+\sqrt{17}}{8}. \)
11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive $a, b,$ and $c,$ let

$$E(a, b, c) = \frac{a^2 b^2 c^2 - 64}{(a + 1)(b + 1)(c + 1) - 27}.$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples $(a, b, c),$ other than $(2, 2, 2),$ at which $abc = a + b + c + 2.$

CAD can do that.

Answer: $e \geq \frac{23 + \sqrt{17}}{8}.$

(Lagrange multipliers + Gröbner bases would have worked as well.)
What a mess!

The CAD output in the previous example is somewhat messy.
What a mess!

The CAD output in the previous example is somewhat messy.

But it has a striking structure:
The CAD output in the previous example is somewhat messy. But it has a striking structure:

\[
e = \frac{23+\sqrt{17}}{8} \land \\
\lor \frac{23+\sqrt{17}}{8} < e < \frac{32}{9} \land \\
\lor e = \frac{32}{9} \land \\
\lor \frac{32}{9} < e < 4 \land \\
\lor e \geq 4 \land
\]
What a mess!

The CAD output in the previous example is somewhat messy. But it has a striking structure:

\[
e = \frac{23+\sqrt{17}}{8} \land \\
\lor \ \frac{23+\sqrt{17}}{8} < e < \frac{32}{9} \land \\
\lor \ e = \frac{32}{9} \land \\
\lor \ \frac{32}{9} < e < 4 \land \\
\lor \ e \geq 4 \land
\]

The boxes represent some formulas involving \(a, b, c, e\) which are guaranteed to be satisfiable.
What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

\[
\cdots \lor \quad \square < x_1 < \square \land \square \lor \quad x_1 = \square \land \square \lor \cdots
\]
What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

\[\cdots \lor \Box < x_1 < \Box \land \Box \lor x_1 = \Box \land \Box \lor \cdots \]

\[\cdots \lor \Box < x_2 < \Box \land \Box \lor x_2 = \Box \land \Box \lor \Box < x_2 < \Box \land \Box \lor \cdots \]
What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

\[
\cdots \lor \quad x_1 < x_1 \land \quad \lor \\
\lor x_1 = x_1 \land \\
\lor x_1 > x_1 \land \\
\lor \cdots
\]

\[
\cdots \lor \quad x_1 < x_2 \land \quad \lor \\
\lor x_2 = x_2 \land \\
\lor x_2 > x_2 \land \\
\lor \cdots
\]

\[
\cdots \lor \quad x_2 < x_2 \land \quad \lor \\
\lor x_2 = x_2 \land \\
\lor x_2 > x_2 \land \\
\lor \cdots
\]
What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:
What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

\[\cdots \lor \begin{array}{c} \lll \lt \end{array} x_1 \lt \begin{array}{c} \lll \end{array} \land \begin{array}{c} \lll \end{array} \lor \begin{array}{c} \lll \end{array} \end{array} \lor \begin{array}{c} \lll \end{array} x_1 = \begin{array}{c} \lll \end{array} \land \begin{array}{c} \lll \end{array} \lor \begin{array}{c} \lll \end{array} \cdots \]

\[\cdots \lor \begin{array}{c} \lll \lt \end{array} x_2 \lt \begin{array}{c} \lll \end{array} \land \begin{array}{c} \lll \end{array} \lor \begin{array}{c} \lll \end{array} \end{array} \lor \begin{array}{c} \lll \end{array} x_2 = \begin{array}{c} \lll \end{array} \land \begin{array}{c} \lll \end{array} \lor \begin{array}{c} \lll \end{array} \begin{array}{c} \lll \end{array} \lt \begin{array}{c} \lll \end{array} x_2 \lt \begin{array}{c} \lll \end{array} \land \begin{array}{c} \lll \end{array} \lor \begin{array}{c} \lll \end{array} \cdots \]

\[\cdots \lor \begin{array}{c} \lll \lt \end{array} x_3 \lt \begin{array}{c} \lll \end{array} \land \begin{array}{c} \lll \end{array} \lor \begin{array}{c} \lll \end{array} \end{array} \lor \begin{array}{c} \lll \end{array} x_3 = \begin{array}{c} \lll \end{array} \land \begin{array}{c} \lll \end{array} \lor \begin{array}{c} \lll \end{array} \begin{array}{c} \lll \end{array} \lt \begin{array}{c} \lll \end{array} x_3 \lt \begin{array}{c} \lll \end{array} \land \begin{array}{c} \lll \end{array} \lor \begin{array}{c} \lll \end{array} \cdots \]
What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:
What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

\[\cdots \lor \enspace \blacksquare < x_1 < \blacksquare \land \enspace \cdots \lor x_1 = \blacksquare \land \enspace \cdots \]

\[\cdots \lor \enspace \blacksquare < x_2 < \blacksquare \land \enspace \cdots \lor x_2 = \blacksquare \land \enspace \cdots \]

\[\cdots \lor \enspace \blacksquare < x_3 < \blacksquare \land \enspace \cdots \lor x_3 = \blacksquare \land \enspace \cdots \]
What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

\[\cdots \lor \; \square < x_1 < \square \land \; \ldots \lor \; x_1 = \square \land \; \ldots \]

\[\cdots \lor \; \square < x_2 < \square \land \; \ldots \lor \; x_2 = \square \land \; \ldots \]

\[\cdots \lor \; \square < x_3 < \square \land \; \ldots \lor \; x_3 = \square \land \; \ldots \]

\[\cdots \lor \; \square < x_3 < \square \land \; \ldots \lor \; x_3 = \square \land \; \ldots \]

\[\cdots \lor \; \square < x_3 < \square \land \; \ldots \lor \; x_3 = \square \land \; \ldots \]

\[\cdots \lor \; \square < x_3 < \square \land \; \ldots \lor \; x_3 = \square \land \; \ldots \]
What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:
What a mess!

- The symbols refer to some real algebraic numbers.
What a mess!

- The symbols \(\square \) refer to some real algebraic numbers.
- The symbols \(\square \) refer to some algebraic functions in \(x_1 \).
What a mess!

- The symbols refer to some real algebraic numbers.
- The symbols refer to some algebraic functions in x_1.
- The symbols refer to algebraic functions in x_1 and x_2.
What a mess!

- The symbols ▭ refer to some real algebraic numbers.
- The symbols ▭ refer to some algebraic functions in x_1.
- The symbols ▭ refer to algebraic functions in x_1 and x_2.
- The symbols ▭ refer to algebraic functions in x_1, x_2, and x_3.
- ...
What a mess!

- The symbols □ refer to some real algebraic numbers.
- The symbols □ refer to some algebraic functions in x_1.
- The symbols □ refer to algebraic functions in x_1 and x_2.
- The symbols □ refer to algebraic functions in $x_1, x_2,$ and x_3.
- ...
A Formal Definition by Structural Induction
A Formal Definition by Structural Induction

1 variable: A system of polynomial inequalities is called a **CAD** in \(x \) if it is of the form

\[
\Phi_1 \lor \Phi_2 \lor \cdots \lor \Phi_m
\]

where each \(\Phi_k \) is of the form \(x < \alpha \) or \(\alpha < x < \beta \) or \(x > \beta \) or \(x = \gamma \) for some real algebraic numbers \(\alpha, \beta, \gamma (\alpha < \beta) \) and any two \(\Phi_k \) are mutually inconsistent.
A Formal Definition by Structural Induction

1 variable: A system of polynomial inequalities is called a CAD in x if it is of the form

$$
\Phi_1 \lor \Phi_2 \lor \cdots \lor \Phi_m
$$

where each Φ_k is of the form $x < \alpha$ or $\alpha < x < \beta$ or $x > \beta$ or $x = \gamma$ for some real algebraic numbers α, β, γ ($\alpha < \beta$) and any two Φ_k are mutually inconsistent.

n variables: A system of polynomial inequalities is called a CAD in x_1, \ldots, x_n if it is of the form

$$
(\Phi_1 \land \Psi_1) \lor (\Phi_2 \land \Psi_2) \lor \cdots \lor (\Phi_m \land \Psi_m)
$$

where the Φ_k are such that $\Phi_1 \lor \cdots \lor \Phi_k$ is a CAD in x_1 and the Ψ_k are CADs in x_2, \ldots, x_n whenever x_1 is replaced by a real algebraic number satisfying Φ_k.

Example

Here is a CAD for the unit sphere:

\[
\begin{align*}
 x &= -1 \land y = 0 \land z = 0 \\
 \lor &-1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
 \lor &-\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
 \left(z = -\sqrt{1 - x^2 - y^2} \right) \\
 \lor &-\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \\
 \lor z &= \sqrt{1 - x^2 - y^2} \right) \\
 \lor y &= -\sqrt{1 - x^2} \land z = 0 \right) \\
 \lor x &= 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[
\begin{align*}
x &= -1 \land y = 0 \land z = 0 \\
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
\left(z = -\sqrt{1 - x^2 - y^2} \land \\
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \\
\lor z = \sqrt{1 - x^2 - y^2} \right) \\
\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[
\begin{align*}
x &= -1 \wedge y = 0 \wedge z = 0 \\
\lor -1 < x < 1 \wedge
\begin{pmatrix}
y &= -\sqrt{1 - x^2} \wedge z = 0 \\
-\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \wedge \\
\begin{pmatrix}
z &= -\sqrt{1 - x^2 - y^2} \\
-\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \\
\lor z = \sqrt{1 - x^2 - y^2} \end{pmatrix} \\
\lor y = -\sqrt{1 - x^2} \wedge z = 0 \end{pmatrix} \\
\lor x = 1 \wedge y = 0 \wedge z = 0
\end{align*}
\]
Here is a CAD for the unit sphere:

\[
x = -1 \land y = 0 \land z = 0
\]
\[
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)
\]
\[
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land
\left(z = -\sqrt{1 - x^2 - y^2} \right)
\]
\[
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land
\left(z = \sqrt{1 - x^2 - y^2} \right)
\]
\[
\lor y = -\sqrt{1 - x^2} \land z = 0 \right)
\]
\[
\lor x = 1 \land y = 0 \land z = 0
\]
Example

Here is a CAD for the unit sphere:

\[
\begin{align*}
x &= -1 \land y = 0 \land z = 0 \\
\lor &\ -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
&\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
&\left(z = -\sqrt{1 - x^2 - y^2} \right) \\
&\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \\
&\lor z = \sqrt{1 - x^2 - y^2} \right) \\
&\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[x = -1 \land y = 0 \land z = 0 \]
\[\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right. \]
\[\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \]
\[\left(z = -\sqrt{1 - x^2 - y^2} \right) \]
\[\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \]
\[\lor z = \sqrt{1 - x^2 - y^2} \right) \]
\[\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor x = 1 \land y = 0 \land z = 0 \]
Example

Here is a CAD for the unit sphere:

\[
x = -1 \land y = 0 \land z = 0 \\
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \right. \\
\left. \left(z = -\sqrt{1 - x^2 - y^2} \lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \lor z = \sqrt{1 - x^2 - y^2} \right) \lor y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor x = 1 \land y = 0 \land z = 0
\]
Example

Here is a CAD for the unit sphere:

\[
\begin{align*}
 x &= -1 & y &= 0 & z &= 0 \\
 \lor & -1 < x < 1 & \lor \left(y = -\sqrt{1 - x^2} & \land z = 0 \\
 \lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} & \land \\
 z = -\sqrt{1 - x^2 - y^2} \\
 \lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} & \land \\
 z = \sqrt{1 - x^2 - y^2} \right) \\
 \lor y = -\sqrt{1 - x^2} & \land z = 0 \\
 \lor x = 1 & \land y = 0 & z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[x = -1 \land y = 0 \land z = 0 \]
\[\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \]
\[\left(z = -\sqrt{1 - x^2 - y^2} \lor \sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \lor z = \sqrt{1 - x^2 - y^2} \right) \]
\[\lor y = -\sqrt{1 - x^2} \land z = 0 \]
\[\lor x = 1 \land y = 0 \land z = 0 \]
Example

Here is a CAD for the unit sphere:

\[
\begin{align*}
x &= -1 \land y = 0 \land z = 0 \\
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
\left(z = -\sqrt{1 - x^2 - y^2} \lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \\
z = \sqrt{1 - x^2 - y^2} \right) \lor y = -\sqrt{1 - x^2} \land z = 0 \right) \lor \\\nx &= 1 \land y = 0 \land z = 0
\end{align*}
\]
Here is a CAD for the unit sphere:

\[
\begin{align*}
x = -1 & \land y = 0 \land z = 0 \\
\lor -1 < x < 1 & \land \left(y = -\sqrt{1 - x^2} \land z = 0 \lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land z = 0 \lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \lor z = \sqrt{1 - x^2 - y^2} \right) \lor y = -\sqrt{1 - x^2} \land z = 0 \lor x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[x = -1 \land y = 0 \land z = 0 \]
\[\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \]
\[\left(z = -\sqrt{1 - x^2 - y^2} \right) \]
\[\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \]
\[\lor z = \sqrt{1 - x^2 - y^2} \right) \]
\[\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor x = 1 \land y = 0 \land z = 0 \]
Example

Here is a CAD for the unit sphere:

\[x = -1 \land y = 0 \land z = 0 \]
\[\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \]
\[\left(z = -\sqrt{1 - x^2 - y^2} \right) \]
\[\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \]
\[\lor z = \sqrt{1 - x^2 - y^2} \right) \]
\[\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor x = 1 \land y = 0 \land z = 0 \]
Here is a CAD for the unit sphere:

\[
\begin{align*}
 x &= -1 \land y = 0 \land z = 0 \\
 \lor & \quad -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
 \lor & \quad -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
 \lor & \quad z = -\sqrt{1 - x^2 - y^2} \\
 \lor & \quad -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \\
 \lor & \quad z = \sqrt{1 - x^2 - y^2} \\
 \lor & \quad y = -\sqrt{1 - x^2} \land z = 0 \\
 \lor & \quad x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[
x = -1 \land y = 0 \land z = 0 \\
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \left(z = -\sqrt{1 - x^2 - y^2} \right) \\
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \left(z = \sqrt{1 - x^2 - y^2} \right) \\
\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor x = 1 \land y = 0 \land z = 0
\]
Example

Here is a CAD for the unit sphere:

\[x = -1 \land y = 0 \land z = 0 \]
\[\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \]
\[\left(z = -\sqrt{1 - x^2 - y^2} \right) \]
\[\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \]
\[\lor z = \sqrt{1 - x^2 - y^2} \right) \]
\[\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor x = 1 \land y = 0 \land z = 0 \]
Why is this a good structure?
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, *Quantifier Elimination* is easy:

\[\exists z : \Phi(x, y, z) \quad \rightarrow \quad \Psi(x, y) \]
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$\exists z : \Phi(x, y, z) \quad \rightarrow \quad \Psi(x, y)$$
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, **Quantifier Elimination** is easy:

\[\exists z : \Phi(x, y, z) \longrightarrow \Psi(x, y) \]

Prune the last level of the CAD tree.
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, **Quantifier Elimination** is easy:

\[
\exists z : \Phi(x, y, z) \quad \rightarrow \quad \Psi(x, y)
\]

Prune the last level of the CAD tree.
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$\exists z : \Phi(x, y, z) \longrightarrow \Psi(x, y)$$

Prune the last level of the CAD tree.
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, **Quantifier Elimination** is easy:

\[
\forall z : \Phi(x, y, z) \quad \rightarrow \quad \Psi(x, y)
\]
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, **Quantifier Elimination** is easy:

$$\forall z : \Phi(x, y, z) \rightarrow \Psi(x, y)$$

Delete all subtrees that do not have “all of \mathbb{R}” at the bottom.
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, **Quantifier Elimination** is easy:

\[
\forall z : \Phi(x, y, z) \quad \rightarrow \quad \Psi(x, y)
\]

Delete all subtrees that do not have “all of \mathbb{R}” at the bottom.
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

\[\forall z : \Phi(x, y, z) \longrightarrow \Psi(x, y) \]

Delete all subtrees that do not have “all of \(\mathbb{R} \)” at the bottom.

Then prune the last level.
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, **Quantifier Elimination** is easy:

\[
\forall z : \Phi(x, y, z) \quad \longrightarrow \quad \Psi(x, y)
\]

Delete all subtrees that do not have “all of \(\mathbb{R} \)” at the bottom.

Then prune the last level.
Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, **Quantifier Elimination** is easy:

\[\forall z : \Phi(x, y, z) \rightarrow \Psi(x, y) \]

Delete all subtrees that do not have “all of \(\mathbb{R} \)” at the bottom.

Then prune the last level.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which
- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
So what?

All this effort just to solve some Monthly Problems?
So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...
So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...

▸ ...in control theory
So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research…

▸ ... in control theory
▸ ... in numerical analysis
So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...
- ...in control theory
- ...in numerical analysis
- ...in program verification
So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...

► ...in control theory
► ...in numerical analysis
► ...in program verification
► ...in symbolic summation
So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research…

- …in control theory
- …in numerical analysis
- …in program verification
- …in symbolic summation
- …in computational biology
So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...

▸ ...in control theory
▸ ...in numerical analysis
▸ ...in program verification
▸ ...in symbolic summation
▸ ...in computational biology
▸ ...and elsewhere.
So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...

▷ ...in control theory
▷ ...in numerical analysis
▷ ...in program verification
▷ ...in symbolic summation
▷ ...in computational biology
▷ ...and elsewhere.

Often, CAD computations in such applications are feasible only after some appropriate preprocessing.
A nontrivial Example
A nontrivial Example

A *triangular norm* is a map

\[T: [0, 1]^2 \rightarrow [0, 1] \]

which is commutative, associative, increasing, and has neutral element 1.
A nontrivial Example

A *triangular norm* is a map

\[T: [0, 1]^2 \rightarrow [0, 1] \]

which is commutative, associative, increasing, and has neutral element 1.

Examples:
A nontrivial Example

A **triangular norm** is a map

\[T : [0, 1]^2 \rightarrow [0, 1] \]

which is commutative, associative, increasing, and has neutral element 1.

Examples:

- The minimum norm \((u, v) \mapsto \min(u, v)\)
A nontrivial Example

A *triangular norm* is a map

$$T : [0, 1]^2 \rightarrow [0, 1]$$

which is commutative, associative, increasing, and has neutral element 1.

Examples:

- The minimum norm $$(u, v) \mapsto \min(u, v)$$
- The product norm $$(u, v) \mapsto uv$$
A nontrivial Example

A triangular norm is a map

\[T : [0, 1]^2 \rightarrow [0, 1] \]

which is commutative, associative, increasing, and has neutral element 1.

Examples:

- The minimum norm \((u, v) \mapsto \min(u, v)\)
- The product norm \((u, v) \mapsto uv\)
- The Łukasiewicz norm \((u, v) \mapsto \max(u + v - 1, 0)\)
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$T_\lambda (u, v) = \max \left(0, (1 - \lambda)uv + \lambda(u + v - 1) \right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

\[
T_\lambda : [0, 1]^2 \rightarrow [0, 1], \\
T_\lambda (u, v) = \max \left(0, (1 - \lambda)uv + \lambda(u + v - 1) \right).
\]
A nontrivial Example

The family of **Sugeno-Weber** norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max \left(0, (1 - \lambda)uv + \lambda(u + v - 1) \right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max (0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$:

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for \(\lambda \geq 0 \)

\[
T_\lambda : [0, 1]^2 \rightarrow [0, 1],
T_\lambda(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).
\]
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$T_\lambda(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

\[T_\lambda : [0, 1]^2 \rightarrow [0, 1], \]
\[T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)). \]
A nontrivial Example

The family of Sugeno-Webber norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$T_\lambda(u, v) = \max \left(0, (1 - \lambda)uv + \lambda(u + v - 1) \right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

\[T_\lambda : [0, 1]^2 \rightarrow [0, 1], \]
\[T_\lambda (u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right). \]
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$T_\lambda (u, v) = \max (0, (1 - \lambda)uv + \lambda (u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max \left(0, (1 - \lambda)uv + \lambda(u + v - 1) \right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$T_\lambda(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
The family of \textit{Sugeno-Weber} norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max\left(0, (1 - \lambda) uv + \lambda(u + v - 1)\right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_{\lambda} : [0, 1]^2 \to [0, 1],$$

$$T_{\lambda}(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda: [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of \textit{Sugeno-Weber} norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max (0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$
$$T_\lambda (u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$
$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for \(\lambda \geq 0 \)

\[
T_\lambda : [0, 1]^2 \rightarrow [0, 1],
\]

\[
T_\lambda(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).
\]
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

\[T_\lambda : [0,1]^2 \rightarrow [0,1], \]

\[T_\lambda(u,v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1) \right). \]
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for \(\lambda \geq 0 \)

\[
T_{\lambda} : [0, 1]^2 \rightarrow [0, 1],
\]

\[
T_{\lambda}(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).
\]
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max (0, (1 - \lambda)uv + \lambda (u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max \left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for \(\lambda \geq 0 \)

\[
T_\lambda : [0, 1]^2 \rightarrow [0, 1],
\]

\[
T_\lambda(u, v) = \max \left(0, (1 - \lambda)uv + \lambda(u + v - 1) \right).
\]
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for \(\lambda \geq 0 \)

\[
T_\lambda : [0, 1]^2 \rightarrow [0, 1], \\
T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).
\]
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

\[T_\lambda : [0, 1]^2 \to [0, 1], \]
\[T_\lambda (u, v) = \max \left(0, (1 - \lambda)uv + \lambda(u + v - 1) \right). \]
A nontrivial Example

The family of *Sugeno-Webber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for \(\lambda \geq 0 \)

\[
T_\lambda : [0, 1]^2 \rightarrow [0, 1],
T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).
\]
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda(u, v) = \max(0, (1 - \lambda)uv + \lambda(u + v - 1)).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \rightarrow [0, 1],$$

$$T_\lambda (u, v) = \max \left(0, (1 - \lambda)uv + \lambda (u + v - 1) \right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$(u, v) \mapsto \max\left(0, (1 - \lambda)uv + \lambda(u + v - 1)\right).$$
A nontrivial Example

The family of *Sugeno-Weber* norms is defined for $\lambda \geq 0$

$$T_\lambda : [0, 1]^2 \to [0, 1],$$

$$T_\lambda (u, v) = \max (0, (1 - \lambda)uv + \lambda (u + v - 1)).$$
A norm T is said to dominate a norm T' if

$$T(T'(u, v), T'(x, y)) \leq T'(T(u, x), T(v, y))$$

for all $x, y, u, v \in [0, 1]$.

A nontrivial Example
A norm T is said to dominate a norm T' if

$$T(T'(u, v), T'(x, y)) \leq T'(T(u, x), T(v, y))$$

for all $x, y, u, v \in [0, 1]$.

Question: What are the $\lambda, \mu \geq 0$ such that the Sugeno-Weber norm T_λ dominates the Sugeno-Weber norm T_{μ}?
A nontrivial Example

A norm T is said to dominate a norm T' if

$$T(T'(u, v), T'(x, y)) \leq T'(T(u, x), T(v, y))$$

for all $x, y, u, v \in [0, 1]$.

Question: What are the $\lambda, \mu \geq 0$ such that the Sugeno-Weber norm T_λ dominates the Sugeno-Weber norm T_μ?

Theorem (Kauers, Pillwein, Saminger-Platz, 2010)

T_λ dominates T_μ if and only if (a) $\lambda = \mu$ or (b) $0 \leq \lambda \leq \mu \leq 17 + 12\sqrt{2}$ or (c) $\mu < 17 + 12\sqrt{2}$ and $0 \leq \lambda \leq \left(\frac{1-3\sqrt{\mu}}{3-\sqrt{\mu}}\right)^2$.
A nontrivial Example

Just use CAD to eliminate the quantifiers from the formula

\[\forall x, y, u, v \in [0, 1] : \]
\[\max(0, (1 - \lambda) \max(0, (1 - \mu)uv + \mu(u + v - 1)) \]
\[\times \max(0, (1 - \mu)xy + \mu(x + y - 1)) \]
\[+ \lambda(\max(0, (1 - \mu)uv + \mu(u + v - 1)) \]
\[+ \max(0, (1 - \mu)xy + \mu(x + y - 1)) - 1)) \]
\[\geq \max(0, (1 - \mu) \max(0, (1 - \lambda)ux + \lambda(u + x - 1)) \]
\[\times \max(0, (1 - \lambda)vy + \lambda(v + y - 1)) \]
\[+ \mu(\max(0, (1 - \lambda)ux + \lambda(u + x - 1)) \]
\[+ \max(0, (1 - \lambda)vy + \lambda(v + y - 1)) - 1)). \]
A nontrivial Example

Just use CAD to eliminate the quantifiers from the formula

\[\forall x, y, u, v \in [0, 1] : \]
\[\max(0, (1 - \lambda) \max(0, (1 - \mu) uv + \mu(u + v - 1)) \]
\[\times \max(0, (1 - \mu) xy + \mu(x + y - 1)) \]
\[+ \lambda(\max(0, (1 - \mu) uv + \mu(u + v - 1)) \]
\[+ \max(0, (1 - \mu) xy + \mu(x + y - 1)) - 1)) \]
\[\geq \max(0, (1 - \mu) \max(0, (1 - \lambda) ux + \lambda(u + x - 1)) \]
\[\times \max(0, (1 - \lambda) vy + \lambda(v + y - 1)) \]
\[+ \mu(\max(0, (1 - \lambda) ux + \lambda(u + x - 1)) \]
\[+ \max(0, (1 - \lambda) vy + \lambda(v + y - 1)) - 1)) \].

This is possible \textit{in principle}, but not \textit{in practice}.
A nontrivial Example

Task: Break the problem into several feasible subproblems.
A nontrivial Example

Task: Break the problem into several feasible subproblems.

We proceeded in several steps:
A nontrivial Example

Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
A nontrivial Example

Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
A nontrivial Example

Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
A nontrivial Example

Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
4. Sort out redundant clauses (using CAD)
A nontrivial Example

Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
4. Sort out redundant clauses (using CAD)
5. Apply some logical simplifications (using CAD)
A nontrivial Example

Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
4. Sort out redundant clauses (using CAD)
5. Apply some logical simplifications (using CAD)
6. Apply some algebraic simplifications
A nontrivial Example

Task: Break the problem into several feasible subproblems.

We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
4. Sort out redundant clauses (using CAD)
5. Apply some logical simplifications (using CAD)
6. Apply some algebraic simplifications
7. Apply CAD to finish up
A nontrivial Example

1. Handle some special cases by hand.
A nontrivial Example

1. Handle some special cases by hand.

It is “easy to see” that it suffices to consider the cases

\[0 < \lambda < \mu \quad \text{and} \quad x, y, u, v \in (0, 1) \]

instead of

\[\lambda, \mu \geq 0 \quad \text{and} \quad x, y, u, v \in [0, 1]. \]
A nontrivial Example

1. Handle some special cases by hand.

It is “easy to see” that it suffices to consider the cases

\[0 < \lambda < \mu \quad \text{and} \quad x, y, u, v \in (0, 1) \]

instead of

\[\lambda, \mu \geq 0 \quad \text{and} \quad x, y, u, v \in [0, 1]. \]

(Homework.)
2. Eliminate the outer maxima.
A nontrivial Example

2. Eliminate the outer maxima.

Apply the general equivalence

\[\max(0, A) \geq \max(0, B) \iff B \leq 0 \lor A \geq B > 0 \quad (A, B \in \mathbb{R}) \]

to obtain
A nontrivial Example

2. Eliminate the outer maxima.

Apply the general equivalence

$$\max(0, A) \geq \max(0, B) \iff B \leq 0 \lor A \geq B > 0 \quad (A, B \in \mathbb{R})$$

to obtain

$$\forall x, y, u, v \in \mathbb{R} : 0 < \lambda < \mu \land 0 < x < 1 \land 0 < y < 1 \land 0 < u < 1 \land 0 < v < 1$$
$$\Rightarrow ((1 - \mu) \max(0, (1 - \lambda)ux + \lambda(u + x - 1)) \max(0, (1 - \lambda)vy + \lambda(v + y - 1))$$
$$+ \mu(\max(0, (1 - \lambda)ux + \lambda(u + x - 1)) + \max(0, (1 - \lambda)vy + \lambda(v + y - 1))) - 1) \leq 0$$
$$\lor (1 - \lambda) \max(0, (1 - \mu)uv + \mu(u + v - 1)) \max(0, (1 - \mu)xy + \mu(x + y - 1))$$
$$+ \lambda(\max(0, (1 - \mu)uv + \mu(u + v - 1)) + \max(0, (1 - \mu)xy + \mu(x + y - 1))) - 1))$$
$$\geq (1 - \mu) \max(0, (1 - \lambda)ux + \lambda(u + x - 1)) \max(0, (1 - \lambda)vy + \lambda(v + y - 1))$$
$$+ \mu(\max(0, (1 - \lambda)ux + \lambda(u + x - 1)) + \max(0, (1 - \lambda)vy + \lambda(v + y - 1))) - 1) > 0$$
A nontrivial Example

3. Eliminate the inner maxima.
A nontrivial Example

3. Eliminate the inner maxima.

If $\Phi(X)$ is any formula depending on a real variable X, then

$$\Phi(\max(0, X)) \iff (X \leq 0 \land \Phi(0)) \lor (X > 0 \land \Phi(X)).$$
A nontrivial Example

3. Eliminate the inner maxima.

If $\Phi(X)$ is any formula depending on a real variable X, then

$$\Phi(\max(0, X)) \iff (X \leq 0 \land \Phi(0)) \lor (X > 0 \land \Phi(X)).$$

For a formula in several variables, we have

$$\Phi(\max(0, X_1), \max(0, X_2)) \iff (X_1 \leq 0 \land X_2 \leq 0 \land \Phi(0, 0)$$
$$\lor X_1 > 0 \land X_2 \leq 0 \land \Phi(X_1, 0)$$
$$\lor X_1 \leq 0 \land X_2 > 0 \land \Phi(0, X_2)$$
$$\lor X_1 > 0 \land X_2 > 0 \land \Phi(X_1, X_2)).$$
A nontrivial Example

3. Eliminate the inner maxima.

Writing

\[X_1 := (1 - \lambda)ux + \lambda(u + x - 1), \]
\[X_2 := (1 - \lambda)vy + \lambda(v + y - 1), \]
\[X_3 := (1 - \mu)uv + \mu(u + v - 1), \]
\[X_4 := (1 - \mu)xy + \mu(x + y - 1), \]

this turns the formula into...
A nontrivial Example

3. Eliminate the inner maxima.

∀ x, y, u, v ∈ R : 0 < λ < μ ∧ 0 < x < 1 ∧ 0 < y < 1 ∧ 0 < u < 1 ∧ 0 < v < 1
⇒ ((X_1 \leq 0 ∧ X_2 \leq 0 ∧ (1 – μ)000 + μ(0 + 0 – 1) ≤ 0
 ∨ X_1 > 0 ∧ X_2 ≤ 0 ∧ (1 – μ)X_1 0 + μ(X_1 + 0 – 1) ≤ 0
 ∨ X_1 ≤ 0 ∧ X_2 > 0 ∧ (1 – μ)0 X_2 + μ(0 + X_2 – 1) ≤ 0
 ∨ X_1 > 0 ∧ X_2 > 0 ∧ (1 – μ)X_1 X_2 + μ(X_1 + X_2 – 1) ≤ 0)
 ∨ (X_1 ≤ 0 ∧ X_2 ≤ 0 ∧ X_3 ≤ 0 ∧ X_4 ≤ 0
 ∧ (1 – λ)000 + λ(0 + 0 – 1) ≥ (1 – μ)000 + μ(0 + 0 – 1) > 0
 ∨ X_1 > 0 ∧ X_2 ≤ 0 ∧ X_3 ≤ 0 ∧ X_4 ≤ 0
 ∧ (1 – λ)000 + λ(0 + 0 – 1) ≥ (1 – μ)X_1 0 + μ(X_1 + 0 – 1) > 0
 ∨ ⋮
 ∨ X_1 > 0 ∧ X_2 > 0 ∧ X_3 > 0 ∧ X_4 ≤ 0
 ∧ (1 – λ)X_3 0 + λ(X_3 + 0 – 1) ≥ (1 – μ)X_1 X_2 + μ(X_1 + X_2 – 1) > 0
 ∨ X_1 > 0 ∧ X_2 > 0 ∧ X_3 > 0 ∧ X_4 > 0
 ∧ (1 – λ)X_3 X_4 + λ(X_3 + X_4 – 1) ≥ (1 – μ)X_1 X_2 + μ(X_1 + X_2 – 1) > 0))
4. Discard redundant clauses.
A nontrivial Example

4. Discard redundant clauses.

This formula is of the form

$$\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (C_1 \lor C_2 \lor \cdots \lor C_{20}).$$
4. Discard redundant clauses.

This formula is of the form

$$\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (C_1 \lor C_2 \lor \cdots \lor C_{20}).$$

For many indices i, we can show by CAD that

$$H \land C_i$$

is inconsistent.
4. Discard redundant clauses.

This formula is of the form

\[\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (C_1 \lor C_2 \lor \cdots \lor C_{20}). \]

For many indices \(i \), we can show by CAD that

\[H \land C_i \]

is inconsistent.

These clauses \(C_i \) can be discarded.
4. Discard redundant clauses.

This formula is of the form

\[\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (C_1 \lor C_2 \lor \cdots \lor C_{20}). \]

For many indices \(i \), we can show by CAD that

\[H \land C_i \]

is inconsistent.

These clauses \(C_i \) can be discarded. This turns the formula into...
A nontrivial Example

4. Discard redundant clauses.

\[
\forall x, y, u, v \in \mathbb{R} : 0 < \lambda < \mu \\
\quad \land 0 < x < 1 \land 0 < y < 1 \land 0 < u < 1 \land 0 < v < 1
\]
\[\Rightarrow (X_1 \leq 0 \lor X_2 \leq 0 \land X_3 > 0 \land X_4 > 0)
\]
\[
\land (1 - \lambda)X_3X_4 + \lambda(X_3 + X_4 - 1) \geq (1 - \mu)X_1X_2 + \mu(X_1 + X_2 - 1) > 0.
\]
A nontrivial Example

5. Apply some logical simplifications
5. Apply some logical simplifications

This formula is of the form

\[\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land \neg C \land D). \]
A nontrivial Example

5. Apply some logical simplifications

This formula is of the form

$$\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land \neg C \land D).$$

We clearly can discard $\neg A \land \neg B \land \neg C$.
5. Apply some logical simplifications

This formula is of the form

\[\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land \neg C \land D). \]

We clearly can discard \(\neg A \land \neg B \land \neg C \).

Furthermore, we can prove with CAD the formulas

\[\forall x, y, u, v \in \mathbb{R} : H \land D \Rightarrow A \]
\[\forall x, y, u, v \in \mathbb{R} : H \land D \Rightarrow B \]

are true.
A nontrivial Example

5. Apply some logical simplifications

This formula is of the form

\[
\forall x, y, u, v \in \mathbb{R} : H \Rightarrow (A \lor B \lor C \lor \neg A \land \neg B \land \neg C \land D).
\]

We clearly can discard \(\neg A \land \neg B \land \neg C\).

Furthermore, we can prove with CAD the formulas

\[
\forall x, y, u, v \in \mathbb{R} : H \land D \Rightarrow A
\]

\[
\forall x, y, u, v \in \mathbb{R} : H \land D \Rightarrow B
\]

are true. Dropping also \(A\) and \(B\) leads us to...
A nontrivial Example

5. Apply some logical simplifications

\[\forall x, y, u, v \in \mathbb{R} : 0 < \lambda < \mu \]
\[\land 0 < x < 1 \land 0 < y < 1 \land 0 < u < 1 \land 0 < v < 1 \]
\[\Rightarrow \left((1 - \mu)X_1X_2 + \mu(X_1 + X_2 - 1) \right) \leq 0 \]
\[\lor (1 - \lambda)X_3X_4 + \lambda(X_3 + X_4 - 1) \]
\[\geq (1 - \mu)X_1X_2 + \mu(X_1 + X_2 - 1) \right). \]
A nontrivial Example

6. Apply some algebraic simplifications
A nontrivial Example

6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.
6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.

The size can be reduced further by substituting

$$x \mapsto 1 - x, \quad y \mapsto 1 - y, \quad u \mapsto 1 - u, \quad v \mapsto 1 - v$$
6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy. The size can be reduced further by substituting

$$x \mapsto 1 - x, \quad y \mapsto 1 - y, \quad u \mapsto 1 - u, \quad v \mapsto 1 - v$$

and afterwards $v \mapsto (v - y)/(1 + (\lambda - 1)y)$.
6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.

The size can be reduced further by substituting

$$x \mapsto 1 - x, \quad y \mapsto 1 - y, \quad u \mapsto 1 - u, \quad v \mapsto 1 - v$$

and afterwards $v \mapsto (v - y)/(1 + (\lambda - 1)y)$.

This brings the formula into the form...
A nontrivial Example

6. Apply some algebraic simplifications

\[\forall x, y, u, v \in \mathbb{R} : 0 < \lambda < \mu \]
\[\land 0 < x < 1 \land 0 < y < 1 \land 0 < u < 1 \land y < v < 1 + \lambda y \]
\[\Rightarrow (u((\lambda - 1)x + 1)((\mu - 1)v + 1) \]
\[+ (\mu - 1)vx + v + x - 1 \geq 0 \]
\[\lor vx(1 - (\lambda - 1)(\mu - 1)uy) \]
\[+ y((\lambda - 1)uy((\mu - 1)x + 1) + u - x) \geq 0 \). \]
A nontrivial Example

7. Apply CAD to finish up
7. Apply CAD to finish up

CAD applied to this formula gives the final result.
A nontrivial Example

7. Apply CAD to finish up

CAD applied to this formula gives the final result.

\[0 < \lambda < \mu \leq 17 + 12\sqrt{2} \lor \mu < 17 + 12\sqrt{2} \land 0 < \lambda \leq \left(\frac{1 - 3\sqrt{\mu}}{3 - \sqrt{\mu}} \right)^2 \]
A nontrivial Example

7. Apply CAD to finish up

CAD applied to this formula gives the final result.

\[0 < \lambda < \mu \leq 17 + 12\sqrt{2} \lor \mu < 17 + 12\sqrt{2} \land 0 < \lambda \leq \left(\frac{1 - 3\sqrt{\mu}}{3 - \sqrt{\mu}}\right)^2 \]
Summary
Summary

- CAD is able to answer questions on polynomial inequalities.
Summary

- CAD is able to answer questions on polynomial inequalities.
- In particular, it is capable of performing quantifier elimination.
Summary

- CAD is able to answer questions on polynomial inequalities.
- In particular, it is capable of performing quantifier elimination.
- A variety of problems can be rephrased as such problems.
Summary

- CAD is able to answer questions on polynomial inequalities.
- In particular, it is capable of performing quantifier elimination.
- A variety of problems can be rephrased as such problems.
- Efficiency is an issue.
CAD is able to answer questions on polynomial inequalities.
In particular, it is capable of performing quantifier elimination.
A variety of problems can be rephrased as such problems.
Efficiency is an issue.
Where CAD is infeasible out of the box, reformulations of the problem might reduce the computation time significantly.
Summary

- CAD is able to answer questions on polynomial inequalities.
- In particular, it is capable of performing quantifier elimination.
- A variety of problems can be rephrased as such problems.
- Efficiency is an issue.
- Where CAD is infeasible out of the box, reformulations of the problem might reduce the computation time significantly.

Tomorrow: How does the CAD algorithm work.
A Simple Exercise

What is the image of the triangle \((-1, -1), (-1, 1), (1, 1)\) under the map

\[f: \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad (x, y) \mapsto (x^2 + y^2, xy - 1) \]
Inequalities

Manuel Kauers
RISC-Linz
I. What?

II. How?

III. Why?
I. What?

II. How?

III. Why?
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
A Simple Exercise

What is the image of the triangle $(-1, -1), (-1, 1), (1, 1)$ under the map

$$f: \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad (x, y) \mapsto (x^2 + y^2, xy - 1)$$
A Simple Exercise

What is the image of the triangle $(-1, -1), (-1, 1), (1, 1)$ under the map

$$f : \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad (x, y) \mapsto (x^2 + y^2, xy - 1)$$

Answer: Eliminate x, y from the formula

$$\exists x, y : (-1 \leq x \leq 1 \land -1 \leq y \leq 1 \land x \leq y \land X = x^2 + y^2 \land Y = xy - 1)$$
A Simple Exercise

What is the image of the triangle $(-1, -1), (-1, 1), (1, 1)$ under the map

$$f: \mathbb{R}^2 \rightarrow \mathbb{R}^2, \quad (x, y) \mapsto (x^2 + y^2, xy - 1)$$

Result:

$$f(\Delta) = \{(x, y) \in \mathbb{R}^2 : (0 \leq x \leq 1 \land |y + 1| \leq \frac{1}{2}x) \lor (1 < x \leq 2 \land \sqrt{x - 1} \leq |y + 1| \leq \frac{1}{2}x)\}$$
Cylindrical Algebraic Decomposition (CAD)
Cylindrical Algebraic Decomposition (CAD)

1 variable: A system of polynomial inequalities is called a CAD in x if it is of the form

$$\Phi_1 \lor \Phi_2 \lor \cdots \lor \Phi_m$$

where each Φ_k is of the form $x < \alpha$ or $\alpha < x < \beta$ or $x > \beta$ or $x = \gamma$ for some real algebraic numbers α, β, γ ($\alpha < \beta$) and any two Φ_k are mutually inconsistent.
Cylindrical Algebraic Decomposition (CAD)

- **1 variable:** A system of polynomial inequalities is called a CAD in x if it is of the form

$$\Phi_1 \lor \Phi_2 \lor \cdots \lor \Phi_m$$

where each Φ_k is of the form $x < \alpha$ or $\alpha < x < \beta$ or $x > \beta$ or $x = \gamma$ for some real algebraic numbers α, β, γ ($\alpha < \beta$) and any two Φ_k are mutually inconsistent.

- **n variables:** A system of polynomial inequalities is called a CAD in x_1, \ldots, x_n if it is of the form

$$\Phi_1 \land \Psi_1 \lor \Phi_2 \land \Psi_2 \lor \cdots \lor \Phi_m \land \Psi_m$$

where the Φ_k are such that $\Phi_1 \lor \cdots \lor \Phi_k$ is a CAD in x_1 and the Ψ_k are CADs in x_2, \ldots, x_n whenever x_1 is replaced by a real algebraic number satisfying Φ_k.
Here is a CAD for the unit sphere:

\[
\begin{align*}
x &= -1 \land y = 0 \land z = 0 \\
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
\left(z = -\sqrt{1 - x^2 - y^2} \right) \\
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \\
\lor z = \sqrt{1 - x^2 - y^2} \\
\lor y = -\sqrt{1 - x^2} \land z = 0 \\
\lor x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[
\begin{align*}
 x &= -1 \land y = 0 \land z = 0 \\
 \lor -1 < x < 1 \land \left(y &= -\sqrt{1 - x^2} \land z = 0 \\
 \lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
 \left(z &= -\sqrt{1 - x^2 - y^2} \\
 \lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \right) \\
 \lor z &= \sqrt{1 - x^2 - y^2} \right) \\
 \lor y &= -\sqrt{1 - x^2} \land z = 0 \right) \\
 \lor x &= 1 \land y = 0 \land z = 0
\end{align*}
\]
Here is a CAD for the unit sphere:

\[x = -1 \land y = 0 \land z = 0 \]
\[\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \]
\[\left(z = -\sqrt{1 - x^2 - y^2} \right) \]
\[\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \]
\[\lor z = \sqrt{1 - x^2 - y^2} \right) \]
\[\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor x = 1 \land y = 0 \land z = 0 \]
Example

Here is a CAD for the unit sphere:

\[x = -1 \land y = 0 \land z = 0 \]
\[\lor -1 < x < 1 \land (y = -\sqrt{1 - x^2} \land z = 0) \]
\[\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \]
\[\left(z = -\sqrt{1 - x^2 - y^2} \right) \]
\[\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \]
\[\lor z = \sqrt{1 - x^2 - y^2} \right) \]
\[\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor x = 1 \land y = 0 \land z = 0 \]
Here is a CAD for the unit sphere:

\[
\begin{align*}
 x &= -1 \land y = 0 \land z = 0 \\
 \lor &-1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
 \lor &-\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \left(z = -\sqrt{1 - x^2 - y^2} \right) \\
 \lor &-\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
 \lor &x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[
\begin{align*}
x &= -1 \land y = 0 \land z = 0 \\
\lor -1 < x < 1 \land (y = -\sqrt{1 - x^2} \land z = 0 \\
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
(z = -\sqrt{1 - x^2 - y^2} \\
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \\
\lor z = \sqrt{1 - x^2 - y^2}) \\
\lor y = -\sqrt{1 - x^2} \land z = 0) \\
\lor x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[
\begin{align*}
 x &= -1 \land y = 0 \land z = 0 \\
 \lor & -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
 \lor & -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \left(z = -\sqrt{1 - x^2 - y^2} \right) \\
 \lor & -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \land \left(x = 1 \land y = 0 \land z = 0 \right)
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[
x = -1 \land y = 0 \land z = 0 \\
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
\left(z = -\sqrt{1 - x^2 - y^2} \right) \\
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \\
\lor z = \sqrt{1 - x^2 - y^2} \right) \\
\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor x = 1 \land y = 0 \land z = 0
\]
Here is a CAD for the unit sphere:

\[
\begin{align*}
x &= -1 \land y = 0 \land z = 0 \\
\lor -1 &< x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor -\sqrt{1 - x^2} &< y < \sqrt{1 - x^2} \land \\
\left(z &= -\sqrt{1 - x^2 - y^2} \right) \\
\lor -\sqrt{1 - x^2 - y^2} &< z < \sqrt{1 - x^2 - y^2} \\
\lor z &= \sqrt{1 - x^2 - y^2} \right) \\
\lor y &= -\sqrt{1 - x^2} \land z = 0 \right) \\
\lor x &= 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[
\begin{align*}
 x &= -1 \land y = 0 \land z = 0 \\
 \lor -1 < x < 1 \land (y = -\sqrt{1 - x^2} \land z = 0 \\
 &\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \\
 &\lor (z = -\sqrt{1 - x^2 - y^2} \\
 &\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \\
 &\lor z = \sqrt{1 - x^2 - y^2} \\
 &\lor y = -\sqrt{1 - x^2} \land z = 0) \\
 \lor x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[x = -1 \land y = 0 \land z = 0 \]
\[\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \]
\[\left(z = -\sqrt{1 - x^2 - y^2} \right) \]
\[\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \]
\[\lor z = \sqrt{1 - x^2 - y^2} \]
\[\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor x = 1 \land y = 0 \land z = 0 \]
Here is a CAD for the unit sphere:

\[
\begin{align*}
x &= -1 \land y = 0 \land z = 0 \\
\lor -1 < x < 1 \land (y &= -\sqrt{1 - x^2} \land z = 0 \\
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \\
(z &= -\sqrt{1 - x^2 - y^2} \\
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \\
\lor z &= \sqrt{1 - x^2 - y^2}) \\
\lor y &= -\sqrt{1 - x^2} \land z = 0 \\
\lor x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[
\begin{align*}
 x &= -1 \land y = 0 \land z = 0 \\
 \lor -1 < x < 1 \land \left(y &= -\sqrt{1 - x^2} \land z = 0 \\
 \lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \right. \\
 &\left. z = -\sqrt{1 - x^2 - y^2} \land \sqrt{1 - x^2} < z < \sqrt{1 - x^2 - y^2} \land \right. \\
 &\left. z = \sqrt{1 - x^2 - y^2} \right) \\
 \lor y &= -\sqrt{1 - x^2} \land z = 0 \\
 \lor x &= 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[x = -1 \land y = 0 \land z = 0 \]
\[\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land \]
\[\left(z = -\sqrt{1 - x^2 - y^2} \land z = \sqrt{1 - x^2 - y^2} \right) \]
\[\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} \]
\[\lor z = \sqrt{1 - x^2 - y^2} \right) \]
\[\lor y = -\sqrt{1 - x^2} \land z = 0 \right) \]
\[\lor x = 1 \land y = 0 \land z = 0 \]
Example

Here is a CAD for the unit sphere:

\[
\begin{align*}
x &= -1 \land y = 0 \land z = 0 \\
\forall -1 < x < 1 &\land \left(y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\forall -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} &\land \\
\left(z = -\sqrt{1 - x^2 - y^2} \right) \\
\forall -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2} &\land \\
\forall z = \sqrt{1 - x^2 - y^2} \right) \\
\forall y = -\sqrt{1 - x^2} \land z = 0 \right) \\
\forall x = 1 \land y = 0 \land z = 0
\end{align*}
\]
Example

Here is a CAD for the unit sphere:

\[
x = -1 \land y = 0 \land z = 0
\]
\[
\lor -1 < x < 1 \land \left(y = -\sqrt{1 - x^2} \land z = 0 \right)
\]
\[
\lor -\sqrt{1 - x^2} < y < \sqrt{1 - x^2} \land
\]
\[
\left(z = -\sqrt{1 - x^2 - y^2} \right)
\]
\[
\lor -\sqrt{1 - x^2 - y^2} < z < \sqrt{1 - x^2 - y^2}
\]
\[
\lor z = \sqrt{1 - x^2 - y^2}
\]
\[
\lor y = -\sqrt{1 - x^2} \land z = 0
\]
\[
\lor x = 1 \land y = 0 \land z = 0
\]
Caution!

The notion “Cylindrical Algebraic Decomposition” is overloaded.
Caution!

The notion “Cylindrical Algebraic Decomposition” is overloaded.

- Formulas of the form described earlier
Caution!

The notion “Cylindrical Algebraic Decomposition” is overloaded.

- Formulas of the form described earlier
- A certain geometric configuration in \mathbb{R}^n
Caution!

The notion “Cylindrical Algebraic Decomposition” is overloaded.

- Formulas of the form described earlier
- A certain geometric configuration in \mathbb{R}^n
- A certain data structure for representing this configuration
Caution!

The notion “Cylindrical Algebraic Decomposition” is overloaded.

- Formulas of the form described earlier
- A certain geometric configuration in \mathbb{R}^n
- A certain data structure for representing this configuration
- Sets of polynomials satisfying certain conditions
Caution!

The notion “Cylindrical Algebraic Decomposition” is overloaded.

- Formulas of the form described earlier
- A certain geometric configuration in \mathbb{R}^n
- A certain data structure for representing this configuration
- Sets of polynomials satisfying certain conditions
- The algorithm for computing a CAD (Collins’s algorithm)
The notion “Cylindrical Algebraic Decomposition” is overloaded.

- Formulas of the form described earlier
- A certain geometric configuration in \mathbb{R}^n
- A certain data structure for representing this configuration
- Sets of polynomials satisfying certain conditions
- The algorithm for computing a CAD (Collins’s algorithm)

The first four items intuitively refer to “the same thing.”
The notion “Cylindrical Algebraic Decomposition” is overloaded.

- Formulas of the form described earlier
- A certain geometric configuration in \mathbb{R}^n
- A certain data structure for representing this configuration
- Sets of polynomials satisfying certain conditions
- The algorithm for computing a CAD (Collins’s algorithm)

The first four items intuitively refer to “the same thing.”
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").
Algebraic Decomposition

A finite set of polynomials $\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n]$ induces a decomposition ("partition") of \mathbb{R}^n into maximal sign-invariant cells ("regions").

Example: The polynomials $p_1 = x^2 + y^2 - 4$ and $p_2 = (x - 1)(y - 1) - 1$ induce a decomposition of \mathbb{R}^2 into 13 cells:
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) > 0 \quad \text{and} \quad p_2(x, y) < 0.
\]
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) > 0 \quad \text{and} \quad p_2(x, y) > 0.
\]
A finite set of polynomials \(\{ p_1, \ldots, p_m \} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a **decomposition** ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant **cells** ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y) \) in the shaded cell, we have

\[
p_1(x, y) < 0 \quad \text{and} \quad p_2(x, y) > 0.
\]
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a **decomposition** ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant **cells** ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) < 0 \quad \text{and} \quad p_2(x, y) < 0.
\]
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a **decomposition** ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant **cells** ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) > 0 \quad \text{and} \quad p_2(x, y) > 0.
\]
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) = 0 \quad \text{and} \quad p_2(x, y) > 0.
\]
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) = 0 \quad \text{and} \quad p_2(x, y) < 0.
\]
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y) \) in the shaded cell, we have

\[
p_1(x, y) < 0 \quad \text{and} \quad p_2(x, y) = 0.
\]
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y) \) in the shaded cell, we have

\[
p_1(x, y) > 0 \quad \text{and} \quad p_2(x, y) = 0.
\]
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) > 0 \quad \text{and} \quad p_2(x, y) = 0.
\]
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y) \) in the shaded cell, we have

\[
p_1(x, y) > 0 \quad \text{and} \quad p_2(x, y) = 0.
\]
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m\} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y)\) in the shaded cell, we have

\[
p_1(x, y) = 0 \quad \text{and} \quad p_2(x, y) = 0.
\]
Algebraic Decomposition

A finite set of polynomials \(\{p_1, \ldots, p_m \} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

For all points \((x, y) \) in the shaded cell, we have

\[
p_1(x, y) = 0 \quad \text{and} \quad p_2(x, y) = 0.
\]
Algebraic Decomposition

A finite set of polynomials \(\{ p_1, \ldots, p_m \} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) induces a decomposition ("partition") of \(\mathbb{R}^n \) into maximal sign-invariant cells ("regions").

Example: The polynomials \(p_1 = x^2 + y^2 - 4 \) and \(p_2 = (x - 1)(y - 1) - 1 \) induce a decomposition of \(\mathbb{R}^2 \) into 13 cells:

![Graph of polynomials]

Precise Definition:
A **cell** in the algebraic decomposition of \(\{ p_1, \ldots, p_m \} \subseteq \mathbb{R}[x_1, \ldots, x_n] \) is a maximal connected subset of \(\mathbb{R}^n \) on which all the \(p_i \) are sign invariant.
Truth of a quantified formula can be determined \textit{by inspection} from the algebraic decomposition of the involved polynomials.
Algebraic Decomposition and Quantifier Elimination

Truth of a quantified formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Example: $\forall x \exists y : x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$
Algebraic Decomposition and Quantifier Elimination

Truth of a quantified formula can be determined \textit{by inspection} from the algebraic decomposition of the involved polynomials.

\textbf{Example:} \(\forall x \exists y : x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1 \)

Consider the cell(s) for which the quantifier free part

\[x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1 \]

is true.
Algebraic Decomposition and Quantifier Elimination

Truth of a quantified formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Example: $\forall x \exists y : x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$

Consider the cell(s) for which the quantifier free part

$x^2 + y^2 > 4 \iff (x - 1)(y - 1) > 1$

is true.

Obviously, each vertical line $x = \alpha$ intersects one of those cells nontrivially. The $\forall x \exists y$ claim follows.
Observation: It does not hurt if we change from a decomposition for \(\{p_1, \ldots, p_m\} \) to a decomposition for \(\{p_1, \ldots, p_m, q_1, \ldots, q_k\} \) for some polynomials \(q_1, \ldots, q_k \in \mathbb{Q}[x_1, \ldots, x_n] \).
Observation: It does not hurt if we change from a decomposition for \(\{p_1, \ldots, p_m\} \) to a decomposition for \(\{p_1, \ldots, p_m, q_1, \ldots, q_k\} \) for some polynomials \(q_1, \ldots, q_k \in \mathbb{Q}[x_1, \ldots, x_n] \).

The reasoning of the previous example is not affected.
Observation: It does not hurt if we change from a decomposition for \(\{p_1, \ldots, p_m\} \) to a decomposition for \(\{p_1, \ldots, p_m, q_1, \ldots, q_k\} \) for some polynomials \(q_1, \ldots, q_k \in \mathbb{Q}[x_1, \ldots, x_n] \).

The reasoning of the previous example is not affected.

Goal: Given \(p_1, \ldots, p_m \), find polynomials \(q_1, \ldots, q_k \) such that the decomposition of \(\{p_1, \ldots, p_m, q_1, \ldots, q_k\} \) is easier to deal with.
Observation: It does not hurt if we change from a decomposition for \(\{p_1, \ldots, p_m\}\) to a decomposition for \(\{p_1, \ldots, p_m, q_1, \ldots, q_k\}\) for some polynomials \(q_1, \ldots, q_k \in \mathbb{Q}[x_1, \ldots, x_n]\).

The reasoning of the previous example is not affected.

Goal: Given \(p_1, \ldots, p_m\), find polynomials \(q_1, \ldots, q_k\) such that the decomposition of \(\{p_1, \ldots, p_m, q_1, \ldots, q_k\}\) is easier to deal with.

In particular, it should be possible to carry out the reasoning on the previous slide automatically.
Observation: It does not hurt if we change from a decomposition for \(\{p_1, \ldots, p_m\} \) to a decomposition for \(\{p_1, \ldots, p_m, q_1, \ldots, q_k\} \) for some polynomials \(q_1, \ldots, q_k \in \mathbb{Q}[x_1, \ldots, x_n] \).

The reasoning of the previous example is not affected.

Goal: Given \(p_1, \ldots, p_m \), find polynomials \(q_1, \ldots, q_k \) such that the decomposition of \(\{p_1, \ldots, p_m, q_1, \ldots, q_k\} \) is easier to deal with.

In particular, it should be possible to carry out the reasoning on the previous slide automatically.

This motivates the following definition.
For $n \in \mathbb{N}$, let

$$\pi_n : \mathbb{R}^n \to \mathbb{R}^{n-1}, \quad (x_1, \ldots, x_{n-1}, x_n) \mapsto (x_1, \ldots, x_{n-1})$$

denote the canonical projection.
CAD: Geometric Definition

For $n \in \mathbb{N}$, let

$$\pi_n : \mathbb{R}^n \to \mathbb{R}^{n-1}, \quad (x_1, \ldots, x_{n-1}, x_n) \mapsto (x_1, \ldots, x_{n-1})$$

denote the canonical projection.

Definition: Let $p_1, \ldots, p_m \in \mathbb{Q}[x_1, \ldots, x_n]$. The algebraic decomposition of $\{p_1, \ldots, p_m\}$ is called **cylindrical**, if
For $n \in \mathbb{N}$, let

$$
\pi_n : \mathbb{R}^n \rightarrow \mathbb{R}^{n-1}, \quad (x_1, \ldots, x_{n-1}, x_n) \mapsto (x_1, \ldots, x_{n-1})
$$

denote the canonical projection.

Definition: Let $p_1, \ldots, p_m \in \mathbb{Q}[x_1, \ldots, x_n]$. The algebraic decomposition of $\{p_1, \ldots, p_m\}$ is called **cylindrical**, if

- For any two cells C, D of the decomposition, the images $\pi_n(C'), \pi_n(D)$ are either identical or disjoint.
CAD: Geometric Definition

For \(n \in \mathbb{N} \), let
\[
\pi_n : \mathbb{R}^n \to \mathbb{R}^{n-1}, \quad (x_1, \ldots, x_{n-1}, x_n) \mapsto (x_1, \ldots, x_{n-1})
\]
denote the canonical projection.

Definition: Let \(p_1, \ldots, p_m \in \mathbb{Q}[x_1, \ldots, x_n] \). The algebraic decomposition of \(\{p_1, \ldots, p_m\} \) is called **cylindrical**, if

- For any two cells \(C, D \) of the decomposition, the images \(\pi_n(C'), \pi_n(D) \) are either identical or disjoint.
- The algebraic decomposition of \(\{p_1, \ldots, p_m\} \cap \mathbb{Q}[x_1, \ldots, x_{n-1}] \) is cylindrical.
CAD: Geometric Definition

For \(n \in \mathbb{N} \), let

\[
\pi_n : \mathbb{R}^n \rightarrow \mathbb{R}^{n-1}, \quad (x_1, \ldots, x_{n-1}, x_n) \mapsto (x_1, \ldots, x_{n-1})
\]

denote the canonical projection.

Definition: Let \(p_1, \ldots, p_m \in \mathbb{Q}[x_1, \ldots, x_n] \). The algebraic decomposition of \(\{p_1, \ldots, p_m\} \) is called **cylindrical**, if

- For any two cells \(C, D \) of the decomposition, the images \(\pi_n(C'), \pi_n(D) \) are either identical or disjoint.
- The algebraic decomposition of \(\{p_1, \ldots, p_m\} \cap \mathbb{Q}[x_1, \ldots, x_{n-1}] \) is cylindrical.

Base case: Any algebraic decomposition of \(\mathbb{R}^1 \) is cylindrical.
Consider again \(\{x^2 + y^2 - 4, (x - 1)(y - 1) - 1\} \subseteq \mathbb{Q}[x, y] \)

This is not a CAD. Why not?
Consider again $\{x^2 + y^2 - 4, (x - 1)(y - 1) - 1\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?

Consider the two shaded cells.
Example

Consider again \(\{x^2 + y^2 - 4, (x - 1)(y - 1) - 1\} \subseteq \mathbb{Q}[x, y] \)

This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is neither disjoint nor identical.
Consider again \(\{x^2 + y^2 - 4, (x - 1)(y - 1) - 1\} \subseteq \mathbb{Q}[x, y] \)

This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is neither disjoint nor identical.

Fix: Insert two vertical lines.
Consider again \(\{ x^2 + y^2 - 4, (x - 1)(y - 1) - 1 \} \subseteq \mathbb{Q}[x, y] \)

This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is neither disjoint nor identical.

Fix: Insert two vertical lines.
Example

Consider again \(\{x^2 + y^2 - 4, (x - 1)(y - 1) - 1\} \subseteq \mathbb{Q}[x, y] \)

This is not a CAD. Why not?

Consider the two shaded cells.

Their projection to the real line is neither disjoint nor identical.

Fix: Insert two vertical lines.

Proceed analogously for all other cell pairs. The result is a CAD.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a sample point for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a sample point for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a sample point for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a sample point for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a sample point for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
In a CAD, we can construct a *sample point* for each cell.
Example

For these, we can determine the *truth values* of a formula.
Example

For these, we can determine the *truth values* of a formula.
Example

From these, we can obtain the “region of truth”.
Example

From these, we can obtain the “region of truth”.
Example

From this, we can extract a *solution formula.*
The CAD algorithm consists of the following three phases:
The CAD algorithm

The CAD algorithm consists of the following three phases:

1. **Projection.** If p_1, \ldots, p_m are the polynomials in the input, find q_1, \ldots, q_k such that the algebraic decomposition of $\{p_1, \ldots, p_m, q_1, \ldots, q_k\}$ is cylindrical.
The CAD algorithm consists of the following three phases:

1. **Projection.** If \(p_1, \ldots, p_m \) are the polynomials in the input, find \(q_1, \ldots, q_k \) such that the algebraic decomposition of \(\{p_1, \ldots, p_m, q_1, \ldots, q_k\} \) is cylindrical.

2. **Lifting.** Construct sample points for each cell in this decomposition considering one dimension after the other in a bottom-up fashion.
The CAD algorithm consists of the following three phases:

1. **Projection.** If \(p_1, \ldots, p_m \) are the polynomials in the input, find \(q_1, \ldots, q_k \) such that the algebraic decomposition of \(\{p_1, \ldots, p_m, q_1, \ldots, q_k\} \) is cylindrical.

2. **Lifting.** Construct sample points for each cell in this decomposition considering one dimension after the other in a bottom-up fashion.

3. **Solution.** Select the regions of interest [check if some simplification is possible by joining neighboring cells] and construct a solution formula accordingly.
The CAD algorithm

1. Projection.

A finite set $A \subseteq \mathbb{R}[x_1, \ldots, x_n]$ is called a CAD if its induced algebraic decomposition of \mathbb{R}^n is cylindrical.
The CAD algorithm

1. Projection.

A finite set $A \subseteq \mathbb{R}[x_1, \ldots, x_n]$ is called a CAD if its induced algebraic decomposition of \mathbb{R}^n is cylindrical.

Task: Given $A \subseteq \mathbb{R}[x_1, \ldots, x_n]$, find $B \subseteq \mathbb{R}[x_1, \ldots, x_n]$ such that $A \cup B$ is a CAD.
The CAD algorithm

1. Projection.

A finite set $A \subseteq \mathbb{R}[x_1, \ldots, x_n]$ is called a CAD if its induced algebraic decomposition of \mathbb{R}^n is cylindrical.

Task: Given $A \subseteq \mathbb{R}[x_1, \ldots, x_n]$, find $B \subseteq \mathbb{R}[x_1, \ldots, x_n]$ such that $A \cup B$ is a CAD.

Beginning with x_n, we handle one variable after the other.
The CAD algorithm

1. Projection.

A projection operator is a function

\[A \rightarrow P_n(A) \]

such that:

\[\cap \quad \cap \]

\[\mathbb{R}[x_1, \ldots, x_n] \quad \mathbb{R}[x_1, \ldots, x_{n-1}] \]
The CAD algorithm

1. Projection.

A projection operator is a function

\[
A \quad \mapsto \quad P_n(A)
\]

such that:

If \(B \) is a CAD of \(P_n(A) \) in \(\mathbb{R}[x_1, \ldots, x_{n-1}] \)
then \(B \cup A \) is a CAD of \(A \) in \(\mathbb{R}[x_1, \ldots, x_{n-1}] \).
1. Projection.

Here is one of several known projection operators:

\[P_n(A) := \bigcup_{p \in A} \text{coeffs}_{x_n}(p) \cup \bigcup_{p \in A} \{ \text{disc}_{x_n}(p) \} \cup \bigcup_{p,q \in A} \{ \text{res}_{x_n}(p, q) \}. \]
The CAD algorithm

1. Projection.

Here is one of several known projection operators:

\[P_n(A) := \bigcup_{p \in A} \text{coeffs}_{x_n}(p) \cup \bigcup_{p \in A} \{\text{disc}_{x_n}(p)\} \cup \bigcup_{p, q \in A} \{\text{res}_{x_n}(p, q)\}. \]
The CAD algorithm

1. Projection.

Here is one of several known projection operators:

\[P_n(A) := \bigcup_{p \in A} \text{coeffs}_{x_n}(p) \cup \bigcup_{p \in A} \{ \text{disc}_{x_n}(p) \} \cup \bigcup_{p,q \in A} \{ \text{res}_{x_n}(p,q) \}. \]

- coefficients of \(p \) with respect to \(x_n \)
- discriminant of \(p \) with respect to \(x_n \)
The CAD algorithm

1. Projection.

Here is one of several known projection operators:

\[P_n(A) := \bigcup_{p \in A} \text{coeff}_x(p) \cup \bigcup_{p \in A} \{ \text{disc}_x(p) \} \cup \bigcup_{p,q \in A} \{ \text{res}_x(p, q) \}. \]

- \(\text{coeff}_x(p) \): coefficients of \(p \) with respect to \(x \)
- \(\text{disc}_x(p) \): discriminant of \(p \) with respect to \(x \)
- \(\text{res}_x(p, q) \): \(\text{res}_x \) of \(p, q \)
The CAD algorithm

1. Projection.

Here is one of several known projection operators:

\[P_n(A) := \bigcup_{p \in A} \text{coeffs}_{x_n}(p) \cup \bigcup_{p \in A} \{\text{disc}_{x_n}(p)\} \cup \bigcup_{p,q \in A} \{\text{res}_{x_n}(p, q)\}. \]

- Coefficients of \(p \) with respect to \(x_n \)
- Discriminant of \(p \) with respect to \(x_n \)
- Resultant of \(p \) and \(q \) with respect to \(x_n \)

\[:= \text{res}_{x_n}(p, \frac{\partial}{\partial x_n} p) \]
The CAD algorithm

1. Projection.

Here is one of several known projection operators:

\[P_n(A) := \bigcup_{p \in A} \text{coeffs}_{x_n}(p) \cup \bigcup_{p \in A} \{\text{disc}_{x_n}(p)\} \cup \bigcup_{p,q \in A} \{\text{res}_{x_n}(p, q)\}. \]

- coefficients of \(p \) with respect to \(x_n \)
- discriminant of \(p \) with respect to \(x_n \)
- resultant of \(p \) and \(q \) with respect to \(x_n \)

\[:= \text{res}_{x_n}(p, \frac{\partial}{\partial x_n} p) \]

\[:= \begin{array}{c}
* \\
**
\end{array} \]
The CAD algorithm

1. Projection.

Here is one of several known projection operators:

\[P_n(A) := \bigcup_{p \in A} \text{coeffs}_x(p) \cup \bigcup_{p \in A} \{\text{disc}_x(p)\} \cup \bigcup_{p,q \in A} \{\text{res}_x(p, q)\} \].
The CAD algorithm

1. Projection.

Here is one of several known projection operators:

\[P_n(A) := \bigcup_{p \in A} \text{coeffs}_{x_n}(p) \cup \bigcup_{p \in A} \{\text{disc}_{x_n}(p)\} \cup \bigcup_{p, q \in A} \{\text{res}_{x_n}(p, q)\}. \]
The CAD algorithm

1. Projection.

Here is one of several known projection operators:

\[
P_n(A) := \bigcup_{p \in A} \text{coeffs}_{x_n}(p) \cup \bigcup_{p \in A} \{\text{disc}_{x_n}(p)\} \cup \bigcup_{p, q \in A} \{\text{res}_{x_n}(p, q)\}.
\]
The CAD algorithm

1. Projection.

The projection algorithm:

INPUT: $A \subseteq \mathbb{Q}[x_1, \ldots, x_n]$
OUTPUT: $C \subseteq \mathbb{Q}[x_1, \ldots, x_n]$ such that $A \subseteq C$ and C is a CAD.

1. $C := A$
2. for $k = n$ down to 2 do
3. $C := C \cup P_k(C \cap \mathbb{Q}[x_1, \ldots, x_k])$
4. return C
The CAD algorithm

2. Lifting.
2. Lifting.

The case of one variable: $p_1(x), p_2(x), \ldots, p_m(x) \in (\bar{\mathbb{Q}} \cap \mathbb{R})[x]$.
2. Lifting.

The case of one variable: \(p_1(x), p_2(x), \ldots, p_m(x) \in (\overline{\mathbb{Q}} \cap \mathbb{R})[x]. \)
2. Lifting.

The case of one variable: \(p_1(x), p_2(x), \ldots, p_m(x) \in (\bar{\mathbb{Q}} \cap \mathbb{R})[x] \).

- Determine the real roots \(\xi_1, \ldots, \xi_k \in (\bar{\mathbb{Q}} \cap \mathbb{R}) \) of the \(p_i(x) \).
The CAD algorithm

2. Lifting.

The case of one variable: \(p_1(x), p_2(x), \ldots, p_m(x) \in (\overline{\mathbb{Q}} \cap \mathbb{R})[x] \).

- Determine the real roots \(\xi_1, \ldots, \xi_k \in (\overline{\mathbb{Q}} \cap \mathbb{R}) \) of the \(p_i(x) \).
- Choose \(\rho_0, \ldots, \rho_k \in \mathbb{Q} \) such that

 \[
 \rho_0 < \xi_1, \quad \xi_i < \rho_i < \xi_{i+1}, \quad \rho_k > \xi_k.
 \]
2. Lifting.

The case of one variable: $p_1(x), p_2(x), \ldots, p_m(x) \in (\bar{\mathbb{Q}} \cap \mathbb{R})[x]$.

- Determine the real roots $\xi_1, \ldots, \xi_k \in (\bar{\mathbb{Q}} \cap \mathbb{R})$ of the $p_i(x)$.
- Choose $\rho_0, \ldots, \rho_k \in \mathbb{Q}$ such that
 \[\rho_0 < \xi_1, \quad \xi_i < \rho_i < \xi_{i+1}, \quad \rho_k > \xi_k. \]
- The sample points are $\rho_0, \xi_1, \rho_1, \xi_2, \ldots, \rho_{k-1}, \xi_k, \rho_k$.
The CAD algorithm

2. Lifting.

The case of two variables: \(p_1(x, y), \ldots, p_m(x, y) \in (\overline{\mathbb{Q}} \cap \mathbb{R})[x, y] \).
2. Lifting.

The case of two variables: \(p_1(x, y), \ldots, p_m(x, y) \in (\overline{\mathbb{Q}} \cap \mathbb{R})[x, y] \).

- Determine sample points \(\sigma_0, \ldots, \sigma_{2k+1} \) for those \(p_i(x, y) \) which are free of \(y \).
The CAD algorithm

2. Lifting.

The case of two variables: \(p_1(x, y), \ldots, p_m(x, y) \in (\bar{\mathbb{Q}} \cap \mathbb{R})[x, y] \).

- Determine sample points \(\sigma_0, \ldots, \sigma_{2k+1} \) for those \(p_i(x, y) \) which are free of \(y \).
- For each \(\sigma_i \), determine sample points \(\sigma_{i,1}, \ldots, \sigma_{i,\ell} \) for the polynomials \(p_i(\sigma_i, y) \in (\bar{\mathbb{Q}} \cap \mathbb{R})[y] \).
The CAD algorithm

2. Lifting.

The case of two variables: \(p_1(x, y), \ldots, p_m(x, y) \in (\bar{\mathbb{Q}} \cap \mathbb{R})[x, y] \).

- Determine sample points \(\sigma_0, \ldots, \sigma_{2k+1} \) for those \(p_i(x, y) \) which are free of \(y \).
- For each \(\sigma_i \), determine sample points \(\sigma_{i,1}, \ldots, \sigma_{i,\ell} \) for the polynomials \(p_i(\sigma_i, y) \in (\bar{\mathbb{Q}} \cap \mathbb{R})[y] \).
- The sample points are then \((\sigma_i, \sigma_{i,j}) \in (\bar{\mathbb{Q}} \cap \mathbb{R})^2 \).
The CAD algorithm

2. Lifting.

The lifting algorithm:

INPUT: a CAD $C \subseteq \mathbb{Q}[x_1, \ldots, x_n]$

OUTPUT: a set of sample points $\sigma \in (\overline{\mathbb{Q}} \cap \mathbb{R})^n$ for C

1. $S_1 := \text{sample points for } C \cap \mathbb{Q}[x_1]$
2. for $k = 2$ to n do
3. $C_k := C \cap \mathbb{Q}[x_1, \ldots, x_k]$
4. $S_k = \bigcup_{\sigma \in S_{k-1}} \{\sigma\} \times \text{sample points for } C_k \mid_{(x_1, \ldots, x_k) = \sigma}$
5. return S_n
The CAD algorithm

2. Lifting.

Technical requirements:
2. Lifting.

Technical requirements:

- *Exact* arithmetic \((+, -, \times, /, \div 0)\) in \(\bar{\mathbb{Q}} \cap \mathbb{R}\).
The CAD algorithm

2. Lifting.

Technical requirements:

- **Exact** arithmetic \((+,-,\times,/,\div,=0)\) in \(\overline{\mathbb{Q}} \cap \mathbb{R}\).
- **Exact** real root isolation in \((\overline{\mathbb{Q}} \cap \mathbb{R})[x]\).
The CAD algorithm

2. Lifting.

Technical requirements:

- **Exact** arithmetic \((+, -, \times, /, \neq 0)\) in \(\mathbb{Q} \cap \mathbb{R}\).
- **Exact** real root isolation in \((\mathbb{Q} \cap \mathbb{R})[x]\).

Given \(p \in (\mathbb{Q} \cap \mathbb{R})[x]; \varepsilon > 0\)

Find \(\xi_1^- < \xi_1^+ < \cdots < \xi_k^- < \xi_k^+ \in \mathbb{Q}\) such that

\(\xi_i^+ - \xi_i^- < \varepsilon (i = 1, \ldots, k)\)

\(\triangleright\) every real root of \(p\) is contained in exactly one interval \((\xi_i^-, \xi_i^+)\)
The CAD algorithm

2. Lifting.

Technical requirements:

- **Exact** arithmetic ($+,-,\times,/,$ $\neq 0$) in $\overline{\mathbb{Q}} \cap \mathbb{R}$.
- **Exact** real root isolation in $(\overline{\mathbb{Q}} \cap \mathbb{R})[x]$.

Such algorithms are known.
The CAD algorithm

2. Lifting.

Technical requirements:

- **Exact** arithmetic ($+, -, \times, /, \neq 0$) in $\bar{\mathbb{Q}} \cap \mathbb{R}$.
- **Exact** real root isolation in $(\bar{\mathbb{Q}} \cap \mathbb{R})[x]$.

Such algorithms are known.

They are not trivial.
2. Lifting.

Technical requirements:

- **Exact** arithmetic (+, −, ×, /, = 0) in \(\overline{\mathbb{Q}} \cap \mathbb{R} \).
- **Exact** real root isolation in \((\overline{\mathbb{Q}} \cap \mathbb{R})[x]\).

Such algorithms are known.

They are not trivial.

We don’t explain them here.
The CAD algorithm

3. Solution.
The CAD algorithm

3. Solution.

- Assigning truth values to cells amounts to determining the sign of polynomials at the sample point.
The CAD algorithm

3. Solution.

- Assigning truth values to cells amounts to determining the sign of polynomials at the sample point
- Quantifier elimination:

 \(\forall x \in \mathbb{R} \) becomes “for all sample points”
 \(\exists x \in \mathbb{R} \) becomes “for at least one sample point”
3. Solution.

- Assigning truth values to cells amounts to determining the sign of polynomials at the sample point.
- Quantifier elimination:
 \[\forall x \in \mathbb{R} \text{ becomes “for all sample points”} \]
 \[\exists x \in \mathbb{R} \text{ becomes “for at least one sample point”} \]
- Formula construction is easy. (At least in principle.)
The CAD algorithm

3. Solution.

- Assigning truth values to cells amounts to determining the sign of polynomials at the sample point.
- Quantifier elimination:
 \[\forall x \in \mathbb{R} \text{ becomes “for all sample points”} \]
 \[\exists x \in \mathbb{R} \text{ becomes “for at least one sample point”} \]
- Formula construction is easy. (At least in principle.)
- Simplification is a software engineering challenge, but not problematic in theory.
The CAD algorithm

The CAD algorithm consists of the following three phases:

1. **Projection.** If \(p_1, \ldots, p_m \) are the polynomials in the input, find \(q_1, \ldots, q_k \) such that the algebraic decomposition of \(\{ p_1, \ldots, p_m, q_1, \ldots, q_k \} \) is cylindrical.

2. **Lifting.** Construct sample points for each cell in this decomposition considering one dimension after the other in a bottom-up fashion.

3. **Solution.** Select the regions of interest [check if some simplification is possible by joining neighboring cells] and construct a solution formula accordingly.
The CAD algorithm consists of the following three phases:

1. **Projection.** If \(p_1, \ldots, p_m \) are the polynomials in the input, find \(q_1, \ldots, q_k \) such that the algebraic decomposition of \(\{ p_1, \ldots, p_m, q_1, \ldots, q_k \} \) is cylindrical.

2. **Lifting.** Construct sample points for each cell in this decomposition considering one dimension after the other in a bottom-up fashion.

3. **Solution.** Select the regions of interest [check if some simplification is possible by joining neighboring cells] and construct a solution formula accordingly.
The CAD algorithm consists of the following three phases:

1. **Projection.** If p_1, \ldots, p_m are the polynomials in the input, find q_1, \ldots, q_k such that the algebraic decomposition of \{ $p_1, \ldots, p_m, q_1, \ldots, q_k$ \} is cylindrical.

2. **Lifting.** Construct sample points for each cell in this decomposition considering one dimension after the other in a bottom-up fashion.

3. **Solution.** Select the regions of interest [check if some simplification is possible by joining neighboring cells] and construct a solution formula accordingly.
The CAD algorithm consists of the following three phases:

1. **Projection.** If p_1, \ldots, p_m are the polynomials in the input, find q_1, \ldots, q_k such that the algebraic decomposition of $\{p_1, \ldots, p_m, q_1, \ldots, q_k\}$ is cylindrical.

2. **Lifting.** Construct sample points for each cell in this decomposition considering one dimension after the other in a bottom-up fashion.

3. **Solution.** Select the regions of interest [check if some simplification is possible by joining neighboring cells] and construct a solution formula accordingly.
Further Reading
Implementations

Implementations of CAD:
Implementations of CAD:

- **Qepcad**: by Hoon Hong, Chris Brown, et. al.; Standalone program; http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
Implementations

Implementations of CAD:

- **Qepcad**: by Hoon Hong, Chris Brown, et. al.; Standalone program; http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
- **Redlog**: by Andreas Dolzmann, Andreas Seidl, et. al.; Package for the CA-system Reduce; http://www.fmi.uni-passau.de/~redlog/
Implementations

Implementations of CAD:

- **Qepcad**: by Hoon Hong, Chris Brown, et. al.; Standalone program; http://www.cs.usna.edu/~qepcad/B/QEPCAD.html

- **Redlog**: by Andreas Dolzmann, Andreas Seidl, et. al.; Package for the CA-system Reduce; http://www.fmi.uni-passau.de/~redlog/

- **Mathematica**: part of the standard distribution from Version 5 on. Command names:
 - CylindricalDecomposition (raw CAD) and
 - Resolve (quantifier elimination)
Warning!
Warning!

\[
\begin{array}{c|c|c}
\text{CADable } \textit{in theory} & \iff & \text{CADable } \textit{in practice} \\
\end{array}
\]
Warning!

CADable \textit{in theory} \quad \Rightarrow \quad \text{CADable \textit{in practice}}

Calculating a CAD is a \textit{damned expensive} computational effort.
Calculating a CAD is a **damned expensive** computational effort.

- because a CAD typically consists of a huge number of cells,
Warning!

| CADable *in theory* | ⇝ | CADable *in practice* |

Calculating a CAD is a **damned expensive** computational effort.

- because a CAD typically consists of a huge number of cells,
- because a nontrivial computation is done for each of them.
Warning!

CADable *in theory* \(\Rightarrow\) CADable *in practice*

Calculating a CAD is a **damned expensive** computational effort.

- because a CAD typically consists of a huge number of cells,
- because a nontrivial computation is done for each of them.

Worst case bit complexity: \((2d)^{2^n+8} m^{2^n+6} b^3\), where
Warning!

\[
\text{CADable } \textit{in theory} \quad \Rightarrow \quad \text{CADable } \textit{in practice}
\]

Calculating a CAD is a \textbf{damned expensive} computational effort.

- because a CAD typically consists of a huge number of cells,
- because a nontrivial computation is done for each of them.

Worst case bit complexity: \((2d)^{2^{n+8}} m^{2n+6} b^3\), where

- \(n\) \ldots number of variables (\textit{hyper critical!})
Warning!

\[
\begin{array}{c}
\text{CADable } \textit{in theory} \quad \Rightarrow \quad \text{CADable } \textit{in practice}
\end{array}
\]

Calculating a CAD is a \textit{damned expensive} computational effort.

- because a CAD typically consists of a huge number of cells,
- because a nontrivial computation is done for each of them.

Worst case bit complexity: \((2d)^{2^n+8} m^{2^n+6} b^3\), where

- \(n\) \ldots number of variables (\textit{hyper critical!})
- \(d\) \ldots maximum degree of input polynomials
- \(m\) \ldots number of input polynomials
- \(b\) \ldots maximum bitsize of the rational numbers in the input
Warning!

To some extent, the computational complexity is unavoidable.
Warning!

To some extent, the computational complexity is unavoidable.

Theorem (Davenport/Heinz, 1988). There is a formula in $n + 2$ variables with n quantifiers so that *any* equivalent quantifier free formula (in two variables) has length $\Omega(2^{2n/2})$.
Warning!

To some extent, the computational complexity is unavoidable.

Theorem (Davenport/Heinz, 1988). There is a formula in $n + 2$ variables with n quantifiers so that *any* equivalent quantifier free formula (in two variables) has length $\Omega(2^{2n/2})$.

What to do?
Warning!

To some extent, the computational complexity is unavoidable.

Theorem (Davenport/Heinz, 1988). There is a formula in $n + 2$ variables with n quantifiers so that *any* equivalent quantifier free formula (in two variables) has length $\Omega(2^{2n/2})$.

What to do?

- internal improvements (for the programmer of CAD)
To some extent, the computational complexity is unavoidable.

Theorem (Davenport/Heinz, 1988). There is a formula in $n + 2$ variables with n quantifiers so that *any* equivalent quantifier free formula (in two variables) has length $\Omega(2^{2n/2})$.

What to do?

- internal improvements (for the programmer of CAD)
- external improvements (for the user of CAD)
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a *partial CAD* when this is sufficient.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a *partial CAD* when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a *partial CAD* when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a *partial CAD* when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a *partial CAD* when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

► Use the most efficient algorithms for computing with real algebraic numbers.
► Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
► Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a *partial CAD* when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x,y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a \(\forall x \exists y : \Phi(x, y) \) formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y : \Phi(x, y)$ formula.

Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.
External Improvements

- Try different variable orders.
External Improvements

- Try different variable orders.
- Decompose the problem into several smaller ones.
External Improvements

- Try different variable orders.
- Decompose the problem into several smaller ones.
- Where possible, only consider full dimensional cells.
External Improvements

- Try different variable orders.
- Decompose the problem into several smaller ones.
- Where possible, only consider full dimensional cells.

Example: The CAD of the unit sphere has 25 cells. Only 7 of them are full dimensional. Only arithmetic in \mathbb{Q} is needed to find them.
Summary
Summary

- CADs can be computed.
Summary

- CADs can be computed.
- CAD is based on a nice geometric intuition.
Summary

- CADs can be computed.
- CAD is based on a nice geometric intuition.
- The algorithm consists of projection/lifting/solution.
Summary

- CADs can be computed.
- CAD is based on a nice geometric intuition.
- The algorithm consists of projection/lifting/solution.
- Efficiency is an issue.
Summary

- CADs can be computed.
- CAD is based on a nice geometric intuition.
- The algorithm consists of projection/lifting/solution.
- Efficiency is an issue.
- Optimized implementations from specialists are freely available.
Summary

- CADs can be computed.
- CAD is based on a nice geometric intuition.
- The algorithm consists of projection/lifting/solution.
- Efficiency is an issue.
- Optimized implementations from specialists are freely available.

Tomorrow: Applications of CAD to special function inequalities.
A Simple Exercise

What is (pictorially) the CAD of the tacnode polynomial

\[p(x, y) = 2x^4 - 3x^2y + y^4 - 2y^3 + y^2 \]

- with respect to \(x, y \)?
- with respect to \(y, x \)?
I. What?

II. How?

III. Why?
I. What?

II. How?

III. Why?
Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
A Simple Exercise

What is (pictorially) the CAD of the tacnode polynomial

\[p(x, y) = 2x^4 - 3x^2y + y^4 - 2y^3 + y^2 \]

▷ with respect to \(x, y \)?
▷ with respect to \(y, x \)?
A Simple Exercise

What is (pictorially) the CAD of the tacnode polynomial

\[p(x, y) = 2x^4 - 3x^2y + y^4 - 2y^3 + y^2 \]

- with respect to \(x, y\)?
- with respect to \(y, x\)?

Discriminant of \(p(x, y)\) wrt. \(y\):

\[x^6(2048x^6 - 4608x^4 + 37x^2 + 12) \]
A Simple Exercise

What is (pictorially) the CAD of the tacnode polynomial

\[p(x, y) = 2x^4 - 3x^2y + y^4 - 2y^3 + y^2 \]

▷ with respect to \(x, y \)?

▷ with respect to \(y, x \)?

Discriminant of \(p(x, y) \) wrt. \(x \):

\[64y^6(y - 1)^2(8y^2 - 16y - 1)^2 \]
A Simple Exercise

What is (pictorially) the CAD of the tacnode polynomial

\[p(x, y) = 2x^4 - 3x^2y + y^4 - 2y^3 + y^2 \]

- with respect to \(x, y \)?
- with respect to \(y, x \)?

Discriminant of \(p(x, y) \) wrt. \(x \):

\[64y^6(y - 1)^2(8y^2 - 16y - 1)^2 \]

The quadratic factor introduces an unnecessary case distinction.
Some Recent Monthly Problems
Some Recent Monthly Problems

11033. Proposed by M. N. Deshpande and R. M. Welukar, Institute of Science, Nagpur, India. Let

\[P(m, n, r) = \sum_{k=0}^{r} (-1)^k \binom{m + n - 2(k + 1)}{n} \binom{r}{k}. \]

Let \(m, n, \) and \(r \) be integers such that \(0 \leq r \leq n \leq m - 2 \). Show that \(P(m, n, r) \) is positive and that \(\sum_{r=0}^{n} P(m, n, r) = \binom{m+n}{n} \).
Let \(\langle a_k \rangle \) be a sequence of positive numbers defined by \(a_n = \frac{1}{2}(a_{n-1}^2 + 1) \) for \(n > 1 \), with \(a_1 = 3 \). Show that

\[
\left[\left(\sum_{k=1}^{n} \frac{a_k}{1 + a_k} \right) \left(\sum_{k=1}^{n} \frac{1}{a_k(1 + a_k)} \right) \right]^{1/2} \leq \frac{1}{4} \left(\frac{a_1 + a_n}{\sqrt{a_1 a_n}} \right).
\]
11445. Proposed by H. A. ShahAli, Tehran, Iran. Given $a, b, c > 0$ with $b^2 > 4ac$, let $\langle \lambda_n \rangle$ be a sequence of real numbers, with $\lambda_0 > 0$ and $c\lambda_1 > b\lambda_0$. Let $u_0 = c\lambda_0$, $u_1 = c\lambda_1 - b\lambda_0$, and for $n \geq 2$ let $u_n = a\lambda_{n-2} - b\lambda_{n-1} + c\lambda_n$. Show that if $u_n > 0$ for all $n \geq 0$, then $\lambda_n > 0$ for all $n \geq 0$.
What’s that?

These problems have in common that they
What’s that?

These problems have in common that they

► involve one or more *discrete variables.*
What’s that?

These problems have in common that they

- involve one or more *discrete variables*.
- are *not polynomial*.
What’s that?

These problems have in common that they

► involve one or more *discrete variables.*
► are *not polynomial.*

Today’s topic:
What’s that?

These problems have in common that they
- involve one or more *discrete variables*.
- are *not polynomial*.

Today’s topic:
- How can CAD be helpful for such problems.
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \forall x \geq -1 : (x + 1)^n \geq 1 + nx. \]
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \ \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]
Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]

Problem: \((x + 1)^n - (1 + nx) \not\in \mathbb{Q}[n, x]\)
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \ \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]

Problem: \((x + 1)^n - (1 + nx) \notin \mathbb{Q}[n, x] \)

- But for any specific integer \(n \), it is a polynomial in \(x \).
Bernoulli’s inequality:

$$\forall n \in \mathbb{N} \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0.$$

Problem: $$(x + 1)^n - (1 + nx) \notin \mathbb{Q}[n, x]$$

- But for any specific integer n, it is a polynomial in x.
- View $(x + 1)^n - (1 + nx)$ as a sequence of polynomials.
Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \ \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]

Problem: \((x + 1)^n - (1 + nx) \notin \mathbb{Q}[n, x]\)

- But for any specific integer \(n\), it is a polynomial in \(x\).
- View \((x + 1)^n - (1 + nx)\) as a sequence of polynomials.
- View Bernoulli’s inequality as a sequence of polynomial inequalities.
Bernoulli’s inequality:

$$\forall n \in \mathbb{N} \; \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0.$$
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]
Bernoulli’s inequality:

\[
\forall n \in \mathbb{N} \ \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0.
\]
A Simple Example

Bernoulli’s inequality:

\[
\forall n \in \mathbb{N} \ \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0.
\]
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]
A Simple Example

Bernoulli’s inequality:

\[
\forall \ n \in \mathbb{N} \ \forall \ x \geq -1 : (x + 1)^n - (1 + nx) \geq 0.
\]
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \ \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]
Bernoulli’s inequality:

$$\forall \ n \in \mathbb{N} \ \forall \ x \geq -1 : (x + 1)^n - (1 + nx) \geq 0.$$
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \ \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \ \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \; \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]

Idea: Combine induction on \(n \) and CAD.
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]

\[\textbf{Idea:} \text{ Combine induction on } n \text{ and CAD.} \]

\[\text{Let } f_n(x) := (x + 1)^n - (1 + nx). \]
Bernoulli’s inequality:

$$\forall \; n \in \mathbb{N} \; \forall \; x \geq -1 \; : \; (x + 1)^n - (1 + nx) \geq 0.$$

Idea: Combine induction on n and CAD.

- Let $f_n(x) := (x + 1)^n - (1 + nx)$.
- Induction step:

$$\forall \; n \in \mathbb{N} \; \forall \; x \geq -1 \; : \; f_n(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0$$
Bernoulli’s inequality:

$$\forall \, n \in \mathbb{N} \ \forall \, x \geq -1 \, : \, (x + 1)^n - (1 + nx) \geq 0.$$

- **Idea:** Combine induction on n and CAD.
- Let $f_n(x) := (x + 1)^n - (1 + nx)$.
- Induction step:

$$\forall \, n \in \mathbb{N} \ \forall \, x \geq -1 : \ f_n(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0$$

- Exploit the **recurrence** $f_{n+1}(x) = (x + 1)f_n(x) + nx^2$
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]

- **Idea:** Combine induction on \(n \) and CAD.
- Let \(f_n(x) := (x + 1)^n - (1 + nx) \).
- Induction step:

\[\forall n \in \mathbb{N} \forall x \geq -1 : f_n(x) \geq 0 \Rightarrow (x + 1)f_n(x) + nx^2 \geq 0 \]

- Exploit the **recurrence** \(f_{n+1}(x) = (x + 1)f_n(x) + nx^2 \)
A Simple Example

Bernoulli’s inequality:

\[
\forall n \in \mathbb{N} \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0.
\]

- **Idea:** Combine induction on \(n \) and CAD.
- Let \(f_n(x) := (x + 1)^n - (1 + nx) \).
- Induction step:

\[
\forall n \in \mathbb{N} \forall x \geq -1 : f_n(x) \geq 0 \Rightarrow (x + 1)f_n(x) + nx^2 \geq 0
\]

- **Exploit the recurrence** \(f_{n+1}(x) = (x + 1)f_n(x) + nx^2 \)
- **Generalize** \(f_n(x) \) to \(y \) and \(n \in \mathbb{N} \) to \(n \geq 0 \)
A Simple Example

Bernoulli’s inequality:

\[
\forall n \in \mathbb{N} \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0.
\]

- **Idea**: Combine induction on \(n \) and CAD.
- Let \(f_n(x) := (x + 1)^n - (1 + nx) \).
- Induction step:

\[
\forall n \geq 0 \forall y \forall x \geq -1 : y \geq 0 \Rightarrow (x + 1)y + nx^2 \geq 0
\]

- Exploit the **recurrence** \(f_{n+1}(x) = (x + 1)f_n(x) + nx^2 \)
- Generalize \(f_n(x) \) to \(y \) and \(n \in \mathbb{N} \) to \(n \geq 0 \)
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \ \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]

- **Idea:** Combine induction on \(n \) and CAD.
- Let \(f_n(x) := (x + 1)^n - (1 + nx) \).
- Induction step:

\[\forall n \geq 0 \ \forall y \ \forall x \geq -1 : y \geq 0 \Rightarrow (x + 1)y + nx^2 \geq 0 \]

- Exploit the **recurrence** \(f_{n+1}(x) = (x + 1)f_n(x) + nx^2 \)
- Generalize \(f_n(x) \) to \(y \) and \(n \in \mathbb{N} \) to \(n \geq 0 \)
- The resulting formula is indeed **true**.
A Simple Example

Bernoulli’s inequality:

\[\forall \ n \in \mathbb{N} \ \forall \ x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]

- **Idea:** Combine induction on \(n \) and CAD.
- Let \(f_n(x) := (x + 1)^n - (1 + nx) \).
- Induction step:

\[\forall \ n \in \mathbb{N} \ \forall \ x \geq -1 : f_n(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0 \]

- This proves the induction step.
A Simple Example

Bernoulli’s inequality:

\[\forall n \in \mathbb{N} \forall x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]

- Idea: Combine induction on \(n \) and CAD.
- Let \(f_n(x) := (x + 1)^n - (1 + nx) \).
- Induction step:

\[\forall n \in \mathbb{N} \forall x \geq -1 : f_n(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0 \]

- This proves the induction step.
- The induction base \(0 \geq 0 \) is trivial.
A Simple Example

Bernoulli’s inequality:

\[\forall \ n \in \mathbb{N} \ \forall \ x \geq -1 : (x + 1)^n - (1 + nx) \geq 0. \]

- Idea: Combine induction on \(n \) and CAD.
- Let \(f_n(x) := (x + 1)^n - (1 + nx) \).
- Induction step:

\[\forall \ n \in \mathbb{N} \ \forall \ x \geq -1 : f_n(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0 \]

- This proves the induction step.
- The induction base \(0 \geq 0 \) is trivial.
- This completes the proof. \(\blacksquare \)
The General Principle

In order to prove a statement $\forall n \in \mathbb{N} : \Phi(n)$,
The General Principle

In order to prove a statement $\forall n \in \mathbb{N} : \Phi(n)$,

- Consider $\forall n \in \mathbb{N} : \Phi(n) \Rightarrow \Phi(n + 1)$.
In order to prove a statement $\forall n \in \mathbb{N} : \Phi(n)$,

- Consider $\forall n \in \mathbb{N} : \Phi(n) \Rightarrow \Phi(n + 1)$.
- Replace the nonpolynomial quantities in $\Phi(n)$ and $\Phi(n + 1)$ by as few as possible new real variables y_1, \ldots, y_k.

The General Principle
The General Principle

In order to prove a statement $\forall n \in \mathbb{N} : \Phi(n)$,

- Consider $\forall n \in \mathbb{N} : \Phi(n) \Rightarrow \Phi(n + 1)$.

- Replace the nonpolynomial quantities in $\Phi(n)$ and $\Phi(n + 1)$ by as few as possible new real variables y_1, \ldots, y_k.

- Use CAD to prove the formula

 $\forall n \geq 0 \forall y_1, \ldots, y_k : \Phi'(n, y_1, \ldots, y_k) \Rightarrow \Phi''(n, y_1, \ldots, y_k)$.
The General Principle

In order to prove a statement $\forall n \in \mathbb{N} : \Phi(n)$,

- Consider $\forall n \in \mathbb{N} : \Phi(n) \Rightarrow \Phi(n + 1)$.
- Replace the nonpolynomial quantities in $\Phi(n)$ and $\Phi(n + 1)$ by as few as possible new real variables y_1, \ldots, y_k.
- Use CAD to prove the formula

$$\forall n \geq 0 \forall y_1, \ldots, y_k : \Phi'(n, y_1, \ldots, y_k) \Rightarrow \Phi''(n, y_1, \ldots, y_k).$$

- Use CAD to prove $\Phi(0)$.
The General Principle

In order to prove a statement $\forall n \in \mathbb{N} : \Phi(n)$,

- Consider $\forall n \in \mathbb{N} : \Phi(n) \Rightarrow \Phi(n + 1)$.
- Replace the nonpolynomial quantities in $\Phi(n)$ and $\Phi(n + 1)$ by as few as possible new real variables y_1, \ldots, y_k.
- Use CAD to prove the formula

 $$\forall n \geq 0 \forall y_1, \ldots, y_k : \Phi'(n, y_1, \ldots, y_k) \Rightarrow \Phi''(n, y_1, \ldots, y_k).$$

- Use CAD to prove $\Phi(0)$.
- Done.
The General Principle

In order to prove a statement $\forall n \in \mathbb{N} : \Phi(n)$,

1. Consider $\forall n \in \mathbb{N} : \Phi(n) \Rightarrow \Phi(n + 1)$.
2. Replace the nonpolynomial quantities in $\Phi(n)$ and $\Phi(n + 1)$ by as few as possible new real variables y_1, \ldots, y_k.
3. Use CAD to prove the formula $\forall n \geq 0 \forall y_1, \ldots, y_k : \Phi'(n, y_1, \ldots, y_k) \Rightarrow \Phi''(n, y_1, \ldots, y_k)$.
4. Use CAD to prove $\Phi(0)$.
5. Done.

This condition is sufficient but not necessary.

What if it is not true?
A Slightly Less Simple Example

Bernoulli’s inequality reloaded:

\[\forall \ n \in \mathbb{N} \ \forall \ x \geq -2 : (x + 1)^n - (1 + nx) \geq 0 \]
A Slightly Less Simple Example

Bernoulli’s inequality reloaded:

\[\forall n \in \mathbb{N} \, \forall x \geq -2 : (x + 1)^n - (1 + nx) \geq 0 \]
Bernoulli’s inequality reloaded:

$$\forall n \in \mathbb{N} \forall x \geq -2 : (x + 1)^n - (1 + nx) \geq 0$$

The induction step formula:

$$\forall n \geq 0 \forall y \forall x \geq -2 : y \geq 0 \Rightarrow (x + 1)y + nx^2 \geq 0$$

is false. 😞
A Slightly Less Simple Example

Bernoulli’s inequality reloaded:

$$\forall \ n \in \mathbb{N} \ \forall \ x \geq -2 : (x + 1)^n - (1 + nx) \geq 0$$

The induction step formula:

$$\forall \ n \geq 0 \ \forall \ y \ \forall \ x \geq -2 : y \geq 0 \Rightarrow (x + 1)y + nx^2 \geq 0$$

is false. 😞

New idea: Instead of $\Phi(n) \Rightarrow \Phi(n + 1)$, try

$$\Phi(n) \land \Phi(n + 1) \Rightarrow \Phi(n + 2)$$
A Slightly Less Simple Example

Bernoulli’s inequality reloaded:

\[\forall n \in \mathbb{N} \forall x \geq -2 : (x + 1)^n - (1 + nx) \geq 0 \]

The extended induction step formula:

\[\forall n \geq 0 \forall y \forall x \geq -2 : y \geq 1 + nx \land (x + 1)y \geq 1 + (n + 1)x \]
\[\Rightarrow (x + 1)^2y \geq 1 + (n + 2)x \]

is true. ☺️
Bernoulli’s inequality reloaded:

\[\forall \ n \in \mathbb{N} \ \forall \ x \geq -2 : (x + 1)^n - (1 + nx) \geq 0 \]

Check two initial values:

\[n = 1 : \ x \geq -2 \Rightarrow (x + 1) \geq 1 + 1x \quad \checkmark \]

\[n = 2 : \ x \geq -2 \Rightarrow (x + 1)^2 \geq 1 + 2x \quad \checkmark \]
Bernoulli’s inequality reloaded:

\[\forall n \in \mathbb{N} \forall x \geq -2 : (x + 1)^n - (1 + nx) \geq 0 \]

Check two initial values:

\[n = 1 : \quad x \geq -2 \Rightarrow (x + 1) \geq 1 + 1x \quad \checkmark \]
\[n = 2 : \quad x \geq -2 \Rightarrow (x + 1)^2 \geq 1 + 2x \quad \checkmark \]

The truth of the inequality follows.
A Slightly Less Simple Example

Observations:

- There are various possibilities to polynomialify an inequality.
A Slightly Less Simple Example

Observations:

- There are various possibilities to polynomialify an inequality.
- If one fails, another one might still work.
A Slightly Less Simple Example

Observations:

- There are various possibilities to polynomialify an inequality.
- If one fails, another one might still work.
- The “Gerhold-Kauers-method”: For \(r = 1, 2, 3, \ldots \), try

\[
\Phi(n) \land \Phi(n + 1) \land \cdots \land \Phi(n + r) \Rightarrow \Phi(n + r + 1).
\]
Observations:

- There are various possibilities to polynomiallyfie an inequality.
- If one fails, another one might still work.
- The “Gerhold-Kauers-method”: For $r = 1, 2, 3, \ldots$, try
 \[
 \Phi(n) \land \Phi(n + 1) \land \cdots \land \Phi(n + r) \Rightarrow \Phi(n + r + 1).
 \]
- Also this does not work for every inequality.
A Slightly Less Simple Example

Observations:

- There are various possibilities to polynomialify an inequality.
- If one fails, another one might still work.
- The “Gerhold-Kauers-method”: For \(r = 1, 2, 3, \ldots \), try
 \[
 \Phi(n) \land \Phi(n + 1) \land \cdots \land \Phi(n + r) \Rightarrow \Phi(n + r + 1).
 \]
- Also this does not work for every inequality.
- In general, you have to experiment!
A Slightly Less Simple Example

Observations:

- There are various possibilities to polynomialify an inequality.
- If one fails, another one might still work.
- The “Gerhold-Kauers-method”: For $r = 1, 2, 3, \ldots$, try
 \[
 \Phi(n) \land \Phi(n + 1) \land \cdots \land \Phi(n + r) \Rightarrow \Phi(n + r + 1).
 \]
- Also this does not work for every inequality.
- In general, you have to experiment!
- Claim: Finding a CADable reformulation of a conjectured inequality can be much easier than finding a CAD-free proof.
Back to the Monthly Problems
11033. Proposed by M. N. Deshpande and R. M. Welukar, Institute of Science, Nagpur, India. Let

\[P(m, n, r) = \sum_{k=0}^{r} (-1)^k \binom{m + n - 2(k + 1)}{n} \binom{r}{k}. \]

Let \(m, n, \) and \(r \) be integers such that \(0 \leq r \leq n \leq m - 2 \). Show that \(P(m, n, r) \) is positive and that \(\sum_{r=0}^{n} P(m, n, r) = \binom{m+n}{n} \).
11033. Proposed by M. N. Deshpande and R. M. Welukar, Institute of Science, Nagpur, India. Let

\[P(m, n, r) = \sum_{k=0}^{r} (-1)^k \binom{m + n - 2(k + 1)}{n} \binom{r}{k}. \]

Let \(m, n, \) and \(r \) be integers such that \(0 \leq r \leq n \leq m - 2 \). Show that \(P(m, n, r) \) is positive and that \(\sum_{r=0}^{n} P(m, n, r) = \binom{m+n}{n} \).

Summation software finds the recurrence

\[P(m+2, n, r) = \frac{n + 1}{m} P(m+1, n, r) + \frac{n + m - 2r - 1}{m} P(m, n, r) \]
11033. Proposed by M. N. Deshpande and R. M. Welukar, Institute of Science, Nagpur, India. Let

\[P(m, n, r) = \sum_{k=0}^{r} (-1)^k \binom{m + n - 2(k + 1)}{n} \binom{r}{k}. \]

Let \(m, n, \) and \(r \) be integers such that \(0 \leq r \leq n \leq m - 2 \). Show that \(P(m, n, r) \) is positive and that \(\sum_{r=0}^{n} P(m, n, r) = \binom{m+n}{n} \).

Summation software finds the recurrence

\[
P(m+2, n, r) = \underbrace{\frac{n+1}{m}}_{\geq 0} P(m+1, n, r) + \underbrace{\frac{n + m - 2r - 1}{m}}_{\geq 0} P(m, n, r)
\]
Back to the Monthly Problems

11033. Proposed by M. N. Deshpande and R. M. Welukar, Institute of Science, Nagpur, India. Let

\[P(m, n, r) = \sum_{k=0}^{r} (-1)^k \binom{m + n - 2(k + 1)}{n} \binom{r}{k}. \]

Let \(m, n, \) and \(r \) be integers such that \(0 \leq r \leq n \leq m - 2 \). Show that \(P(m, n, r) \) is positive and that \(\sum_{r=0}^{n} P(m, n, r) = \binom{m+n}{n} \).

Summation software finds the recurrence

\[
P(m+2, n, r) = \underbrace{\frac{n+1}{m}}_{\geq 0} P(m+1, n, r) + \underbrace{\frac{n+m-2r-1}{m}}_{\geq 0} P(m, n, r)
\]

Sometimes you have got to be lucky...
11033. Proposed by M. N. Deshpande and R. M. Welukar, Institute of Science, Nagpur, India. Let

\[P(m, n, r) = \sum_{k=0}^{r} (-1)^k \binom{m+n-2(k+1)}{n} \binom{r}{k}. \]

Let \(m, n, \) and \(r \) be integers such that \(0 \leq r \leq n \leq m-2 \). Show that \(P(m, n, r) \) is positive and that \(\sum_{r=0}^{n} P(m, n, r) = \binom{m+n}{n} \).

(Side remark: The identity can of course also be done by computer algebra.)
11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\langle a_k \rangle$ be a sequence of positive numbers defined by $a_n = \frac{1}{2}(a_{n-1}^2 + 1)$ for $n > 1$, with $a_1 = 3$. Show that

$$\left[\left(\sum_{k=1}^{n} \frac{a_k}{1 + a_k}\right)\left(\sum_{k=1}^{n} \frac{1}{a_k(1 + a_k)}\right)\right]^{1/2} \leq \frac{1}{4}\left(\frac{a_1 + a_n}{\sqrt{a_1 a_n}}\right).$$
11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\langle a_k \rangle$ be a sequence of positive numbers defined by $a_n = \frac{1}{2}(a_{n-1}^2 + 1)$ for $n > 1$, with $a_1 = 3$. Show that

$$\left[\left(\sum_{k=1}^{n} \frac{a_k}{1 + a_k}\right)\left(\sum_{k=1}^{n} \frac{1}{a_k(1 + a_k)}\right)\right]^{1/2} \leq \frac{1}{4} \left(\frac{a_1 + a_n}{\sqrt{a_1 a_n}}\right).$$

Because of

$$\forall \ a > 1 : \frac{1}{2}(a^2 + 1) > a,$$

the sequence a_n is increasing.
11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let \(\langle a_k \rangle \) be a sequence of positive numbers defined by \(a_n = \frac{1}{2}(a_{n-1}^2 + 1) \) for \(n > 1 \), with \(a_1 = 3 \). Show that

\[
\left[\left(\sum_{k=1}^{n} \frac{a_k}{1+a_k} \right) \left(\sum_{k=1}^{n} \frac{1}{a_k(1+a_k)} \right) \right]^{1/2} \leq \frac{1}{4} \left(\frac{a_1 + a_n}{\sqrt{a_1 a_n}} \right).
\]

Square the claim to get \(s_1(n)s_2(n) \leq \frac{(3+a_n)^2}{48a_n} \) where \(s_1(n) \) and \(s_2(n) \) are the first and the second sum, respectively.
11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\langle a_k \rangle$ be a sequence of positive numbers defined by $a_n = \frac{1}{2}(a_{n-1}^2 + 1)$ for $n > 1$, with $a_1 = 3$. Show that

$$\left[\left(\sum_{k=1}^{n} \frac{a_k}{1+a_k} \right) \left(\sum_{k=1}^{n} \frac{1}{a_k(1+a_k)} \right) \right]^{1/2} \leq \frac{1}{4} \left(\frac{a_1 + a_n}{\sqrt{a_1 a_n}} \right).$$

Square the claim to get $s_1(n)s_2(n) \leq \frac{(3+a_n)^2}{48a_n}$ where $s_1(n)$ and $s_2(n)$ are the first and the second sum, respectively.

Besides the defining recurrence of a_n, we have

$$s_1(n) = s_1(n - 1) + \frac{a_n}{1+a_n}, \quad s_2(n) = s_2(n - 1) + \frac{1}{a_n(1+a_n)}.$$
11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain.

Let $\langle a_k \rangle$ be a sequence of positive numbers defined by $a_n = \frac{1}{2}(a_{n-1}^2 + 1)$ for $n > 1$, with $a_1 = 3$. Show that

$$\left[\left(\sum_{k=1}^{n} \frac{a_k}{1 + a_k} \right) \left(\sum_{k=1}^{n} \frac{1}{a_k(1 + a_k)} \right) \right]^{1/2} \leq \frac{1}{4} \left(\frac{a_1 + a_n}{\sqrt{a_1a_n}} \right).$$

Since a_n is positive and increasing, so are $s_1(n)$ and $s_2(n)$, hence

$$a_n \geq a_1 = 3, \quad s_1(n) \geq s_1(1) = \frac{3}{4}, \quad s_2(n) \geq s_2(1) = \frac{1}{15}.$$
11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\langle a_k \rangle$ be a sequence of positive numbers defined by $a_n = \frac{1}{2}(a_{n-1}^2 + 1)$ for $n > 1$, with $a_1 = 3$. Show that

$$\left[\left(\sum_{k=1}^{n} \frac{a_k}{1 + a_k}\right)\left(\sum_{k=1}^{n} \frac{1}{a_k(1 + a_k)}\right)\right]^{1/2} \leq \frac{1}{4} \left(\frac{a_1 + a_n}{\sqrt{a_1 a_n}}\right).$$

Since a_n is positive and increasing, so are $s_1(n)$ and $s_2(n)$, hence

$$a_n \geq a_1 = 3, \quad s_1(n) \geq s_1(1) = \frac{3}{4}, \quad s_2(n) \geq s_2(1) = \frac{1}{15}.$$

For $n \geq 3$, we can even assume

$$a_n \geq 13, \quad s_1(n) \geq \frac{211}{84}, \quad s_2(n) \geq \frac{667}{5460}.$$
11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let \(\langle a_k \rangle \) be a sequence of positive numbers defined by \(a_n = \frac{1}{2}(a_{n-1}^2 + 1) \) for \(n > 1 \), with \(a_1 = 3 \). Show that

\[
\left[\left(\sum_{k=1}^{n} \frac{a_k}{1 + a_k} \right) \left(\sum_{k=1}^{n} \frac{1}{a_k(1 + a_k)} \right) \right]^{1/2} \leq \frac{1}{4} \left(\frac{a_1 + a_n}{\sqrt{a_1a_n}} \right).
\]

CAD proves the induction step formula

\[
\forall a, s_1, s_2 : \left(a \geq 13 \land s_1 \geq \frac{211}{84} \land s_2 \geq \frac{667}{5460} \land s_1s_2 \leq \frac{(a+3)^2}{48a} \right) \Rightarrow \frac{(a^2(s_1 + 1) + 3s_1 + 1)((a^4 + 4a^2 + 3)s_2 + 4)}{(a^2 + 1)(a^2 + 3)^2} \leq \frac{(a^2 + 7)^2}{96(a^2 + 1)}.
\]
Let $\langle a_k \rangle$ be a sequence of positive numbers defined by $a_n = \frac{1}{2}(a_{n-1}^2 + 1)$ for $n > 1$, with $a_1 = 3$. Show that

$$\left[\left(\sum_{k=1}^{n} \frac{a_k}{1 + a_k} \right) \left(\sum_{k=1}^{n} \frac{1}{a_k(1 + a_k)} \right) \right]^{1/2} \leq \frac{1}{4} \left(\frac{a_1 + a_n}{\sqrt{a_1 a_n}} \right).$$

Now the problem is solved by checking the inequality for $n = 1, 2, 3$.
11445. Proposed by H. A. ShahAli, Tehran, Iran. Given $a, b, c > 0$ with $b^2 > 4ac$, let $\langle \lambda_n \rangle$ be a sequence of real numbers, with $\lambda_0 > 0$ and $c\lambda_1 > b\lambda_0$. Let $u_0 = c\lambda_0$, $u_1 = c\lambda_1 - b\lambda_0$, and for $n \geq 2$ let $u_n = a\lambda_{n-2} - b\lambda_{n-1} + c\lambda_n$. Show that if $u_n > 0$ for all $n \geq 0$, then $\lambda_n > 0$ for all $n \geq 0$.
11445. Proposed by H. A. ShahAli, Tehran, Iran. Given $a, b, c > 0$ with $b^2 > 4ac$, let $\langle \lambda_n \rangle$ be a sequence of real numbers, with $\lambda_0 > 0$ and $c\lambda_1 > b\lambda_0$. Let $u_0 = c\lambda_0$, $u_1 = c\lambda_1 - b\lambda_0$, and for $n \geq 2$ let $u_n = a\lambda_{n-2} - b\lambda_{n-1} + c\lambda_n$. Show that if $u_n > 0$ for all $n \geq 0$, then $\lambda_n > 0$ for all $n \geq 0$.

We show more: $\lambda_n > \left(\frac{b}{2c}\right)^n \lambda_0 > 0$.
11445. Proposed by H. A. Shah Ali, Tehran, Iran. Given $a, b, c > 0$ with $b^2 > 4ac$, let $\langle \lambda_n \rangle$ be a sequence of real numbers, with $\lambda_0 > 0$ and $c\lambda_1 > b\lambda_0$. Let $u_0 = c\lambda_0$, $u_1 = c\lambda_1 - b\lambda_0$, and for $n \geq 2$ let $u_n = a\lambda_{n-2} - b\lambda_{n-1} + c\lambda_n$. Show that if $u_n > 0$ for all $n \geq 0$, then $\lambda_n > 0$ for all $n \geq 0$.

We show more: $\lambda_n > (\frac{b}{2c})^n\lambda_0 > 0$.

For $n = 1$ this is part of the assumption.
11445. Proposed by H. A. ShahAli, Tehran, Iran. Given $a, b, c > 0$ with $b^2 > 4ac$, let $\langle \lambda_n \rangle$ be a sequence of real numbers, with $\lambda_0 > 0$ and $c\lambda_1 > b\lambda_0$. Let $u_0 = c\lambda_0$, $u_1 = c\lambda_1 - b\lambda_0$, and for $n \geq 2$ let $u_n = a\lambda_{n-2} - b\lambda_{n-1} + c\lambda_n$. Show that if $u_n > 0$ for all $n \geq 0$, then $\lambda_n > 0$ for all $n \geq 0$.

We show more: $\lambda_n > \left(\frac{b}{2c}\right)^n\lambda_0 > 0$.

For $n = 1$ this is part of the assumption.

For $n \mapsto n + 1$, we use CAD:

$$\forall a, b, c, \lambda, \lambda', \lambda'' : \left(a > 0 \land b > 0 \land c > 0 \land b^2 > 4ac \right.$$
$$\quad \land a\lambda - b\lambda' + c\lambda'' > 0 \land \lambda' > \frac{b}{2c}\lambda > 0 \right) \Rightarrow \lambda'' > \frac{b}{2c}\lambda'.$$
So what?

Just a crazy way to solve some more Monthly Problem?
So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures
So what?

Just a crazy way to solve some more Monthly Problem?

No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
So what?

Just a crazy way to solve some more Monthly Problem?

No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
So what?

Just a crazy way to solve some more Monthly Problem?

No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl’s conjecture (Pillwein, 2008)
So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
So what?

Just a crazy way to solve some more Monthly Problem?

No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.

All three proofs depend on a specific twist to the method.
So what?

Just a crazy way to solve some more Monthly Problem?

No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.

All three proofs depend on a specific twist to the method.
Moll’s Conjecture
Moll’s Conjecture

Name: Victor H. Moll
Moll’s Conjecture

Name: Victor H. Moll
Affiliation: Tulane, New Orleans
Moll’s Conjecture

Name: Victor H. Moll
Affiliation: Tulane, New Orleans
Passion: Experimental Mathematics
Moll’s Conjecture

Name: Victor H. Moll
Affiliation: Tulane, New Orleans
Passion: Experimental Mathematics
Obsession: Integrals
Moll’s Conjecture

Name: Victor H. Moll
Affiliation: Tulane, New Orleans
Passion: Experimental Mathematics
Obsession: Integrals
Moll’s Conjecture

Name: Victor H. Moll
Affiliation: Tulane, New Orleans
Passion: Experimental Mathematics
Obsession: Integrals

One of his absolute favorites:

\[\int_0^\infty \frac{1}{(x^4 + 2ax^2 + 1)^{m+1}} \, dx \]

where \(a > -1 \) is real and \(m \geq 0 \) is an integer.
Moll’s Conjecture

\[\int_0^\infty \frac{1}{(x^4 + 2ax^2 + 1)^{1/4}} \, dx = \frac{\pi}{2\sqrt{2}\sqrt{a+1}} \]
Moll’s Conjecture

\[\int_0^\infty \frac{1}{(x^4 + 2ax^2 + 1)^2} \, dx \]
\[= \frac{(2a+3)\pi}{8\sqrt{2}(a+1)^{3/2}} \]

\[\int_0^\infty \frac{1}{(x^4 + 2ax^2 + 1)^1} \, dx \]
\[= \frac{\pi}{2\sqrt{2}\sqrt{a+1}} \]
Moll’s Conjecture

\[
\begin{align*}
\int_{0}^{\infty} \frac{1}{(x^4 + 2ax^2 + 1)^1} \, dx &= \frac{\pi}{2\sqrt{2}\sqrt{a+1}} \\
\int_{0}^{\infty} \frac{1}{(x^4 + 2ax^2 + 1)^2} \, dx &= \frac{(2a+3)\pi}{8\sqrt{2}(a+1)^{3/2}} \\
\int_{0}^{\infty} \frac{1}{(x^4 + 2ax^2 + 1)^3} \, dx &= \frac{(12a^2 + 30a + 21)\pi}{64\sqrt{2}(a+1)^{5/2}}
\end{align*}
\]
Moll’s Conjecture

\[\int_0^\infty \frac{1}{(x^4+2ax^2+1)^1} \, dx = \frac{\pi}{2\sqrt{2}\sqrt{a+1}} \]

\[\int_0^\infty \frac{1}{(x^4+2ax^2+1)^2} \, dx = \frac{(2a+3)\pi}{8\sqrt{2}(a+1)^{3/2}} \]

\[\int_0^\infty \frac{1}{(x^4+2ax^2+1)^3} \, dx = \frac{(12a^2+30a+21)\pi}{64\sqrt{2}(a+1)^{5/2}} \]

\[\int_0^\infty \frac{1}{(x^4+2ax^2+1)^4} \, dx = \frac{(40a^3+140a^2+172a+77)\pi}{256\sqrt{2}(a+1)^{7/2}} \]
Moll’s Conjecture

\[
\begin{align*}
\int_0^\infty \frac{1}{(x^4+2ax^2+1)^1} \, dx &= \frac{\pi}{2\sqrt{2}\sqrt{a+1}} \\
\int_0^\infty \frac{1}{(x^4+2ax^2+1)^2} \, dx &= \frac{(2a+3)\pi}{8\sqrt{2}(a+1)^{3/2}} \\
\int_0^\infty \frac{1}{(x^4+2ax^2+1)^3} \, dx &= \frac{(12a^2+30a+21)\pi}{64\sqrt{2}(a+1)^{5/2}} \\
\int_0^\infty \frac{1}{(x^4+2ax^2+1)^4} \, dx &= \frac{(40a^3+140a^2+172a+77)\pi}{256\sqrt{2}(a+1)^{7/2}} \\
\int_0^\infty \frac{1}{(x^4+2ax^2+1)^5} \, dx &= \frac{(560a^4+2520a^3+4380a^2+3525a+1155)\pi}{4096\sqrt{2}(a+1)^{9/2}}
\end{align*}
\]
Moll’s Conjecture

\[\int_0^\infty \frac{1}{(x^4 + 2ax^2 + 1)^n} \, dx = \begin{cases} \frac{\pi}{2\sqrt{2}\sqrt{a+1}} & n = 1 \\ \frac{(2a+3)\pi}{8\sqrt{2}(a+1)^{3/2}} & n = 2 \\ \frac{(12a^2 + 30a + 21)\pi}{64\sqrt{2}(a+1)^{5/2}} & n = 3 \\ \frac{(40a^3 + 140a^2 + 172a + 77)\pi}{256\sqrt{2}(a+1)^{7/2}} & n = 4 \\ \frac{(560a^4 + 2520a^3 + 4380a^2 + 3525a + 1155)\pi}{4096\sqrt{2}(a+1)^{9/2}} & n = 5 \\ \frac{(2016a^5 + 11088a^4 + 24864a^3 + 28644a^2 + 17178a + 4389)\pi}{16384\sqrt{2}(a+1)^{11/2}} & n = 6 \end{cases} \]
Moll’s Conjecture

\[\int_0^{\infty} \frac{1}{(x^4 + 2ax^2 + 1)^1} \, dx = \frac{\pi}{2\sqrt{2}\sqrt{a+1}} \]

\[\int_0^{\infty} \frac{1}{(x^4 + 2ax^2 + 1)^2} \, dx = \frac{(2a+3)\pi}{8\sqrt{2}(a+1)^{3/2}} \]

\[\int_0^{\infty} \frac{1}{(x^4 + 2ax^2 + 1)^3} \, dx = \frac{(12a^2 + 30a + 21)\pi}{64\sqrt{2}(a+1)^{5/2}} \]

\[\int_0^{\infty} \frac{1}{(x^4 + 2ax^2 + 1)^4} \, dx = \frac{(40a^3 + 140a^2 + 172a + 77)\pi}{256\sqrt{2}(a+1)^{7/2}} \]

\[\int_0^{\infty} \frac{1}{(x^4 + 2ax^2 + 1)^5} \, dx = \frac{(560a^4 + 2520a^3 + 4380a^2 + 3525a + 1155)\pi}{4096\sqrt{2}(a+1)^{9/2}} \]

\[\int_0^{\infty} \frac{1}{(x^4 + 2ax^2 + 1)^6} \, dx = \frac{(2016a^5 + 11088a^4 + 24864a^3 + 28644a^2 + 17178a + 4389)\pi}{16384\sqrt{2}(a+1)^{11/2}} \]

\[\cdots \]
Moll’s Conjecture

General formula:

$$\int_0^\infty \frac{1}{(x^4 + 2ax^2 + 1)^{m+1}} = \frac{\pi P_m(a)}{2^{m+3/2}(a + 1)^{m+1/2}}$$
Moll’s Conjecture

General formula:

$$\int_{0}^{\infty} \frac{1}{(x^4 + 2ax^2 + 1)^{m+1}} = \frac{\pi P_m(a)}{2^{m+3/2}(a + 1)^{m+1/2}}$$

where

$$P_m(a) = \sum_{j,k} \binom{2m + 1}{2j} \binom{m - j}{k} \binom{2k + 2j}{k + j} \frac{(a + 1)^j (a - 1)^k}{2^{3(k+j)}}$$
Moll’s Conjecture

General formula:

\[
\int_0^\infty \frac{1}{(x^4 + 2ax^2 + 1)^{m+1}} = \frac{\pi P_m(a)}{2^{m+3/2}(a + 1)^{m+1/2}}
\]

where

\[
P_m(a) = \sum_{j,k} \binom{2m + 1}{2j} \binom{m - j}{k} \binom{2k + 2j}{k + j} \frac{(a + 1)^j (a - 1)^k}{2^{3(k+j)}}
\]

polynomial in \(a\)
of degree \(m\)with coefficients in \(\mathbb{Z}\)
Moll’s Conjecture

Object of interest: The coefficients of $P_m(a)$.
Moll’s Conjecture

Object of interest: The coefficients of $P_m(a)$.

Call them $d_k(m)$:

$$P_m(a) = \sum_{l=0}^{m} d_k(m)a^k$$
Object of interest: The coefficients of $P_m(a)$.

Call them $d_k(m)$:

$$P_m(a) = \sum_{l=0}^{m} d_k(m) a^k$$

For fixed m, view $d_k(m)$ as a (finite) sequence in k:
Moll’s Conjecture

Object of interest: The coefficients of $P_m(a)$.

Call them $d_k(m)$:

$$P_m(a) = \sum_{l=0}^{m} d_k(m) a^k$$

For fixed m, view $d_k(m)$ as a (finite) sequence in k:
Moll’s Conjecture

Object of interest: The coefficients of $P_m(a)$.

Call them $d_k(m)$:

$$P_m(a) = \sum_{l=0}^{m} d_k(m) a^k$$

We have the formula

$$d_k(m) = \sum_{j=0}^{k} \sum_{s=0}^{m-j} \sum_{i=s+k}^{m} \frac{(-1)^{i-k-s}}{2^{3i}} \binom{2i}{i} \binom{2m + 1}{2s + 2j} \times \binom{m - s - j}{m - i} \binom{s + j}{j} \binom{i - s - j}{k - j}.$$
Moll’s Conjecture

Object of interest: The coefficients of $P_m(a)$.

Call them $d_k(m)$:

$$P_m(a) = \sum_{k=0}^{m} d_k(m)a^k$$

We have the formula

$$d_k(m) = \sum_{j=0}^{k} \sum_{s=0}^{m-j} \sum_{i=s+k}^{m} \frac{(-1)^{i-k-s}}{2^{3i}} \binom{2i}{i} \binom{2m+1}{2s+2j} \times \binom{m-s-j}{m-i} \binom{s+j}{j} \binom{i-s-j}{k-j}.$$

What else can we say about the $d_k(m)$?
Moll’s Conjecture

Theorem (Moll) $d_k(m) > 0$
Moll’s Conjecture

Theorem (Moll) \(d_k(m) > 0 \)

Proof (Paule)
Moll’s Conjecture

Theorem (Moll) \(d_k(m) > 0 \)

Proof (Paule) Easy observations:

\[d_m(m) = 2^{-2m} \binom{2m}{m} > 0 \]
Moll’s Conjecture

Theorem (Moll) $d_k(m) > 0$

Proof (Paule) Easy observations:

- $d_m(m) = 2^{-2m} \binom{2m}{m} > 0$
- $d_{-1}(m) = 0 \geq 0$
Moll’s Conjecture

Theorem (Moll) \(d_k(m) > 0 \)

Proof (Paule) Easy observations:

- \(d_m(m) = 2^{-2m} \binom{2m}{m} > 0 \)
- \(d_{-1}(m) = 0 \geq 0 \)

Summation software delivers:

\[
2(m + 1)d_k(m + 1) = 2(k + m)d_{k-1}(m) + (2l + 4m + 3)d_k(m)
\]
Moll’s Conjecture

Theorem (Moll) \(d_k(m) > 0 \)

Proof (Paule) Easy observations:

- \(d_m(m) = 2^{-2m} \binom{2m}{m} > 0 \)
- \(d_{-1}(m) = 0 \geq 0 \)

Summation software delivers:

\[
2(m + 1)d_k(m + 1) = 2(k + m)d_{k-1}(m) + (2l + 4m + 3)d_k(m)
\]
Moll’s Conjecture

Theorem (Moll) \(d_k(m) > 0 \)

Proof (Paule) Easy observations:

- \(d_m(m) = 2^{-2m} \binom{2m}{m} > 0 \)
- \(d_{-1}(m) = 0 \geq 0 \)

Summation software delivers:

\[
2(m + 1)d_k(m + 1) = 2(k + m)d_{k-1}(m) + (2l + 4m + 3)d_k(m)
\]
Moll’s Conjecture

Theorem (Moll) \(d_k(m) > 0 \)

Proof (Paule) Easy observations:

\[d_m(m) = 2^{-2m} \binom{2m}{m} > 0 \]
\[d_{-1}(m) = 0 \geq 0 \]

Summation software delivers:

\[2(m + 1)d_k(m + 1) = 2(k + m)d_{k-1}(m) + (2l + 4m + 3)d_k(m) \]

Theorem follows by induction.
Theorem (Moll) $d_k(m) > 0$

Proof (Paule) Easy observations:

- $d_m(m) = 2^{-2m}\binom{2m}{m} > 0$
- $d_{-1}(m) = 0 \geq 0$

Summation software delivers:

$$2(m + 1)d_k(m + 1) = 2(k + m)d_{k-1}(m) + (2l + 4m + 3)d_k(m)$$

Theorem follows by induction. (No CAD needed here.)
Moll’s Conjecture
Moll's Conjecture
Moll’s Conjecture

Moll’s Conjecture: $d_k(m)$ is log-concave.
Moll’s Conjecture

Moll’s Conjecture: $d_k(m)$ is log-concave.

meaning $\log d_k(m)$ is concave.
Moll’s Conjecture: $d_k(m)$ is log-concave.

meaning $\log d_k(m)$ is concave.

meaning $\log d_{k-1}(m) + \log d_{k+1}(m) \leq 2 \log d_k(m)$.
Moll’s Conjecture: $d_k(m)$ is log-concave.

meaning $\log d_k(m)$ is concave.

meaning $\log d_{k-1}(m) + \log d_{k+1}(m) \leq 2 \log d_k(m)$.

meaning $d_{k-1}(m)d_{k+1}(m) \leq d_k(m)^2$.
Moll’s Conjecture: \(d_k(m)\) is log-concave.

meaning \(\log d_k(m)\) is concave.

meaning \(\log d_{k-1}(m) + \log d_{k+1}(m) \leq 2 \log d_k(m)\).

meaning \(d_{k-1}(m)d_{k+1}(m) \leq d_k(m)^2\).

Theorem (Kauers/Paule, 2007): That’s true.
Moll’s Conjecture

Proof Outline:
Moll’s Conjecture

Proof Outline:

1. Use summation software to find short recurrences for $d_k(m)$.
Moll’s Conjecture

Proof Outline:
1. Use summation software to find short recurrences for $d_k(m)$.
2. Set up an induction on m.
Moll’s Conjecture

Proof Outline:

1. Use summation software to find short recurrences for $d_k(m)$.
2. Set up an induction on m.
3. Find all (m, k) where the induction step formula is false.
Proof Outline:
1. Use summation software to find short recurrences for $d_k(m)$.
2. Set up an induction on m.
3. Find all (m, k) where the induction step formula is false.
4. For these (m, k), switch to a nicer but stronger statement.
Moll’s Conjecture

Proof Outline:
1. Use summation software to find short recurrences for $d_k(m)$.
2. Set up an induction on m.
3. Find all (m, k) where the induction step formula is false.
4. For these (m, k), switch to a nicer but stronger statement.
5. Prove this stronger statement by induction on m.
1. Find short recurrences for $d_k(m)$.
Moll’s Conjecture

1. Find short recurrences for $d_k(m)$.

Relations between:
1. Find short recurrences for $d_k(m)$.

Relations between:
(a) $d_{k-1}(m)$, $d_k(m + 1)$, $d_k(m)$.
Moll’s Conjecture

1. Find short recurrences for $d_k(m)$.

Relations between:
(a) $d_{k-1}(m)$, $d_k(m + 1)$, $d_k(m)$.
(b) $d_{k+1}(m)$, $d_k(m + 1)$, $d_k(m)$.

\[k \]
\[m \]
Moll’s Conjecture

1. Find short recurrences for $d_k(m)$.

Relations between:

(a) $d_{k-1}(m), d_k(m+1), d_k(m)$.

(b) $d_{k+1}(m), d_k(m+1), d_k(m)$.

(c) $d_k(m+2), d_k(m+1), d_k(m)$.
2. Set up an induction on m.
2. Set up an induction on m.

Goal: $d_{k-1}(m)d_{k+1}(m) \leq d_k(m)^2$.
2. Set up an induction on m.

Goal: $d_{k-1}(m)d_{k+1}(m) \leq d_k(m)^2$.

Rewrite $d_{k-1}(m)$ and $d_{k+1}(m)$ in terms of $d_k(m)$ and $d_k(m + 1)$.
Moll’s Conjecture

2. Set up an induction on m.

Goal: $d_{k-1}(m)d_{k+1}(m) \leq d_k(m)^2$.

Rewrite $d_{k-1}(m)$ and $d_{k+1}(m)$ in terms of $d_k(m)$ and $d_k(m + 1)$.

To show:

$$(16km^2 + 28km + 9k + 16m^3 + 40m^2 + 33m + 9)d_k(m)^2$$

$4(m + 1)(2k^2 - 4m^2 - 7m - 3)d_k(m + 1)d_k(m)$

$- 4(m + 1)^2(k - m - 1)d_k(m + 1)^2 \geq 0$$
2. Set up an induction on m.

Induction step formula:

$$\forall m \forall k \forall D_0 \forall D_1 : \left(0 < k < m \land D_0 > 0 \land D_1 > 0 \land (\ldots)D_0^2 + (\ldots)D_0D_1 + (\ldots)D_1^2 \geq 0 \right) \Rightarrow (\ldots)D_0^2 + (\ldots)D_0D_1 + (\ldots)D_1^2 \geq 0.$$
2. Set up an induction on m.

Induction step formula:

\[\forall m \forall k \forall D_0 \forall D_1 : \left(0 < k < m \land D_0 > 0 \land D_1 > 0 \right) \]

\[\land \left(\ldots \right) D_0^2 + \left(\ldots \right) D_0 D_1 + \left(\ldots \right) D_1^2 \geq 0 \]

\[\Rightarrow \left(\ldots \right) D_0^2 + \left(\ldots \right) D_0 D_1 + \left(\ldots \right) D_1^2 \geq 0. \]

This is false.
3. Find all \((m, k)\) where the induction step formula is false.

Induction step formula:

\[
\forall m \; \forall k \; \forall D_0 \; \forall D_1 : \left(0 < k < m \land D_0 > 0 \land D_1 > 0 \\
\land (\ldots) D_0^2 + (\ldots) D_0 D_1 + (\ldots) D_1^2 \geq 0 \right) \\
\Rightarrow (\ldots) D_0^2 + (\ldots) D_0 D_1 + (\ldots) D_1^2 \geq 0.
\]
3. Find all \((m, k)\) where the induction step formula is false.

Induction step formula:

\[
\forall m \forall k \forall D_0 \forall D_1: \left(0 < k < m \land D_0 > 0 \land D_1 > 0 \land \ldots \right) D_0^2 + \left(\ldots \right) D_0 D_1 + \left(\ldots \right) D_1^2 \geq 0 \Rightarrow \left(\ldots \right) D_0^2 + \left(\ldots \right) D_0 D_1 + \left(\ldots \right) D_1^2 \geq 0.
\]
Moll’s Conjecture

3. Find all \((m, k)\) where the induction step formula is false.

Induction step formula:

\[
\forall m \forall k \forall D_0 \forall D_1 : \left(0 < k < m \land D_0 > 0 \land D_1 > 0 \right) \\
\left(\ldots D_0^2 + \ldots D_0D_1 + \ldots D_1^2 \geq 0 \right) \\
\Rightarrow \left(\ldots D_0^2 + \ldots D_0D_1 + \ldots D_1^2 \geq 0 \right).
\]

In the range of interest, this is equivalent to

\[
0 < m \leq \frac{1}{2} + \sqrt{2} \lor 0 < k \leq \text{algfun}(m)
\]

for some cubic algebraic function \(\text{algfun}\).
3. Find all \((m, k)\) where the induction step formula is false.

This algebraic function splits the region into two parts.
3. Find all \((m, k)\) where the induction step formula is false.

This algebraic function splits the region into two parts.

In the part below, the induction step is proven.
Moll’s Conjecture

3. Find all \((m, k)\) where the induction step formula is false.

This algebraic function splits the region into two parts.

In the part below, the induction step is proven.

In the part above, we don’t know yet.
3. Find all \((m, k)\) where the induction step formula is false.

This algebraic function splits the region into two parts.

In the part below, the induction step is proven.

In the part above, we don’t know yet.

What’s going wrong there?
4. For these \((m, k)\), switch to a nicer but stronger statement.

Back to the induction step formula:

\[
\forall m \forall k \forall D_0 \forall D_1 : \left(0 < k < m \land D_0 > 0 \land D_1 > 0 \land (\ldots) D_0^2 + (\ldots) D_0 D_1 + (\ldots) D_1^2 \geq 0 \right) \quad \Rightarrow \quad (\ldots) D_0^2 + (\ldots) D_0 D_1 + (\ldots) D_1^2 \geq 0.
\]
4. For these \((m, k)\), switch to a nicer but stronger statement.

Back to the induction step formula:

\[
\forall m \forall k \forall D_0 \forall D_1 : \left(0 < k < m \land D_0 > 0 \land D_1 > 0 \land (\ldots)D_0^2 + (\ldots)D_0D_1 + (\ldots)D_1^2 \geq 0 \right) \Rightarrow (\ldots)D_0^2 + (\ldots)D_0D_1 + (\ldots)D_1^2 \geq 0.
\]
Moll’s Conjecture

4. For these \((m, k)\), switch to a nicer but stronger statement.

Back to the induction step formula:

\[
\forall m \forall k \forall D_0 \forall D_1 : \left(0 < k < m \land D_0 > 0 \land D_1 > 0 \right)
\land (\ldots) \left(D_0^2 + (\ldots)(D_0D_1 + (\ldots)D_1^2 \geq 0 \right)
\Rightarrow (\ldots) D_0^2 + (\ldots) D_0D_1 + (\ldots) D_1^2 \geq 0.
\]

In the range of interest, this is equivalent to…
4. For these \((m, k)\), switch to a nicer but stronger statement.

\[
0 < m \leq \frac{1}{2} + \sqrt{2} \lor 0 < k \leq \text{algfun}(m) \land D_0 > 0 \\
\land \frac{p_1(m, k) - \sqrt{p_2(m, k)}}{p_3(m, k)} D_0 < D_1 < \frac{p_1(m, k) + \sqrt{p_2(m, k)}}{p_3(m, k)} D_0
\]

for some polynomials \(p_1(m, k), p_2(m, k), p_3(m, k)\).
Moll’s Conjecture

4. For these \((m, k)\), switch to a nicer but stronger statement.

\[
0 < m \leq \frac{1}{2} + \sqrt{2} \lor 0 < k \leq \text{algfun}(m) \land D_0 > 0 \\
\land \frac{p_1(m, k) - \sqrt{p_2(m, k)}}{p_3(m, k)} D_0 < D_1 < \frac{p_1(m, k) + \sqrt{p_2(m, k)}}{p_3(m, k)} D_0
\]

for some polynomials \(p_1(m, k), p_2(m, k), p_3(m, k)\).

Meaning: if some \((m, k)\) in the gray area is really a counterexample, then for this \((m, k)\) we must have

\[
d_k(m + 1) < \frac{p_1(m, k) + \sqrt{p_2(m, k)}}{p_3(m, k)} d_k(m).
\]
4. For these \((m, k)\), switch to a nicer but stronger statement.

We are done if we can prove

\[
d_k(m + 1) \geq \frac{p_1(m, k) + \sqrt{p_2(m, k)}}{p_3(m, k)} d_k(m).
\]
4. For these (m, k), switch to a nicer but stronger statement.

We are done if we can prove

\[d_k(m + 1) \geq \frac{p_1(m, k) + \sqrt{p_2(m, k)}}{p_3(m, k)} d_k(m). \]

This is better and worse than the original statement.
4. For these \((m, k)\), switch to a nicer but stronger statement.

We are done if we can prove

\[
d_k(m + 1) \geq \frac{p_1(m, k) + \sqrt{p_2(m, k)}}{p_3(m, k)} d_k(m).
\]

This is better and worse than the original statement.

- Better, because \(d_k(m + 1)\) and \(d_k(m)\) appear only linearly.
4. For these \((m, k)\), switch to a nicer but stronger statement.

We are done if we can prove

\[
d_k(m + 1) \geq \frac{p_1(m, k) + \sqrt{p_2(m, k)}}{p_3(m, k)} d_k(m).
\]

This is better and worse than the original statement.

- Better, because \(d_k(m + 1)\) and \(d_k(m)\) appear only linearly.
- Worse, because there is a radical.
Moll’s Conjecture

4. For these \((m, k)\), switch to a nicer but stronger statement.

We are done if we can prove

\[
d_k(m + 1) \geq \frac{p_1(m, k) + \sqrt{p_2(m, k) + u(m, k)}}{p_3(m, k)} d_k(m).
\]

Idea: Introduce under the root a (small) positive polynomial \(u(m, k)\) that turns \(p_2(m, k) + u(m, k)\) into a square.
4. For these \((m, k)\), switch to a nicer but stronger statement.

We are done if we can prove

\[
d_k(m + 1) \geq \frac{p_1(m, k) + \sqrt{p_2(m, k) + u(m, k)}}{p_3(m, k)} d_k(m).
\]

Idea: Introduce under the root a (small) positive polynomial \(u(m, k)\) that turns \(p_2(m, k) + u(m, k)\) into a square.

Suitable polynomials \(u(m, k)\) are easy to find.
Moll’s Conjecture

5. Prove this stronger statement by induction on m.
5. Prove this stronger statement by induction on m.

For our choice of $u(m, k)$, the new claim is:

$$d_k(m + 1) \geq \frac{4m^2 + 7m + k + 3}{2(m + 1 - k)(m + 1)} d_k(m).$$
5. Prove this stronger statement by induction on m.

For our choice of $u(m, k)$, the new claim is:

$$d_k(m + 1) \geq \frac{4m^2 + 7m + k + 3}{2(m + 1 - k)(m + 1)} d_k(m).$$

Using CAD and the recurrence equations, this can be proven just as explained before for Bernoulli’s inequality.
5. Prove this stronger statement by induction on m.

For our choice of $u(m, k)$, the new claim is:

$$d_k(m + 1) \geq \frac{4m^2 + 7m + k + 3}{2(m + 1 - k)(m + 1)} d_k(m).$$

Using CAD and the recurrence equations, this can be proven just as explained before for Bernoulli’s inequality.

This completes the proof.
So what?

Just a crazy way to solve some more Monthly Problem?

No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.

All three proofs depend on a specific twist to the method.
So what?

Just a crazy way to solve some more Monthly Problem?

No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.

All three proofs depend on a specific twist to the method.
So what?

Just a crazy way to solve some more Monthly Problem?

No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.

All three proofs depend on a specific twist to the method.
Alzer’s Conjecture
Alzer’s Conjecture

This is about Legendre Polynomials $P_n(x)$.
Alzer’s Conjecture

This is about *Legendre Polynomials* $P_n(x)$.

$P_0(x) = 1$
Alzer’s Conjecture

This is about \textit{Legendre Polynomials} $P_n(x)$.

- $P_0(x) = 1$
- $P_1(x) = x$
Alzer’s Conjecture

This is about Legendre Polynomials $P_n(x)$.

- $P_0(x) = 1$
- $P_1(x) = x$
- $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$
This is about \textit{Legendre Polynomials} $P_n(x)$.

- $P_0(x) = 1$
- $P_1(x) = x$
- $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$
- $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$
Alzer’s Conjecture

This is about *Legendre Polynomials* $P_n(x)$.

- $P_0(x) = 1$
- $P_1(x) = x$
- $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$
- $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$
- $P_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}$
Alzer’s Conjecture

This is about *Legendre Polynomials* $P_n(x)$.

- $P_0(x) = 1$
- $P_1(x) = x$
- $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$
- $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$
- $P_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}$
- $P_5(x) = \frac{63}{8}x^5 - \frac{35}{4}x^3 + \frac{15}{8}x$
Alzer’s Conjecture

This is about *Legendre Polynomials* $P_n(x)$.

- $P_0(x) = 1$
- $P_1(x) = x$
- $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$
- $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$
- $P_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}$
- $P_5(x) = \frac{63}{8}x^5 - \frac{35}{4}x^3 + \frac{15}{8}x$
- $P_6(x) = \frac{231}{16}x^6 - \frac{315}{16}x^4 + \frac{105}{16}x^2 - \frac{5}{16}$
Alzer’s Conjecture

This is about *Legendre Polynomials* $P_n(x)$.

- $P_0(x) = 1$
- $P_1(x) = x$
- $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$
- $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$
- $P_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}$
- $P_5(x) = \frac{63}{8}x^5 - \frac{35}{4}x^3 + \frac{15}{8}x$
- $P_6(x) = \frac{231}{16}x^6 - \frac{315}{16}x^4 + \frac{105}{16}x^2 - \frac{5}{16}$
- $P_7(x) = \frac{429}{16}x^7 - \frac{693}{16}x^5 + \frac{315}{16}x^3 - \frac{35}{16}x$
Alzer’s Conjecture

This is about Legendre Polynomials $P_n(x)$.

- $P_0(x) = 1$
- $P_1(x) = x$
- $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$
- $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$
- $P_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}$
- $P_5(x) = \frac{63}{8}x^5 - \frac{35}{4}x^3 + \frac{15}{8}x$
- $P_6(x) = \frac{231}{16}x^6 - \frac{315}{16}x^4 + \frac{105}{16}x^2 - \frac{5}{16}$
- $P_7(x) = \frac{429}{16}x^7 - \frac{693}{16}x^5 + \frac{315}{16}x^3 - \frac{35}{16}x$
- $P_8(x) = \frac{6435}{128}x^8 - \frac{3003}{32}x^6 + \frac{3465}{64}x^4 - \frac{315}{32}x^2 + \frac{35}{128}$
Alzer’s Conjecture

This is about Legendre Polynomials $P_n(x)$. These polynomials form one of the classical families of orthogonal polynomials.
Alzer’s Conjecture

This is about Legendre Polynomials $P_n(x)$. These polynomials form one of the classical families of orthogonal polynomials. As such, they satisfy lots of useful identities, including

$$(n + 2)P_{n+2}(x) = (2n + 3)xP_{n+1}(x) - (n + 1)P_n(x)$$

$$(x^2 - 1)\frac{d}{dx}P_n(x) = (n + 1)P_{n+1}(x) - (n + 1)xP_n(x)$$
Alzer’s Conjecture

This is about *Legendre Polynomials* $P_n(x)$. These polynomials form one of the classical families of *orthogonal polynomials*. As such, they satisfy lots of useful identities, including

\[(n + 2)P_{n+2}(x) = (2n + 3)xP_{n+1}(x) - (n + 1)P_n(x)\]

\[(x^2 - 1) \frac{d}{dx} P_n(x) = (n + 1)P_{n+1}(x) - (n + 1)xP_n(x)\]

There are also some interesting inequalities, including

\[\forall n \in \mathbb{N} \forall x \in [-1, 1] : -1 \leq P_n(x) \leq 1.\]
Alzer’s Conjecture

Here is another example:

$$\forall n \in \mathbb{N} \ \forall x \in [-1, 1] : \ P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0$$
Alzer’s Conjecture

Here is another example:

$$\forall \ n \in \mathbb{N} \ \forall \ x \in [-1, 1] : \ P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0$$
Here is another example:

\[\forall n \in \mathbb{N} \ \forall x \in [-1, 1] : P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0 \]
Alzer’s Conjecture

Here is another example:

\[\forall n \in \mathbb{N} \ \forall x \in [-1, 1] : P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0 \]
Alzer’s Conjecture

Here is another example:

\[\forall n \in \mathbb{N} \ \forall x \in [-1, 1] : \ P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0 \]
Alzer’s Conjecture

Here is another example:

\[\forall n \in \mathbb{N} \ \forall x \in [-1, 1] : P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0 \]
Alzer’s Conjecture

Here is another example:

$$\forall n \in \mathbb{N} \ \forall x \in [-1, 1] : \ P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0$$
Here is another example:

$$\forall n \in \mathbb{N} \ \forall x \in [-1, 1] : \ P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0$$
Here is another example:

\[\forall n \in \mathbb{N} \ \forall x \in [-1, 1] : P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0 \]
Alzer’s Conjecture

Here is another example:

\[\forall n \in \mathbb{N} \ \forall x \in [-1, 1] : \ P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0 \]
Alzer’s Conjecture

Here is another example:

$$\forall \ n \in \mathbb{N} \ \forall \ x \in [-1, 1] : \ P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0$$

- This is known as Turan’s inequality.
Alzer’s Conjecture

Here is another example:

\[\forall n \in \mathbb{N} \forall x \in [-1, 1] : P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0 \]

- This is known as Turan’s inequality.
- For specific \(n \), it is just a polynomial inequality.
Alzer’s Conjecture

Here is another example:

\[\forall n \in \mathbb{N} \ \forall x \in [-1, 1] : P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0 \]

- This is known as Turan’s inequality.
- For specific \(n \), it is just a polynomial inequality.
- For general \(n \), it is not trivial. (Try it.)
Alzer’s Conjecture

Here is another example:

∀ \(n \in \mathbb{N} \) ∀ \(x \in [-1, 1] \) : \(P_{n+1}^2(x) - P_n(x)P_{n+2}(x) \geq 0 \)

- This is known as Turan’s inequality.
- For specific \(n \), it is just a polynomial inequality.
- For general \(n \), it is not trivial. (Try it.)

A proof for general \(n \) can be obtained in the same way as for Bernoulli’s inequality using induction, recurrences, and CAD.
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality

$$\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq 0$$
Alzer conjectured that Turan’s inequality can be improved to

\[\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n(1 - x^2) \]

where \(\alpha_n = \Delta_n(0) \).
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

\[\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n(1 - x^2) \]

where \(\alpha_n = \Delta_n(0) \).
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

\[\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n(1 - x^2) \]

where \(\alpha_n = \Delta_n(0) \).
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

\[\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n(1 - x^2) \]

where \(\alpha_n = \Delta_n(0) \).
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

$$\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n(1 - x^2)$$

where $$\alpha_n = \Delta_n(0)$$.
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

\[
\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n (1 - x^2)
\]

where \(\alpha_n = \Delta_n(0) \).
Alzer conjectured that Turan’s inequality can be improved to

\[\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n (1 - x^2) \]

where \(\alpha_n = \Delta_n(0) \).
Alzer conjectured that Turan’s inequality can be improved to

\[\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n(1 - x^2) \]

where \(\alpha_n = \Delta_n(0) \).
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

$$\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n(1 - x^2)$$

where $\alpha_n = \Delta_n(0)$.
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

$$\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n(1 - x^2)$$

where $\alpha_n = \Delta_n(0)$.

Can we show this also by induction?
Alzer conjectured that Turan’s inequality can be improved to

\[\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n (1 - x^2) \]

where \(\alpha_n = \Delta_n(0) \).

Can we show this also by induction?

Not directly.
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

\[\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n(1 - x^2) \]

where \(\alpha_n = \Delta_n(0) \).

Can we show this also by induction?

Not directly.

The obvious induction step formula is \textit{large} and \textit{false}.
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

$$\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n (1 - x^2)$$

Observations:
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

\[\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n (1 - x^2) \]

Observations:

- By symmetry, it suffices to consider \(x \geq 0 \).
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

\[
\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n (1 - x^2)
\]

Observations:
- By symmetry, it suffices to consider \(x \geq 0 \).
- For \(x = 0 \) there is nothing to show.
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

$$\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n (1 - x^2)$$

Observations:

- By symmetry, it suffices to consider $x \geq 0$.
- For $x = 0$ there is nothing to show.
- For $x > 0$, it suffices to show that $\Delta_n(x)/(1 - x^2)$ is increasing.
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

\[\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n (1 - x^2) \]

Observations:

- By symmetry, it suffices to consider \(x \geq 0 \).
- For \(x = 0 \) there is nothing to show.
- For \(x > 0 \), it suffices to show that \(\Delta_n(x)/(1 - x^2) \) is increasing.

New idea: Show that \(\frac{d}{dx} \frac{\Delta_n(x)}{1 - x^2} \geq 0 \)
Alzer’s Conjecture

Alzer conjectured that Turan’s inequality can be improved to

$$\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n (1 - x^2)$$

We have

$$\frac{d}{dx} \frac{\Delta_n(x)}{1 - x^2} = \left((n - 1)nP_n(x)^2 - ((2n + 1)x^2 - 1)P_n(x)P_{n+1}(x) + (n + 1)xP_{n+1}(x)^2 \right) \bigg/ \left(n(1 - x^2)^2 \right)$$
Alzer conjectured that Turan’s inequality can be improved to

\[\Delta_n(x) = P_{n+1}(x)^2 - P_n(x)P_{n+2}(x) \geq \alpha_n(1 - x^2) \]

We have

\[
\frac{d}{dx} \frac{\Delta_n(x)}{1 - x^2} = \left((n - 1)n P_n(x)^2 - ((2n + 1)x^2 - 1)P_n(x)P_{n+1}(x) + (n + 1)xP_{n+1}(x)^2 \right) \Bigg/ \left(n(1 - x^2)^2 \right)
\]

A positivity proof for the latter expression by CAD and induction on \(n \) succeeds.
So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
All three proofs depend on a specific twist to the method.
So what?

Just a crazy way to solve some more Monthly Problem?

No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.

All three proofs depend on a specific twist to the method.
So what?

Just a crazy way to solve some more Monthly Problem?

No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.

All three proofs depend on a specific twist to the method.
Schöberl’s Conjecture
Schöberl’s Conjecture

In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.
Schöberl’s Conjecture

- In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.
- Some basis polynomials lead to better numerical performance than the standard basis $1, x, x^2, x^3, \ldots$.

![Image of a 3D mesh with color gradient]
Schöberl’s Conjecture

- In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.
- Some basis polynomials lead to better numerical performance than the standard basis $1, x, x^2, x^3, \ldots$.
- Good basis functions have good properties.
Schöberl’s Conjecture

- In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.
- Some basis polynomials lead to better numerical performance than the standard basis $1, x, x^2, x^3, \ldots$.
- Good basis functions have good properties.
- What a good properties are, this depends on the particular application.
For one particular application, Schöberl chose

\[f_n(x) := \frac{1}{2x(n+1)} \sum_{k=n}^{2n} (k+1)(P_{k+1}(x)P_k(0) - P_{k+1}(0)P_k(x)) \]
Schöberl’s Conjecture

For one particular application, Schöberl chose

\[f_n(x) := \frac{1}{2x(n + 1)} \sum_{k=n}^{2n} (k+1)(P_{k+1}(x)P_k(0) - P_{k+1}(0)P_k(x)) \]

He showed that this family has all the desired properties.
For one particular application, Schöberl chose

\[f_n(x) := \frac{1}{2x(n+1)} \sum_{k=n}^{2n} (k+1)(P_{k+1}(x)P_k(0) - P_{k+1}(0)P_k(x)) \]

He showed that this family has all the desired properties if and only if

\[\sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \geq 0 \]
Schöberl’s Conjecture

For one particular application, Schöberl chose

\[f_n(x) := \frac{1}{2x(n+1)} \sum_{k=n}^{2n} (k+1)(P_{k+1}(x)P_k(0) - P_{k+1}(0)P_k(x)) \]

He showed that this family has all the desired properties if and only if

\[\sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \geq 0 \]

Hence was born the Schöberl conjecture.
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20. \)
Schöberl’s Conjecture

Consider

$$S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x)$$

for $n = 0, 1, \ldots, 20$.
Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20. \)
Consider

$$S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x)$$

for $n = 0, 1, \ldots, 20$.
Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1) P_{2k}(0) P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Schöberl’s Conjecture

Consider

$$S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x)$$

for $n = 0, 1, \ldots, 20$.
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1) P_{2k}(0) P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20. \)
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Schöberl’s Conjecture

Consider

$$S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x)$$

for $n = 0, 1, \ldots, 20$.
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Consider

$$S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x)$$

for $n = 0, 1, \ldots, 20$.
Schöberl’s Conjecture

Consider

$$S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x)$$

for $n = 0, 1, \ldots, 20$.

![Graph of Schöberl’s Conjecture](image.png)
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).

- Looks like it’s true...
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).

- Looks like it’s true...
- For specific \(n \in \mathbb{N} \): easy.
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).

- Looks like it’s true…
- For specific \(n \in \mathbb{N} \): easy.
- For \(x = \pm 1 \) or 0: easy.
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).

- Looks like it’s true…
- For specific \(n \in \mathbb{N} \): easy.
- For \(x = \pm 1 \) or 0: easy.
- For \(n \gg 0 \) and \(|x| \to 1 \): easy.
Schöberl’s Conjecture

Consider

\[S_n(x) := \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x) \]

for \(n = 0, 1, \ldots, 20 \).

- Looks like it’s true...
- For specific \(n \in \mathbb{N} \): easy.
- For \(x = \pm 1 \) or 0: easy.
- For \(n \gg 0 \) and \(|x| \to 1\): easy.
- For “symbolic” \(n \) and \(x \): not easy at all!
Schöberl’s Conjecture

A direct proof by CAD and induction fails.
Schöberl’s Conjecture

A direct proof by CAD and induction fails.

Task: Bring the thing into a better form.
Schöberl’s Conjecture

A direct proof by CAD and induction fails.

Task: Bring the thing into a better form.

Veronika Pillwein found that a good form is

\[
S_n(x) = \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x)
\]

\[
= \frac{2n + 1}{x^2} P_{2n}(0) \left(x P_{2n+1}(x) - \frac{2(2n + 1)}{4n + 3} P_{2n}(x) \right)
\]

\[
- \frac{2}{x^2} \sum_{k=0}^{2n} \frac{P_k(0)P_k(x)}{(2k - 1)(2k + 3)}
\]
Schöberl’s Conjecture

A direct proof by CAD and induction fails.

Task: Bring the thing into a better form.

Veronika Pillwein found that a good form is

$$S_n(x) = \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x)$$

$$= \frac{2n + 1}{x^2} P_{2n}(0) \left(x P_{2n+1}(x) - \frac{2(2n + 1)}{4n + 3} P_{2n}(x) \right)$$

$$- \frac{2}{x^2} \sum_{k=0}^{2n} \frac{P_k(0)P_k(x)}{(2k - 1)(2k + 3)}$$

Note: Computer algebra can prove this, but it cannot discover good forms (yet).
Schöberl’s Conjecture

A direct proof by CAD and induction fails.

Task: Bring the thing into a better form.

Veronika Pillwein found that a good form is

\[
S_n(x) = \sum_{k=0}^{n} (4k + 1)(2n - 2k + 1)P_{2k}(0)P_{2k}(x)
\]

\[
= \frac{2n + 1}{x^2} P_{2n}(0) \left(xP_{2n+1}(x) - \frac{2(2n + 1)}{4n + 3} P_{2n}(x) \right) - \frac{2}{x^2} \sum_{k=0}^{2n} \frac{P_k(0)P_k(x)}{(2k - 1)(2k + 3)}
\]

Note: Computer algebra can *prove* this, but it cannot *discover* good forms (yet). Why is it good after all?
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_{k}(0)P_{k}(x)}{(2k-1)(2k+3)}.\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]
(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(x P_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]
Schöberl’s Conjecture

$$(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.$$
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]
Schöberl’s Conjecture

\[
(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \gtrsim \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.
\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}\]

\(\text{no sum}\)
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.
\]

- no sum
- oscillation
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.
\]

- **no sum**
- **oscillation**

- **a sum**

![Graph showing oscillation](image)
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)\left(x P_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)\right) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.
\]

- no sum
 - no oscillation
- a sum
 - oscillation
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq 2n \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)} .\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}\]

- No sum, no oscillation: good for the computer
- A sum: no oscillation: good for hand reasoning
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)} \cdot \]

Hand calculation gives

\[(2n + 1)(xP_{2n}(x)P_{2n+1}(x) - \frac{2n+1}{4n+3}P_{2n}(x)^2 - \frac{2n+1}{4n+1}P_{2n+1}(x)^2 - \frac{2n+1}{4n+3}P_{2n}(0)^2 \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)} \cdot \]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3}P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]

Hand calculation gives

\[(2n + 1)(xP_{2n}(x)P_{2n+1}(x) - \frac{2n+1}{4n+3}P_{2n}(x)^2 - \frac{2n+1}{4n+1}P_{2n+1}(x)^2
- \frac{2n+1}{4n+3}P_{2n}(0)^2) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]
Schöberl’s Conjecture

\[(2n + 1)P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]

Hand calculation gives

\[
(2n + 1)(xP_{2n}(x)P_{2n+1}(x) - \frac{2n+1}{4n+3} P_{2n}(x)^2 - \frac{2n+1}{4n+1} P_{2n+1}(x)^2
\]

\[- \frac{2n+1}{4n+3} P_{2n}(0)^2) \geq \sum_{k=0}^{2n} \frac{2P_k(0)P_k(x)}{(2k-1)(2k+3)}.\]

It suffices to prove the stronger statement

\[
P_{2n}(0)(xP_{2n+1}(x) - \frac{2(2n+1)}{4n+3} P_{2n}(x)) \geq xP_{2n}(x)P_{2n+1}(x) - \frac{2n+1}{4n+3} P_{2n}(x)^2 - \frac{2n+1}{4n+1} P_{2n+1}(x)^2 - \frac{2n+1}{4n+3} P_{2n}(0)^2.\]
Schöberl’s Conjecture

- This latter inequality contains no sum.
Schöberl’s Conjecture

- This latter inequality contains no sum.
- It could not be found in the literature, nor proven by hand.
Schöberl’s Conjecture

- This latter inequality contains no sum.
- It could not be found in the literature, nor proven by hand.
- But recurrences+CAD+induction succeeds!
Schöberl’s Conjecture

- This latter inequality contains no sum.
- It could not be found in the literature, nor proven by hand.
- But recurrences+CAD+induction succeeds!
- The computations take about 1h.
This latter inequality contains no sum.
It could not be found in the literature, nor proven by hand.
But recurrences+CAD+induction succeeds!
The computations take about 1h.
This completes the proof of Schöberl’s conjecture.
Schöberl’s Conjecture

- This latter inequality contains no sum.
- It could not be found in the literature, nor proven by hand.
- But recurrences+CAD+induction succeeds!
- The computations take about 1h.
- This completes the proof of Schöberl’s conjecture.
- **Punch line:** Both the human part and the CAD part are nontrivial.
So what?

Just a crazy way to solve some more Monthly Problem?

No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007) ✔
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007) ✔
3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.

All three proofs depend on a specific twist to the method.
So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll’s log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer’s conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl’s conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
All three proofs depend on a specific twist to the method.
Conclusions
Conclusions

- Special Function inequalities are painful.
Conclusions

- Special Function inequalities are **painful**.
- This is true both for humans as well as for computers.
Conclusions

- Special Function inequalities are painful.
- This is true both for humans as well as for computers.
- There is no algorithm for proving special function inequalities.
Conclusions

- Special Function inequalities are painful.
- This is true both for humans as well as for computers.
- There is no algorithm for proving special function inequalities.
- But polynomial inequalities are algorithmic (CAD).
Conclusions

- Special Function inequalities are painful.
- This is true both for humans as well as for computers.
- There is no algorithm for proving special function inequalities.
- But polynomial inequalities are algorithmic (CAD).
- \(\text{CAD} + \text{recurrences} + \text{induction} \) provides a proving method.
Conclusions

- Special Function inequalities are painful.
- This is true both for humans as well as for computers.
- There is no algorithm for proving special function inequalities.
- But polynomial inequalities are algorithmic (CAD).
- CAD+recurrences+induction provides a proving method.
- This method may or may not succeed.
Conclusions

- Special Function inequalities are **painful**.
- This is true both for humans as well as for computers.
- There is no algorithm for proving special function inequalities.
- But polynomial inequalities are algorithmic (CAD).
- CAD+recurrences+induction provides a proving method.
- This method may or may not succeed.
- Appropriate preparation of the input is often required.
Conclusions

- Special Function inequalities are painful.
- This is true both for humans as well as for computers.
- There is no algorithm for proving special function inequalities.
- But polynomial inequalities are algorithmic (CAD).
- \(\text{CAD+recurrences+induction} \) provides a proving method.
- This method may or may not succeed.
- Appropriate preparation of the input is often required.
- It’s not clear a priori what “appropriate” means.
What’s next?

For the future we plan to go into two directions.
What’s next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.
What’s next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.

Example: The Askey-Gasper conjecture says that if $a_{n,m,k,l}$ is such that

$$\frac{1}{1-x-y-z-w+\frac{2}{3}(xy+xz+xw+yz+yw+zw)} = \sum_{n,m,k,l} a_{n,m,k,l} x^n y^m z^k w^l$$

then all $a_{n,m,k,l}$ are positive.
What’s next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.

Example: The Askey-Gasper conjecture says that if $a_{n,m,k,l}$ is such that

$$\frac{1}{1-x-y-z-w+\frac{2}{3}(xy+xz+xw+yz+yw+zw)} = \sum_{n,m,k,l} a_{n,m,k,l} x^n y^m z^k w^l$$

then all $a_{n,m,k,l}$ are positive.

We got some partial results together with Zeilberger in 2008.
What’s next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.
2. Understand systematically what will work when, and why.
What’s next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.
2. Understand systematically what will work when, and why.

Example: If $f(n)$ satisfies a linear recurrence with polynomial coefficients, under which circumstances does there exist a finite number $r \in \mathbb{N}$ such that

$$f(n) \geq 0 \land f(n + 1) \geq 0 \land \cdots \land f(n + r) \geq 0 \Rightarrow f(n + r + 1) \geq 0.$$
What’s next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.
2. Understand systematically what will work when, and why.

Example: If \(f(n) \) satisfies a linear recurrence with polynomial coefficients, under which circumstances does there exist a finite number \(r \in \mathbb{N} \) such that

\[
f(n) \geq 0 \land f(n + 1) \geq 0 \land \cdots \land f(n + r) \geq 0 \Rightarrow f(n + r + 1) \geq 0.
\]

We got some partial results together with Pillwein in 2010.
Prove, by whatever method you prefer, the following three inequalities:

1. $\sum_{k=1}^{n} \frac{L_k^2}{F_k} \geq \frac{(L_{n+2} - 3)^2}{F_{n+2} - 1}$ \hspace{1cm} (n \geq 2)

2. $\left(\sum_{k=1}^{n} \sqrt{k} \right)^2 \leq \left(\sum_{k=1}^{n} 3\sqrt{k} \right)^3$ \hspace{1cm} (n \geq 0)

3. $\prod_{k=1}^{n} (1 - a_k) < \frac{1}{1 + \sum_{k=1}^{n} a_k}$ \hspace{1cm} (n \geq 1; \ a_1, \ldots, a_k \in (0, 1))