The Polynomial Growth of an Operator Ideal

Manuel Kauers (RISC)

joint work with

Frederic Chyzak and Bruno Salvy (INRIA)
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x)\right)
\]
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1, -1)}(x) = \frac{1}{1 - x} \left(2 - P_n(x) - P_{n+1}(x) \right)
\]

Legendre polynomials:
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) \]

Legendre polynomials:

- \(P_0(x) = 1 \)
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1 - x} \left(2 - P_n(x) - P_{n+1}(x) \right) \]

Legendre polynomials:

- \(P_0(x) = 1 \)
- \(P_1(x) = x \)
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) \]

Legendre polynomials:

- \(P_0(x) = 1 \)
- \(P_1(x) = x \)
- \(P_2(x) = \frac{1}{2}(3x^2 - 1) \)
\[
\sum_{k=0}^{n} \frac{2k+1}{k+1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right)
\]

Legendre polynomials:

- \(P_0(x) = 1 \)
- \(P_1(x) = x \)
- \(P_2(x) = \frac{1}{2} (3x^2 - 1) \)
- \(P_3(x) = \frac{1}{2} (5x^3 - 3x) \)
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) \]

Legendre polynomials:

- \(P_0(x) = 1 \)
- \(P_1(x) = x \)
- \(P_2(x) = \frac{1}{2}(3x^2 - 1) \)
- \(P_3(x) = \frac{1}{2}(5x^3 - 3x) \)
- \(P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3) \)
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) \]

Legendre polynomials:

- \(P_0(x) = 1 \)
- \(P_1(x) = x \)
- \(P_2(x) = \frac{1}{2}(3x^2 - 1) \)
- \(P_3(x) = \frac{1}{2}(5x^3 - 3x) \)
- \(P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3) \)
- \(P_5(x) = \frac{1}{8}(15x - 70x^3 + 63x^5) \)
- \(...\)
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1 - x} \left(2 - P_n(x) - P_{n+1}(x) \right)
\]

Legendre polynomials:

\[
P_{n+2}(x) = -\frac{n + 1}{n + 2} P_n(x) + \frac{2n + 3}{n + 2} x P_{n+1}(x)
\]
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right)
\]

Legendre polynomials:

\[
P_{n+2}(x) = -\frac{n + 1}{n + 2} P_n(x) + \frac{2n + 3}{n + 2} x P_{n+1}(x)
\]

\[
P_0(x) = 1
\]

\[
P_1(x) = x
\]
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) \]

Jacobi polynomials:
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right)
\]

Jacobi polynomials:

\[
P_0^{(1,-1)}(x) = 1
\]
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right)
\]

Jacobi polynomials:

- \(P_0^{(1,-1)}(x) = 1 \)
- \(P_1^{(1,-1)}(x) = 1 + x \)
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_{k}^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_{n}(x) - P_{n+1}(x)\right)
\]

Jacobi polynomials:

\[\begin{align*}
&\quad P_{0}^{(1,-1)}(x) = 1 \\
&\quad P_{1}^{(1,-1)}(x) = 1 + x \\
&\quad P_{2}^{(1,-1)}(x) = \frac{3}{2}(x + x^2)
\end{align*}\]
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) \]

Jacobi polynomials:

- \(P_0^{(1,-1)}(x) = 1 \)
- \(P_1^{(1,-1)}(x) = 1 + x \)
- \(P_2^{(1,-1)}(x) = \frac{3}{2} (x + x^2) \)
- \(P_3^{(1,-1)}(x) = \frac{1}{2} (-1 - x + 5x^2 + 5x^3) \)
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x)\right)
\]

Jacobi polynomials:

\[
\begin{align*}
\text{◮ } P_0^{(1,-1)}(x) &= 1 \\
\text{◮ } P_1^{(1,-1)}(x) &= 1 + x \\
\text{◮ } P_2^{(1,-1)}(x) &= \frac{3}{2}(x + x^2) \\
\text{◮ } P_3^{(1,-1)}(x) &= \frac{1}{2}(-1 - x + 5x^2 + 5x^3) \\
\text{◮ } P_4^{(1,-1)}(x) &= \frac{5}{8}(-3x - 3x^2 + 7x^3 + 7x^4)
\end{align*}
\]
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right)
\]

Jacobi polynomials:

\begin{itemize}
 \item \(P_0^{(1,-1)}(x) = 1 \)
 \item \(P_1^{(1,-1)}(x) = 1 + x \)
 \item \(P_2^{(1,-1)}(x) = \frac{3}{2} (x + x^2) \)
 \item \(P_3^{(1,-1)}(x) = \frac{1}{2} (-1 - x + 5x^2 + 5x^3) \)
 \item \(P_4^{(1,-1)}(x) = \frac{5}{8} (-3x - 3x^2 + 7x^3 + 7x^4) \)
 \item \(P_5^{(1,-1)}(x) = \frac{3}{8} (1 + x - 14x^2 - 14x^3 + 21x^4 + 21x^5) \)
 \item \(\ldots \)
\end{itemize}
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_{k}^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_{n}(x) - P_{n+1}(x) \right)
\]

Jacobi polynomials:

\[
P_{n+2}^{(1,-1)}(x) = - \frac{n}{n+1} P_{n}^{(1,-1)}(x) + \frac{2n + 3}{n+2} x P_{n+1}^{(1,-1)}(x)
\]
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) \]

Jacobi polynomials:

\[P_{n+2}^{(1,-1)}(x) = -\frac{n}{n+1} P_n^{(1,-1)}(x) + \frac{2n + 3}{n + 2} x P_{n+1}^{(1,-1)}(x) \]

\[P_0^{(1,-1)}(x) = 1 \]

\[P_1^{(1,-1)}(x) = 1 + x \]
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right)
\]

How to prove this identity?
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_{k}^{(1,-1)}(x) = \frac{1}{1-x} \left(2 - P_{n}(x) - P_{n+1}(x) \right) \]

How to prove this identity? \quad \rightarrow \quad By induction!
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) = 0
\]

How to prove this identity? → By induction!
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) - \frac{1}{1 - x} \left(2 - P_n(x) - P_{n+1}(x) \right) = 0
\]

How to prove this identity? \(\rightarrow\) By induction!

Compute a recurrence for the left hand side from the defining equations of its building blocks.
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) = 0 \]
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) = 0
\]
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_{k}^{(1,-1)}(x) - \frac{1}{1-x} \left(2 - P_{n}(x) - P_{n+1}(x) \right) = 0
\]
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_{k}^{(1,-1)}(x) - \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) = 0
\]
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P^{(1,-1)}_k(x) - \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) = 0
\]
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_{k}^{(1,-1)}(x) - \frac{1}{1 - x} \left(2 - P_{n}(x) - P_{n+1}(x)\right) = 0
\]
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_{k}^{(1,-1)}(x) - \frac{1}{1-x} \left(2 - P_{n}(x) - P_{n+1}(x) \right) = 0
\]
\[
\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x)\right) = 0
\]
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_{k}^{(1,-1)}(x) - \frac{1}{1 - x} \left(2 - P_{n}(x) - P_{n+1}(x) \right) = 0 \]
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} \, P_k^{(1,-1)}(x) - \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) = 0 \]

\[\text{lhs}(n + 7) = (\cdots \text{messy} \cdots) \, \text{lhs}(n + 6) \]
\[+ (\cdots \text{messy} \cdots) \, \text{lhs}(n + 5) \]
\[+ (\cdots \text{messy} \cdots) \, \text{lhs}(n + 4) \]
\[+ (\cdots \text{messy} \cdots) \, \text{lhs}(n + 3) \]
\[+ (\cdots \text{messy} \cdots) \, \text{lhs}(n + 2) \]
\[+ (\cdots \text{messy} \cdots) \, \text{lhs}(n + 1) \]
\[+ (\cdots \text{messy} \cdots) \, \text{lhs}(n) \]
\[\sum_{k=0}^{n} \frac{2k + 1}{k + 1} P_k^{(1,-1)}(x) - \frac{1}{1-x} \left(2 - P_n(x) - P_{n+1}(x) \right) = 0 \]

\[
\text{lhs}(n + 7) = (\cdots \text{messy} \cdots) \text{lhs}(n + 6) \\
+ (\cdots \text{messy} \cdots) \text{lhs}(n + 5) \\
+ (\cdots \text{messy} \cdots) \text{lhs}(n + 4) \\
+ (\cdots \text{messy} \cdots) \text{lhs}(n + 3) \\
+ (\cdots \text{messy} \cdots) \text{lhs}(n + 2) \\
+ (\cdots \text{messy} \cdots) \text{lhs}(n + 1) \\
+ (\cdots \text{messy} \cdots) \text{lhs}(n)
\]

Therefore the identity holds \textit{for all} \(n \in \mathbb{N} \) if and only if it holds \textit{for} \(n = 0, 1, 2, \ldots, 6 \).
Definition: A sequence f_n is \textit{D-finite} if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$
Definition: A sequence f_n is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$
Definition: A sequence f_n is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be **reduced** (by the recurrence) to f_n, \ldots, f_{n+r-1}.
Definition: A sequence f_n is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be **reduced** (by the recurrence) to f_n, \ldots, f_{n+r-1}.
Definition: A sequence f_n is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be **reduced** (by the recurrence) to f_n, \ldots, f_{n+r-1}.
Definition: A sequence \(f_n \) is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

\[
p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.
\]

Main fact: For every \(R \in \mathbb{N} \) there are rational functions \(q_0, \ldots, q_{r-1} \) such that

\[
f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.
\]

We say \(f_{n+R} \) can be **reduced** (by the recurrence) to \(f_n, \ldots, f_{n+r-1} \).
Definition: A sequence f_n is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be **reduced** (by the recurrence) to f_n, \ldots, f_{n+r-1}.

\[r \quad \bullet \quad R \]
Definition: A sequence f_n is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be **reduced** (by the recurrence) to f_n, \ldots, f_{n+r-1}.
Definition: A sequence f_n is D-finite if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be reduced (by the recurrence) to f_n, \ldots, f_{n+r-1}.

\[\text{Diagram:} \]

\[\text{Diagram:} \]
Definition: A sequence f_n is *D-finite* if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be *reduced* (by the recurrence) to f_n, \ldots, f_{n+r-1}.

Definition: A sequence f_n is *D-finite* if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be reduced (by the recurrence) to f_n, \ldots, f_{n+r-1}.

r \quad R
Definition: A sequence \(f_n \) is \textit{D-finite} if it satisfies a linear recurrence equation with polynomial coefficients:

\[
p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.
\]

Main fact: For every \(R \in \mathbb{N} \) there are rational functions \(q_0, \ldots, q_{r-1} \) such that

\[
f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.
\]

We say \(f_{n+R} \) can be \textit{reduced} (by the recurrence) to \(f_n, \ldots, f_{n+r-1} \).
Definition: A sequence f_n is *D-finite* if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be *reduced* (by the recurrence) to f_n, \ldots, f_{n+r-1}.
Definition: A sequence f_n is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be **reduced** (by the recurrence) to f_n, \ldots, f_{n+r-1}.

![Diagram](image_url)

r

R
Definition: A sequence \(f_n \) is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

\[
p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.
\]

Main fact: For every \(R \in \mathbb{N} \) there are rational functions \(q_0, \ldots, q_{r-1} \) such that

\[
f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.
\]

We say \(f_{n+R} \) can be **reduced** (by the recurrence) to \(f_n, \ldots, f_{n+r-1} \).
Definition: A sequence f_n is *D-finite* if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be *reduced* (by the recurrence) to f_n, \ldots, f_{n+r-1}.
Definition: A sequence f_n is *D-finite* if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be *reduced* (by the recurrence) to f_n, \ldots, f_{n+r-1}.
Definition: A sequence f_n is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be **reduced** (by the recurrence) to f_n, \ldots, f_{n+r-1}.

\[
\begin{array}{cccccccc}
\bullet & R \\
\end{array}
\]
Definition: A sequence f_n is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be **reduced** (by the recurrence) to f_n, \ldots, f_{n+r-1}.
Definition: A sequence f_n is *D-finite* if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be *reduced* (by the recurrence) to f_n, \ldots, f_{n+r-1}.

![Diagram](image-url)
Definition: A sequence f_n is *D-finite* if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main fact: For every $R \in \mathbb{N}$ there are rational functions q_0, \ldots, q_{r-1} such that

$$f_{n+R} = q_0(n)f_n + \cdots + q_{r-1}(n)f_{n+r-1}.$$

We say f_{n+R} can be *reduced* (by the recurrence) to f_n, \ldots, f_{n+r-1}.
Definition: A sequence f_n is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main consequence: If f_n and g_n are D-finite then so are

$$f_n + g_n, \quad f_ng_n, \quad \sum_{k=0}^{n} f_k, \quad \ldots$$
Definition: A sequence f_n is **D-finite** if it satisfies a linear recurrence equation with polynomial coefficients:

$$p_r(n)f_{n+r} + p_{r-1}(n)f_{n+r-1} + \cdots + p_0(n)f_n = 0.$$

Main consequence: If f_n and g_n are D-finite then so are

$$f_n + g_n, \quad f_n g_n, \quad \sum_{k=0}^{n} f_k, \quad \ldots$$

Equations for each of those can be computed from equations for f_n and g_n.
Definition: A function $f(x)$ is *D-finite* if it satisfies a linear differential equation with polynomial coefficients:

$$p_r(x)\frac{d^r}{dx^r}f(x) + \cdots + p_1(x)\frac{d}{dx}f(x) + p_0(x)f(x) = 0.$$
Definition: A function \(f(x) \) is **D-finite** if it satisfies a linear differential equation with polynomial coefficients:

\[
p_r(x) \frac{d^r}{dx^r} f(x) + \cdots + p_1(x) \frac{d}{dx} f(x) + p_0(x) f(x) = 0.
\]

Main fact: For every \(R \in \mathbb{N} \) there are rational functions \(q_0, \ldots, q_{r-1} \) such that

\[
\frac{d^R}{dx^R} f(x) = q_0(x) f(x) + \cdots + q_{r-1}(x) \frac{d^{r-1}}{dx^{r-1}} f(x)
\]
Definition: A function $f(x)$ is **D-finite** if it satisfies a linear differential equation with polynomial coefficients:

$$p_r(x)\frac{d^r}{dx^r}f(x) + \cdots + p_1(x)\frac{d}{dx}f(x) + p_0(x)f(x) = 0.$$

Main consequence: If $f(x)$ and $g(x)$ are D-finite then so are

$$f(x) + g(x), \quad f(x)g(x), \quad \int_x f(x), \quad \ldots$$

Equations for each of those can be computed from equations for $f(x)$ and $g(x)$.
How about multivariate sequences $f_{n,k}$?
How about multivariate sequences \(f_{n,k} \)?

Also a multivariate recurrence for \(f_{n,k} \) like

\[
p_{2,2}(n, k) f_{n+2,k+2} + p_{0,3}(n, k) f_{n,k+3} + p_{1,2}(n, k) f_{n+1,k+2} \\
+ p_{1,0}(n, k) f_{n+1,k} + p_{3,1}(n, k) f_{n+3,k+1} = 0
\]

can be used for reducing a term \(f_{n+U,k+V} \) to “smaller” ones.
How about multivariate sequences $f_{n,k}$?

- A single bivariate recurrence
How about multivariate sequences $f_{n,k}$?

- A single bivariate recurrence
- A system of bivariate recurrences
How about multivariate sequences $f_{n,k}$?

- A single bivariate recurrence
- A system of bivariate recurrences

Further reduction may be possible by using suitable combinations of the recurrences in the system.
How about multivariate sequences $f_{n,k}$?

- A single bivariate recurrence
- A system of bivariate recurrences
 Further reduction may be possible by using suitable combinations of the recurrences in the system.
- If not, we say the system is a **Gröbner basis**.
How about multivariate sequences $f_{n,k}$?

- A single bivariate recurrence
- A system of bivariate recurrences
 Further reduction may be possible by using suitable combinations of the recurrences in the system.
- If not, we say the system is a **Gröbner basis**.
- From now on, all systems are assumed to be Gröbner bases.
Definition: $f_{n,k}$ is D-finite if it satisfies a system of multivariate recurrence equations with polynomial coefficients of the form (only finitely many points under the stairs).
Definition: $f_{n,k}$ is \textit{D-finite} if it satisfies a system of multivariate recurrence equations with polynomial coefficients of the form

(only finitely many points under the stairs).

$f(x, y)$ is \textit{D-finite} if it satisfies a system of multivariate differential equations with polynomial coefficients of this form.
Main feature: If \(f_{n,k} \) and \(g_{n,k} \) are D-finite then so are

\[
\begin{align*}
 f_{n,k} + g_{n,k}, & \quad f_{n,k}g_{n,k}, & \quad \sum_{i=0}^{n} f_{i,k}, & \quad \ldots
\end{align*}
\]
Main feature: If $f_{n,k}$ and $g_{n,k}$ are D-finite then so are

$$f_{n,k} + g_{n,k}, \quad f_{n,k}g_{n,k}, \quad \sum_{i=0}^{n} f_{i,k}, \quad \ldots$$

If $f(x, y)$ and $g(x, y)$ are D-finite then so are

$$f(x, y) + g(x, y), \quad f(x, y)g(x, y), \quad \int_{x} f(x, y), \quad \int_{-\infty}^{\infty} f(x, y)dy, \quad \ldots$$
Main feature: If $f_{n,k}$ and $g_{n,k}$ are D-finite then so are

\[f_{n,k} + g_{n,k}, \quad f_{n,k}g_{n,k}, \quad \sum_{i=0}^{n} f_{i,k}, \quad \ldots \]

If $f(x, y)$ and $g(x, y)$ are D-finite then so are

\[f(x, y) + g(x, y), \quad f(x, y)g(x, y), \quad \int_{x} f(x, y), \quad \int_{-\infty}^{\infty} f(x, y)dy, \quad \ldots \]

Defining systems for all these can be computed from defining systems of f and $g.$
The results generalize to functions

\[f_{n_1,n_2,\ldots,n_s}(x_1, x_2, \ldots, x_r) \]

depending on any number \(s \) of discrete and any number \(r \) of continuous variables.
The results generalize to functions

$$f_{n_1,n_2,...,n_s}(x_1, x_2, \ldots, x_r)$$

depending on any number s of discrete and any number r of continuous variables.

The only requirement is to have enough equations that there are only \textit{finitely many} points under the stairs.
The results generalize to functions

\[f_{n_1, n_2, \ldots, n_s}(x_1, x_2, \ldots, x_r) \]

depending on any number \(s \) of discrete and any number \(r \) of continuous variables.

The only requirement is to have enough equations that there are only \textit{finitely many} points under the stairs.

Question: Is this requirement really necessary?
The results generalize to functions

\[f_{n_1,n_2,\ldots,n_s}(x_1, x_2, \ldots, x_r) \]

depending on any number \(s \) of discrete and any number \(r \) of continuous variables.

The only requirement is to have enough equations that there are only \textit{finitely many} points under the stairs.

Question: Is this requirement really necessary?

Answer: \textit{No!}
The results generalize to functions

\(f_{n_1,n_2,\ldots,n_s}(x_1, x_2, \ldots, x_r) \)

depending on any number \(s \) of discrete and any number \(r \) of continuous variables.

The only requirement is to have enough equations that there are only \textit{finitely many} points under the stairs.

Question: Is this requirement really necessary?

Answer: \textit{No!}

We can exploit that in general \(\infty \neq \infty \).
For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i + j \leq d$ under the stairs.
For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i + j \leq d$ under the stairs.

How does this number grow when $d \to \infty$?
For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i + j \leq d$ under the stairs.

How does this number grow when $d \to \infty$?
For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i + j \leq d$ under the stairs.

How does this number grow when $d \to \infty$?

$O(d^2)$
For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i + j \leq d$ under the stairs.

How does this number grow when $d \to \infty$?

$O(d^2)$
For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i + j \leq d$ under the stairs.

How does this number grow when $d \to \infty$?

$O(d^2)$ $O(d^1)$
For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i + j \leq d$ under the stairs.

How does this number grow when $d \to \infty$?

$O(d^2)$

$O(d^1)$
For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i + j \leq d$ under the stairs.

How does this number grow when $d \to \infty$?

$O(d^2)$ $O(d^1)$ $O(d^0)$
For fixed $d \in \mathbb{N}$, count the number of points (i, j) with $i + j \leq d$ under the stairs.

How does this number grow when $d \to \infty$?

$O(d^2) \Downarrow \text{ dimension 2}$

$O(d^1) \Downarrow \text{ dimension 1}$

$O(d^0) \Downarrow \text{ dimension 0}$
For a function f, let $A(f)$ be a system of equations it satisfies.
For a function f, let $A(f)$ be a system of equations it satisfies.

Theorem (C.K.S. ISSAC’09):
For a function f, let $A(f)$ be a system of equations it satisfies.

Theorem (C.K.S. ISSAC’09):

```
\[ \dim A(f + g) \leq \max(\dim A(f), \dim A(g)) \]
```
For a function f, let $A(f)$ be a system of equations it satisfies.

Theorem (C.K.S. ISSAC’09):

- $\dim A(f + g) \leq \max(\dim A(f), \dim A(g))$
- $\dim A(fg) \leq \dim A(f) + \dim A(g)$
For a function \(f \), let \(A(f) \) be a system of equations it satisfies.

Theorem (C.K.S. ISSAC’09):

- \(\dim A(f + g) \leq \max(\dim A(f), \dim A(g)) \)
- \(\dim A(fg) \leq \dim A(f) + \dim A(g) \)
- \(\dim A(\sum_{k} f) \leq \dim A(f) \)
For a function f, let $A(f)$ be a system of equations it satisfies.

Theorem (C.K.S. ISSAC’09):

- $\text{dim } A(f + g) \leq \max(\text{dim } A(f), \text{dim } A(g))$
- $\text{dim } A(fg) \leq \text{dim } A(f) + \text{dim } A(g)$
- $\text{dim } A(\sum_k f) \leq \text{dim } A(f)$
- $\text{dim } A(\int_x f) \leq \text{dim } A(f)$
For a function f, let $A(f)$ be a system of equations it satisfies.

Theorem (C.K.S. ISSAC’09):

- $\dim A(f + g) \leq \max(\dim A(f), \dim A(g))$
- $\dim A(fg) \leq \dim A(f) + \dim A(g)$
- $\dim A(\sum_k f) \leq \dim A(f)$
- $\dim A(\int_x f) \leq \dim A(f)$
- $\dim A(\int_{-\infty}^{\infty} f) \leq \dim A(f)$
For a function f, let $A(f)$ be a system of equations it satisfies.

Theorem (C.K.S. ISSAC’09):

- $\dim A(f + g) \leq \max(\dim A(f), \dim A(g))$
- $\dim A(fg) \leq \dim A(f) + \dim A(g)$
- $\dim A(\sum_k f) \leq \dim A(f)$
- $\dim A(\int_x^{} f) \leq \dim A(f)$
- $\dim A(\int_{-\infty}^\infty f) \leq \dim A(f)$
- $\dim A(\sum_{-\infty}^\infty f) \leq$
For a function \(f \), let \(A(f) \) be a system of equations it satisfies.

Theorem (C.K.S. ISSAC’09):

- \(\dim A(f + g) \leq \max(\dim A(f), \dim A(g)) \)
- \(\dim A(fg) \leq \dim A(f) + \dim A(g) \)
- \(\dim A(\sum_k f) \leq \dim A(f) \)
- \(\dim A(\int_x f) \leq \dim A(f) \)
- \(\dim A(\int_{-\infty}^\infty f) \leq \dim A(f) \)
- \(\dim A(\sum_{-\infty}^{\infty} f) \leq \dim A(f) + \text{pol} A(f) - 1 \)
For a function f, let $A(f)$ be a system of equations it satisfies.

Theorem (C.K.S. ISSAC’09):

- $\dim A(f + g) \leq \max(\dim A(f), \dim A(g))$
- $\dim A(fg) \leq \dim A(f) + \dim A(g)$
- $\dim A(\sum_k f) \leq \dim A(f)$
- $\dim A(\int_x f) \leq \dim A(f)$
- $\dim A(\int_{-\infty}^{\infty} f) \leq \dim A(f)$
- $\dim A(\sum_{-\infty}^{\infty} f) \leq \dim A(f) + \text{pol} A(f) - 1$

What the hell means $\text{pol} A(f)$?
For a function f, let $A(f)$ be a system of equations it satisfies.

Theorem (C.K.S. ISSAC’09):

- $\dim A(f + g) \leq \max(\dim A(f), \dim A(g))$
- $\dim A(fg) \leq \dim A(f) + \dim A(g)$
- $\dim A(\sum_k f) \leq \dim A(f)$
- $\dim A(\int_x f) \leq \dim A(f)$
- $\dim A(\int_{-\infty}^{\infty} f) \leq \dim A(f)$
- $\dim A(\sum_{-\infty}^{\infty} f) \leq \dim A(f) + \pol A(f) - 1$

What the hell means $\pol A(f)$?

Answer: It’s a number we call the *polynomial growth* of $A(f)$.
For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i + j < d$.
For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i + j < d$.

- Reduce $f_{n+i,k+j}$ to under the stairs.
For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i + j < d$.

- Reduce $f_{n+i,k+j}$ to under the stairs.
For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i + j < d$.

- Reduce $f_{n+i,k+j}$ to under the stairs.
- This corresponds to a representation

\[\bullet = \text{rat}(n, k) \bullet + \cdots + \text{rat}(n, k) \bullet \]
For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i + j < d$.

- Reduce $f_{n+i,k+j}$ to under the stairs.
- This corresponds to a representation

$$
\bullet = \frac{\text{poly}(n, k)\bullet + \cdots + \text{poly}(n, k)\bullet}{\text{denom}(n, k)}
$$
For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i + j < d$.

- Reduce $f_{n+i,k+j}$ to under the stairs.
- This corresponds to a representation

$$
\mathbf{\bullet} = \frac{\text{poly}(n, k) \mathbf{\bullet} + \cdots + \text{poly}(n, k) \mathbf{\bullet}}{\text{denom}(n, k)}
$$

- Find this $\text{denom}(n, k)$ for each (i, j) with $i + j < d$.
For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i + j < d$.

- Reduce $f_{n+i,k+j}$ to under the stairs.
- This corresponds to a representation
 $$
 \bullet = \frac{\text{poly}(n, k) \bullet + \cdots + \text{poly}(n, k) \bullet}{\text{denom}(n, k)}
 $$

- Find this $\text{denom}(n, k)$ for each (i, j) with $i + j < d$.
- Their least common multiple is a certain polynomial $P_d(n, k)$.
For fixed $d \in \mathbb{N}$, consider some point (i, j) with $i + j < d$.

- Reduce $f_{n+i,k+j}$ to under the stairs.
- This corresponds to a representation

$$
\bullet = \frac{\text{poly}(n, k) \bullet + \cdots + \text{poly}(n, k) \bullet}{\text{denom}(n, k)}
$$

- Find this $\text{denom}(n, k)$ for each (i, j) with $i + j < d$.
- Their least common multiple is a certain polynomial $P_d(n, k)$.
- If $\deg P_d(n, k) = O(d^p) \ (d \to \infty)$, then the system is said to have \textit{polynomial growth} p.
If $f_{n,k}$ is hypergeometric then

$$\text{pol } A(f) = 1 \iff f_{n,k} \text{ is proper}$$
If $f_{n,k}$ is D-finite then

$$\text{pol } A(f) = 1 \iff f_{n,k} \text{ is holonomic}$$
If $f_{n,k}$ is D-finite then

$$\text{pol } A(f) = 1 \iff f_{n,k} \text{ is holonomic}$$

“We always have $\text{pol } A(f) = 1$, except for counterexamples.”
If $f_{n,k}$ is D-finite then

$$\text{pol } A(f) = 1 \iff f_{n,k} \text{ is holonomic}$$

“We always have $\text{pol } A(f) = 1$, except for counterexamples.”

When $\text{pol } A(f) = 1$, the bound for $\dim A(\sum_{-\infty}^{\infty} f)$ is nice.
If $f_{n,k}$ is D-finite then

$$\text{pol } A(f) = 1 \iff f_{n,k} \text{ is holonomic}$$

“We always have $\text{pol } A(f) = 1$, except for counterexamples.”

When $\text{pol } A(f) = 1$, the bound for $\dim A(\sum_{-\infty}^{\infty} f)$ is nice.

But $\text{pol } A(f)$ can be larger than expected if $\dim A(f) > 0$.
If $f_{n,k}$ is D-finite then

$$\text{pol } A(f) = 1 \iff f_{n,k} \text{ is holonomic}$$

“We always have $\text{pol } A(f) = 1$, except for counterexamples.”

When $\text{pol } A(f) = 1$, the bound for $\dim \ A(\sum_{-\infty}^{\infty} f)$ is nice.

But $\text{pol } A(f)$ can be larger than expected if $\dim \ A(f) > 0$.

And the definition of $\text{pol } A(f)$ is awfully technical.
If $f_{n,k}$ is D-finite then

$$\text{pol} A(f) = 1 \iff f_{n,k} \text{ is holonomic}$$

“We always have $\text{pol} A(f) = 1$, except for counterexamples.”

When $\text{pol} A(f) = 1$, the bound for $\dim A(\sum_{-\infty}^{\infty} f)$ is nice.

But $\text{pol} A(f)$ can be larger than expected if $\dim A(f) > 0$.

And the definition of $\text{pol} A(f)$ is awfully technical.

And the computation of $\text{pol} A(f)$ is awfully complicated.
If $f_{n,k}$ is D-finite then

$$\text{pol } A(f) = 1 \iff f_{n,k} \text{ is holonomic}$$

“We always have $\text{pol } A(f) = 1$, except for counterexamples.”

When $\text{pol } A(f) = 1$, the bound for $\dim A(\sum_{-\infty}^{\infty} f)$ is nice.

But $\text{pol } A(f)$ can be larger than expected if $\dim A(f) > 0$.

And the definition of $\text{pol } A(f)$ is awfully technical.

And the computation of $\text{pol } A(f)$ is awfully complicated.

And the motivation for $\text{pol } A(f)$ is awfully weak.
If $f_{n,k}$ is D-finite then

$$\text{pol} A(f) = 1 \iff f_{n,k} \text{ is holonomic}$$

“We always have $\text{pol} A(f) = 1$, except for counterexamples.”

When $\text{pol} A(f) = 1$, the bound for $\dim A(\sum_{-\infty}^{\infty} f)$ is nice.

But $\text{pol} A(f)$ can be larger than expected if $\dim A(f) > 0$.

And the definition of $\text{pol} A(f)$ is awfully technical.

And the computation of $\text{pol} A(f)$ is awfully complicated.

And the motivation for $\text{pol} A(f)$ is awfully weak.

And the intuition behind $\text{pol} A(f)$ is awfully poor.
If $f_{n,k}$ is D-finite then
\[\text{pol } A(f) = 1 \iff f_{n,k} \text{ is holonomic} \]

“We always have $\text{pol } A(f) = 1$, except for counterexamples.”

When $\text{pol } A(f) = 1$, the bound for $\dim A(\sum_{-\infty}^{\infty} f)$ is nice.

But $\text{pol } A(f)$ can be larger than expected if $\dim A(f) > 0$.

And the definition of $\text{pol } A(f)$ is awfully technical.

And the computation of $\text{pol } A(f)$ is awfully complicated.

And the motivation for $\text{pol } A(f)$ is awfully weak.

And the intuition behind $\text{pol } A(f)$ is awfully poor.

This is not the end of the story.
If $f_{n,k}$ is D-finite then

$$\text{pol } A(f) = 1 \iff f_{n,k} \text{ is holonomic}$$

“We always have $\text{pol } A(f) = 1$, except for counterexamples.”

When $\text{pol } A(f) = 1$, the bound for $\dim A(\sum_{-\infty}^{\infty} f)$ is nice.

But $\text{pol } A(f)$ can be larger than expected if $\dim A(f) > 0$.

And the definition of $\text{pol } A(f)$ is awfully technical.

And the computation of $\text{pol } A(f)$ is awfully complicated.

And the motivation for $\text{pol } A(f)$ is awfully weak.

And the intuition behind $\text{pol } A(f)$ is awfully poor.

This is not the end of the story. But it is the end of the talk.