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Introduction

This  package  provides  functions  for  discoverying  linear  recurrence  equations  with  polynomial  coefficients  satisfied  by  the
entries of a given array. It extends the functionality of existing packages like Mallinger's  GeneratingFunctions.m or Salvy
and Zimmermann's  gfun  in two directions: (1) it is more general  in that, e.g., multivariate recurrences, or recurrences of a
particular shape can be searched for. (2) it is more efficient than the corresponding functions of existing packages, by using fine
tuned linear system solvers based on modular techniques.

The basic principle of all functions provided in this package is the same: they take an array of numbers as input and return as
output a set of recurrence equations these numbers satisfy. For example, one way to rediscover the Fibonacci recurrence is to type

In[2]:= GuessMinRE@81, 1, 2, 3, 5, 8, 13, 21, 34<, f@nDD

Out[2]= -f@nD - f@1 + nD + f@2 + nD

This  is  a  recurrence  with  constant  coefficients,  and  it  can  also  be  found  by  Mathematica's  builtin  function
FindLinearRecurrence  (available since Mathematica 7). The builtin function, however, is not able to discover recurrence
equations with polynomial coefficients, like the recurrence for the harmonic numbers, which our package can find without any
problem:

In[3]:= GuessMinREA90, 1,
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Out[3]= H1 + nL f@nD + H-3 - 2 nL f@1 + nD + H2 + nL f@2 + nD

Every finite array of numbers satisfies such recurrence, in fact, an infinite dimensional vector space of recurrence equations. But
most of these are not interesting. The package was written with applications from combinatorics and experimental mathematics
in mind. In these applications, the finite arrays provided as input belong to an infinite sequence of numbers (like the sequence of
Fibonacci numbers or harmonic numbers above), and one is interested only in recurrence equations which are valid for the entire
sequence, not just for the given prefix. 

It is clear that a program has no chance to know how the a sequence continues beyond the given data. But it is possible to
distinguish in the set  of  all  recurrence equations satisfied by a finite list  of  numbers among those which hold "for generic
reasons" and those which are somehow special. Those which are special are, with high probability, valid for the entire sequence,
while the generic ones are just artefacts which are caused by the truncration of the sequence to a finite array. The functions of
this package are made such that they ignore the "generic" recurrences as much as possible and only present "special" recurrences
as output. It is therefore fair to regard the output of our functions as guessed recurrences for the entire sequences whose prefixes
had been given as input. 

In this document, we describe the usage of the functions provided. There is one, rather elaborate, function available for guessing
multivariate recurrence equations of multivariate sequences. This function is described in the next section. In the section after-
wards, we describe a collection of special purpose functions custom-tailored  for guessing univariate recurrence equations or
differential equations or algebraic equations. 

GuessMultRE: Multivariate Guessing



GuessMultRE: Multivariate Guessing

� Overview

The function takes an array of numbers (possibly multidimensional) as input, as well as a description of the terms which may
occur in the recurrence to be searched. It then outputs all the recurrence equations satisfied by the given data which are linear
combinations of the specified sets of terms. Terms are of the form nΑ f @n + ΒD, where n, Α and Β are understood as multiindices.
But terms are not specified in this way, this would be too cumbersome. Instead, only the parts of the form f @n + ΒD  have to be
specified explicitly as a list (this is called the structure set). The terms nΑ  in the polynomial prefactor are given just by the list of
variables and a bound on the total degree. 

Example:

In[4]:= data = Table@n! 2^k, 8n, 0, 5<, 8k, 0, 5<D

Out[4]= 881, 2, 4, 8, 16, 32<, 81, 2, 4, 8, 16, 32<, 82, 4, 8, 16, 32, 64<,
86, 12, 24, 48, 96, 192<, 824, 48, 96, 192, 384, 768<, 8120, 240, 480, 960, 1920, 3840<<

In[5]:= GuessMultRE@data, 8f@n, kD, f@n + 1, kD, f@n, k + 1D<, 8n, k<, 1D

Out[5]= 8-H1 + nL f@n, kD + f@1 + n, kD, -2 n f@n, kD + n f@n, 1 + kD,
-2 k f@n, kD + k f@n, 1 + kD, -2 f@n, kD + f@n, 1 + kD<

This  gives  all the recurrences of the given array which can be expressed as linear combinations of the following terms:

8 f @n, kD, k f @n, kD, n f @n, kD, f @n, 1 + kD, k f @n, 1 + kD, n f @n, 1 + kD, f @1 + n, kD, k f @1 + n, kD, n f @1 + n, kD<.  The
actual set of terms can be accustumed in various ways. See below for details.

Note: There  may be additional recurrences satisfied by the given data, but if they are not linear combinations of the ones output
by the function, then they must involve additional terms. This way, the existence of recurrences of a certain form can be explic-
itly excluded. For example, the computation

In[6]:= GuessMultRE@82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31<, 8f@nD, f@n + 1D, f@n + 2D<, 8n<, 2D

Out[6]= 8<

constitutes a rigorous proof  that the prime numbers do not satisfy a second order linear recurrence equation with quadratic
coefficients. On the other hand, if a recurrence had been discovered, this does not  guarantee that this recurrence is valid for all
the primes, it it just guaranteed that the recurrence is valid for the finite array of numbers given in the input. 

Note also: Big recurrences can be only found if there is enough data supplied. Roughly, there must be more elements in the array
than the number of terms allowed in the recurrence. In the previous example with the primes, we have given 11 primes and
allowed 9 terms for the recurrence. If we seek a recurrence with polynomial coefficients of degree 3, then the first 11 primes
won't  be sufficient for the system to distinguish good recurrences from bad ones, it will therefore complain:

In[7]:= GuessMultRE@82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31<, 8f@nD, f@n + 1D, f@n + 2D<, 8n<, 3D

Throw::nocatch : Uncaught Throw@insufficient input data.D returned to top level. �

Out[7]= Hold@Throw@insufficient input data.DD

2   demo.nb



� Parameters

� Data Array

The data array containing the prefix of the sequence must be rectangular (triangular arrays are not allowed), but may have any
dimension. The terms specified in the structure set as well as the number of variables must match the dimension of the array. The
elements of the array may be rational numbers, but may as well belong to an algebraic number field (see comments on option
Extension), or have parameters, or belong to a finite field (see comments on option Modulus).

Example 1D:  (Note that for 1D arrays, the package provides more efficient special purpose functions, which are described
separately.)

In[8]:= GuessMultRE@81, 2, 3, 4, 5, 6, 7, 8, 9, 10<, 8f@nD, f@n + 1D<, 8n<, 1D

Out[8]= 8-H2 + nL f@nD + H1 + nL f@1 + nD<

Example 2D:

In[9]:= GuessMultRE@881, 2, 4, 8, 16, 32<, 81, 2, 4, 8, 16, 32<,
82, 4, 8, 16, 32, 64<, 86, 12, 24, 48, 96, 192<, 824, 48, 96, 192, 384, 768<,
8120, 240, 480, 960, 1920, 3840<<, 8f@n, kD, f@n + 1, kD<, 8n, k<, 1D

Out[9]= 8-H1 + nL f@n, kD + f@1 + n, kD<

Example 3D:

In[10]:= data = Table@JacobiP@n, a, b, 3D, 8n, 0, 5<, 8a, 0, 5<, 8b, 0, 5<D

Out[10]= 8881, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<, 81, 1, 1, 1, 1, 1<,
81, 1, 1, 1, 1, 1<<, 883, 4, 5, 6, 7, 8<, 85, 6, 7, 8, 9, 10<, 87, 8, 9, 10, 11, 12<,
89, 10, 11, 12, 13, 14<, 811, 12, 13, 14, 15, 16<, 813, 14, 15, 16, 17, 18<<,

8813, 19, 26, 34, 43, 53<, 825, 33, 42, 52, 63, 75<, 841, 51, 62, 74, 87, 101<,
861, 73, 86, 100, 115, 131<, 885, 99, 114, 130, 147, 165<, 8113, 129, 146, 164, 183, 203<<,

8863, 96, 138, 190, 253, 328<, 8129, 180, 242, 316, 403, 504<,
8231, 304, 390, 490, 605, 736<, 8377, 476, 590, 720, 867, 1032<,
8575, 704, 850, 1014, 1197, 1400<, 8833, 996, 1178, 1380, 1603, 1848<<,

88321, 501, 743, 1059, 1462, 1966<, 8681, 985, 1375, 1865, 2470, 3206<,
81289, 1765, 2355, 3075, 3942, 4974<, 82241, 2945, 3795, 4809, 6006, 7406<,
83649, 4645, 5823, 7203, 8806, 10654<, 85641, 7001, 8583, 10409, 12 502, 14886<<,

881683, 2668, 4043, 5908, 8378, 11584<, 83653, 5418, 7773, 10848, 14 790, 19764<,
87183, 10128, 13923, 18 732, 24738, 32 144<, 813073, 17718, 23 541, 30744, 39 550, 50204<,
822363, 29364, 37 947, 48356, 60 858, 75744<, 836365, 46 530, 58765, 73 360, 90630, 110916<<<

In[11]:= GuessMultRE@data, 8f@n, a, bD, f@n + 1, a, bD, f@n + 2, a, bD, f@n, a + 1, bD, f@n + 1, a + 1, bD,
f@n + 2, a + 1, bD, f@n, a, b + 1D, f@n + 1, a, b + 1D, f@n + 2, a, b + 1D<, 8n, a, b<, 0D

Out[11]= 8f@2 + n, a, bD - 2 f@2 + n, a, 1 + bD + f@2 + n, 1 + a, bD,
f@1 + n, a, bD - 2 f@1 + n, a, 1 + bD + f@1 + n, 1 + a, bD, f@n, a, bD - 2 f@n, a, 1 + bD + f@n, 1 + a, bD<

� Structure Set

The structure set declares the shifts which may occur in the desired recurrence equation. Shift operators are represented using a
function symbol, e.g., f @n + 1D  represents the shift in n. The choice of the function symbol is up to the user. The arity of the

funciton symbol must be the same in all elements of the structure set, and the ith argument must be of the form ni + ki  where ni

is the ith variable (see the section on variable declaration below) and ki is a nonnegative integer. We have deliberately enforced
some reduncance in the input specification, in order to be able to detect faulty input by inconsistenies, so that lengthy computa-
tions as a consequence of typos become less likely. 

The structure set may also contain the element 1, in order to allow for the detection of inhomogeneous recurrence equations. The
recurrence  equations  to  be  determined  are  all  of  the  form p1 f1 + p2 f2 + p3 f3 + ... , where  the  pi  are  polynomials  whose

possible terms are specified elsewhere, and the fi are the elements of the structure set specified here. 
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The structure set may also contain the element 1, in order to allow for the detection of inhomogeneous recurrence equations. The
recurrence  equations  to  be  determined  are  all  of  the  form p1 f1 + p2 f2 + p3 f3 + ... , where  the  pi  are  polynomials  whose

possible terms are specified elsewhere, and the fi are the elements of the structure set specified here. 

Example: 

In[12]:= data = Table@JacobiP@n, a, b, 3D, 8n, 0, 5<, 8a, 0, 5<, 8b, 0, 5<D;

Search for recurrence equation with shifts in n only:

In[13]:= GuessMultRE@data, 8f@n, a, bD, f@n + 1, a, bD, f@n + 2, a, bD<, 8n, a, b<, 3D

Out[13]= 9
1

2
H1 + a + nL H1 + b + nL H4 + a + b + 2 nL f@n, a, bD -

1

2
H3 + a + b + 2 nL I12 + 9 a + 2 a2 + 9 b + 3 a b + b2 + 18 n + 6 a n + 6 b n + 6 n2M f@1 + n, a, bD +

1

2
H2 + nL H2 + a + b + nL H2 + a + b + 2 nL f@2 + n, a, bD=

Search instead for a recurrence equation with shifts in a only, or with shifts in b only:

In[14]:= GuessMultRE@data, 8f@n, a, bD, f@n, a + 1, bD, f@n, a + 2, bD<, 8n, a, b<, 1D

Out[14]= 8-H1 + a + nL f@n, a, bD - H1 + b + 2 nL f@n, 1 + a, bD + H2 + a + b + nL f@n, 2 + a, bD<

In[15]:= GuessMultRE@data, 8f@n, a, bD, f@n, a, b + 1D, f@n, a, b + 2D<, 8n, a, b<, 1D

Out[15]= 9
1

2
H1 + b + nL f@n, a, bD -

1

2
H5 + 2 a + 3 b + 4 nL f@n, a, 1 + bD + H2 + a + b + nL f@n, a, 2 + bD=

Or search for a mixed recurrence, with shifts in n, a, b :

In[16]:= sset = Flatten@Table@f@n + u, a + v, b + wD, 8u, 0, 1<, 8v, 0, 1<, 8w, 0, 1<DD

Out[16]= 8f@n, a, bD, f@n, a, 1 + bD, f@n, 1 + a, bD, f@n, 1 + a, 1 + bD,
f@1 + n, a, bD, f@1 + n, a, 1 + bD, f@1 + n, 1 + a, bD, f@1 + n, 1 + a, 1 + bD<

In[17]:= GuessMultRE@data, sset, 8n, a, b<, 1D

Out[17]= 85 H1 + b + nL f@n, a, bD - H17 + 7 a + 10 b + 17 nL f@n, a, 1 + bD +

H2 a + bL f@n, 1 + a, 1 + bD - H2 + a + bL f@1 + n, a, bD + H3 + a + b + nL f@1 + n, 1 + a, 1 + bD,
3 H1 + b + nL f@n, a, bD - 2 H5 + 2 a + 3 b + 5 nL f@n, a, 1 + bD + 2 H2 + a + bL f@n, 1 + a, 1 + bD +

f@1 + n, a, bD + n f@1 + n, 1 + a, bD, -2 b f@n, 1 + a, 1 + bD - b f@1 + n, a, bD + b f@1 + n, 1 + a, bD,
-2 a f@n, 1 + a, 1 + bD - a f@1 + n, a, bD + a f@1 + n, 1 + a, bD,
-2 f@n, 1 + a, 1 + bD - f@1 + n, a, bD + f@1 + n, 1 + a, bD,
2 H1 + b + nL f@n, a, bD - H7 + 3 a + 4 b + 7 nL f@n, a, 1 + bD + H2 + a + bL f@n, 1 + a, 1 + bD +

f@1 + n, a, bD + n f@1 + n, a, 1 + bD, -b f@n, 1 + a, 1 + bD - b f@1 + n, a, bD + b f@1 + n, a, 1 + bD,
-a f@n, 1 + a, 1 + bD - a f@1 + n, a, bD + a f@1 + n, a, 1 + bD,
-f@n, 1 + a, 1 + bD - f@1 + n, a, bD + f@1 + n, a, 1 + bD,
H1 + b + nL f@n, a, bD - 2 H2 + a + b + 2 nL f@n, a, 1 + bD + H1 + nL f@1 + n, a, bD,
H1 + b + nL f@n, a, bD - H3 + a + 2 b + 3 nL f@n, a, 1 + bD + H2 + a + b + nL f@n, 1 + a, 1 + bD,
n f@n, a, bD - 2 n f@n, a, 1 + bD + n f@n, 1 + a, bD, b f@n, a, bD - 2 b f@n, a, 1 + bD + b f@n, 1 + a, bD,
a f@n, a, bD - 2 a f@n, a, 1 + bD + a f@n, 1 + a, bD, f@n, a, bD - 2 f@n, a, 1 + bD + f@n, 1 + a, bD<

Or search for a mixed recurrence, with shifts in a, b, but not in n, and shifts in a and b subjected to the restriction that they must
have the same parity, and not exceed 2 in total degree:

In[18]:= sset = DeleteCases@Flatten@
Table@If@EvenQ@v + wD, f@n + 2 u, a + v, b + wDD, 8u, 0, 0<, 8v, 0, 2<, 8w, 0, 2 - v<DD, NullD

Out[18]= 8f@n, a, bD, f@n, a, 2 + bD, f@n, 1 + a, 1 + bD, f@n, 2 + a, bD<
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In[19]:= GuessMultRE@data, sset, 8n, a, b<, 1D

Out[19]= 9H1 + bL f@n, a, bD - 2 H3 + a + 2 b + nL f@n, a, 2 + bD + H5 + 2 a + 3 bL f@n, 1 + a, 1 + bD + n f@n, 2 + a, bD,

-b f@n, a, bD + 4 b f@n, a, 2 + bD - 4 b f@n, 1 + a, 1 + bD + b f@n, 2 + a, bD,
-a f@n, a, bD + 4 a f@n, a, 2 + bD - 4 a f@n, 1 + a, 1 + bD + a f@n, 2 + a, bD,
-f@n, a, bD + 4 f@n, a, 2 + bD - 4 f@n, 1 + a, 1 + bD + f@n, 2 + a, bD,

1

4
H1 + b + nL f@n, a, bD -

1

2
H3 + a + 2 b + 3 nL f@n, a, 2 + bD +

1

4
H5 + 2 a + 3 b + 4 nL f@n, 1 + a, 1 + bD=

� Variables

As a third argument, the GuessMultRE command expects the list of variables to be used for the polynomial coefficients (and
also as arguments for the terms in the structure set, see above). The number of variables must be equal to the number of dimen-
sions of the data array supplied as first argument, and the ith argument corresponds to the ith dimension of the array, so that

f @n, m, k, ...D corresponds to data[[n+1,m+1,k+1,...]] etc. (see Option StartPoint for variations). 

It is possible to declare blocks of variables. This is useful if there are symmetries in the given data, e.g., if it is known that
f @n, kD = f @k, nD for the sequence under consideration. In this case, it can often be observed that whenever there exists a recur-
rence for a certain structure set with polynomial coefficients of a certain degree, then there also exists a recurrence for the same
structure set with symmetric polynomials of the same degree. Therefore, it suffices to search for such recurrence equations, and
ignore all others. This speeds up the computation and also reduces the size of the output.

Variable blocks are specified by additional braces {} around the variables to be blocked together. For instance, {{n,k},{m}}
would declare a symmetry between n  and k,  while m  stands for itself. The default variable declaration without blocks, e.g.,
{n,k,m} is equivalent to a variable declaration where every variable is a block of itself: {{n},{k},{m}}. 

Example.

In[20]:= data = CoefficientList@
Normal@Series@1 � H1 - x - y - z + 4 x y zL, 8x, 0, 15<, 8y, 0, 15<, 8z, 0, 15<DD, 8x, y, z<D;

In[21]:= Timing@GuessMultRE@data, 8f@n, k, mD, f@n + 1, k + 1, m + 1D, f@n + 2, k + 2, m + 2D<, 8n, k, m<, 4DD

Out[21]= 91.5521,

98 H-1 + k - m - nL H1 + k + m - nL H1 + k - m + nL H6 + k + m + nL f@n, k, mD - I96 + 90 k + 23 k2 + 6 k3 + k4 +

90 m + 70 k m + 6 k2 m + 23 m2 + 6 k m2 - 2 k2 m2 + 6 m3 + m4 + 90 n + 70 k n + 6 k2 n + 70 m n + 72 k m n +

8 k2 m n + 6 m2 n + 8 k m2 n + 23 n2 + 6 k n2 - 2 k2 n2 + 6 m n2 + 8 k m n2 - 2 m2 n2 + 6 n3 + n4M

f@1 + n, 1 + k, 1 + mD + H2 + kL H2 + mL H2 + nL H3 + k + m + nL f@2 + n, 2 + k, 2 + mD==

In[22]:= Timing@GuessMultRE@data, 8f@n, k, mD, f@n + 1, k + 1, m + 1D, f@n + 2, k + 2, m + 2D<, 88n, k, m<<, 4DD

Out[22]= 90.400025,

94 H-1 + k - m - nL H1 + k + m - nL H1 + k - m + nL H6 + k + m + nL f@n, k, mD -
1

2
I96 + 90 k + 23 k2 + 6 k3 +

k4 + 90 m + 70 k m + 6 k2 m + 23 m2 + 6 k m2 - 2 k2 m2 + 6 m3 + m4 + 90 n + 70 k n + 6 k2 n + 70 m n +

72 k m n + 8 k2 m n + 6 m2 n + 8 k m2 n + 23 n2 + 6 k n2 - 2 k2 n2 + 6 m n2 + 8 k m n2 - 2 m2 n2 + 6 n3 + n4M

f@1 + n, 1 + k, 1 + mD +
1

2
H2 + kL H2 + mL H2 + nL H3 + k + m + nL f@2 + n, 2 + k, 2 + mD==

If a variable is given in the form qn, then the q-shift  is used instead of the ordinary shift. Here, q may either be a symbol (like q)
or a number different from 1 (like 2). It is also allowed to use different bases for different variables, or to mix ordinary shifts
with q-shifts.  

Example.
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In[23]:= GuessMultRE@Table@Product@H1 + q^iL � H1 + 2 q^Hi + 1LL, 8i, 1, n<D, 8n, 1, 20<D,
8f@nD, f@n + 1D<, 8q^n<, 1D

Out[23]= 9-
1

2
I1 + q2+nM f@nD +

1

2
I1 + 2 q3+nM f@1 + nD=

� Degree

The degree is usually just an integer which bounds the total degree of the (multivariate) polynomial coefficients in the desired
recurrence. Thus, 0 means searching for recurrence equations with constant coefficients, 1 means that coefficients may be linear
polynomials, and so on.

Individual degree bounds may be specified for each variable block. For doing so, instead of a single integer, put a list of integers
whose length agrees with the number of blocks. Then the i th element in this list is used as bound for the total degree with respect

to the variables in the i th block. Note that specifying a single integer d is different from specifying 8d, d, d, ...<, because in the
latter case, the degree counts individually for each variable, whereas in the former case, a total degree bound is applied. Thus,

n1
d n2

d n3
d ... is covered by the latter, but not by the former. 

� Options

The specification of data array, structure set, variables, and degree bound are obligatory and immutable. After that parameter
sequence, zero or more options can be given for fine tuning the behavior of the guesser. The possible options are described, item
per item, in the following section. 

� Options

� AdditionalEquations

The main computational step underlying the guesser is solving an overdetermined linear system of equations. Any solution of
that system, if there is any, is considered as a reasonable recurrence equation which does not hold "for generic reasons" (because
generically, an overdetermined linear system has no solution). There is some freedom in how overdetermined the system should
be. This is governed by the AdditionalEquations options. By default, the value is set to 100, which is a good choice in most
cases. 

If the guesser produces unreasonable output (see below: Possible Issues), a standard advise is to use more additional equations.
The maximum possible number of possible different equations is taken upon saying AdditionalEquations -> Infinity.
(Caution: for multivariate examples, this may easily be hundreds of thousands of equations, more than will likely fit into your
memory. Better increase carefully by hand, say to 500, then to 1000, then to 2000, etc.) If this still produces strange output, it is
probably necessary to supply more data. 

In time consuming computations, it may sometimes also be advantageous to use less additional equations and the default 100.
The smallest possible value is 0, which often enough suffices to accurately produce the desired recurrence (corresponding to the
linear algebra fact that a square matrix generically has full rank). 

� AdditionalTerms

This option is for fine tuning the terms allowed to appear in a recurrence: it specifies terms which may occur in addition to those
given by structure set and degree bound. The terms given here consist of both the monomial part and the shift part: nΑ f @n + ΒD.

Example:

In[24]:= GuessMultRE@Table@1 � n!, 8n, 0, 5<D, 8f@nD, f@n + 1D<, 8n<, 1D

Out[24]= 8-f@nD + H1 + nL f@1 + nD<

6   demo.nb



In[25]:= GuessMultRE@Table@1 � n!, 8n, 0, 5<D, 8f@nD, f@n + 1D<, 8n<, 0D

Out[25]= 8<

In[26]:= GuessMultRE@Table@1 � n!, 8n, 0, 5<D, 8f@nD, f@n + 1D<, 8n<, 0, AdditionalTerms ® 8n f@n + 1D<D

Out[26]= 8-f@nD + H1 + nL f@1 + nD<

See also: Except

� Constraints

Many bivariate sequences arising from combinatorics are nonzero only in a certain range, for instance in the triangle 0 £ k £ n.
Since the guessing command requires a rectangular array, the data array supplied will contain a lot of zeros, which may cause the
guesser to slow down or, worse, to get confused about what recurrences are reasonable and which ones are just artefacts.

For such situations, it is possible to specify by the Constraints option the region of interest in the given data array. The region
may be specified by (logical combinations of) polynomial inequalities, using the variables of the variable declaration for refer-
ring to the indices of the array. 

Example:  (The effect of this option is only noticable on larger examples.)

In[27]:= data = Table@Binomial@n, kD, 8n, 0, 5<, 8k, 0, 5<D;

In[28]:= GuessMultRE@data, 8f@n, kD, f@n, k + 1D, f@n + 1, kD, f@n + 1, k + 1D<,
8n, k<, 1, Constraints ® 0 £ k £ nD

Out[28]= 8-n f@n, kD - n f@n, 1 + kD + n f@1 + n, 1 + kD,
-n f@n, kD + f@n, 1 + kD + k f@1 + n, 1 + kD, -f@n, kD - f@n, 1 + kD + f@1 + n, 1 + kD,
-H1 + nL f@n, kD - H-1 + k - nL f@1 + n, kD, Hk - nL f@n, kD + H1 + kL f@n, 1 + kD<

� Except

This option is for fine tuning the terms allowed to appear in a recurrence: it specifies terms which may not occur in the recur-
rence, even though they are specified implicitly via structure set and degree bound. The terms given here must be given by both
monomial part and shift part, i.e., in the form nΑ f @n + ΒD. 

If a term in list of exceptional terms is enclosed in the keyword Cone then also all its multiples (both the monomial multiples and
the shifted terms) will  be excluded from consideration. This feature is useful for gradually guessing a Gröbner basis of the
annihilating ideal. 

Examples:

In[29]:= GuessMultRE@Table@HarmonicNumber@nD, 8n, 0, 15<D, 8f@nD, f@n + 1D, f@n + 2D, f@n + 3D<, 8n<, 2D

Out[29]= 9H1 + nL H-5 + 2 nL f@nD - 3 I-3 - n + n2M f@1 + nD + 5 f@2 + nD + H-3 + nL H3 + nL f@3 + nD,

2 H1 + nL f@nD - H4 + 3 nL f@1 + nD - f@2 + nD + H3 + nL f@3 + nD,
H-2 + nL H1 + nL f@nD - H-2 + nL H3 + 2 nL f@1 + nD + H-2 + nL H2 + nL f@2 + nD,
H1 + nL f@nD - H3 + 2 nL f@1 + nD + H2 + nL f@2 + nD=

In[30]:= GuessMultRE@Table@HarmonicNumber@nD, 8n, 0, 15<D,
8f@nD, f@n + 1D, f@n + 2D, f@n + 3D<, 8n<, 2, Except ® 8n f@n + 3D<D

Out[30]= 9H1 + nL H-5 + 2 nL f@nD - 3 I-3 - n + n2M f@1 + nD + 5 f@2 + nD + H-3 + nL H3 + nL f@3 + nD,

H-2 + nL H1 + nL f@nD - H-2 + nL H3 + 2 nL f@1 + nD + H-2 + nL H2 + nL f@2 + nD,
H1 + nL f@nD - H3 + 2 nL f@1 + nD + H2 + nL f@2 + nD=
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In[31]:= GuessMultRE@Table@HarmonicNumber@nD, 8n, 0, 15<D,
8f@nD, f@n + 1D, f@n + 2D, f@n + 3D<, 8n<, 2, Except ® 8Cone@n f@n + 3DD<D

Out[31]= 8H-2 + nL H1 + nL f@nD - H-2 + nL H3 + 2 nL f@1 + nD + H-2 + nL H2 + nL f@2 + nD,
H1 + nL f@nD - H3 + 2 nL f@1 + nD + H2 + nL f@2 + nD<

See also: AdditionalTerms

� Extension

If the data is taken not from the rational numbers but from an algebraic number field, then this option allows for specifying the
minimal polynomial of the primitive element. The data itself has then to be given in terms of the primitive element, for which
some identifier has to be chosen (the same in the data and the minimal polynomial). 

In[32]:= GuessMultRE@Table@LegendreP@n, aD, 8n, 0, 15<D,
8f@nD, f@n + 1D, f@n + 2D<, 8n<, 1, Extension ® a^2 - 2D

Out[32]= 8H1 + nL f@nD - a H3 + 2 nL f@1 + nD + H2 + nL f@2 + nD<

� Factor

If the guesser finds reasonable recurrences, it will factor their polynomial coefficients before presenting them to the user. In
extremly big examples, chances are that this final factorization becomes the most time consuming part of the entire computation.
In such situations it is advisable to switch of the factorization feature by specifying Factor -> False as option. (default is
True.)

Example

In[33]:= GuessMultRE@Table@HarmonicNumber@2 nD, 8n, 0, 100<D, 8f@nD, f@n + 1D, f@n + 2D<, 8n<, 3D

Out[33]= 9
1

8
H1 + nL H1 + 2 nL H7 + 4 nL f@nD -

1

8
H5 + 4 nL I5 + 10 n + 4 n2M f@1 + nD +

1

8
H2 + nL H3 + 2 nL H3 + 4 nL f@2 + nD=

In[34]:= GuessMultRE@Table@HarmonicNumber@2 nD, 8n, 0, 100<D,
8f@nD, f@n + 1D, f@n + 2D<, 8n<, 3, Factor ® FalseD

Out[34]= 9
7

8
+
25 n

8
+
13 n2

4
+ n3 f@nD + -

25

8
-
35 n

4
-
15 n2

2
- 2 n3 f@1 + nD +

9

4
+
45 n

8
+
17 n2

4
+ n3 f@2 + nD=

� Infolevel

The guesser can be made verbose by specifying a positive infolevel. The larger the infolevel, the more information about the
ongoing computation will be printed on the screen. In big examples, this is useful for getting an idea if waiting longer makes
sense or not. 

In[35]:= GuessMultRE@Table@HarmonicNumber@2 nD, 8n, 0, 100<D,
8f@nD, f@n + 1D, f@n + 2D<, 8n<, 3, Infolevel ® InfinityD
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12 terms

collecting nonzero points...

modular system: 99 eqns, 12 vars

1 solutions predicted.

refined system: 99 eqns, 12 vars

Q.

2147 483629

2147 483587

90.004, 0, 0.004, 2.33754 ´ 10-16=

1 solutions.

Out[35]= 9
1

8
H1 + nL H1 + 2 nL H7 + 4 nL f@nD -

1

8
H5 + 4 nL I5 + 10 n + 4 n2M f@1 + nD +

1

8
H2 + nL H3 + 2 nL H3 + 4 nL f@2 + nD=

� Modulus

For reasons of efficiency, the guesser first solves the overdetermined linear system in a finite field. This allows to quickly get a
prediction on the size of the solution space (and an early termination condition if it is empty), and it allows to determine before-
hand which terms actually occur in the final answer and which don't.  In many cases, this gives a quite considerable reduction for
the linear system which is then, in a second step, solved over the rationals.

The option Modulus allows to specify the prime field which should be used for this preprocessing step. It will rarely be neces-
sary to change the default prime 2147483629 to something else.

The preprocessing step can be skipped by specifying the modulus 0.

� MustHaveOneOf

This option allows to force terms into a recurrence: the guesser will output only those recurrences which contain at least one of
the terms in the list specified by this option. The default is All, which does not impose any restriction.

Example.

In[36]:= data = Table@StirlingS1@n, kD Binomial@n, kD, 8n, 0, 20<, 8k, 0, 20<D;
sset = Flatten@Table@f@n + i, k + jD, 8i, 0, 2<, 8j, 0, 2<DD;

In[38]:= GuessMultRE@data, sset, 8n, k<, 3D

Out[38]= 9-Hk - nL H1 + nL f@n, kD - H1 + nL H3 + 3 k - 2 n + k nL f@n, 1 + kD - 3 H2 + kL n H1 + nL f@n, 2 + kD +

Hk - nL H3 + k + nL f@1 + n, 1 + kD + H2 + kL I5 + 3 k + n2M f@1 + n, 2 + kD - H2 + kL Hk - nL f@2 + n, 2 + kD,

-3 Hk - nL H1 + nL f@n, kD - 3 H1 + kL n H1 + nL f@n, 1 + kD + H-1 + k - nL H2 + nL f@1 + n, kD +

H1 + kL I2 + 3 k + n2M f@1 + n, 1 + kD - H1 + kL H-1 + k - nL f@2 + n, 1 + kD,

H1 + k - nL H1 + nL f@n, 1 + kD + H2 + kL n H1 + nL f@n, 2 + kD - H2 + kL H1 + k - nL f@1 + n, 2 + kD,
Hk - nL H1 + nL f@n, kD + H1 + kL n H1 + nL f@n, 1 + kD - H1 + kL Hk - nL f@1 + n, 1 + kD=
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In[39]:= GuessMultRE@data, sset, 8n, k<, 3,
MustHaveOneOf ® 8f@n + 2, k + 2D, n f@n + 2, k + 2D, k f@n + 2, k + 2D<D

Out[39]= 9-
1

2
Hk - nL H1 + nL f@n, kD -

1

2
H1 + nL H3 + 3 k - 2 n + k nL f@n, 1 + kD -

3

2
H2 + kL n H1 + nL f@n, 2 + kD +

1

2
Hk - nL H3 + k + nL f@1 + n, 1 + kD +

1

2
H2 + kL I5 + 3 k + n2M f@1 + n, 2 + kD -

1

2
H2 + kL Hk - nL f@2 + n, 2 + kD=

� Return

This option allows for specifying the return value of the guesser. By default, a list of recurrence equations is returned which
forms a basis of the linear space of all recurrence of the requested type matching the data. Alternative outputs can be requested,
by setting the Return option to an appropriate keyword. The possible choices are summarized in the following table.

"det" Returns the determinant of the linear system Hrequires AdditionalEquations to be set to zeroL

"dim" Returns the dimension of the solution space according to the result obtained in the finite field

"except" Returns the list of exceptional terms with Cone constructs expanded, intersected with the terms
specified by structure set and degree bound

"mod" Returns the modular solution Hrequires Modulus to be nonzeroL.

"sol" Returns the solution HdefaultL

"support" Returns the list of terms actually appearing in the solution according to the finite field computation

"sys" Returns the linear system as a matrix.

"terms" Returns the list of terms to be taken into account

Example.

In[40]:= GuessMultRE@Table@2^k, 8k, 0, 10<D, 8f@nD, f@n + 1D<, 8n<, 0, Return ® "dim"D

Out[40]= 1

In[41]:= GuessMultRE@Table@2^k, 8k, 0, 10<D, 8f@nD, f@n + 1D<, 8n<, 0, Return ® "sys"D

Out[41]= 881, 2<, 82, 4<, 84, 8<, 88, 16<, 816, 32<,
832, 64<, 864, 128<, 8128, 256<, 8256, 512<, 8512, 1024<<

In[42]:= NullSpace@%D

Out[42]= 88-2, 1<<

In[43]:= GuessMultRE@Table@2^k, 8k, 0, 10<D, 8f@nD, f@n + 1D<, 8n<, 0, Return ® "terms"D

Out[43]= 8f@nD, f@1 + nD<

In[44]:= %.First@%%D

Out[44]= -2 f@nD + f@1 + nD

In[45]:= GuessMultRE@Table@2^k, 8k, 0, 10<D, 8f@nD, f@n + 1D<, 8n<, 0D

Out[45]= 8-2 f@nD + f@1 + nD<
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� Sort

Order internally used for sorting terms. The order influences the order of columns in the linear systems. In some situations, it
may be  desirable  to  sort  the  terms  according  to  some term order  rather  than  to  the  (somewhat  arbitrary)  natural  order  of
Mathematica.

Example.

In[46]:= GuessMultRE@Table@Binomial@n, kD, 8n, 0, 10<, 8k, 0, 10<D,
8f@n, kD, f@n + 1, kD, f@n, k + 1D, f@n + 1, k + 1D<, 8n, k<, 1, Sort ® HOrderedQ@8ð1, ð2<D &LD

Out[46]= 8-n f@n, kD - n f@n, 1 + kD + n f@1 + n, 1 + kD,
-n f@n, kD + f@n, 1 + kD + k f@1 + n, 1 + kD, -f@n, kD - f@n, 1 + kD + f@1 + n, 1 + kD,
-H1 + nL f@n, kD - H-1 + k - nL f@1 + n, kD, Hk - nL f@n, kD + H1 + kL f@n, 1 + kD<

In[47]:= GuessMultRE@Table@Binomial@n, kD, 8n, 0, 10<, 8k, 0, 10<D,
8f@n, kD, f@n + 1, kD, f@n, k + 1D, f@n + 1, k + 1D<, 8n, k<, 1, Sort ® HOrderedQ@8ð2, ð1<D &LD

Out[47]= 8f@n, kD - n f@n, 1 + kD - H1 + k - nL f@1 + n, 1 + kD,
k f@n, kD + k f@n, 1 + kD - k f@1 + n, 1 + kD, n f@n, kD + n f@n, 1 + kD - n f@1 + n, 1 + kD,
H1 + nL f@n, 1 + kD + Hk - nL f@1 + n, 1 + kD, -H-1 + k - nL f@1 + n, kD - H1 + kL f@1 + n, 1 + kD<

� StartPoint

The guesser assumes by default that the array entry   data[[1,1,1,...]]   corresponds to the point f @0, 0, 0, ...D  of the
sequence f  under consideration. Occasionally, other start points may be desired. In this case, alternative start points can be
declared by the start point option. 

Example.

In[48]:= data = Table@HarmonicNumber@nD, 8n, 10, 150<D;

In[49]:= GuessMultRE@data, 8f@nD, f@n + 1D, f@n + 2D<, 8n<, 1D

Out[49]= 8H11 + nL f@nD - H23 + 2 nL f@1 + nD + H12 + nL f@2 + nD<

In[50]:= GuessMultRE@data, 8f@nD, f@n + 1D, f@n + 2D<, 8n<, 1, StartPoint ® 810<D

Out[50]= 8H1 + nL f@nD - H3 + 2 nL f@1 + nD + H2 + nL f@2 + nD<

In[51]:= data = Table@HarmonicNumber@nD, 8n, 0, 150<D;

In[52]:= GuessMultRE@data, 8f@nD, f@n + 1D, f@n + 2D<, 8n<, 1D

Out[52]= 8H1 + nL f@nD - H3 + 2 nL f@1 + nD + H2 + nL f@2 + nD<

� Applications

� Guessing an efficient evaluator

Consider the trivariate series expansion 1� I1 - x - y - z +
3

4
Hx y + x z + y zLM = Ún=0

¥ Úm=0
¥ Úk=0

¥ cHn, m, kL zk ym xn . We seek a fast

way for computing the coefficients cHn, m, kL. For small indices, we can use the series evaluator of Mathematica.

In[53]:= data = CoefficientList@Normal@
Series@1 � H1 - x - y - z + 3 � 4 Hx y + x z + y zLL, 8x, 0, 10<, 8y, 0, 10<, 8z, 0, 10<DD, 8x, y, z<D;

Larger coefficients are more conveniently computed by a recurrence. Several recurrences are needed. First a recurrence in all
three variables:
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In[54]:= GuessMultRE@data, 8c@n, m, kD, c@n + 1, m, kD, c@n, m + 1, kD, c@n, m, k + 1D<, 8n, m, k<, 1D

Out[54]= 9-
3

2
H2 + k + m + nL c@n, m, kD + H1 + kL c@n, m, 1 + kD + H1 + mL c@n, 1 + m, kD + H1 + nL c@1 + n, m, kD=

This recurrence is of first order, it determines all the coefficients cHn, m, kL once the coefficients cH0, m, kL are known. We next
find a bivariate recurrence for those.

In[55]:= GuessMultRE@data@@1DD, 8c@m, kD, c@m + 1, kD, c@m, k + 1D<, 8m, k<, 1D

Out[55]= 9
3

4
Hk - mL c@m, kD - H1 + kL c@m, 1 + kD + H1 + mL c@1 + m, kD=

This recurrence is again of first order, and it  allows the compuation of all the cH0, m, kL  once the coefficients cH0, 0, kL  are
known. A recurrence for the latter can be spotted by the naked eye:

In[56]:= data@@1, 1DD

Out[56]= 81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1<

They are all one. Putting these results together and exploiting the symmetry of cHn, m, kL in all arguments, we are led to the
following procedure:

In[57]:= c@n_Integer, m_Integer, k_IntegerD :=

Which@
! OrderedQ@8n, m, k<D, c �� Sort@8n, m, k<D,
n � m � 0, 1,
n � 0, c@0, m, kD = Hk + 1L � m c@0, m - 1, k + 1D + 3 � 4 H-1 - k + mL � m c@0, m - 1, kD,
True, c@n, m, kD = H3 * H1 + k + m + nL * c@-1 + n, m, kDL � H2 * nL -

HH1 + kL * c@-1 + n, m, 1 + kDL � n - HH1 + mL * c@-1 + n, 1 + m, kDL � nD;

A quick cross check confirms the correctness of this procedure at least for small arguments:

In[58]:= Table@c@n, m, kD - data@@n + 1, m + 1, k + 1DD, 8n, 0, 5<, 8m, 0, 5<, 8k, 0, 5<D

Out[58]= 8880, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<<, 880, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<<,

880, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<<, 880, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<<,

880, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<<, 880, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 0<<<

The procedure using the recurrence equation is much faster than the direct computation using the series expansion. For example,
it is a matter of just a few seconds to compute the first 100 diagonal elements:

In[59]:= Timing@diag = Table@c@n, n, nD, 8n, 0, 100<D;D

Out[59]= 813.5328, Null<

If even more diagonal elements are desired, it is best to compute a special recurrence for the diagonal:

In[60]:= GuessMultRE@diag, 8d@nD, d@n + 1D, d@n + 2D<, 8n<, 2D

Out[60]= 9
81

128
H2 + 3 nL H4 + 3 nL d@nD -

3

16
I62 + 81 n + 27 n2M d@1 + nD + H2 + nL2 d@2 + nD=

Again, we turn this recurrence into a procedure:
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In[61]:= d@n_IntegerD :=

If@n < 10, c@n, n, nD, d@nD = H-81 * H-4 + 3 * nL * H-2 + 3 * nL * d@-2 + nDL � H128 * n^2L +

H3 * H8 - 27 * n + 27 * n^2L * d@-1 + nDL � H16 * n^2LD;

This can do the first 100 terms even more quickly, and even the first 10000 terms can be found within a reasonalbe amount of
time.

In[62]:= Timing@diag = Table@d@nD, 8n, 0, 100<D;D

Out[62]= 80.004, Null<

In[63]:= Timing@diag = Table@d@nD, 8n, 0, 10000<D;D

Out[63]= 85.20433, Null<

� Guessing a Gröbner basis

The set of all recurrence equations satisfied by a fixed (multivariate) sequence can be considered as an ideal in the operator
algebra Q@n1, n2, ...D@S1, S2, ...D, where the ni act on sequences by multiplication, and Si  by shift. Gröbner bases are preferred
ideal bases. The Except option is useful for finding elements of a Gröbner basis: it allows to restrict the search to those terms
which are "under the stairs" of the ideal generated by the recurrences already found. Let us illustrate this, without too much
further comment, at the coefficients from the series expansion considered in the previous example. These coefficients, again, are
computed by the following procedure:

In[64]:= c@n_Integer, m_Integer, k_IntegerD :=

Which@
! OrderedQ@8n, m, k<D, c �� Sort@8n, m, k<D,
n � m � 0, 1,
n � 0, c@0, m, kD = Hk + 1L � m c@0, m - 1, k + 1D + 3 � 4 H-1 - k + mL � m c@0, m - 1, kD,
True, c@n, m, kD = H3 * H1 + k + m + nL * c@-1 + n, m, kDL � H2 * nL -

HH1 + kL * c@-1 + n, m, 1 + kDL � n - HH1 + mL * c@-1 + n, 1 + m, kDL � nD;

In[65]:= data = Table@c@n, m, kD, 8n, 0, 50<, 8m, 0, 50<, 8k, 0, 50<D;

The basic idea for finding a Gröbner basis is to apply the guesser to increasing sets of terms, excluding at each step all the terms
which would just yield consequences of the recurrence equations already found in earlier iterations. Proceedings iteratively has
two advantages: (1) the output is less redundand than with a direct computation, (2) the linear systems stay much smaller and
thus the overall performance and the memory requirements are much more managable than with a direct computation. (This is in
particular relevant for big examples.) Below, we execute the procedure for finding a Gröbner basis of the ideal generated by all
recurrence equations for cHn, m, kL of order four or less and degree four our less. For convenience, we have chosen a lexico-
graphic term order with f @n + 1, m, kD > f @n, m + 1, kD > f @n, m, k + 1D > n f @n, m, kD > m f @n, m, kD > k f @n, m, kD.

In[66]:= basis = 8<; lt = 8<;

In[67]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 1<, 8b, 0, 1<, 8c, 0, 1<DD, 8n, m, k<, 0D

Out[67]= 9
3

4
f@n, m, 1 + kD +

3

4
f@n, 1 + m, kD - f@n, 1 + m, 1 + kD +

3

4
f@1 + n, m, kD - f@1 + n, m, 1 + kD - f@1 + n, 1 + m, kD + f@1 + n, 1 + m, 1 + kD=

In[68]:= basis = Union@basis, newD; lt = Union@lt, 8Cone@f@n, m + 1, k + 1DD<D;
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In[69]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 1<, 8b, 0, 1<, 8c, 0, 1<DD, 8n, m, k<, 1, Except ® ltD

Out[69]= 9
3

4
H1 + kL f@n, m, 1 + kD -

3

4
H1 + mL f@n, 1 + m, kD +

3

4
Hk - mL f@1 + n, m, kD - H1 + kL f@1 + n, m, 1 + kD + H1 + mL f@1 + n, 1 + m, kD,

-
3

2
H2 + k + m + nL f@n, m, kD + H1 + kL f@n, m, 1 + kD + H1 + mL f@n, 1 + m, kD + H1 + nL f@1 + n, m, kD=

In[70]:= basis = Union@basis, newD; lt = Union@lt, 8Cone@m f@n + 1, m + 1, kDD, Cone@n f@n + 1, m, kDD<D;

In[71]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 1<, 8b, 0, 1<, 8c, 0, 1<DD, 8n, m, k<, 2, Except ® ltD

Out[71]= 8<

In[72]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 1<, 8b, 0, 1<, 8c, 0, 1<DD, 8n, m, k<, 3, Except ® ltD

Out[72]= 8<

In[73]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 1<, 8b, 0, 1<, 8c, 0, 1<DD, 8n, m, k<, 4, Except ® ltD

Out[73]= 8<

In[74]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 2<, 8b, 0, 2<, 8c, 0, 2<DD, 8n, m, k<, 1, Except ® ltD

Out[74]= 9
63

256
H2 + k + m + nL f@n, m, kD +

3

128
H15 + 11 k + 11 m - 7 nL f@n, m, 1 + kD -

11

32
H2 + kL f@n, m, 2 + kD -

21

64
H1 + mL f@n, 1 + m, kD +

3

4
H1 + kL f@1 + n, m, kD -

1

16
H17 + 13 k - 5 mL f@1 + n, m, 1 + kD +

3

4
H1 + kL f@2 + n, m, kD -

1

4
H11 + 7 k + mL f@2 + n, m, 1 + kD + H2 + kL f@2 + n, m, 2 + kD,

9

64
H2 + k + m + nL f@n, m, kD +

3

32
H9 + 5 k + 5 m - nL f@n, m, 1 + kD -

5

8
H2 + kL f@n, m, 2 + kD -

3

16
H1 + mL f@n, 1 + m, kD +

3

4
H1 + kL f@1 + n, m, kD -

1

4
H11 + 7 k + mL f@1 + n, m, 1 + kD + H2 + kL f@1 + n, m, 2 + kD=

In[75]:= basis = Union@basis, newD; lt = Union@lt, 8Cone@k f@n + 1, m, k + 2DD<D;

In[76]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 2<, 8b, 0, 2<, 8c, 0, 2<DD, 8n, m, k<, 2, Except ® ltD

Out[76]= 9-
9

8
Hk - mL H2 + k + m + nL f@n, m, kD +

3

4
H1 + kL H5 + 3 k + m + nL f@n, m, 1 + kD -

H1 + kL H2 + kL f@n, m, 2 + kD -
3

4
H1 + mL H5 + k + 3 m + nL f@n, 1 + m, kD + H1 + mL H2 + mL f@n, 2 + m, kD=

In[77]:= basis = Union@basis, newD; lt = Union@lt, 8Cone@m^2 f@n, m + 2, kDD<D;
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In[78]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 2<, 8b, 0, 2<, 8c, 0, 2<DD, 8n, m, k<, 3, Except ® ltD

Out[78]= 8<

In[79]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 2<, 8b, 0, 2<, 8c, 0, 2<DD, 8n, m, k<, 4, Except ® ltD

Out[79]= 8<

In[80]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 3<, 8b, 0, 3<, 8c, 0, 3<DD, 8n, m, k<, 1, Except ® ltD

Out[80]= 8<

In[81]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 3<, 8b, 0, 3<, 8c, 0, 3<DD, 8n, m, k<, 2, Except ® ltD

Out[81]= 9-
3

4
H4 + 4 k - m + nL H2 + k + m + nL f@n, m, kD +

1

2
I60 + 66 k + 18 k2 + 17 m + 11 k m + m2 + 19 n + 13 k n - 2 m n + n2M f@n, m, 1 + kD -

2

3
H2 + kL H30 + 13 k + 4 m + 4 nL f@n, m, 2 + kD +

8

3
H2 + kL H3 + kL f@n, m, 3 + kD - H1 + mL Hm - nL f@n, 1 + m, kD=

In[82]:= basis = Union@basis, newD; lt = Union@lt, 8Cone@n m f@n, m + 1, kDD<D;

In[83]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 3<, 8b, 0, 3<, 8c, 0, 3<DD, 8n, m, k<, 3, Except ® ltD

Out[83]= 8<

In[84]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 3<, 8b, 0, 3<, 8c, 0, 3<DD, 8n, m, k<, 4, Except ® ltD

Out[84]= 8<

In[85]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 4<, 8b, 0, 4<, 8c, 0, 4<DD, 8n, m, k<, 1, Except ® ltD

Out[85]= 8<

In[86]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 4<, 8b, 0, 4<, 8c, 0, 4<DD, 8n, m, k<, 2, Except ® ltD

Out[86]= 9
27

32
H1 + kL H2 + k + m + nL f@n, m, kD -

9

32
I54 + 53 k + 13 k2 + 17 m + 10 k m + m2 + 17 n + 10 k n - 2 m n + n2M f@n, m, 1 + kD +

3

16
I204 + 158 k + 31 k2 + 38 m + 16 k m + m2 + 38 n + 16 k n - 2 m n + n2M f@n, m, 2 + kD -

1

4
H3 + kL H49 + 16 k + 4 m + 4 nL f@n, m, 3 + kD + H3 + kL H4 + kL f@n, m, 4 + kD=

In[87]:= basis = Union@basis, newD; lt = Union@lt, 8Cone@k^2 f@n, m, k + 4DD<D;
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In[88]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 4<, 8b, 0, 4<, 8c, 0, 4<DD, 8n, m, k<, 3, Except ® ltD

Out[88]= 8<

In[89]:= new = GuessMultRE@data,
Flatten@Table@f@n + a, m + b, k + cD, 8a, 0, 4<, 8b, 0, 4<, 8c, 0, 4<DD, 8n, m, k<, 4, Except ® ltD

Out[89]= 8<

At this point, basis carries the desired Gröbner basis. The leading terms are as follows:

In[90]:= lt

Out[90]= 9ConeAk2 f@n, m, 4 + kDE, Cone@m n f@n, 1 + m, kDD, Cone@f@n, 1 + m, 1 + kDD, ConeAm2 f@n, 2 + m, kDE,

Cone@n f@1 + n, m, kDD, Cone@k f@1 + n, m, 2 + kDD, Cone@m f@1 + n, 1 + m, kDD=

� Possible Issues

� Unreasonable or varying predictions

The Infolevel option is especially useful for large examples, as it prints out a reasonable prediction on the number of solutions
before the main part of the computation. If the number of predicted solutions is large, it is a good idea to abort the computation
and restart with a smaller degree and/or a smaller structure set. This does not only result in an improved efficiency, but is also
influences the probablility that artefact solutions appear: the larger the solution set, the more likely it becomes that some addi-
tional unwanted solutions appear as well. This phenomenon, which typically arises only on very large input with some degener-
ate properties, can be observed by running the prediction (Return->"dim") several times: if if does not always produce the
same number, this is a good indication that something is wrong. In this case, try increasing the AdditionalEquations and/or
the amount of input data, or reduce the degree bounds and structure set.

� Unreasonably long coefficients in the output

Recurrence equations of of high order with high degree may easily involve integers with several dozens of decimal digits. This
need not be a sign that the recurrence is incorrect. However, artefact recurrences virtually always involve extremely long integers
and have dense irreducible polynomials as coefficients. If, therefore, the guesser returns a set of recurrences where one of them is
much more ugly than the others, then the ugly recurrence might be an artefact. In this case, increase AdditionalEquations,
reduce degree bounds and structure set, and provide more data. Artefact recurrence equations can also be detected by running the
guesser several times: the valid recurrences are likely to always be the same, while artefact outputs tend to change from one
computation to the other. Also the number may differ.

� Unreasonably long compuation time

The computation time depends most dominaltly of the number of terms allowed to appear in the recurrence, but it also depends
on the length of the integers appearing in the final output. The latter relation is approximately linear, so that it can be rougly
expected that the one computation will take about twice as long as a second computation (with the same set of allowed terms) if
the integers appearing in the result of the first computation are about twice as long as the integers appearing in the result of the
second. Now, since artefact recurrence equations tend to involve extremly long integers, their appearence in the output slows
down the computation dramatically. Therefore, if a computation is not completed within a reasonalbe amount of time, this may
be seen as an indication that there are artefact results being computed. In this event, try increasing the AdditionalEquations
and/or the amount of input data, or reduce the degree bounds and the structure set. Observe the computation with at an appropri-
ate Infolevel.
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� Many zeros in the data array

Continous ranges of zero in the data array do not contribution any information about the recurrence equations to be determined.
Lots of zeros also increase the probablity of getting artefacts in the result. Therefore, if the guesser detects a suspicious percent-
age of zeros in the data array, it will sort them out before starting the main computation. In some cases, especially in higher
dimensional data arrays, this step may take a considerable amount of time. With higher values of Infolevel, warnings are
issued if special actions to avoid problems resulting from zero ranges in the input array. If the computation gets stuck after such a
warning, it is strongly recommended to use the Constraints option for restricting the guesser's  attention to the interesting
parameter space, i.e., the area in which there no (or just a few) zeros.

Univariate Guessing

� GuessMinRE: Minimal Recurrence Equations

We provide a special purpose guesser for univariate recurrence equations. This guesser does not require terms or degrees to be
specified, but instead searches for the (reasonable) recurrence of minimal possible order matching the given data. This recurrence
is not only unusally the most interesting recurrence for the problem at hand, but it is also in many cases (in particular in large
examples) the recurrence with least possible integers appearing in it, and therefore it is the one which can be most efficiently
computed. The command accepts just a list of rational numbers and a function symbol f[n] specifying the symbols f and n to be
used in the output. If no recurrence can be found, an error is thrown.

In[91]:= GuessMinRE@81, 1, 2, 3, 5, 8, 13, 21, 35<, f@nDD

Out[91]= -f@nD - f@1 + nD + f@2 + nD

In[92]:= GuessMinRE@Table@HarmonicNumber@nD^2 + HarmonicNumber@2 nD + 1 � n!, 8n, 0, 60<D, f@nDD

Out[92]= -
483

8
-
10839 n

32
-
5447 n2

8
-
3603 n3

8
+
1689 n4

4
+
8321 n5

8
+
14 227 n6

16
+
13 313 n7

32
+
449 n8

4
+
131 n9

8
+ n10

f@nD +
4317

8
+
103983 n

32
+
60 439 n2

8
+
266 641 n3

32
+
103841 n4

32
-
79869 n5

32
-

128567 n6

32
-
39445 n7

16
-
27501 n8

32
-
711 n9

4
-
163 n10

8
- n11 f@1 + nD +

-
5517

4
-
286299 n

32
-
369 451 n2

16
-
959 581 n3

32
-
605969 n4

32
-
42907 n5

32
+
220879 n6

32
+

88027 n7

16
+
68763 n8

32
+
957 n9

2
+
465 n10

8
+ 3 n11 f@2 + nD +

1383 +
306435 n

32
+
213 421 n2

8
+
1 202789 n3

32
+
866923 n4

32
+
198007 n5

32
-
171529 n6

32
-

85111 n7

16
-
69767 n8

32
-
1961 n9

4
-
473 n10

8
- 3 n11 f@3 + nD +

-483 - 3540 n -
167 375 n2

16
-
495 437 n3

32
-
378307 n4

32
-
108515 n5

32
+
50763 n6

32
+

59745 n7

32
+
24913 n8

32
+
1385 n9

8
+
163 n10

8
+ n11 f@4 + nD

The command accepts the options Modulus, Inputlevel, and StartPoint, whose semantics is similar as described above
for GuessMultRE. There is also an option Return, which may carry the values "rec" (default; for returning the recurrence) or
"bool" (for returning just True or False depending on whether or not a recurrence was found).

Note that GuessMinRE is able to discover recurrences which GuessMultRE would only be able to find if more data is provided:
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Note that GuessMinRE is able to discover recurrences which GuessMultRE would only be able to find if more data is provided:

In[93]:= GuessMultRE@Table@HarmonicNumber@nD^2 + HarmonicNumber@2 nD + 1 � n!, 8n, 0, 60<D,
8f@nD, f@n + 1D, f@n + 2D, f@n + 3D, f@n + 4D<, 8n<, 11D

Throw::nocatch : Uncaught Throw@insufficient input data.D returned to top level. �

Out[93]= Hold@Throw@insufficient input data.DD

In cases where both functions apply, GuessMinRE is typically much faster than GuessMultRE.

� GuessMinDE: Minimal Differential Equations

This is like GuessMinRE, but it returns a differential equation for the generating function rather than a recurrence equation for
the coefficients themselves. For example,

In[94]:= GuessMinDE@Table@HarmonicNumber@nD, 8n, 0, 25<D, f@xDD

Out[94]= f@xD + H-3 + 3 xL f¢@xD + I1 - 2 x + x2M f¢¢@xD

In[95]:= % �. f ® H1 � Hð - 1L Log@1 - ðD &L �� FullSimplify

Out[95]= 0

The same options as for GuessMinRE apply.

� GuessMinAE: Minimal Algebraic Equations

With this command, it is possible to find algebraic equations, given the first coefficients in the series expansion of an algebraic
function. For example,

In[96]:= GuessMinAE@Table@Binomial@1 � 2, nD, 8n, 0, 10<D, f@xDD

Out[96]= 1 + x - f@xD2

In[97]:= GuessMinAE@Table@16^n Pochhammer@5 � 6, nD
Pochhammer@1 � 2, nD � Pochhammer@5 � 3, nD � Pochhammer@2, nD, 8n, 0, 100<D, f@xDD

Out[97]= -
1

27
+
16 x

9
-
64 x2

3
-
256 x3

27
+

1

27
-
20 x

9
+
304 x2

9
-
512 x3

27
f@xD +

10 x

27
-
104 x2

9
+
208 x3

9
-
512 x4

27
f@xD2

+
5 x2

3
-
56 x3

3
-
64 x4

3
f@xD3

+

13 x3

3
-
28 x4

3
-
32 x5

3
f@xD4

+ 7 x4 f@xD5
+ 7 x5 f@xD6

+ 4 x6 f@xD7
+ x7 f@xD8

Technical Issues

� Version

The package was developped for Mathematica 5.2 and adpated to run as well for Mathematica 6 and Mathematica 7. The version
of the package can be queried via
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In[98]:= Guess`Private`Version

Out[98]= 0.32 2009-04-07

The latest version of this software can be found on http://www.risc.uni-linz.ac.at/research/combinat/software/

� Installation

The package is installed by simply putting the package file to a place where Mathematica is able to find it. 

� Licence

This software is free; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The programs are distributed
in the hope that they will be useful, but without any warranty;  without even the implied warranty of merchantability or fitness
for a particular purpose.  See the GNU General Public License (http://www.gnu.org/licenses/gpl.html) for more details.

� Bugs

Please report bugs to Manuel Kauers (mkauers@risc.uni-linz.ac.at)
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