The qTSSPP Theorem

Manuel Kauers
RISC-Linz

joint work with
Christoph Koutschan and Doron Zeilberger
David Hilbert in 1900
Hilbert’s dream: *Only formal proofs are acceptable proofs!*

In order to prove a conjecture, apply logical reduction rules until you reach a statement which is true by definition.
Hilbert’s dream: *Only formal proofs are acceptable proofs!*

In order to prove a conjecture, apply logical reduction rules until you reach a statement which is true by definition.

Zeilberger’s dream: *Only computer proofs are acceptable proofs!*

In order to prove a conjecture, enter it into a suitable computer program and see whether it returns true.
Hilbert’s dream: *Only formal proofs are acceptable proofs!*

In order to prove a conjecture, apply logical reduction rules until you reach a statement which is true by definition.

Zeilberger’s dream: *Only computer proofs are acceptable proofs!*

In order to prove a conjecture, enter it into a suitable computer program and see whether it returns true.

Realistic scenario: *Mixed Human-Computer proofs!*

In order to prove a conjecture, apply logical reduction rules until you reach a statement which you can enter into a suitable computer program to see whether it returns true.
Theorem: There does not exist a point \((x, y, z) \in \mathbb{C}^3\) such that

\[
xy - 1 = 0, \quad xyz - x + y - z = 0, \\
z^2y + 1 = 0, \quad x^2 - y^2 + z = 0.
\]
Theorem: There does not exist a point \((x, y, z) \in \mathbb{C}^3\) such that

\[
xy - 1 = 0, \quad xyz - x + y - z = 0, \\
z^2y + 1 = 0, \quad x^2 - y^2 + z = 0.
\]

Modern proof:
Theorem: There does not exist a point \((x, y, z) \in \mathbb{C}^3\) such that

\[
\begin{align*}
xy &- 1 = 0, \\
xyz - x + y - z &- 0, \\
z^2y + 1 &- 0, \\
x^2 - y^2 + z &- 0.
\end{align*}
\]

Modern proof:

- **Human part:** If \((x, y, z) \in \mathbb{C}^3\) is a common root of some polynomials \(p_1, p_2, p_3, p_4\), then it is also a root of

\[
q_1p_1 + q_2p_2 + q_3p_3 + q_4p_4
\]

for any other polynomials \(q_1, q_2, q_3, q_4\).
Trivial Example

Theorem: There does not exist a point \((x, y, z) \in \mathbb{C}^3\) such that

\[
\begin{align*}
xy - 1 &= 0, \\
xyz - x + y - z &= 0, \\
z^2y + 1 &= 0, \\
x^2 - y^2 + z &= 0.
\end{align*}
\]

Modern proof:

- **Human part:** If \((x, y, z) \in \mathbb{C}^3\) is a common root of some polynomials \(p_1, p_2, p_3, p_4\), then it is also a root of

\[
q_1p_1 + q_2p_2 + q_3p_3 + q_4p_4
\]

for any other polynomials \(q_1, q_2, q_3, q_4\).

Therefore, if 1 belongs to the ideal \(\langle p_1, p_2, p_3, p_4 \rangle\), then there is no common root.
Trivial Example

Theorem: There does not exist a point \((x, y, z) \in \mathbb{C}^3\) such that

\[
xy - 1 = 0, \quad xyz - x + y - z = 0, \\
z^2y + 1 = 0, \quad x^2 - y^2 + z = 0.
\]

Modern proof:

- **Computer part:** Use a computer to show that

\[
1 \in \langle xy - 1, \ xyz - x + y - z, \ yz^2 + 1, \ x^2 - y^2 + z \rangle
\]

(e.g., by a Gröbner basis computation). ■
Theorem: There does not exist a point \((x, y, z) \in \mathbb{C}^3\) such that

\[
xy - 1 = 0, \quad xyz - x + y - z = 0, \\
z^2y + 1 = 0, \quad x^2 - y^2 + z = 0.
\]

Can we trust this calculation?
Trivial Example

Theorem: There does not exist a point \((x, y, z) \in \mathbb{C}^3\) such that

\[
\begin{align*}
xy - 1 &= 0, \\
xyz - x + y - z &= 0, \\
z^2y + 1 &= 0, \\
x^2 - y^2 + z &= 0.
\end{align*}
\]

Can we trust this calculation?

Can we trust it in theory / in practice?
Trivial Example

Theorem: There does not exist a point \((x, y, z) \in \mathbb{C}^3\) such that

\[
xy - 1 = 0, \quad xyz - x + y - z = 0, \\
z^2y + 1 = 0, \quad x^2 - y^2 + z = 0.
\]

Can we trust this calculation?
Can we trust it in theory / in practice?
Can we check it?
Theorem: There does not exist a point \((x, y, z) \in \mathbb{C}^3\) such that

\[
xy - 1 = 0, \quad xyz - x + y - z = 0,
\]
\[
z^2y + 1 = 0, \quad x^2 - y^2 + z = 0.
\]

Can we trust this calculation?

Can we trust it in theory / in practice?

Can we check it?

Can we get a certificate?
Theorem: There does not exist a point \((x, y, z) \in \mathbb{C}^3\) such that

\[
\begin{align*}
xy - 1 &= 0, \\
xyz - x + y - z &= 0, \\
z^2y + 1 &= 0, \\
x^2 - y^2 + z &= 0.
\end{align*}
\]

A *certificate* is a piece of data which allows to confirm a computational result by doing a “simple” calculation.
Theorem: There does not exist a point \((x, y, z) \in \mathbb{C}^3\) such that

\[
 xy - 1 = 0, \quad xyz - x + y - z = 0, \\
 z^2y + 1 = 0, \quad x^2 - y^2 + z = 0.
\]

A certificate is a piece of data which allows to confirm a computational result by doing a “simple” calculation.

In this example, a certificate could be

\[
 q_1 := -x - y, \quad q_2 := -y^2z - xyz, \\
 q_3 := x^2y + xy^2 - x - y + 1, \quad q_4 := -yz.
\]

because for these \(q_i\) we have \(1 = q_1p_1 + q_2p_2 + q_3p_3 + q_4p_4\).
Theorem: There does not exist a point \((x, y, z) \in \mathbb{C}^3\) such that

\[
xy - 1 = 0, \quad xyz - x + y - z = 0, \\
z^2y + 1 = 0, \quad x^2 - y^2 + z = 0.
\]

A certificate is a piece of data which allows to confirm a computational result by doing a “simple” calculation.

In this example, a certificate could be

\[
q_1 := -x - y, \quad q_2 := -y^2z - xyz, \\
q_3 := x^2y + xy^2 - x - y + 1, \quad q_4 := -yz.
\]

because for these \(q_i\) we have \(1 = q_1p_1 + q_2p_2 + q_3p_3 + q_4p_4\).

This can be “easily checked”.
Plan for this talk
Plan for this talk

A non-trivial example for a such a modern proof proving a longstanding open conjecture in partition theory.
A partition π of size n is a tuple $(\pi_i)_{i=1}^n \in \mathbb{N}^n$ with $n \geq \pi_1 \geq \pi_2 \geq \cdots \geq \pi_n$.

Partitions
A partition π of size n is a tuple $(\pi_i)_{i=1}^n \in \mathbb{N}^n$ with $n \geq \pi_1 \geq \pi_2 \geq \cdots \geq \pi_n$.

Example: \[5 \ 3 \ 3 \ 2 \ 1 \ 0\] is a partition of size 6
A *partition* π of size n is a tuple $(\pi_i)_{i=1}^{n} \in \mathbb{N}^n$ with $n \geq \pi_1 \geq \pi_2 \geq \cdots \geq \pi_n$.

Example: $\begin{bmatrix} 5 & 3 & 3 & 2 & 1 & 0 \end{bmatrix}$ is a partition of size 6

Picture:
A plane partition π of size n is a matrix $((\pi_{i,j}))_{i,j=1}^{n} \in \mathbb{N}^{n \times n}$ with $n \geq \pi_{i,1} \geq \pi_{i,2} \geq \cdots \geq \pi_{i,n}$ and $n \geq \pi_{1,i} \geq \pi_{2,i} \geq \cdots \geq \pi_{n,i}$ for all i.
A plane partition \(\pi \) of size \(n \) is a matrix \(((\pi_{i,j}))_{i,j=1}^{n} \in \mathbb{N}^{n \times n} \) with \(n \geq \pi_{i,1} \geq \pi_{i,2} \geq \cdots \geq \pi_{i,n} \) and \(n \geq \pi_{1,i} \geq \pi_{2,i} \geq \cdots \geq \pi_{n,i} \) for all \(i \).

\[
\begin{array}{ccccc}
5 & 3 & 3 & 2 & 1 & 0 \\
4 & 3 & 3 & 1 & 1 & 0 \\
3 & 2 & 1 & 1 & 0 & 0 \\
2 & 2 & 1 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\]

is a plane partition of size 6
A **plane partition** \(\pi \) of size \(n \) is a matrix \(((\pi_{i,j}))_{i,j=1}^{n} \in \mathbb{N}^{n \times n} \) with \(n \geq \pi_{i,1} \geq \pi_{i,2} \geq \cdots \geq \pi_{i,n} \) and \(n \geq \pi_{1,i} \geq \pi_{2,i} \geq \cdots \geq \pi_{n,i} \) for all \(i \).
A **symmetric plane partition** π is a plane partition $((\pi_{i,j}))_{i,j=1}^{n} \in \mathbb{N}^{n \times n}$ with $\pi_{i,j} = \pi_{j,i}$ for all i, j.

Symmetric Plane Partitions
Symmetric Plane Partitions

A **symmetric plane partition** π is a plane partition $((\pi_{i,j}))_{i,j=1}^{n} \in \mathbb{N}^{n \times n}$ with $\pi_{i,j} = \pi_{j,i}$ for all i, j.
A **symmetric plane partition** π is a plane partition $((\pi_{i,j}))_{i,j=1}^n \in \mathbb{N}^{n\times n}$ with $\pi_{i,j} = \pi_{j,i}$ for all i, j.

Symmetric Plane Partitions
A *symmetric plane partition* π is a plane partition $((\pi_{i,j}))_{i,j=1}^{n} \in \mathbb{N}^{n \times n}$ with $\pi_{i,j} = \pi_{j,i}$ for all i, j.

Symmetric Plane Partitions
A *symmetric plane partition* π is a plane partition $((\pi_{i,j}))_{i,j=1}^n \in \mathbb{N}^{n \times n}$ with $\pi_{i,j} = \pi_{j,i}$ for all i, j.

Symmetric Plane Partitions

![Diagram of symmetric and non-symmetric plane partitions]
Totally Symmetric Plane Partitions

A *totally symmetric plane partition* \(\pi \) is a symmetric plane partition whose diagram is symmetric about all three diagonal planes.
A *totally symmetric plane partition* π is a symmetric plane partition whose diagram is symmetric about all three diagonal planes.
Totally Symmetric Plane Partitions

A *totally symmetric plane partition* π is a symmetric plane partition whose diagram is symmetric about all three diagonal planes.
Totally Symmetric Plane Partitions

A *totally symmetric plane partition* π is a symmetric plane partition whose diagram is symmetric about all three diagonal planes.
Totally Symmetric Plane Partitions

A totally symmetric plane partition π is a symmetric plane partition whose diagram is symmetric about all three diagonal planes.
Totally Symmetric Plane Partitions

A *totally symmetric plane partition* \(\pi \) is a symmetric plane partition whose diagram is symmetric about all three diagonal planes.
Theorem: There are

\[
\prod_{1 \leq i \leq j \leq k \leq n} \frac{i + j + k - 1}{i + j + k - 2}
\]

totally symmetric plane partitions of size \(n \).
Totally Symmetric Plane Partitions

Theorem: There are

\[\prod_{1 \leq i \leq j \leq k \leq n} \frac{i + j + k - 1}{i + j + k - 2} \]

totally symmetric plane partitions of size \(n \).

Proofs:
Totally Symmetric Plane Partitions

Theorem: There are

\[\prod_{1 \leq i \leq j \leq k \leq n} \frac{i + j + k - 1}{i + j + k - 2} \]

totally symmetric plane partitions of size \(n \).

Proofs:

- *Stembridge, 1995:* 100% thinking, 0% computing.
Theorem: There are

\[\prod_{1 \leq i \leq j \leq k \leq n} \frac{i + j + k - 1}{i + j + k - 2} \]

totally symmetric plane partitions of size \(n \).

Proofs:

- Stembridge, 1995: 100% thinking, 0% computing.
- Andrews, Paule, Schneider, 2005: 50% thinking, 50% computing.
Theorem: There are

\[
\prod_{1 \leq i \leq j \leq k \leq n} \frac{i + j + k - 1}{i + j + k - 2}
\]

totally symmetric plane partitions of size \(n \).

Proofs:

- **Stembridge, 1995:** 100% thinking, 0% computing.
- **Andrews, Paule, Schneider, 2005:**
 50% thinking, 50% computing.
- **Koutschan, 2010:** <1% thinking, >99% computing.
Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into *orbits:*
Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into *orbits*:
Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into *orbits*.
Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into orbits:
Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into *orbits*:
Totally Symmetric Plane Partitions

A totally symmetric plane partition can be decomposed into orbits:
Totally Symmetric Plane Partitions

Let $R_{n,m}$ be the number of totally symmetric plane partitions of size n with m orbits.
Totally Symmetric Plane Partitions

Let $R_{n,m}$ be the number of totally symmetric plane partitions of size n with m orbits.

Then $\sum_{m=0}^{\infty} R_{n,m}q^m$ is a polynomial in q.
Totally Symmetric Plane Partitions

Let \(R_{n,m} \) be the number of totally symmetric plane partitions of size \(n \) with \(m \) orbits.

Then \(\sum_{m=0}^{\infty} R_{n,m} q^m \) is a polynomial in \(q \).

Example: for \(n = 7 \), this polynomial is

\[q^{84} + q^{83} + \cdots + 542q^{51} + 573q^{50} + \cdots + 2q^3 + q^2 + q + 1. \]
Totally Symmetric Plane Partitions

Let $R_{n,m}$ be the number of totally symmetric plane partitions of size n with m orbits.

Then $\sum_{m=0}^{\infty} R_{n,m} q^m$ is a polynomial in q.

Example: for $n = 7$, this polynomial is

$$q^{84} + q^{83} + \cdots + 542q^{51} + 573q^{50} + \cdots + 2q^3 + q^2 + q + 1.$$

The qTSPP-Theorem (K.K.Z. 2010): For all $n \geq 1$,

$$\sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}.$$
The qTSPP Theorem

\[
\sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}.
\]

Proof Structure
The qTSPP Theorem

\[\sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{1\leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}. \]

Proof Structure

- Reduce the identity to a more comfortable identity (by hand)
The qTSPP Theorem

\[\sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}. \]

Proof Structure

- Reduce the identity to a more comfortable identity (by hand)
- Construct a certificate for this identity (empirically; by computer)
The qTSPP Theorem

$$\sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}.$$

Proof Structure

- Reduce the identity to a more comfortable identity (by hand)
- Construct a certificate for this identity (empirically; by computer)
- Prove that the certificate really is a certificate (by computer)
The qTSSP Theorem

\[\sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}}. \]

Proof Structure

- Reduce the identity to a more comfortable identity (by hand)
- Construct a certificate for this identity (empirically; by computer)
- Prove that the certificate really is a certificate (by computer)
- Construct a certificate for the certificate (rigorously; by computer)
Okada’s Lemma

If

$$\det((a_{i,j}))_{i,j=1}^n = \prod_{1 \leq i \leq j \leq k \leq n} \left(\frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}} \right)^2 \quad (n \geq 1)$$

where

$$a_{i,j} = \frac{q^{i+j} + q^i - q - 1}{q^{1-i-j}(q^i - 1)} \prod_{k=1}^{i-1} \frac{1 - q^{k+j-2}}{1 - q^k} + (1 + q^i)\delta_{i,j} - \delta_{i,j+1}$$

then

$$\sum_{m=0}^{\infty} R_{n,m} q^m = \prod_{1 \leq i \leq j \leq k \leq n} \frac{1 - q^{i+j+k-1}}{1 - q^{i+j+k-2}} \quad (n \geq 1).$$
\[
\begin{array}{ccccccccccc}
 a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} & a_{1,6} & a_{1,7} & a_{1,8} & \cdots \\
 a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} & a_{2,6} & a_{2,7} & a_{2,8} & \cdots \\
 a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} & a_{3,6} & a_{3,7} & a_{3,8} & \cdots \\
 a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} & a_{4,5} & a_{4,6} & a_{4,7} & a_{4,8} & \cdots \\
 a_{5,1} & a_{5,2} & a_{5,3} & a_{5,4} & a_{5,5} & a_{5,6} & a_{5,7} & a_{5,8} & \cdots \\
 a_{6,1} & a_{6,2} & a_{6,3} & a_{6,4} & a_{6,5} & a_{6,6} & a_{6,7} & a_{6,8} & \cdots \\
 a_{7,1} & a_{7,2} & a_{7,3} & a_{7,4} & a_{7,5} & a_{7,6} & a_{7,7} & a_{7,8} & \cdots \\
 a_{8,1} & a_{8,2} & a_{8,3} & a_{8,4} & a_{8,5} & a_{8,6} & a_{8,7} & a_{8,8} & \cdots \\
 a_{9,1} & a_{9,2} & a_{9,3} & a_{9,4} & a_{9,5} & a_{9,6} & a_{9,7} & a_{9,8} & \cdots \\
 a_{10,1} & a_{10,2} & a_{10,3} & a_{10,4} & a_{10,5} & a_{10,6} & a_{10,7} & a_{10,8} & \cdots \\
 a_{11,1} & a_{11,2} & a_{11,3} & a_{11,4} & a_{11,5} & a_{11,6} & a_{11,7} & a_{11,8} & \cdots \\
 a_{12,1} & a_{12,2} & a_{12,3} & a_{12,4} & a_{12,5} & a_{12,6} & a_{12,7} & a_{12,8} & \cdots \\
 \vdots & \cdots
\end{array}
\]
<table>
<thead>
<tr>
<th>$a_{1,1}$</th>
<th>$a_{1,2}$</th>
<th>$a_{1,3}$</th>
<th>$a_{1,4}$</th>
<th>$a_{1,5}$</th>
<th>$a_{1,6}$</th>
<th>$a_{1,7}$</th>
<th>$a_{1,8}$</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{2,1}$</td>
<td>$a_{2,2}$</td>
<td>$a_{2,3}$</td>
<td>$a_{2,4}$</td>
<td>$a_{2,5}$</td>
<td>$a_{2,6}$</td>
<td>$a_{2,7}$</td>
<td>$a_{2,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{3,1}$</td>
<td>$a_{3,2}$</td>
<td>$a_{3,3}$</td>
<td>$a_{3,4}$</td>
<td>$a_{3,5}$</td>
<td>$a_{3,6}$</td>
<td>$a_{3,7}$</td>
<td>$a_{3,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{4,1}$</td>
<td>$a_{4,2}$</td>
<td>$a_{4,3}$</td>
<td>$a_{4,4}$</td>
<td>$a_{4,5}$</td>
<td>$a_{4,6}$</td>
<td>$a_{4,7}$</td>
<td>$a_{4,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{5,1}$</td>
<td>$a_{5,2}$</td>
<td>$a_{5,3}$</td>
<td>$a_{5,4}$</td>
<td>$a_{5,5}$</td>
<td>$a_{5,6}$</td>
<td>$a_{5,7}$</td>
<td>$a_{5,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{6,1}$</td>
<td>$a_{6,2}$</td>
<td>$a_{6,3}$</td>
<td>$a_{6,4}$</td>
<td>$a_{6,5}$</td>
<td>$a_{6,6}$</td>
<td>$a_{6,7}$</td>
<td>$a_{6,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{7,1}$</td>
<td>$a_{7,2}$</td>
<td>$a_{7,3}$</td>
<td>$a_{7,4}$</td>
<td>$a_{7,5}$</td>
<td>$a_{7,6}$</td>
<td>$a_{7,7}$</td>
<td>$a_{7,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{8,1}$</td>
<td>$a_{8,2}$</td>
<td>$a_{8,3}$</td>
<td>$a_{8,4}$</td>
<td>$a_{8,5}$</td>
<td>$a_{8,6}$</td>
<td>$a_{8,7}$</td>
<td>$a_{8,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{9,1}$</td>
<td>$a_{9,2}$</td>
<td>$a_{9,3}$</td>
<td>$a_{9,4}$</td>
<td>$a_{9,5}$</td>
<td>$a_{9,6}$</td>
<td>$a_{9,7}$</td>
<td>$a_{9,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{10,1}$</td>
<td>$a_{10,2}$</td>
<td>$a_{10,3}$</td>
<td>$a_{10,4}$</td>
<td>$a_{10,5}$</td>
<td>$a_{10,6}$</td>
<td>$a_{10,7}$</td>
<td>$a_{10,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{11,1}$</td>
<td>$a_{11,2}$</td>
<td>$a_{11,3}$</td>
<td>$a_{11,4}$</td>
<td>$a_{11,5}$</td>
<td>$a_{11,6}$</td>
<td>$a_{11,7}$</td>
<td>$a_{11,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{12,1}$</td>
<td>$a_{12,2}$</td>
<td>$a_{12,3}$</td>
<td>$a_{12,4}$</td>
<td>$a_{12,5}$</td>
<td>$a_{12,6}$</td>
<td>$a_{12,7}$</td>
<td>$a_{12,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$a_{1,1}$</td>
<td>$a_{1,2}$</td>
<td>$a_{1,3}$</td>
<td>$a_{1,4}$</td>
<td>$a_{1,5}$</td>
<td>$a_{1,6}$</td>
<td>$a_{1,7}$</td>
<td>$a_{1,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$a_{2,1}$</td>
<td>$a_{2,2}$</td>
<td>$a_{2,3}$</td>
<td>$a_{2,4}$</td>
<td>$a_{2,5}$</td>
<td>$a_{2,6}$</td>
<td>$a_{2,7}$</td>
<td>$a_{2,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{3,1}$</td>
<td>$a_{3,2}$</td>
<td>$a_{3,3}$</td>
<td>$a_{3,4}$</td>
<td>$a_{3,5}$</td>
<td>$a_{3,6}$</td>
<td>$a_{3,7}$</td>
<td>$a_{3,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{4,1}$</td>
<td>$a_{4,2}$</td>
<td>$a_{4,3}$</td>
<td>$a_{4,4}$</td>
<td>$a_{4,5}$</td>
<td>$a_{4,6}$</td>
<td>$a_{4,7}$</td>
<td>$a_{4,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{5,1}$</td>
<td>$a_{5,2}$</td>
<td>$a_{5,3}$</td>
<td>$a_{5,4}$</td>
<td>$a_{5,5}$</td>
<td>$a_{5,6}$</td>
<td>$a_{5,7}$</td>
<td>$a_{5,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{6,1}$</td>
<td>$a_{6,2}$</td>
<td>$a_{6,3}$</td>
<td>$a_{6,4}$</td>
<td>$a_{6,5}$</td>
<td>$a_{6,6}$</td>
<td>$a_{6,7}$</td>
<td>$a_{6,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{7,1}$</td>
<td>$a_{7,2}$</td>
<td>$a_{7,3}$</td>
<td>$a_{7,4}$</td>
<td>$a_{7,5}$</td>
<td>$a_{7,6}$</td>
<td>$a_{7,7}$</td>
<td>$a_{7,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{8,1}$</td>
<td>$a_{8,2}$</td>
<td>$a_{8,3}$</td>
<td>$a_{8,4}$</td>
<td>$a_{8,5}$</td>
<td>$a_{8,6}$</td>
<td>$a_{8,7}$</td>
<td>$a_{8,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{9,1}$</td>
<td>$a_{9,2}$</td>
<td>$a_{9,3}$</td>
<td>$a_{9,4}$</td>
<td>$a_{9,5}$</td>
<td>$a_{9,6}$</td>
<td>$a_{9,7}$</td>
<td>$a_{9,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{10,1}$</td>
<td>$a_{10,2}$</td>
<td>$a_{10,3}$</td>
<td>$a_{10,4}$</td>
<td>$a_{10,5}$</td>
<td>$a_{10,6}$</td>
<td>$a_{10,7}$</td>
<td>$a_{10,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{11,1}$</td>
<td>$a_{11,2}$</td>
<td>$a_{11,3}$</td>
<td>$a_{11,4}$</td>
<td>$a_{11,5}$</td>
<td>$a_{11,6}$</td>
<td>$a_{11,7}$</td>
<td>$a_{11,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>$a_{12,1}$</td>
<td>$a_{12,2}$</td>
<td>$a_{12,3}$</td>
<td>$a_{12,4}$</td>
<td>$a_{12,5}$</td>
<td>$a_{12,6}$</td>
<td>$a_{12,7}$</td>
<td>$a_{12,8}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
\[
\begin{array}{cccccccc}
| a_{1,1} & a_{1,2} & a_{1,3} | & a_{1,4} & a_{1,5} & a_{1,6} & a_{1,7} & a_{1,8} & \cdots \\
| a_{2,1} & a_{2,2} & a_{2,3} | & a_{2,4} & a_{2,5} & a_{2,6} & a_{2,7} & a_{2,8} & \cdots \\
| a_{3,1} & a_{3,2} & a_{3,3} | & a_{3,4} & a_{3,5} & a_{3,6} & a_{3,7} & a_{3,8} & \cdots \\
| a_{4,1} & a_{4,2} & a_{4,3} | & a_{4,4} & a_{4,5} & a_{4,6} & a_{4,7} & a_{4,8} & \cdots \\
| a_{5,1} & a_{5,2} & a_{5,3} | & a_{5,4} & a_{5,5} & a_{5,6} & a_{5,7} & a_{5,8} & \cdots \\
| a_{6,1} & a_{6,2} & a_{6,3} | & a_{6,4} & a_{6,5} & a_{6,6} & a_{6,7} & a_{6,8} & \cdots \\
| a_{7,1} & a_{7,2} & a_{7,3} | & a_{7,4} & a_{7,5} & a_{7,6} & a_{7,7} & a_{7,8} & \cdots \\
| a_{8,1} & a_{8,2} & a_{8,3} | & a_{8,4} & a_{8,5} & a_{8,6} & a_{8,7} & a_{8,8} & \cdots \\
| a_{9,1} & a_{9,2} & a_{9,3} | & a_{9,4} & a_{9,5} & a_{9,6} & a_{9,7} & a_{9,8} & \cdots \\
| a_{10,1} & a_{10,2} & a_{10,3} | & a_{10,4} & a_{10,5} & a_{10,6} & a_{10,7} & a_{10,8} & \cdots \\
| a_{11,1} & a_{11,2} & a_{11,3} | & a_{11,4} & a_{11,5} & a_{11,6} & a_{11,7} & a_{11,8} & \cdots \\
| a_{12,1} & a_{12,2} & a_{12,3} | & a_{12,4} & a_{12,5} & a_{12,6} & a_{12,7} & a_{12,8} & \cdots \\
| \vdots & \vdots & \vdots | & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\end{array}
\]
\[
\begin{array}{cccc|cccccc}
 a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} & a_{1,6} & a_{1,7} & a_{1,8} & \cdots \\
 a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} & a_{2,6} & a_{2,7} & a_{2,8} & \cdots \\
 a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} & a_{3,6} & a_{3,7} & a_{3,8} & \cdots \\
 a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} & a_{4,5} & a_{4,6} & a_{4,7} & a_{4,8} & \cdots \\
 a_{5,1} & a_{5,2} & a_{5,3} & a_{5,4} & a_{5,5} & a_{5,6} & a_{5,7} & a_{5,8} & \cdots \\
 a_{6,1} & a_{6,2} & a_{6,3} & a_{6,4} & a_{6,5} & a_{6,6} & a_{6,7} & a_{6,8} & \cdots \\
 a_{7,1} & a_{7,2} & a_{7,3} & a_{7,4} & a_{7,5} & a_{7,6} & a_{7,7} & a_{7,8} & \cdots \\
 a_{8,1} & a_{8,2} & a_{8,3} & a_{8,4} & a_{8,5} & a_{8,6} & a_{8,7} & a_{8,8} & \cdots \\
 a_{9,1} & a_{9,2} & a_{9,3} & a_{9,4} & a_{9,5} & a_{9,6} & a_{9,7} & a_{9,8} & \cdots \\
 a_{10,1} & a_{10,2} & a_{10,3} & a_{10,4} & a_{10,5} & a_{10,6} & a_{10,7} & a_{10,8} & \cdots \\
 a_{11,1} & a_{11,2} & a_{11,3} & a_{11,4} & a_{11,5} & a_{11,6} & a_{11,7} & a_{11,8} & \cdots \\
 a_{12,1} & a_{12,2} & a_{12,3} & a_{12,4} & a_{12,5} & a_{12,6} & a_{12,7} & a_{12,8} & \cdots \\
 \vdots & \ddots
\end{array}
\]
<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁,¹</td>
<td>a₁,²</td>
<td>a₁,³</td>
<td>a₁,⁴</td>
<td>a₁,⁵</td>
<td>a₁,⁶</td>
<td>a₁,⁷</td>
<td>a₁,⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₂,¹</td>
<td>a₂,²</td>
<td>a₂,³</td>
<td>a₂,⁴</td>
<td>a₂,⁵</td>
<td>a₂,⁶</td>
<td>a₂,⁷</td>
<td>a₂,⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₃,¹</td>
<td>a₃,²</td>
<td>a₃,³</td>
<td>a₃,⁴</td>
<td>a₃,⁵</td>
<td>a₃,⁶</td>
<td>a₃,⁷</td>
<td>a₃,⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₄,¹</td>
<td>a₄,²</td>
<td>a₄,³</td>
<td>a₄,⁴</td>
<td>a₄,⁵</td>
<td>a₄,⁶</td>
<td>a₄,⁷</td>
<td>a₄,⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₅,¹</td>
<td>a₅,²</td>
<td>a₅,³</td>
<td>a₅,⁴</td>
<td>a₅,⁵</td>
<td>a₅,⁶</td>
<td>a₅,⁷</td>
<td>a₅,⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₆,¹</td>
<td>a₆,²</td>
<td>a₆,³</td>
<td>a₆,⁴</td>
<td>a₆,⁵</td>
<td>a₆,⁶</td>
<td>a₆,⁷</td>
<td>a₆,⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₇,¹</td>
<td>a₇,²</td>
<td>a₇,³</td>
<td>a₇,⁴</td>
<td>a₇,⁵</td>
<td>a₇,⁶</td>
<td>a₇,⁷</td>
<td>a₇,⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₈,¹</td>
<td>a₈,²</td>
<td>a₈,³</td>
<td>a₈,⁴</td>
<td>a₈,⁵</td>
<td>a₈,⁶</td>
<td>a₈,⁷</td>
<td>a₈,⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₉,¹</td>
<td>a₉,²</td>
<td>a₉,³</td>
<td>a₉,⁴</td>
<td>a₉,⁵</td>
<td>a₉,⁶</td>
<td>a₉,⁷</td>
<td>a₉,⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁₀,¹</td>
<td>a₁₀,²</td>
<td>a₁₀,³</td>
<td>a₁₀,⁴</td>
<td>a₁₀,⁵</td>
<td>a₁₀,⁶</td>
<td>a₁₀,⁷</td>
<td>a₁₀,⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁₁,¹</td>
<td>a₁₁,²</td>
<td>a₁₁,³</td>
<td>a₁₁,⁴</td>
<td>a₁₁,⁵</td>
<td>a₁₁,⁶</td>
<td>a₁₁,⁷</td>
<td>a₁₁,⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a₁₂,¹</td>
<td>a₁₂,²</td>
<td>a₁₂,³</td>
<td>a₁₂,⁴</td>
<td>a₁₂,⁵</td>
<td>a₁₂,⁶</td>
<td>a₁₂,⁷</td>
<td>a₁₂,⁸</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{array}{cccccccc}
 a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} & a_{1,5} & a_{1,6} & a_{1,7} & a_{1,8} \\
 a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} & a_{2,5} & a_{2,6} & a_{2,7} & a_{2,8} \\
 a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} & a_{3,5} & a_{3,6} & a_{3,7} & a_{3,8} \\
 a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} & a_{4,5} & a_{4,6} & a_{4,7} & a_{4,8} \\
 a_{5,1} & a_{5,2} & a_{5,3} & a_{5,4} & a_{5,5} & a_{5,6} & a_{5,7} & a_{5,8} \\
 a_{6,1} & a_{6,2} & a_{6,3} & a_{6,4} & a_{6,5} & a_{6,6} & a_{6,7} & a_{6,8} \\
 a_{7,1} & a_{7,2} & a_{7,3} & a_{7,4} & a_{7,5} & a_{7,6} & a_{7,7} & a_{7,8} \\
 a_{8,1} & a_{8,2} & a_{8,3} & a_{8,4} & a_{8,5} & a_{8,6} & a_{8,7} & a_{8,8} \\
 a_{9,1} & a_{9,2} & a_{9,3} & a_{9,4} & a_{9,5} & a_{9,6} & a_{9,7} & a_{9,8} \\
 a_{10,1} & a_{10,2} & a_{10,3} & a_{10,4} & a_{10,5} & a_{10,6} & a_{10,7} & a_{10,8} \\
 a_{11,1} & a_{11,2} & a_{11,3} & a_{11,4} & a_{11,5} & a_{11,6} & a_{11,7} & a_{11,8} \\
 a_{12,1} & a_{12,2} & a_{12,3} & a_{12,4} & a_{12,5} & a_{12,6} & a_{12,7} & a_{12,8} \\
 \vdots & \vdots \\
\end{array}
\]
<table>
<thead>
<tr>
<th>$a_{1,1}$</th>
<th>$a_{1,2}$</th>
<th>$a_{1,3}$</th>
<th>$a_{1,4}$</th>
<th>$a_{1,5}$</th>
<th>$a_{1,6}$</th>
<th>$a_{1,7}$</th>
<th>$a_{1,8}$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{2,1}$</td>
<td>$a_{2,2}$</td>
<td>$a_{2,3}$</td>
<td>$a_{2,4}$</td>
<td>$a_{2,5}$</td>
<td>$a_{2,6}$</td>
<td>$a_{2,7}$</td>
<td>$a_{2,8}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$a_{3,1}$</td>
<td>$a_{3,2}$</td>
<td>$a_{3,3}$</td>
<td>$a_{3,4}$</td>
<td>$a_{3,5}$</td>
<td>$a_{3,6}$</td>
<td>$a_{3,7}$</td>
<td>$a_{3,8}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$a_{4,1}$</td>
<td>$a_{4,2}$</td>
<td>$a_{4,3}$</td>
<td>$a_{4,4}$</td>
<td>$a_{4,5}$</td>
<td>$a_{4,6}$</td>
<td>$a_{4,7}$</td>
<td>$a_{4,8}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$a_{5,1}$</td>
<td>$a_{5,2}$</td>
<td>$a_{5,3}$</td>
<td>$a_{5,4}$</td>
<td>$a_{5,5}$</td>
<td>$a_{5,6}$</td>
<td>$a_{5,7}$</td>
<td>$a_{5,8}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$a_{6,1}$</td>
<td>$a_{6,2}$</td>
<td>$a_{6,3}$</td>
<td>$a_{6,4}$</td>
<td>$a_{6,5}$</td>
<td>$a_{6,6}$</td>
<td>$a_{6,7}$</td>
<td>$a_{6,8}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$a_{7,1}$</td>
<td>$a_{7,2}$</td>
<td>$a_{7,3}$</td>
<td>$a_{7,4}$</td>
<td>$a_{7,5}$</td>
<td>$a_{7,6}$</td>
<td>$a_{7,7}$</td>
<td>$a_{7,8}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$a_{8,1}$</td>
<td>$a_{8,2}$</td>
<td>$a_{8,3}$</td>
<td>$a_{8,4}$</td>
<td>$a_{8,5}$</td>
<td>$a_{8,6}$</td>
<td>$a_{8,7}$</td>
<td>$a_{8,8}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$a_{9,1}$</td>
<td>$a_{9,2}$</td>
<td>$a_{9,3}$</td>
<td>$a_{9,4}$</td>
<td>$a_{9,5}$</td>
<td>$a_{9,6}$</td>
<td>$a_{9,7}$</td>
<td>$a_{9,8}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$a_{10,1}$</td>
<td>$a_{10,2}$</td>
<td>$a_{10,3}$</td>
<td>$a_{10,4}$</td>
<td>$a_{10,5}$</td>
<td>$a_{10,6}$</td>
<td>$a_{10,7}$</td>
<td>$a_{10,8}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$a_{11,1}$</td>
<td>$a_{11,2}$</td>
<td>$a_{11,3}$</td>
<td>$a_{11,4}$</td>
<td>$a_{11,5}$</td>
<td>$a_{11,6}$</td>
<td>$a_{11,7}$</td>
<td>$a_{11,8}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$a_{12,1}$</td>
<td>$a_{12,2}$</td>
<td>$a_{12,3}$</td>
<td>$a_{12,4}$</td>
<td>$a_{12,5}$</td>
<td>$a_{12,6}$</td>
<td>$a_{12,7}$</td>
<td>$a_{12,8}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ldots</td>
</tr>
<tr>
<td>(a_{1,1})</td>
<td>(a_{1,2})</td>
<td>(a_{1,3})</td>
<td>(a_{1,4})</td>
<td>(a_{1,5})</td>
<td>(a_{1,6})</td>
<td>(a_{1,7})</td>
<td>(a_{1,8})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(a_{2,1})</td>
<td>(a_{2,2})</td>
<td>(a_{2,3})</td>
<td>(a_{2,4})</td>
<td>(a_{2,5})</td>
<td>(a_{2,6})</td>
<td>(a_{2,7})</td>
<td>(a_{2,8})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(a_{3,1})</td>
<td>(a_{3,2})</td>
<td>(a_{3,3})</td>
<td>(a_{3,4})</td>
<td>(a_{3,5})</td>
<td>(a_{3,6})</td>
<td>(a_{3,7})</td>
<td>(a_{3,8})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(a_{4,1})</td>
<td>(a_{4,2})</td>
<td>(a_{4,3})</td>
<td>(a_{4,4})</td>
<td>(a_{4,5})</td>
<td>(a_{4,6})</td>
<td>(a_{4,7})</td>
<td>(a_{4,8})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(a_{5,1})</td>
<td>(a_{5,2})</td>
<td>(a_{5,3})</td>
<td>(a_{5,4})</td>
<td>(a_{5,5})</td>
<td>(a_{5,6})</td>
<td>(a_{5,7})</td>
<td>(a_{5,8})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(a_{6,1})</td>
<td>(a_{6,2})</td>
<td>(a_{6,3})</td>
<td>(a_{6,4})</td>
<td>(a_{6,5})</td>
<td>(a_{6,6})</td>
<td>(a_{6,7})</td>
<td>(a_{6,8})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(a_{7,1})</td>
<td>(a_{7,2})</td>
<td>(a_{7,3})</td>
<td>(a_{7,4})</td>
<td>(a_{7,5})</td>
<td>(a_{7,6})</td>
<td>(a_{7,7})</td>
<td>(a_{7,8})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(a_{8,1})</td>
<td>(a_{8,2})</td>
<td>(a_{8,3})</td>
<td>(a_{8,4})</td>
<td>(a_{8,5})</td>
<td>(a_{8,6})</td>
<td>(a_{8,7})</td>
<td>(a_{8,8})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(a_{9,1})</td>
<td>(a_{9,2})</td>
<td>(a_{9,3})</td>
<td>(a_{9,4})</td>
<td>(a_{9,5})</td>
<td>(a_{9,6})</td>
<td>(a_{9,7})</td>
<td>(a_{9,8})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(a_{10,1})</td>
<td>(a_{10,2})</td>
<td>(a_{10,3})</td>
<td>(a_{10,4})</td>
<td>(a_{10,5})</td>
<td>(a_{10,6})</td>
<td>(a_{10,7})</td>
<td>(a_{10,8})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(a_{11,1})</td>
<td>(a_{11,2})</td>
<td>(a_{11,3})</td>
<td>(a_{11,4})</td>
<td>(a_{11,5})</td>
<td>(a_{11,6})</td>
<td>(a_{11,7})</td>
<td>(a_{11,8})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(a_{12,1})</td>
<td>(a_{12,2})</td>
<td>(a_{12,3})</td>
<td>(a_{12,4})</td>
<td>(a_{12,5})</td>
<td>(a_{12,6})</td>
<td>(a_{12,7})</td>
<td>(a_{12,8})</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>
How to certify a determinant identity
How to certify a determinant identity

Assume that $\det((a_{i,j}))_{i,j=1}^n \equiv b_n (\neq 0)$ is indeed true.
How to certify a determinant identity

Assume that \(\det((a_{i,j}))_{i,j=1}^n = b_n \neq 0 \) is indeed true.

Define \(c_{n,j} := (-1)^{n+j} \) for \(j = 1, \ldots, n \).
How to certify a determinant identity

Assume that \(\det((a_{i,j}))_{i,j=1}^n = b_n \neq 0 \) is indeed true.

Define \(c_{n,j} := (-1)^{n+j} \) for \(j = 1, \ldots, n \).

Then:
How to certify a determinant identity

Assume that \(\det((a_{i,j}))_{i,j=1}^n = b_n \neq 0 \) is indeed true.

Define \(c_{n,j} := (-1)^{n+j} \) for \(j = 1, \ldots, n \).

Then:

\[c_{n,n} = 1 \]
How to certify a determinant identity

Assume that $\det((a_{i,j}))_{i,j=1}^n = b_n \neq 0$ is indeed true.

Define $c_{n,j} := (-1)^{n+j}$ for $j = 1, \ldots, n$.

Then:

$$= b_{n-1} \sum_{j=1}^n a_{n,j} c_{n,j} = b_n.$$
How to certify a determinant identity

Assume that $\det((a_{i,j}))_{i,j=1}^n = b_n \neq 0$ is indeed true.

Define $c_{n,j} := (-1)^{n+j}$ for $j = 1, \ldots, n$.

Then:

$\det((a_{i,j}))_{i,j=1}^n = b_{n-1} \sum_{j=1}^n a_{i,j} c_{n,j} = 0$.
How to certify a determinant identity

The $c_{n,j}$ satisfy the linear system

\[
\begin{pmatrix}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{n-1,1} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\
 0 & \cdots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 c_{n,1} \\
 \vdots \\
 c_{n,n-1} \\
 c_{n,n}
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 \vdots \\
 0 \\
 1
\end{pmatrix}.
\]
How to certify a determinant identity

The $c_{n,j}$ satisfy the linear system

$$
\begin{pmatrix}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{n-1,1} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\
 0 & \cdots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 c_{n,1} \\
 \vdots \\
 c_{n,n-1} \\
 c_{n,n}
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 \vdots \\
 0 \\
 1
\end{pmatrix}.
$$

This system has a unique solution.
How to certify a determinant identity

The $c_{n,j}$ satisfy the linear system

$$
\begin{pmatrix}
 a_{1,1} & \cdots & a_{1,n-1} & a_{1,n} \\
 \vdots & \ddots & \vdots & \vdots \\
 a_{n-1,1} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\
 0 & \cdots & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 c_{n,1} \\
 \vdots \\
 c_{n,n-1} \\
 c_{n,n}
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 \vdots \\
 0 \\
 1
\end{pmatrix}.
$$

This system has a unique solution.

The reasoning can therefore be put upside down:
How to certify a determinant identity

If \(c_{n,j} \) is such that (1) \(c_{n,n} = 1 \) and (2) \(\sum_{j=1}^{n} a_{i,j} c_{n,j} = 0 \) \((i < n)\),
How to certify a determinant identity

If $c_{n,j}$ is such that (1) $c_{n,n} = 1$ and (2) $\sum_{j=1}^{n} a_{i,j} c_{n,j} = 0$ ($i < n$), then

\[c_{n,j} = (-1)^{n+j} \]

($j = 1, \ldots, n$).
How to certify a determinant identity

If \(c_{n,j} \) is such that \((1)\) \(c_{n,n} = 1 \) and \((2)\) \(\sum_{j=1}^{n} a_{i,j} c_{n,j} = 0 \) \((i < n)\), then

\[
c_{n,j} = (-1)^{n+j} (j = 1, \ldots, n).
\]

If in addition

\[
(3) \sum_{j=1}^{n} a_{n,j} c_{n,j} = \frac{b_n}{b_{n-1}},
\]

then \(\det((a_{i,j}))_{i,j=1}^{n} = b_n \).
A function $c_{n,j}$ satisfying (1), (2), (3) certifies the determinant identity $\det((a_{i,j}))_{i,j=1}^n = b_n$.
How to certify a determinant identity

A function $c_{n,j}$ satisfying (1), (2), (3) certifies the determinant identity $\det((a_{i,j}))_{i,j=1}^n = b_n$.

Note:
How to certify a determinant identity

A function \(c_{n,j} \) satisfying (1), (2), (3) certifies the determinant identity

\[
\det((a_{i,j}))_{i,j=1}^n = b_n.
\]

Note:

- \(a_{i,j} \) and \(b_n \) can be described by recurrence equations.
A function $c_{n,j}$ satisfying (1), (2), (3) certifies the determinant identity $\det((a_{i,j}))_{i,j=1}^n = b_n$.

Note:

- $a_{i,j}$ and b_n can be described by recurrence equations.
- If there is also a recursive description of $c_{n,j}$, then proving (1), (2), (3) is “routine”.
How to certify a determinant identity

A function $c_{n,j}$ satisfying (1), (2), (3) certifies the determinant identity $\det((a_{i,j}))_{i,j=1}^n = b_n$.

Note:

- $a_{i,j}$ and b_n can be described by recurrence equations.
- If there is also a recursive description of $c_{n,j}$, then proving (1), (2), (3) is “routine”.
- How to discover a recursive description for $c_{n,j}$?
How to certify a determinant identity

A function $c_{n,j}$ satisfying (1), (2), (3) certifies the determinant identity $\det((a_{i,j}))_{i,j=1}^n = b_n$.

Note:

- $a_{i,j}$ and b_n can be described by recurrence equations.
- If there is also a recursive description of $c_{n,j}$, then proving (1), (2), (3) is “routine”.
- How to discover a recursive description for $c_{n,j}$?
- Compute $c_{n,j}$ explicitly for $1 \leq j \leq n \leq 500$, say, and construct recurrence equations fitting this data.
How to certify a determinant identity

A function $c_{n,j}$ satisfying (1), (2), (3) certifies the determinant identity $\det((a_{i,j}))_{i,j=1}^{n} = b_n$.

Note:

- $a_{i,j}$ and b_n can be described by recurrence equations.
- If there is also a recursive description of $c_{n,j}$, then proving (1), (2), (3) is “routine”.
- How to discover a recursive description for $c_{n,j}$?
- Compute $c_{n,j}$ explicitly for $1 \leq j \leq n \leq 500$, say, and construct recurrence equations fitting this data.
- Then offer these recurrence equations as a definition for $c_{n,j}$.
End of story?
End of story?

- The defining equations for $c_{n,j}$ are 30 Megabytes big.
The defining equations for $c_{n,j}$ are \textit{30 Megabytes} big.

Checking (1), (2), (3) is no problem in theory.
End of story?

- The defining equations for $c_{n,j}$ are 30 Megabytes big.
- Checking (1), (2), (3) is no problem in theory.
- But it is quite a computational challenge.
End of story?

- The defining equations for $c_{n,j}$ are 30 Megabytes big.
- Checking (1), (2), (3) is no problem in theory.
- But it is quite a computational challenge.
- A referee might not be willing (or able) to do this.
The defining equations for $c_{n,j}$ are 30 Megabytes big.
Checking (1), (2), (3) is no problem in theory.
But it is quite a computational challenge.
A referee might not be willing (or able) to do this.
Idea: Provide certificates that $c_{n,j}$ satisfies (1), (2), (3).
The defining equations for $c_{n,j}$ are 30 Megabytes big.
Checking (1), (2), (3) is no problem in theory.
But it is quite a computational challenge.
A referee might not be willing (or able) to do this.
Idea: Provide certificates that $c_{n,j}$ satisfies (1), (2), (3).
Computing such certificates is even more painful.
The defining equations for $c_{n,j}$ are 30 Megabytes big.
Checking (1), (2), (3) is no problem in theory.
But it is quite a computational challenge.
A referee might not be willing (or able) to do this.
Idea: Provide certificates that $c_{n,j}$ satisfies (1), (2), (3).
Computing such certificates is even more painful.
But checking them is reasonably cheap.
End of story?

- The defining equations for $c_{n,j}$ are 30 Megabytes big.
- Checking $(1), (2), (3)$ is no problem in theory.
- But it is quite a computational challenge.
- A referee might not be willing (or able) to do this.
- **Idea:** Provide certificates that $c_{n,j}$ satisfies $(1), (2), (3)$.
- Computing such certificates is even more painful.
- But checking them is reasonably cheap.
- We managed to provide such certificates.
The defining equations for $c_{n,j}$ are 30 Megabytes big.

Checking (1), (2), (3) is no problem in theory.

But it is quite a computational challenge.

A referee might not be willing (or able) to do this.

Idea: Provide certificates that $c_{n,j}$ satisfies (1), (2), (3).

Computing such certificates is even more painful.

But checking them is reasonably cheap.

We managed to provide such certificates.

The biggest of them is 7 Gigabytes big.
The Computational Challenge

Expected runtime with a naive algorithm:
The Computational Challenge

Expected runtime with a naive algorithm: 4.5 Mio years
The Computational Challenge

Expected runtime with a naive algorithm: 4.5 Mio years

- Use homomorphic images
 \[\mathbb{Q}(q, q^n, q^j) \rightarrow \mathbb{Q} \rightarrow \mathbb{Z}_p \rightarrow \mathbb{Q} \rightarrow \mathbb{Q}(q, q^n, q^j). \]
The Computational Challenge

Expected runtime with a naive algorithm: 4.5 Mio years

- Use homomorphic images
 \[\mathbb{Q}(q, q^n, q^j) \to \mathbb{Q} \to \mathbb{Z}_p \to \mathbb{Q} \to \mathbb{Q}(q, q^n, q^j). \]

- Use an optimized ansatz for the shape of the certificate.
The Computational Challenge

Expected runtime with a naive algorithm: 4.5 Mio years

- Use homomorphic images
 \[\mathbb{Q}(q, q^n, q^j) \rightarrow \mathbb{Q} \rightarrow \mathbb{Z}_p \rightarrow \mathbb{Q} \rightarrow \mathbb{Q}(q, q^n, q^j). \]

- Use an optimized ansatz for the shape of the certificate.

- Use plausible guesses for the denominators in the certificate and only compute the numerators.
The Computational Challenge

Expected runtime with a naive algorithm: 4.5 Mio years

- Use homomorphic images
 $\mathbb{Q}(q, q^n, q^j) \rightarrow \mathbb{Q} \rightarrow \mathbb{Z}_p \rightarrow \mathbb{Q} \rightarrow \mathbb{Q}(q, q^n, q^j)$.

- Use an optimized ansatz for the shape of the certificate.

- Use plausible guesses for the denominators in the certificate and only compute the numerators.

- Use a fine tuned implementation with lots of technical refinements.
The Computational Challenge

Expected runtime with a naive algorithm: 4.5 Mio years

- Use homomorphic images
 \[\mathbb{Q}(q, q^n, q^j) \rightarrow \mathbb{Q} \rightarrow \mathbb{Z}_p \rightarrow \mathbb{Q} \rightarrow \mathbb{Q}(q, q^n, q^j). \]

- Use an optimized ansatz for the shape of the certificate.

- Use plausible guesses for the denominators in the certificate and only compute the numerators.

- Use a fine tuned implementation with lots of technical refinements.

- Use parallel hardware with big memory and fast CPUs.
The Computational Challenge

Expected runtime with a naive algorithm: 4.5 Mio years

- Use homomorphic images
 \(\mathbb{Q}(q, q^n, q^j) \to \mathbb{Q} \to \mathbb{Z}_p \to \mathbb{Q} \to \mathbb{Q}(q, q^n, q^j) \).

- Use an optimized ansatz for the shape of the certificate.

- Use plausible guesses for the denominators in the certificate and only compute the numerators.

- Use a fine tuned implementation with lots of technical refinements.

- Use parallel hardware with big memory and fast CPUs.

Expected runtime with a clever algorithm:
The Computational Challenge

Expected runtime with a naive algorithm: 4.5 Mio years

- Use homomorphic images
 \[\mathbb{Q}(q, q^n, q^j) \to \mathbb{Q} \to \mathbb{Z}_p \to \mathbb{Q} \to \mathbb{Q}(q, q^n, q^j). \]
- Use an optimized ansatz for the shape of the certificate.
- Use plausible guesses for the denominators in the certificate and only compute the numerators.
- Use a fine tuned implementation with lots of technical refinements.
- Use parallel hardware with big memory and fast CPUs.

Expected runtime with a clever algorithm: 20 days