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Typical Questions

How many ways are there to walk from (0, 0) to (3, 1) with exactly
32 steps, without leaving the first quadrant, when it is only allowed
to go ր, ←, ↓?

Answer: 3 018 900 111 360

How did I find these numbers?

How do they depend on the number n of steps?

How do they depend on the target point (i, j)?

How are they influenced by restricting the area or the step set?
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Let f(n; i, j) be the number of ways to walk from (0, 0) to (i, j) in
exactly n steps, using only ր, ←, ↓.

Then

f(n; i, j) = f(n− 1; i− 1, j − 1)

+ f(n− 1; i + 1, j)

+ f(n− 1; i, j + 1) (i, j ∈ , n ∈ )

Together with the initial condition f(0; i, j) = δi,j,0, this can be
used to compute f(n; i, j) efficiently for fixed n, i, j.

Restricting the walks to the first quadrant amounts to imposing
some additional boundary conditions on f(n; i, j).
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somewhere on the horizontal axis.

◮ ratn(0, 1) is the number of walks with n steps ending
somewhere on the vertical axis.
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For unrestricted walks,

f(n; i, j) = f(n− 1; i− 1, j − 1)

+ f(n− 1; i + 1, j) + f(n− 1; i, j + 1)

f(0; i, j) = δi,j,0

implies that

F (t; x, y) =
1

1− (xy + 1
x + 1

y )t
.

is rational.

The generating function will be rational for any choice of allowed
unit steps.
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generating function.

For example, for ր,←, ↓,

F (t; x, y) = txyF (t; x, y) + t 1
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yF (t; x, y) + 1

− t 1
xF (t; 0, y)− t 1
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Is the solution F (t; x, y) of this functional equation

◮ rational? algebraic? holonomic? non-holonomic?
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Thm. (Kreweras, 1965)
The generating function F (t; x, y) of walks

◮ inside the first quadrant

◮ consisting of unit steps ր, ←, ↓

is an (ugly∗) algebraic function.

Moreover, f(3n; 0, 0) = 4n

(n+1)(2n+1)

(
3n
n

)
(n ≥ 0).

The type of F (t; x, y) depends crucially on the step set.

∗ the minimal polynomial p with p(x, y, t, F ) = 0 has more than 200 000
terms.
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Gessel’s Walks

What about walks with four unit steps?



Gessel’s Walks

What about walks with four unit steps? Not much is known.



Gessel’s Walks

What about walks with four unit steps? Not much is known.

Let g(n; i, j) be the number of walks



Gessel’s Walks

What about walks with four unit steps? Not much is known.

Let g(n; i, j) be the number of walks

◮ from (0, 0) to (i, j),



Gessel’s Walks

What about walks with four unit steps? Not much is known.

Let g(n; i, j) be the number of walks

◮ from (0, 0) to (i, j),

◮ with n unit steps drawn from ր,ւ,←,→,



Gessel’s Walks

What about walks with four unit steps? Not much is known.

Let g(n; i, j) be the number of walks

◮ from (0, 0) to (i, j),

◮ with n unit steps drawn from ր,ւ,←,→,

◮ staying entirely in the first quadrant.



Gessel’s Walks

What about walks with four unit steps? Not much is known.

Let g(n; i, j) be the number of walks

◮ from (0, 0) to (i, j),

◮ with n unit steps drawn from ր,ւ,←,→,

◮ staying entirely in the first quadrant.

Gessel observed empirically that for small n

g(2n; 0, 0) = 16n (5/6)n(1/2)n

(5/3)n(2)n
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What about walks with four unit steps? Not much is known.

Let g(n; i, j) be the number of walks

◮ from (0, 0) to (i, j),

◮ with n unit steps drawn from ր,ւ,←,→,

◮ staying entirely in the first quadrant.

Gessel observed empirically that for small n

g(2n; 0, 0) = 16n (5/6)n(1/2)n

(5/3)n(2)n

(Notation: (a)n := a(a + 1)(a + 2) · · · (a + n− 1).)
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How to prove g(2n; 0, 0) = 16n (5/6)n(1/2)n

(5/3)n(2)n

?

As usual:

1. Find a recurrence for g(2n; 0, 0).

2. Check that the right hand side satisfies the same recurrence.

3. Check that initial values match.

Steps 2. and 3. are routine.

But how to discover a recurrence for g(2n; 0, 0)?
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Make an ansatz

(c0 + c1n + c2n
2)g(2n; 0, 0) + (c3 + c4n + c5n

2)g(2n + 2; 0, 0) = 0

with undetermined coefficients c0, c1, c2, c3, c4, c5.

We can compute g(2n; 0, 0) for n = 0, 1, 2, 3, . . . and get

c0 + 2c3 = 0

2c0 + 2c1 + 2c2 + 11c3 + 11c4 + 11c5 = 0

11c0 + 22c1 + 44c2 + 85c3 + 170c4 + 340c5 = 0

85c0 + 255c1 + 765c2 + 782c3 + 2346c4 + 7038c5 = 0

782c0 + 3128c1 + 12512c2 + 8004c3 + 32016c4 + 128064c5 = 0

8004c0 + 40020c1 + 200100c2 + 88044c3 + 440220c4 + 2201100c5 = 0
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Make an Ansatz!

The solution to this system corresponds to the recurrence

(48n2 +128n+80)g(2n; 0, 0)− (3n2 +22n+40)g(2n+2; 0, 0) = 0.

Indeed, 16n (5/6)n(1/2)n

(5/3)n(2)n

satisfies the same recurrence.

Indeed, both sides agree for n = 0 and n = 1.

This completes the proof? Not quite. . .

We still need to prove that the recurrence is correct.

By construction, it is correct for n = 0, 1, . . . , 5.

It might fail for some n > 5 (although this is veeery unlikely.)
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. . . and Prove Afterwards!

How to verify the correctness of a “guessed” recurrence for
g(2n; 0, 0)?

No direct way is known.

Instead: Use multivariate recurrences for g(n; i, j).

Such recurrences can be found in the same way.

And: They can be verified by an algorithm.
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Operators

Let N, I, J denote the shift operators with respect to n, i, j.

Examples:

◮ N f(n) = f(n + 1)

◮ (n−N)f(n) = n f(n)− f(n + 1)

◮ (I+J−N)f(n, i, j) = f(n, i+1, j)+f(n, i, j+1)−f(n+1, i, j)

◮ N nf(n) = (n + 1)f(n + 1)

Operators form a polynomial ring [n, i, j, N, I, J ] which is
slightly non-commutative. (Nn = (n + 1)N , etc.)

A recurrence equation corresponds to an annihilating operator

P (n, i, j, N, I, J)g(n; i, j) = 0.
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. . . and Prove Afterwards!

Known: T := 1 + J + I2J + I2J2 − IJN annihilates g(n; i, j).

For a given operator Q, we can decide Q · g(n; i, j)
?
= 0 as follows:

1. Compute Q′ such that TQ = QT + Q′.

2. Verify (recursively) that Q′g(n; i, j) = 0. If not, return ‘false’.

3. Now TQg(n; i, j) = 0.

4. This reduces the question Qg(n; i, j) = 0 to checking finitely
some many points (n, i, j).

Note: T has constant coefficients.

This implies that Q′ is smaller than Q wrt degree of coefficients.

This implies termination.



Gessel’s Conjecture – 2nd Attempt

Here is a validated annihilating operator for g(n; i, j):

(i− 2j + n + 2)I4J3 + (i− 2j + n + 2)I4J2

− (i− 2j + n + 2)I3NJ2 − (3j − n− 3)I2J2

− (3j − n− 3)I2J + (i + j − 1)IJN

− (i + j − 1)J − (i + j − 1).



Gessel’s Conjecture – 2nd Attempt

Here is the corresponding recurrence:

(i− 2j + n + 2)g(n; i + 4, j + 3)

+ (i− 2j + n + 2)g(n; i + 4, j + 2)

− (i− 2j + n + 2)g(n + 1; i + 3, j + 2)

− (3j − n− 3)g(n; i + 2, j + 2)

− (3j − n− 3)g(n; i + 2, j) + (i + j − 1)g(n + 1; i + 1, j + 1)

− (i + j − 1)g(n; i, j + 1)− (i + j − 1)g(n; i, j) = 0.



Gessel’s Conjecture – 2nd Attempt

Setting i = j = 0 gives

(n + 2)g(n; 4, 3) + (n + 2)g(n; 4, 2)

− (n + 2)g(n + 1; 3, 2) + (n + 3)g(n; 2, 2)

+ (n + 3)g(n; 2, 0)− g(n + 1; 1, 0)

+ g(n; 0, 1) + g(n; 0, 0) = 0.



Gessel’s Conjecture – 2nd Attempt

Setting i = j = 0 gives

(n + 2)g(n; 4, 3) + (n + 2)g(n; 4, 2)

− (n + 2)g(n + 1; 3, 2) + (n + 3)g(n; 2, 2)

+ (n + 3)g(n; 2, 0)− g(n + 1; 1, 0)

+ g(n; 0, 1) + g(n; 0, 0) = 0.

This is not very useful, because of the offsets.
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P (n, i, j, N)g(n; i, j) = 0

with no shifts in i or j.

Such an equation could not be found.

If it exists, it must be extremly large.

Too large to be found by an ansatz with several thousand coeffi-
cients.
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For finding a recurrence for g(n; 0, 0), it is sufficient to find an
annihilating operator of the form P (n, i, j, N) (free of I, J).

But it not necessary. It would also be OK to have an operator of
the form

P (n, N) + iQ(n, i, j, N, I, J) + jR(n, i, j, N, I, J),

because bad shifts I, J will disappear upon setting i = j = 0.

However, such an equation could not be found either.

If it exists, it must be extremly large.

Too large to be found by an ansatz with several thousand
coefficients.
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The Chyzak-Salvy-Takayama Summation Algorithm

Have: annihilating operators for f(n, k)
Want: annihilating operators for F (n) =

∑

k f(n, k).

(
P (n, N) + (K − 1)Q(n, k, N, K)

)
f(n, k) = 0

=⇒ P (n, N)F (n) = 0

Note: Q is usually much bigger than P . But Q is not needed in
explicit form.

The Cyzak-Salvy-Takayama algorithm can compute P without also
computing Q.
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Idea: Apply the Chyzak-Salvy-Takayama Algorithm with i and j in
place of (I − 1) and (J − 1) to find P (n, N) with

(
P (n, N)+iQ1(n, i, j, N, I, J) + jQ2(n, i, j, N, I, J)

)
g(n; i, j) = 0

for some (unknown) operators Q1 and Q2 with.

Indeed, such a P (n, N) can be deduced from some validated
mixed operators.

This implies P (n, N)g(n; 0, 0) = 0.

At this point it is routine to completing the proof of

g(2n; 0, 0) = 16n (5/6)n(1/2)n

(5/3)n(2)n
.
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Does G(t; x, y) a linear differential equation in t with polynomial
coefficients?

Again, candidate equations can be searched for by ansatz.

Such an equation could not be found.

If it exists, it must be extremly large.

Too large to be found by an ansatz with several thousand
coefficients.
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However, we did find some equations for certain special choices of
x and y:

For ξ = 1, 2, 3, 4, . . . , the series
G(t; ξ, 0) appears to satisfy sev-
eral differential equations

P (Dt, t)G(t; ξ, 0) = 0
0 5 10 15

degDt0
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60

degt

Can an operator P (Dt, x, t) for G(t; x, 0) be interpolated from
those?

It seems so, but degx P and the bit size of the integer coefficients
will unreasonabley large in the interpolated operator.
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Observe: If P1, P2 are annihilating operators of G(t; ξ, 0), then so
is gcrd(P1, P2).

Surprise: Interpolation of gcrds for several values of ξ leads to a
nice operator P (Dt, x, t):

◮ degt P = 96

◮ degDt
P = 11

◮ degx P = 96

◮ integer coefficients with 61 decimal digits only

The operator is Fuchsian, and it has nice singularities.

A similar operator can be found for G(t; 0, y).

So what. . . ?
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Holonomy

Remember: G(t; x, y) satisfies the functional equation

G(t; x, y) =
1

1− t(x + 1
x + xy + 1

xy )

×
(

1 +
1

xy

(
G(t; x, 0)−G(t; 0, 0)− (1 + y)G(t; 0, y)

))

Remember also: Holonomy is preserved by addition and
multiplication.

Therefore: If we believe in the holonomy of G(t; x, 0) and
G(t; 0, y), then we must also believe in the holonomy of G(t; x, y).

But then there must be also a differential equation for G(t; x, y). . .

According to estimations, it may have up to 1.5 · 109 terms.
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And this is still not all. . .

Furthermore: It also seems that G(t; x, 0) and G(t; 0, y) are
algebraic.

Convincing annihilating polynomials were found for both series.

Again, if this is true, then also G(t; x, y) is algebraic, by the
functional equation.

This is a surprise.

Can we prove rigorously that G(t; x, y) is algebraic?

Yes.
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The Kernel Method

Once more:

(t + ty − xy + tx2y + tx2y2)G(t; x, y)

= −xy − tG(t; 0, 0) + t(1 + y)G(t; 0, y) + tG(t; x, 0)

The two equations

G(t; x, 0) = G(t; 0, 0) + y(t, x)x/t− (1 + y(t, x))G(t; 0, y(t, x))

(1 + y)G(t; 0, y) = G(t; 0, 0) + x(t; y)y/t− F (t; x(t, y), 0)

define the series G(t; x, 0) and G(t; 0, y) uniquely.

It can be checked that the guessed series satisfy these equations.

It follows that the guesses were correct. .


