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Pour Pierre Leroux, In Memoriam

Preface: Montréal, May 1985

In the historic conference Combinatoire Énumérative [6] wonderfully organized by Gilbert La-
belle and Pierre Leroux there were many stimulating lectures, including a very interesting one
by Pierre Leroux himself, who talked about his joint work with Xavier Viennot [7], on solving
differential equations combinatorially! During the problem session of that very same colloque,
chaired by Pierre Leroux, Richard Stanley raised some intriguing problems about the enumeration
of plane partitions, that he later expanded into a fascinating article [9]. Most of these problems
concerned the enumeration of symmetry classes of plane partitions, that were discussed in more
detail in another article of Stanley [10]. All of the conjectures in the latter article have since
been proved (see Dave Bressoud’s modern classic [2]), except one, that, so far, resisted the efforts
of the greatest minds in enumerative combinatorics. It concerns the proof of an explicit formula
for the q-enumeration of totally symmetric plane partitions, conjectured independently by George
Andrews and Dave Robbins ([10], [9] (conj. 7), [2] (conj. 13)). In this tribute to Pierre Leroux,
we describe how to prove that last stronghold.

1. q-TSPP: The Last Surviving Conjecture About Plane Partitions

Recall that a plane partition π is an array π = (πij), i, j ≥ 1, of positive integers πij with finite
sum |π| =

∑

πij , which is weakly decreasing in rows and columns. By stacking πij unit cubes
on top of the ij location, one gets the 3D Ferrers diagram, that can be identified with the plane-
partition, and is a left-, up-, and bottom- justified structure of unit cubes, and we can refer to the
locations (i, j, k) of the individual unit cubes.

A plane partition is totally symmetric iff whenever (i, j, k) is occupied (i.e. πij ≥ k), it follows
that all its (up to 5) permutations: {(i, k, j), (j, i, k), (j, k, i), (k, i, j), (k, j, i)} are also occupied.
In 1995, John Stembridge [11] proved Ian Macdonald’s conjecture that the number of totally
symmetric plane partitions (TSPPs) whose 3D Ferrers diagram is bounded inside the cube [0, n]3

is given by the nice product-formula

∏

1≤i≤j≤k≤n

i + j + k − 1

i + j + k − 2
.

Ten years after Stembridge’s completely human-generated proof, George Andrews, Peter Paule,
and Carsten Schneider [1] came up with a computer-assisted proof, that, however required lots of
human ingenuity and ad hoc tricks, in addition to a considerable amount of computer time.
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Way back in the early-to-mid eighties (ca. 1983), George Andrews and Dave Robbins indepen-
dently conjectured a q-analog of this formula, namely that the orbit-counting generating function

([2], p. 200, [9], p. 289) is given by

∏

1≤i≤j≤k≤n

1 − qi+j+k−1

1 − qi+j+k−2
.

In this article we will show how to prove this conjecture (modulo a finite amount of routine
computer calculations that may be already feasible today [with great technical effort], but that
would most likely be routinely checkable on a standard desktop in twenty years).

2. Soichi Okada’s Crucial Insight

Our starting point is an elegant reduction, by Soichi Okada [8], of the q-TSPP statement, to
the problem of evaluating a certain “innocent-looking” determinant. This is also listed as Con-
jecture 46 (p. 42) in Christian Krattenthaler’s celebrated essay [5] on the art of determinant
evaluation.

Let, as usual, δ(α, β) be the Kronecker delta function (δ(α, β) = 1 when α = β and δ(α, β) = 0
when α 6= β), and let, also as usual,

[

a

b

]

=
(1 − qa)(1 − qa−1) · · · (1 − qa−b+1)

(1 − qb)(1 − qb−1) · · · (1 − q)
.

Define the discrete function a(i, j) by:

a(i, j) = qi+j−1

([

i + j − 2

i − 1

]

+ q

[

i + j − 1

i

])

+ (1 + qi)δ(i, j) − δ(i, j + 1).

Soichi Okada ([8], see also [5], Conj. 46) proved that the q-TSPP conjecture is true if

det(a(i, j))1≤i,j≤n =
∏

1≤i≤j≤k≤n

(

1 − qi+j+k−1

1 − qi+j+k−2

)2

.

So in order to prove the q-TSPP conjecture, all we need is to prove Okada’s conjectured determi-
nant evaluation.

3. Certificates for Determinant Identities

In [15], an empirical (yet fully rigorous!) approach is described to (symbolically!) evaluate de-
terminants A(n) := det(a(i, j))1≤i,j≤n, where a(i, j) is a holonomic discrete function of i and j.
Note that this is an approach, not a method! It is not guaranteed to always work (and probably
usually doesn’t!).

Let’s first describe this approach in more general terms, not just within the holonomic ansatz.

Suppose that a(i, j) is given “explicitly” (as it sure is here), and we want to prove for all n ≥ 1
that

det(a(i, j))1≤i,j≤n = Nice(n),

for some explicit expression Nice(n) (as it sure is here).

The approach is to pull out of the hat another “explicit” (possibly in a much broader sense of the
word explicit) discrete function B(n, j), and then check the identities

n
∑

j=1

B(n, j)a(i, j) = 0, (1 ≤ i < n < ∞),(Soichi)

B(n, n) = 1, (1 ≤ n < ∞).(Normalization)
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If we could do that, then by uniqueness, it would follow that B(n, j) equals the co-factor of the
(n, j) entry of the n × n determinant divided by the (n − 1) × (n − 1) determinant (that is the
co-factor of the (n, n) entry in the n × n determinant). Finally one has to check the identity

n
∑

j=1

B(n, j)a(n, j) = Nice(n)/Nice(n − 1) (1 ≤ n < ∞)(Okada)

If the suggested function B(n, j) does satisfy (Soichi), (Normalization), and (Okada), then the
determinant identity follows as a consequence. So in a sense, the explicit description of B(n, j)
plays the role of a certificate for the determinant identity.

4. The q-Holonomic Ansatz

In what sense might B(n, j) be explicit? In [15] the focus was on holonomic sequences, in the
present situation we will work with q-holonomic sequences. A univariate sequence F (n) is called
q-holonomic if it satisfies a linear recurrence of the form

ar(q, q
n)F (n + r) + ar−1(q, q

n)F (n + r − 1) + · · · + a1(q, q
n)F (n + 1) + a0(q, q

n)F (n) = 0

where a0, . . . , ar are certain polynomials. A key feature is that F (n) is uniquely determined by
such a recurrence and the initial values F (1), . . . , F (r). It is therefore fair to accept recurrence
plus initial values as an explicit description of the sequence F (n).

A bivariate q-holonomic sequence F (n, m) is uniquely determined by a linear recurrence of the
form

ar(q, q
n, qm)F (n + r, m) + · · · + a1(q, q

n, qm)F (n + 1, m) + a0(q, q
n, qm)F (n, m) = 0

where a0, . . . , ar are certain rational functions and F (1, m), . . . , F (r, m) are q-holonomic as uni-
variate sequences in m. This construction can be continued to discrete functions of any number
of variables.

Note that while every q-holonomic discrete function can be described as above, not every function
that is described as above, with arbitrary polynomials ar is necessarily holonomic (usually it isn’t!).
However there are efficient algorithms for deciding whether a candidate discrete function given
as above is holonomic or not. One empirical way of doing this is to use the description to crank
out many values, and then “guess” a pure recurrence with polynomial coefficients in the other
variable, m, that can be routinely proved a posteriori.

Just as holonomic sequences [13], q-holonomic sequences have a number of important properties.
We recall the most important ones:

(1) If F (n1, . . . , nd) and G(n1, . . . , nd) are (q-)holonomic, then so are the sequences

F (n1, . . . , nd) + G(n1, . . . , nd) and F (n1, . . . , nd)G(n1, . . . , nd).

A (q-)holonomic description of these can be computed algorithmically given (q-)holonomic
descriptions of F and G.

(2) If (q-)holonomic descriptions of some sequences F (n1, . . . , nd) and G(n1, . . . , nd) are given,
then it can be decided algorithmically whether F = G.

(3) If F (n1, . . . , nd) is (q-)holonomic, then

G(n1, . . . , nd−1) =

∞
∑

k=−∞

F (n1, . . . , nd−1, k)

is (q-)holonomic.
A (q-)holonomic description of G(n1, . . . , nd−1) can be computed algorithmically given

a (q-)holonomic descriptions of F (n1, . . . , nd).
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5. The Computational Challenge

Denote by B′(n, j) the sequence defined by (Soichi) and (Normalization). Why can we expect that
B′(n, j) is q-holonomic? A priori there is no reason why it should be. We have to hope. And we
can systematically search for a potential q-holonomic description of B′(n, j). If we find something,
we have won, if not, we have lost, but there is always the hope that a further search, with larger
parameters, would be successful.

One can use (Soichi) and (Normalization) to compute the values B′(n, j) for, say, 1 ≤ j ≤ n ≤ 35
and then make an ansatz for a linear recurrence, say, of the form

10
∑

γ=0

(

7
∑

β=0

4
∑

α=0

cα,β,γqαnqβj
)

B′(n, j + γ) = 0.

For each specific choice of n and j, this equation reduces to a linear equation for the undetermined
coefficients cα,β,γ . With different choices of j and n, we create an overdetermined linear system for
the cα,β,γ . Solutions of that system, if there are any, are with good probability valid recurrences
for B′(n, j).

So in principle, we just have to solve a linear system. But in practice, this is not as easy as it
might seem. The values of B′(n, j) are rational functions in q, and so are the solutions cα,β,γ .
A dense linear system over the rational functions with 440 unknowns cannot be solved directly
with Gaussian elimination. The intermediate expression swell would quickly blow up the matrix
coefficients to an astronomic size. Also the computation of 465 values of B′(n, j) via (Soichi) and
(Normalization) is not entirely for free, because it too requires solving dense linear systems whose
coefficients are rational functions in q.

We solved the system using homomorphic images. In a first step, we computed the values of
B′(n, j) with q set to 2, and reduced modulo the prime p := 231 − 1. This can be done quickly.
Also the linear system for the ansatz above can be solved quickly within the finite field with p
elements. It turned out that there is a one dimensional solution space. At this point, there is good
evidence that the B′(n, j) satisfy a recurrence of the above form, but we do not know the explicit
form of the coefficients cα,β,γ yet. Only their homomorphic images are known.

In the homomorphic image, 110 of the 440 coefficients cα,β,γ are zero. We next refined the ansatz
for the recurrence by discarding the terms qαnqβjB′(n, j +γ) for which cα,β,γ was found to be zero
in the homomorphic image. Next we repeated the computation of the B′(n, j) and the solution
of the linear system for q = 3, 4, 5, 6, . . . , 150, always computing modulo p. The modular images
were then combined via polynomial interpolation, rational function reconstruction, and rational
number reconstruction [4] to coefficients which are rational functions in q over the integers.

The resulting candidate recurrence has a number of remarkable features.

(1) The recurrence was obtained as a solution of a dense overdetermined linear system. An
artefact solution to an overdetermined system appears only with very low probability.

(2) The integer coefficients in the rational functions cα,β,γ do not exceed 43 in absolute value.
For an artefact solution, integers with absolute value up to

√
p ≈ 109 would be expected

with very high probability.
(3) The polynomials

7
∑

β=0

4
∑

α=0

cα,β,γqαnqβj (γ = 0, . . . , 10)

factorize into low degree factors. For example, the leading coefficient of the recurrence
(γ = 10) factors as

(qj+6 − 1)(qj+10 + 1)(qn − qj+9)(qn − qj+10)(qj+n+9 − 1)(qj+n+10 − 1).

For an artefact solution, it would be expected with very high probability that all the
polynomials are irreducible.
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(4) The recurrence produces the correct terms of B′(n, j) for values 35 < n ≤ 200 for q = 2
and modulo p, although these terms were not used in the computation of the recurrence.
For an artefact solution, this is expected to happen with very low probability only.

(5) The recurrence produces the correct terms of B′(n, j) for small n and j if q is left symbolic
or set to a numeric value different from 2, 3, . . . , 100, For an artefact solution, this is
expected to happen with very low probability only.

We have not the slightest doubt that the recurrence we found is correct. For a rigorous proof,
we can define (“pull out of the head”) a sequence B(n, j) by a q-holonomic description consisting
of the recurrence we discovered and some suitable univariate recurrences and initial values that
are easy to obtain. It is contained in the Maple package qTSPP accompanying this article. The
much easier q = 1 case (that would give a new proof to the already proved Stembridge theorem)
is contained in the Maple package TSPP. Proving that B(n, j) = B′(n, j) amounts to proving
that B(n, j) satisfies (Soichi). (Equation (Normalization) is automatically satisfied.) Thanks to
algorithms of Chyzak, Salvy, Takayama [3, 12], proving (Soichi) in principle reduces to finitely
many routine calculations.

Finally, (Okada) is also of the form A = B where both sides are q-holonomic. The left side is q-
holonomic because of the closure under multiplication and definite-summation, and the right side,
Nice(n)/Nice(n− 1) is not just q-holonomic (a solution of some linear recurrence with polynomial
coefficients (in q, qn) ) but in fact closed-form (the defining recurrence is first-order).

Summarizing, we have found a certificate B(n, j) for Okada’s conjectured determinant identity

det(a(i, j)) =
∏

1≤i≤j≤k≤n

(

1 − qi+j+k−1

1 − qi+j+k−2

)2

.

It only remains to prove rigorously that our certificate really is a certificate. While such a proof
can in principle be carried out automatically, we found that in practice, i.e., with the currently
available algorithms, software, and hardware, it remains a computational challenge. Even for the
case q = 1, we are at present unable to complete the necessary non-commutative Gröbner basis
computations.

6. The Semi-Rigorous Shortcut

We believe that even today, performing the computations for a rigorous proof is feasible, but it
would require a huge technical effort. But why bother? First, if we wait for twenty more years,
the availability of better algorithms, better software, and better hardware will probably enable us
to finish up these finitely many routine calculations with no sweat. Besides, since now we know
for sure that a fully rigorous proof exists, do we really want to see it? It won’t give us any new
insight. The beauty of the present approach is in the meta-insight, reducing the statement of the
conjecture to a finite calculation. Furthermore, we know a priori that there exists an operator
P (q, qn, N) (where N is the shift operator in n: Nf(n) := f(n+1)) that annihilates the difference
of the left and right sides of (Okada). If that operator has order L, say, then a completely rigorous
proof would be to check (Okada) for 1 ≤ n ≤ L. At present, we are unable to find P , and hence
do not know the value of L. But it is very reasonable that L would be less than, say, 400, and
checking the first 400 cases of (Okada) (and analogously for (Soichi)) is certainly doable (we did
it for L = 100, and L = 400 for TSPP, but you are welcome to go further). These are done in
procedures CheckqTSPP in the Maple package qTSPP, and CheckTSPP in the Maple package TSPP,
respectively. The corresponding input and output files can be found in the webpage of this article
mentioned above. As a technical aside, let’s confess that Maple running on our computer was only
able to check (Soichi) and (Okada) for L ≤ 30, for symbolic q, but for random numerical choices
of q it went up to L = 100, and it is easy to see that with sufficiently many choices of numerical q
for a given L, one can prove it for symbolic q.

In 1993, Zeilberger [14] proposed the notion of semi-rigorous proof. At the time he didn’t have
any natural examples. The present determinant evaluation, that was shown by Okada to imply
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a long-standing open problem in enumerative combinatorics, is an excellent example of a semi-
rigorous proof that is (at least) as good as a rigorous proof. Let us conclude by promising that if
any one is willing to pay us $107 (ten million US dollars), we will be more than glad to fill in the
details.

7. Postscript

This article was originally submitted to a special volume of the Seminaire Lotharingien de Com-

binatoire (SLC) in memory of Pierre Leroux. While the editors and referees were willing to accept
our paper, they demanded that we change the title and “tone down” our claim that we have a
proof (even modulo a finite amount of calculations). Since there is a “mathematical” possibility
(as the French would put it) that our “proof plan” would not work out, in which case we have

nothing.

We agree that there is a positive probability that our proof would turn out to be wrong. But
that probability is orders-of-magnitude smaller than the probability that the editors of SLC do
not exist. After all they, along with all of us, may be characters in a dream of a giant, and we
would all disappear once that giant wakes up.

Since we believe that our title is a good one, and all our claims are sound, we decided to withdraw
the paper from SLC, and publish it in the much more enlightened journal The Personal Journal

of Ekhad and Zeilberger, as well as in arxiv.org.

However, as a concession to the human sentiments expressed by the editors and referees and for
those impatient people who can’t wait twenty years, or cannot afford ten million US dollars, let
us conclude with a sketch on how to hopefully make the present approach yield a fully rigorous
proof with today’s software and hardware.

The key is to take advantage of the special structure of the entries a(i, j), and not just consider
them as yet-another-holonomic sequence. For the sake of simplicity, let’s consider the q = 1 case.
Analogous considerations apply to the q-case.

When q = 1, the matrix entry is:

a(i, j) =

(

i + j − 2

i − 1

)

+

(

i + j − 1

i

)

+ 2δ(i, j) − δ(i, j + 1).

Let’s write it as:

a(i, j) = a′(i, j) + 2δ(i, j) − δ(i, j + 1) ,

where

a′(i, j) =

(

i + j − 2

i − 1

)

+

(

i + j − 1

i

)

.

It is also helpful to define C(n, j) := B(n, n − j). Note that C(n, j) is defined to be 0 for j < 0,
C(n, 0) = 1 and C(n, 1) has a certain conjectured holonomic description as a sequence in n.

At this point it may be fruitful to introduce the sequence of polynomials

fn(x) =
n

∑

j=0

C(n, j)xj .

(it may be more efficient to let the sum range from j = 0 to j = n + 2). The j-free recurrence
for B(n, j) given in the package TSPP translates to a certain linear recurrence equation, in n,
with polynomial coefficients in (n, x), for fn(x), and the original N -free recurrence, translates to
a certain linear differential equation, in x, with polynomial coefficients in n and x. Just like all
the classical orthogonal polynomials (Legendre, Laguerre, Hermite, Jacobi, etc.), except that the
relevant equations are no longer second-order, (and the {fn(x)} are not orthogonal). In particular
the discrete-continuous function (n, x) → fn(x) has a full holonomic description in its arguments.

Now both (Soichi) and (Okada) can be easily transcribed to certain simply-stated constant-term
identities in (n, x).
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Indeed, (Soichi) is equivalent to the constant-term identity

CT

[{

x(2 − x)

(1 − x)i+1
+ 2xi − xi−1

}

fn(x)

xn

]

= 0 , (Soichi′)

where CT stands for “constant term”, i.e. “coefficient of x0”. Calling the left side L(n, i),
note that we can induct on both n and i, so we would be done once we have an annihilating
operator of the form P (N, I, n, i) (here N is shift in the discrete variable n, and I is shift in the
discrete variable i). Calling the constant-termand F (n, i, x), this means that all we need is find
an operator of the form P (N, I, n, i, x d

dx
) annihilating F (n, i, x). It shouldn’t be too hard to get

two operators annihilating F (n, i, x) out of the ones that we already have for fn(x), and then
express them as P (n, i, x, N, I, x d

dx
), Q(n, i, x, N, I, x d

dx
), say, and use non-commutative Gröbner

base eliminiation to eliminate x. This may be much more efficient than finding “pure” operators
of the form P (N, n, i, x d

dx
), or P (I, n, i, x d

dx
), where we have to eliminate two “variables” in the

non-commutative algebra of recurrence-differential operators C[n, i, x, N, I, x d
dx

].

As for (Okada), it is equivalent to

CT

[{

x(2 − x)

(1 − x)n+1
+ 2xn − xn−1

}

fn(x)

xn

]

= Nice(n)/Nice(n − 1) . (Okada′)

It is very possible, that going via this continuous-discrete route would make the problem tractable
with today’s software and hardware, and we leave it as a challenge in case any of our readers is
interested enough to convert our (currently) semi-rigorous proof into a fully rigorous proof, rather
than wait patiently for twenty years.
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