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Abstract. Recent computer proofs for some special function inequalities are presented. The
algorithmic ideas underlying these computer proofs are described, and the conceptual difference
to existing algorithms for proving special function identities is discussed.

1. Introduction

Computer algebra has, in the past few decades, grown to a valuable tool for answering questions
about special functions. We are now in a position that many different kinds of identities can
be proven and even discovered automatically, with little to no human assistance. In contrast
to identities, inequalities for special functions have long been considered inaccessible to symbolic
computation. But they are not. In this paper we will summarize some results obtained by a recent
computer algebra approach to special function inequalities.

There has been very little work on inequalities before we presented our approach [23, 29, 22, 30]
in 2005. Some rudimentary reasoning about inequalities is incorporated into Maple’s assume
facility [55], which allows to declare, e.g., that certain variables are positive. Mathematica’s
integrator contains a reasoning apparatus that attempts to determine restrictions on parameters
that may apply to a closed form evaluation of a given integral [47]. These approaches might suffice
for resolving constraints that arise during a computation, but proving nontrivial inequalities goes
well beyond their capabilities. Some steps towards algorithms for proving inequalities involving
elementary functions have been made [39, 2], but these seem rather of theoretical interest and
have not yet led to algorithmic proofs of inequalities that are interesting in their own right. It
has also been pointed out that some difficult inequalities can be proven by reducing them to a
special function identity which can then be shown by computer algebra [21, 40, 41, 43], but
this approach requires significant human interaction and is restricted to a very limited number of
examples.

All the inequalities we consider have in common that they involve a discrete parameter n, and
the argument underlying the correctness of our computations is an induction proof along this
parameter. The procedure we are using is not an algorithm in the strict sense. It might fail
to arrive at a decision (true or false) for a particular inequality at hand, returning the answer
“I-don’t-know”. In this situation, the user may assist the computer by appropriately reformulating
the inequality. Which reformulations are appropriate for the proving procedure is, however, not
at all clear a priori and has to be investigated via experimenting.

The present paper does not contain any new results. Instead, we give some additional background
information on how our previous results [24, 3, 32, 31] were obtained, in the hope that this may
serve as an illustration of the difficulties that arise during the construction of computer proofs for
inequalities, and in the hope that this conveys some of the intuition that has guided us around
these difficulties to a successful solution. On the other hand, we have left out some technical
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details where it seemed appropriate to do so; the reader interested in them is asked to consult the
the original publications [24, 3, 32, 31]. In the end, we will also comment on some inequalities
for which we have not been able to come up with a computer proof yet.

2. Polynomial Inequalities

It can already be considered as a classical result that quantifier elimination in the theory of real
closed fields is decidable. Tarski [52] has given the first algorithm, which was impractical. Several
other algorithms have been proposed since then [45, 14, 13, 9], among them the algorithm of
Collins [15, 16]. Although several implementations of Collins’s algorithm (hereafter referred to
as “CAD” for “Cylindrical Algebraic Decomposition”) are available [12, 46, 48], it seems that
quantifier elimination over the reals as a method in computer algebra is not as widely known as
it deserves.

In general, quantifier elimination is the process of constructing for a given quantified formula an
equivalent formula that is quantifier-free. We are dealing here with a specific type of formulas,
which are composed of quantifiers (∀, ∃), logical constants and connectives (true, false, ∧, ∨,. . . ),
equality and order relations (=, 6=, >, <, ≥, ≤), and polynomial expressions (e.g., x2 + 2

5y − 1)
according to the usual syntactic rules. Such formulas are called Tarski formulas. We understand
all variables occurring in such formulas as ranging over the real numbers. A simple example for a
Tarski formula is

∃ z ∈ �
: (x2 + y2 + z2 = 1).

In this formula, z is called a bound variable (as it is bound by an existential quantifier) whereas x
and y are free variables (as there is no quantifier in the formula that binds them). When applied
to the formula above, quantifier elimination may deliver the formula

x2 + y2 ≤ 1.

The two formulas are equivalent in the sense that the former is true at a particular point (x, y) ∈ � 2

if and only if the latter is true at this point. The output formula of a quantifier elimination pro-
cedure only involves the free variables of the input formula, the bound variables are “eliminated”
along with their quantifiers. In particular, if the input formula does not have any free variables,
quantifier elimination gives either “true” or “false” as output. In our work, we use Mathematica’s
implementation of CAD as quantifier elimination procedure. For simplicity, we will refer to the
use of CAD even though most of the claimed results could in principle be obtained by any other
quantifier elimination procedure as well.

The number of summation problems involving binomial sums posed in the problem sections of
contemporary mathematical journals has decreased since the appearance of Zeilberger’s algo-
rithm [57, 43, 38]. In contrast, problems that can be solved directly by CAD are still appearing
rather frequently. A randomly chosen example is the Monthly Problem 11199 [56]: Given a, b, c > 0
such that a + b + c = 1, we are asked to show that

1

a
+

1

b
+

1

c
≥ 25

1 + 48abc
.

This is indeed not very difficult to prove by hand, but the point is that there is no need to do it
by hand, as it can be done with CAD. We just need to apply CAD to the formula

∀ a, b, c ∈ �
: (a > 0 ∧ b > 0 ∧ c > 0 ∧ a + b + c = 1) ⇒ 1

a
+

1

b
+

1

c
≥ 25

1 + 48abc
,

which gives the output “true” after a second or so.

It is important to note that CAD and the other algorithms for quantifier elimination over the reals
are guaranteed to provide answers. For any arbitrarily complicated Tarski formula, CAD will, after
a finite number of steps, have completed the construction of an equivalent quantifier free formula.
In contrast to the “methods” discussed in the remainder of this paper, these algorithms are not
heuristics that succeed on some examples and fail on others. There is, however, still a little issue.
CAD requires an enormous amount of computing resources: its runtime and memory requirements
grow doubly exponentially in the size of the input. This is not a fault of the algorithm but an
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inherent property of the quantifier elimination problem, as it can be shown that every algorithm
that is capable of performing quantifier elimination over the reals will have this behavior [17].
This fact can turn into a significant limitation when we are interested in the result of a specific
quantifier elimination problem – even for moderately sized input it may just be impossible to
complete the computation within the expected lifetime of the universe.

Nevertheless, thanks to carefully optimized implementations and continuously improving computer
hardware, CAD has meanwhile been applied in a number of contexts including theorem proving
for elementary geometry [49, 19], control theory [20], database theory [33], biology [4, 53] and
others [44, 13]. Only since very recent [23], CAD is also being applied for proving special function
inequalities. These applications will be reviewed in the remainder of this paper.

3. Elementary Inequalities

Our principal approach for proving inequalities about quantities that are not in the scope of CAD,
i.e., inequalities involving non-polynomial quantities, is the construction of a Tarski formula whose
truth implies the truth of the inequality to be shown. Truth of the Tarski formula is then checked by
means of CAD. We illustrate this approach in this section on two rather easy classical inequalities.

3.1. Bernoulli’s Inequality. In its most widely known form, Bernoulli’s inequality reads

1 + nx ≤ (x + 1)n (x ≥ −1, n ∈ � ).

This inequality is of course fairly easy to prove by hand, but for the purpose of illustration, let us
see how much “work” we can possibly leave to the computer.

For each particular choice of n, the inequality reduces to a statement about polynomials in one
variable x, which can be checked automatically with CAD. For symbolic n, however, CAD is not
directly applicable because (x + 1)n is not a polynomial in n and x.

To turn the inequality into a polynomial statement, we could simply replace every non-polynomial
expression by a new variable, e.g., introduce a variable y for (x + 1)n. Then we are left with
1 + nx ≤ y. Regarding n as a real variable n ≥ 0, we arrive at a Tarski formula in x, y, n to which
CAD is applicable:

∀ n, x, y ∈ �
: (n ≥ 0 ∧ x ≥ −1) ⇒ 1 + nx ≤ y.

If that formula were true, Bernoulli’s inequality would follow by construction. But of course, the
formula is false (by inspection or by CAD).

The failure was to be expected because we did not encode any relationship between y and x into
the formula; we could hardly be so lucky to arrive at a true formula if we don’t encode somehow
that y is thought to represent (x+1)n. In setting up a proof by induction on n, it can be exploited
that (x + 1)y represents (x + 1)n+1 = (x + 1)(x + 1)n. The induction step formula

1 + nx ≤ (x + 1)n ⇒ 1 + (n + 1)x ≤ (x + 1)n+1 (x ≥ −1, n ∈ � )

is thus a consequence of

∀ n, x, y ∈ �
: (n ≥ 0 ∧ x ≥ −1 ∧ 1 + nx ≤ y) ⇒ 1 + (n + 1)x ≤ (x + 1)y.

A CAD computation quickly confirms that this latter formula is indeed true, so we got a computer
proof for the induction step.

To complete the proof of Bernoulli’s inequality, we need to check one initial value: n = 0. Plugging
this value into the inequality yields 1 + 0x ≤ (x + 1)0, which is true. (by inspection or by CAD).

Summarizing, we obtained a computer proof for Bernoulli’s inequality by

(1) replacing all non-polynomial expressions in the inequality by new variables
(2) formulating the induction step of a proof by induction on n as a Tarski-formula, exploiting

known recurrence equations for the non-polynomial expressions
(3) proving the Tarski-formula for the induction step by CAD
(4) checking the induction base n = 0 by another application of CAD.
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Figure 1. The exceptional set for Bernoulli’s inequality (projected to the (x, n)-plane)

Most inequality proofs we present in this paper are based on this procedure. Unfortunately, the
procedure will not deliver a proof for every inequality to which it is applicable. This is in contrast
to the CAD algorithm, which is guaranteed to deliver a proof or a counterexample for any given
Tarski-formula after a finite amount of time. In view of computational theoretic considerations,
it seems too much to expect such a decision procedure for special function inequalities as well, so
a procedure that succeeds in many instances is already fine.

The procedure outlined above does succeed on many examples, but it also fails on many examples.
Where it fails it is sometimes possible to still get an automated proof by rewriting the inequality in
an “appropriate” way, or by supplying additional knowledge, or by slightly adjusting the procedure.
In this respect, proving special function inequalities by computer algebra currently has to be
considered as experimental mathematics: there is no way to see a priori whether the proving
procedure succeeds on a particular inequality at hand, and also no general advise can be given in
case the procedure fails.

As an example, the situation already becomes more interesting when trying to prove that the
domain of validity for Bernoulli’s inequality may be enlarged to x ≥ −2:

1 + nx ≤ (x + 1)n (x ≥ −2, n ∈ � ).

It turns out that the Tarski-formula for the induction step,

∀ n, x, y ∈ �
: (n ≥ 0 ∧ x ≥ −2 ∧ 1 + nx ≤ y) ⇒ 1 + (n + 1)x ≤ (x + 1)y,

is false. Equivalently, the set of all points (n, x, y) ∈ � 3 with

(n ≥ 0 ∧ x ≥ −2 ∧ 1 + nx ≤ y) ∧ ¬(1 + (n + 1)x ≤ (x + 1)y)

is nonempty. We call this set the exceptional set or the set of exceptions. The projection of this
set to the (x, n)-plane is the half-strip shown shaded in Figure 1. (Chris Brown suggested to us the
use of pictures in this context.) We see that the proving procedure worked precisely for x ≥ −1
but not beyond.

A variation that makes the proof go through is to extend the induction hypothesis. Instead of
showing an induction step of the form A(n) ⇒ A(n + 1), we show A(n) ∧ A(n + 1) ⇒ A(n + 2).
If this is true, then two initial values have to be checked as induction base, and we are done. The
Tarski formula corresponding to the extended induction step reads

∀ n, x, y ∈ �
: (n ≥ 0 ∧ x ≥ −2 ∧ 1 + nx ≤ y ∧ 1 + (n + 1)x ≤ (x + 1)y)

⇒ (1 + (n + 2)x ≤ (x + 1)2y).

CAD confirms that this formula is true. The base case reduces to checking 1 + 0x ≤ (1 + x)0 and
1 + 1x ≤ (1 + x)1 which is easy to do (by inspection or by CAD).
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Figure 2. Exceptional set for the Cauchy-Schwarz-Inequality (projected to the
(sx, sy)-plane)

3.2. The Cauchy-Schwarz Inequality. Let xn, yn be arbitrary sequences of real numbers.
The Cauchy-Schwarz inequality may be phrased as

( n∑

k=0

xkyk

)2

≤
( n∑

k=0

x2
k

)( n∑

k=0

y2
k

)

(n ∈ � ).

In order to prove this like we proved Bernoulli’s inequality, we introduce new variables sx,y, sx, sy

corresponding to the sum on the left and the two sums on the right hand side, respectively. Then,
regarding also xn+1 and yn+1 as real variables, we get the formula

∀ sx,y, sx, sy, xn+1, yn+1 ∈ �
: (s2

x,y ≤ sxsy) ⇒ ((sx,y + xn+1yn+1)
2 ≤ (sx + x2

n+1)(sy + y2
n+1)).

This is false. Extension of the induction step (and introducing new variables xn+2, yn+2) does not
help: also the formula

∀ sx,y, sx, sy, xn+1, yn+1, xn+2, yn+2 ∈ �
:

(s2
x,y ≤ sxsy ∧ (sx,y + xn+1yn+1)

2 ≤ (sx + x2
n+1)(sy + y2

n+1))

⇒ (sx,y + xn+1yn+1 + xn+2yn+2)
2 ≤ (sx + x2

n+1 + x2
n+2)(sy + y2

n+1 + y2
n+2))

is false. Extending further does not help either.

Figure 2 depicts the projection of the exceptional set, i.e., the set of all points at which these
formulas are violated, to the (sx, sy)-plane. The induction step formulas are violated only if both
sx and sy are negative. But we chose these variables to represent the sums

∑n
k=0 x2

k and
∑n

k=0 y2
k,

respectively, which cannot possibly become negative. If this additional knowledge for at least one
of the sums on the right is included into the induction step formulas, we get through:

∀ sx,y, sx, sy, xn+1, yn+1 ∈ �
: (sx ≥ 0 ∧ s2

x,y ≤ sxsy)

⇒ ((sx,y + xn+1yn+1)
2 ≤ (sx + x2

n+1)(sy + y2
n+1)).

is true, as a quick CAD computation confirms. It remains to check one initial value.

The proving method has the curious property that the class of statements that can be proven is
not closed under implication. The Cauchy-Schwarz inequality is a typical example for this frequent
and annoying phenomenon. It is possible to show with the method that

n∑

k=1

x2
k ≥ 0 ⇒

( n∑

k=0

xkyk

)2

≤
( n∑

k=0

x2
k

)( n∑

k=0

y2
k

)

,

and it is also possible to automatically show that

n∑

k=1

x2
k ≥ 0,
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Figure 3. a. Pn(x) for n = 0, . . . , 10 b. ∆n(x) for n = 1, . . . , 20

by virtue of the simple Tarski formula

∀ sx, xn+1 ∈ �
: sx ≥ 0 ⇒ sx + x2

n+1 ≥ 0.

Yet it is not possible to show the Cauchy-Schwarz inequality directly.

There are many examples on which the proving method fails, but for which it succeeds if some
additional information is supplied. Often, comparatively trivial additional information suffices.
However, the missing information is not always as easily seen from the exceptional set as in the
example above. More often, especially on non-trivial examples, the additional information has to
be found by experimenting, if it can be found at all.

Many elementary inequalities appearing in textbooks [28, 35, 36] can be proven by the procedure
using just extension of the induction hypothesis or specification of trivial additional knowledge.
A table listing many of them is given in [29], pp. 56f.

4. Advanced Inequalities

Although the method outlined in the previous section is rather far from a complete algorithm,
as even trivial inequalities can be stated for which it fails, it is strong enough to prove some
inequalities that are fairly difficult to do by hand. This is our main point in this article. In the
present section, we collect some nontrivial inequalities that were proved (or improved) using CAD
in one or the other way. For some of these results, our computer proofs are the only currently
available proofs, i.e., no “human-proofs” have been given yet.

4.1. Turan’s Inequality and a Generalization. By Pn(x) we denote the nth Legendre
polynomial [1, 5] which may be defined via the second order recurrence equation

(n + 2)Pn+2(x) = (2n + 3)xPn+1(x) − (n + 1)Pn(x), P0(x) = 1, P1(x) = x.

Figure 3 a shows the first few instances of Pn(x) plotted in the range x ∈ [−1, 1].

In view of the heavy oscillation of the Pn(x) in the interval (−1, 1), it appears as a surprise that
the quantity

∆n(x) :=

∣
∣
∣
∣

Pn(x) Pn−1(x)
Pn+1(x) Pn(x)

∣
∣
∣
∣
= Pn(x)2 − Pn−1(x)Pn+1(x)

is always positive in that range (Fig. 3 b). This fact is known as Turan’s inequality, and it is by
no means elementary. Szegö [51] gives four different non-trivial proofs.
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Despite its depth, it turns out that Turan’s inequality can be proven automatically [24]. For, if
we introduce real variables p0, p1 for Pn(x) and Pn+1(x), respectively, then

∀ n, x, p0, p1 ∈ �
:
(
n ≥ 1 ∧ −1 ≤ x ≤ 1 ∧ p2

1 − p0 ((2n + 3)xp1 − (n + 1)p0) /(n + 2) ≥ 0
)

⇒
((

((2n + 3)xp1 − (n + 1)p0)/(n + 2)
)2

− p1

(
(4x2n2 − n2 + 16x2n − 4n + 15x2 − 4)p1 − (n + 1)(2n + 5)xp0

)
/(n + 2)(n + 3) ≥ 0

)

is true, as is quickly confirmed by a CAD computation. This formula implies the induction step
∆n(x) ≥ 0 ⇒ ∆n+1(x) ≥ 0 (for n ≥ 1 and −1 ≤ x ≤ 1). It remains to check one initial value:

∆1(x) = P1(x)2 − P0(x)P2(x) = x2 + 1
2 (1 − 3x2) = 1

2 (1 − x2) ≥ 0

which is indeed true for −1 ≤ x ≤ 1 (by inspection or by CAD). Neither an extension of the
induction hypothesis (like in Section 3.1) nor a specification of additional knowledge (like in
Section 3.2) is necessary in this case.

Turan-type inequalities also exist for other special functions in place of Pn(x), such as other
families of orthogonal polynomials, Bessel functions, Euler polynomials and others [34]. Many of
these can be shown effortlessly by the computer just like Turan’s original inequality [24]. Some
cannot be shown owing to extensive memory requirements of the CAD computations, exceeding the
capacities of our machines. Some others cannot be shown owing to the lack of a suitable recurrence
by which the special function replacing Pn(x) may be defined (e.g., Euler polynomials [1] don’t
satisfy a nice recurrence). A third class of examples cannot be done because the method simply
fails and we did not get it succeed by specifying additional knowledge or any other means.

Turan’s original inequality for Legendre polynomials says that 0 is a lower bound for ∆n(x) on
the interval [−1, 1]. We may ask whether this lower bound can be improved, or whether an upper
bound can be established. Inspection of Figure 3 b gives evidence that ∆1(x) = 1

2 (1 − x2) is an
upper bound for ∆n(x) and that the lower bound 0 is sharp in the sense that limn→∞ ∆n(x) = 0
for every fixed x ∈ [−1, 1]. The following refined question for sharp upper and lower bounds is
more exiting: What are the best possible constants αn, βn (independent of x) such that

αn(1 − x2) ≤ ∆n(x) ≤ βn(1 − x2) (−1 ≤ x ≤ 1).

Figure 4 shows the situation for n = 2; here we have α2 = 1
4 , β2 = 1

2 .

It turns out [3] that the best possible constants are

αn = µbn/2cµb(n+1)/2c and βn = 1
2 ,

where µk denotes the normalized binomial mid-coefficient µk := 2−2k
(
2k
k

)
(k ≥ 0). Currently the

only known proof of this fact is via computer algebra; no “human proof” has been given so far.
The proving method, however, also does not arrive at a proof if it is applied directly. This is partly
due to the fact that a lot of additional variables have to be introduced for expressing the shift
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Figure 5. Graphs of fn(x) for n = 1, . . . , 20

behavior of the αn. This slows down the computation and makes the failure of the method more
likely. A reformulation is necessary in order for the method to succeed. To this end, consider the
functions fn(x) defined via

fn(x) :=
∆n(x)

1 − x2
(x ∈ (−1, 1), n ≥ 1).

The claim reduces to showing αn ≤ fn(x) ≤ βn for x ∈ (−1, 1) and n ≥ 1. By symmetry, it
suffices to consider x ∈ [0, 1). Figure 5 showing the graphs of fn(x) for n = 1, . . . , 25 suggests
that the fn(x) are increasing on the interval in question. If this is true, then we get the bounds
simply by αn = fn(0) and βn = limx→1− fn(x). It is not difficult to show that indeed fn(0) =
µbn/2cµb(n+1)/2c and, using l’Hospital’s rule, limx→1− fn(x) = 1

2 .

In order to show that the fn(x) are increasing, it suffices to show that their derivatives are non-
negative. Using the derivative formula for Legendre polynomials,

P ′
n(x) =

n + 1

1 − x2
(xPn(x) − Pn+1(x)),

we obtain

f ′
n(x) =

(n − 1)xPn(x)2 − (2nx2 + x2 − 1)Pn(x)Pn+1(x) + (n + 1)xPn+1(x)2

n(1 − x2)2
,

and we are left with showing that this is nonnegative for x ∈ [0, 1). This does not look like
much of a progress at first sight, but in fact, it is: the proving method succeeds in showing the
nonnegativity of f ′

n(x) as given by the expression above within seconds.

For additional details, we refer to the original paper [3].

4.2. A Conjecture of Moll. The integral
∫ ∞

0

1

(x4 + 2ax2 + 1)m+1
dx (a > −1, m ∈ � )

was studies by Boros and Moll [37, 11]. For specific values of m, the integrand reduces to a
rational function, and computer algebra systems like Maple have no problem in evaluating the
integral. The first few instances are as follows.

∫ ∞

0

1

(x4 + 2ax2 + 1)0+1
dx =

π
√

2

4
√

a + 1
∫ ∞

0

1

(x4 + 2ax2 + 1)1+1
dx =

π
√

2(2a + 3)

16(a + 1)3/2

∫ ∞

0

1

(x4 + 2ax2 + 1)2+1
dx =

π
√

2(40a3 + 140a2 + 172a + 77)

512(a + 1)7/2



COMPUTER ALGEBRA FOR SPECIAL FUNCTION INEQUALITIES 9

5 10 15 20

0.5

1

1.5

2

2.5

3

1010

5 10 15 20

14

16

18

20

22

24

Figure 6. a. dl(20) (l = 0, . . . , 20) b. log dl(20) (l = 0, . . . , 20)

∫ ∞

0

1

(x4 + 2ax2 + 1)3+1
dx =

5π
√

2(112a4 + 504a3 + 876a2 + 708a + 231)

8192(a + 1)9/2

...

It can be shown [37, 11] that for arbitrary m ∈ � , the integral admits a representation of the
form

∫ ∞

0

1

(x4 + 2ax2 + 1)m+1
dx =

π

2m+3/2(a + 1)m+1/2
Pm(a)

where Pm(a) is a polynomial in a of degree m.

What can be said about the polynomial Pm(a)? First of all, an elementary argument involving
Wallis’ integral formula gives the double sum representation [11, Thm. 7.2.1]

Pm(a) =
∑

j,k

(
2m + 1

2j

)(
m − j

k

)(
2k + 2j

k + j

)
(a + 1)j(a − 1)k

23(k+j)
.

There is a single sum representation as well [11, Thm. 7.9.1], which, once found, implies that the

Pm(a) can be identified as Jacobi polynomials: Pm(a) = P
(m+1/2,−m−1/2)
m (a). But more work is

necessary to obtain the single sum representation.

The single sum representation also implies that the polynomials Pm(a) have only positive coef-
ficients, a result that is consistent with the initial values displayed above but that is not at all
apparent from the double sum representation, owing to the alternating sign that comes from the
factor (a−1)k in the summand. We will write dl(m) := 〈al〉Pm(a) (l = 0, . . . , m) for the coefficient
of al in Pm(a). The coefficient sequence dl(20) is depicted in Figure 6 a.

In a joint paper with Paule [32], we have given an elementary argument for the positivity that was
obtained using computer algebra. Upon expansion of the binomials (a + 1)j and (a − 1)k in the
double sum representation of Pm(a), one obtains a triple sum representation for the coefficients
dl(m), which, after suitable substitutions, reads

dl(m) =
∑

j,s,k

(−1)k+j−l

23(k+3)

(
2m + 1

2s

)(
m − s

k

)(
2k + 2s

k + s

)(
s

j

)(
k

l − j

)

.

Using summation software by Wegschaider [54], we discovered that this sum respects the simple
three term recurrence

2(m + 1)dl(m + 1) = 2(l + m)dl−1(m) + (2l + 4m + 3)dl(m).

(See [32] for details on the derivation of this recurrence.) Together with the easy initial conditions
d−1(m) = 0, dm(m) = 2−2m

(
2m
m

)
(m ∈ � ) this recurrence gives rise to a proof of the desired

positivity statement by induction on m.
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Figure 7. Exceptional set in the log-concavity proof of dl(m)

Via a different recurrence, also derived with Wegschaider’s package, also the representation of
Pm(a) in terms of Jacobi polynomials can be discovered effortlessly [32].

Figure 6 a suggests that there is more to say about the numbers dl(m) than just that they are
positive. Indeed, it can be shown that the dl(m) are unimodal, i.e., for each m there exists an l0
with

d0(m) ≤ d1(m) ≤ · · · ≤ dl0(m) ≥ dl0+1(m) ≥ · · · ≥ dm(m).

Boros and Moll [10, 37, 11] have obtained an unimodality proof using again the single sum
representation of the Pm(a) mentioned earlier. They posed it as a conjecture that the dl(m) are
even log-concave w.r.t. l. Recall that dl(m) is called log-concave if log dl(m) is concave, i.e., if
2 log dl(m) ≥ log dl−1(m) + log dl+1(m). (See Fig. 6 b for a plot of log dl(20).) Equivalently, dl(m)
is log-concave w.r.t. l iff

dl(m)2 − dl−1(m)dl+1(m) ≥ 0 (0 < l < m).

Recall also that log-concavity implies unimodality, but not vice versa.

As soon as suitable recurrence equations are available (recurrence equations of virtually any desir-
able form can be obtained with Wegschaider’s package [32]), we can try to prove the log-concavity
statement with our CAD-based proving procedure. We can even choose whether we would like to
set up an induction on l or on m, and we can insert positivity of dl(m) as extra knowledge. In
either case, the method does not succeed directly, so a closer inspection of the situation is needed.

Using appropriate recurrence equations, the log-concavity condition can be equivalently rewritten
in the form

4(m + 1)(2l2 − 4m2 − 7m − 3)dl(m + 1)dl(m)

+ (16m3 + 16lm2 + 40m2 + 28lm + 33m + 9l + 9)dl(m)2 − 4(l − m − 1)(m + 1)2dl(m + 1)2 ≥ 0

The corresponding Tarski formula reads

∀ m, l, d0, d1 ∈ �
:
(
0 < l < m ∧ d0 > 0 ∧ d1 > 0 ∧ 4(m + 1)(2l2 − 4m2 − 7m− 3)d1d0

+ (16m3 + 16lm2 + 40m2 + 28lm + 33m + 9l + 9)d2
0 − 4(l − m − 1)(m + 1)2d2

1 ≥ 0
)

and a quick CAD computations shows that this formula is false. CAD can also be used to compute
a description of the exceptional set: The tuples (m, l, d0, d1) ∈ � 4 for which the above Tarski
formula is violated are precisely those with

m > 1
2 (1 + 2

√
2) ∧ 4l3 − 3l − 4m(m + 1) > 0 ∧ 0 < l < m ∧ d0 > 0

∧
∣
∣2(m + 1)(m − l + 1)d1 − ((m + 1)(4m + 3) − 2l2)

∣
∣ <

√

l(4l3 − 3l − 4m(m + 1))d0.

(Figure 7 shows the projection of the exceptional set to the (m, l) plane.) This result has two
consequences:
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• For points (m, l) with m < 1
2 (1 + 2

√
2) or

m ≥ 1
2 (1 + 2

√
2) ∧ 4l3 − 3l − 4m(m + 1) ≤ 0

the log-concavity statement is true.
• For the other points (m, l), any potential counterexample to the log-concavity statement

must satisfy
∣
∣2(m + 1)(m − l + 1)dl(m + 1) − ((m + 1)(4m + 3) − 2l2)

∣
∣

<
√

l(4l3 − 3l − 4m(m + 1))dl(m).

In order to complete the proof, it now suffices to show that the latter situation never occurs, e.g.,
by showing that

dl(m + 1) ≥ (m + 1)(4m + 3) − 2l2 +
√

l(4l3 − 3l − 4m(m + 1))

2(m + 1)(m − l + 1)
dl(m)

for the points (m, l) in question. This inequality is nicer that the original statement because dl(m)
and dl(m + 1) no longer occur quadratically, but only linearly. On the other hand, there is now
a square root expression that causes problems. Our general approach of setting up a CAD-based
induction proof still does not lead to success.

The key observation is that the assertion is made stronger by adding a positive quantity u(l, m)
under the square root. Using resultant computations, it is an easy computer algebra exercise to
determine a positive polynomial u(l, m) that turns the radicand into a square, so that the square
root cancels out. For instance, the choice u(l, m) = 4l2 + 4l3 + 4lm(m + 1) leads to the stronger
assertion

dl(m + 1) ≥ 4m2 + 7m + l + 1

2(m − l + 1)(m + 1)
dl(m).

This can be shown automatically by induction on m: The Tarski formula

∀ l, m, d0, d1, d2 ∈ �
:
(

0 < l < m ∧ d0 > 0 ∧ d1 > 0 ∧ d2 > 0 ∧
4(l − m − 2)(m + 1)(m + 2)d2 = (l + m + 1)(4m + 3)(4m + 5)d0

− 2(m + 1)(−4l2 + 8m2 + 24m + 19)d1 ∧

d1 ≥ 4m2 + 7m + l + 1

2(m − l + 1)(m + 1)
d0

)

⇒
(

d2 ≥ 4(m + 1)2 + 7(m + 1) + l + 1

2((m + 1) − l + 1)((m + 1) + 1)
d1

)

is true. (The fifth clause in the hypothesis part encodes a three-term recurrence for dl(m) which
was found with Wegschaider’s package.)

This completes the proof of the log-concavity of dl(m). It would be interesting to see whether other
log-concavity statements of recurrent sequences can be shown by similar reasoning. Depending on
the sequence in question, log-concavity may be easier or harder compared to the example above.
For instance, the binomial coefficients

(
n
k

)
are log-concave in k (k = 0, . . . , n), as is easily seen via

(
n

k

)2

−
(

n

k − 1

)(
n

k + 1

)

=
n + 1

(k + 1)(n − k + 1)
︸ ︷︷ ︸

≥0

(
n

k

)

≥ 0

No computer is needed here. On the other hand, if we define d2
l (m) := dl(m)2 − dl−1(m)dl+1(m),

then d2
l (m) seems to be again log-concave with respect to l. (Observe that d2

l (m) is positive as
dl(m) is log-concave.) In that event, we would say that dl(m) is 2-log-concave. In general, defining
d1

l (m) := dl(m) and di+1
l (m) = di

l(m)2 − di
l−1(m)di

l+1(m), we say that dl(m) is r-log-concave if

di
l(m) is log-concave for i = 0, . . . , r, and that dl(m) is ∞-log-concave if di

l(m) is log-concave
for all i ≥ 0. Moll has conjectured that the dl(m) is not only (1-)log-concave, but even ∞-
logconcave [11]. However, already for showing 2-log-concavity of the dl(m) the reasoning above
is insufficient, because instead of a square root expression we get an ugly algebraic function of
degree 15, and we do not know how to process this intermediate result any further [32].
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4.3. Power Series with Positive Coefficients. Among the most difficult problems in
positivity theory there are questions concerning the positivity of the Taylor coefficients of some
given multivariate rational functions [5]. For example, the coefficients in the expansion of 1/(1−
x − y − z + 4xyz) are positive [8], a result that is not apparent by inspection of the expansion

1

1 − x − y − z + 4xyz
=

∞∑

n=0

(
x + y + z − 4xyz

)n

=

∞∑

n=0

n∑

k=0

k∑

l=0

l∑

i=0

(−4)i

(
n

k

)(
k

l

)(
l

i

)

xn−k+iyk−l+izl

because of the disturbing alternating sign in the summand. Some seemingly difficult positivity
results have surprisingly simple proofs [27], the above example is one of them. If we write ai,j,k :=
〈xiyjzk〉1/(1 − x − y − z + 4xyz) for the coefficient of xiyjzk (i, j, k ≥ 0) in the expansion of
1/(1− x − y − z + 4xyz) then we have

(1 + i)ai+1,j+1,k+1 = 2(i + j − k)ai,j,k+1 + (1 + i − j + k)ai,j+1,k+1.

Together with appropriate initial values and exploiting the symmetry of ai,j,k with respect to i, j, k
(which allows us to assume i ≥ j ≥ k without loss of generality), this recurrence immediately
implies that ai,j,k > 0 for all i, j, k [26], similar as in the positivity proof for the dl(m) in the
previous section. Couldn’t it be that in other examples, positivity can also be deduced from
recurrences for the coefficients, even if this may not be visible by inspection?

As an example, consider the power series expansion

1

1 − x − y − z − w + 24xyzw
=

∑

i,j,k,l≥0

ai,j,k,lx
iyjzkwl.

Gillis, Reznick and Zeilberger [27] have conjectured in 1983 that ai,j,k,l ≥ 0 for all i, j, k, l. They
have shown [27, Prop. 3] that it suffices to show nonnegativity of the diagonal elements ai,i,i,i.
They have checked nonnegativity for 0 ≤ i ≤ 220 but were not able to give a proof for arbitrary i.
Gillis et al. give the representation

ai,i,i,i =

i∑

j=0

(−1)j (4i− 3j)!4!j

(i − j)!4j!

for which we can obtain a recurrence equation with Zeilberger’s algorithm [58, 42]:

331776(2i + 7)(4i + 11)(4i + 15)(i + 1)3ai,i,i,i

+ 13824(4i + 15)
(
32i5 + 344i4 + 1424i3 + 2855i2 + 2801i + 1085

)
ai+1,i+1,i+1,i+1

+ 576
(
192i6 + 3072i5 + 20108i4 + 68918i3 + 130513i2 + 129613i + 52815

)
ai+2,i+2,i+2,i+2

− 8(i + 3)(4i + 7)(4i + 13)
(
40i3 + 380i2 + 1193i + 1240

)
ai+3,i+3,i+3,i+3

+ (i + 4)3(2i + 5)(4i + 7)(4i + 11)ai+4,i+4,i+4,i+4 = 0

Does this recurrence imply positivity of ai,i,i,i? The immediate attempt fails: The Tarski formula

∀ A0, A1, A2, A3, A4, i ∈
�

:
(
i ≥ 0 ∧ A0 ≥ 0 ∧ A1 ≥ 0 ∧ A2 ≥ 0 ∧ A3 ≥ 0

∧ p0(i)A0 + p1(i)A1 + p2(i)A2 + p3(i)A3 + p4(i)A4 = 0
)
⇒ A4 ≥ 0

is false (ps(i) is supposed to stand for the coefficient of ai+s,i+s,i+s,i+s in the recurrence above).
Inspection of the first values on the diagonal suggests that the diagonal elements are not only
nonnegative, but also increasing. Can this be shown? Unfortunately, not: The corresponding
Tarski formula

∀ A0, A1, A2, A3, A4, i ∈
�

:
(
i ≥ 0 ∧ 0 ≤ A0 ≤ A1 ≤ A2 ≤ A3

∧ p0(i)A0 + p1(i)A1 + p2(i)A2 + p3(i)A3 + p4(i)A4 = 0
)
⇒ A4 ≥ A3
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is also false. The healing observation is that ai,i,i,i is nonnegative if and only if βiai,i,i,i is nonneg-
ative, for arbitrary β > 0. If there is a value β such that we can show that βiai,i,i,i is increasing,
then we can use quantifier elimination to determine it. Indeed the Tarski formula

∀ A0, A1, A2, A3, A4, i ∈
�

:
(
i ≥ 0 ∧ 0 ≤ A0 ≤ βA1 ≤ β2A2 ≤ β3A3

∧ p0(i)A0 + p1(i)A1 + p2(i)A2 + p3(i)A3 + p4(i)A4 = 0
)
⇒ βA4 ≥ A3

is true if and only if β ≥ β0, where β0 is the real root of x4 − 160x3 + 3456x2 + 55296x + 331776
whose approximate value is 42.04. As a consequence, we obtain that ai,i,i,i is nonnegative for all
i ≥ 0 by checking ai+1,i+1,i+1,i+1 ≥ 43ai,i,i,i for i = 0, 1, 2, 3, 4, which is trivial.

In the same way, it can be shown that all the coefficients in the expansion of

1

1 − x − y − z − u − v + 120xyzuv
and

1

1 − x − y − z − u − v − w + 720xyzuvw

are nonnegative [31], as was also conjectured by Gillis et al. [27]. Note that the transition from
ai,i,i,i to βiai,i,i,i is of no use as long as we attempt to only show the nonnegativity of the ai,i,i,i,
because in the corresponding Tarski formula β cancels out. By switching to monotonicity the
cancellation was avoided. Note also that the method of introducing β can also be applied if
a sequence an in question is not monotonic, for it suffices that βnan be monotonic. Whether
appropriate values β exist can be determined by quantifier elimination.

5. Too Advanced Inequalities

We want to stress once more that our methods for proving special function inequalities with
computer algebra are not reliable in the sense that we could tell a priori where the method
succeeds and where it does not. Innocent looking inequalities can be strongly resistant against
attempts of proving them automatically. The collection of variations and modifications given in
the previous sections is not by far exhaustive in the sense that one a particular inequality can be
handled by at least one of them. It should instead be understood that each sufficiently advanced
inequality requires its own variation of the method. In the present section, we comment on some
inequalities that ought to be provable by means of computer algebra, but we did not yet find the
“right” way of approaching them.

5.1. Power Series with Positive Coefficients. The conjecture of Gillis et al. [27] goes
beyond what we have proven in Section 4.3: The full conjecture is that for every r ≥ 4, the series
expansion of

1

1 − (x1 + x2 + · · · + xr) + r!x1x2 · · ·xr

has only nonnegative coefficients. The proof in Section 4.3 settles the conjecture for r = 4, and
similarly r = 5 and r = 6 can be done [31]. Probably for every specific value of r a proof can be
obtained, given sufficiently powerful hardware. But we have not succeeded in constructing a proof
for general r, so this conjecture remains open.

Szegö [50] has shown that the coefficients in the expansion of

1

1 − (x + y + z) + 3
4 (xy + xz + yz)

=
∑

i,j,k≥0

ai,j,kxiyjzk

are positive, but all our attempts at reproving this fact with the computer have failed. The best we
were able to achieve was to show ai,j,k > 0 for arbitrary i, j ≥ 0 and specific k. In this situation,
a proof similar to the proof described in Section 4.3 can be obtained [31]. (We have checked this
for k = 0, 1, 2, . . . , 16 and believe that it works in principle for every k.)

A conjectured generalization of Szegö’s result is that all the coefficients of

1

1 − (x + y + z + w) + 2
3 (xy + xz + xw + yz + yw + zw)
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k=0 Pk(x)

are positive [6]. Again, we only succeeded in providing a partial proof [31] for special cases with
two indices arbitrary and two indices set to specific numbers. This at least adds new evidence in
support of the conjecture.

The advantage of setting one index to a specific integer is that this leads to shorter recurrence
equations for the ai,j,k. This has the consequence that fewer variables have to be introduced in
the Tarski formula and this makes it “more likely” that this formula is actually true.

It is not out of question that there is a variation of the proving method that could settle the
conjecture mentioned above or related conjectures. We have just not found it yet.

5.2. Fejer’s Inequality. Fejer’s inequality [5] is another example for an inequality for which
it might be possible to construct a CAD-based computer proof, but we have not yet succeeded in
constructing one. The inequality reads

fn(x) :=

n∑

k=0

Pk(x) ≥ 0 (−1 ≤ x ≤ 1, n ≥ 0),

where Pk(x) denotes the kth Legendre polynomial which has already appeared in the section on
Turan’s inequality (Sec. 4.1).

An intuitive argument that this inequality is more difficult than Turan’s inequality is given in
Figure 8: in contrast to the ∆n(x) of Turan’s inequality, the functions fn(x) show quite some
oscillation, they just don’t go below the x-axis.

Following the computer procedure, let us try to prove Fejer’s inequality by induction on n. The
induction step fn−1(x) ≥ 0 ⇒ fn(x) ≥ 0 is encoded in the Tarski formula

∀ n, x, p0, p1, s ∈ �
: (−1 ≤ x ≤ 1 ∧ n ≥ 0 ∧ s ≥ 0) ⇒ (s + p0 ≥ 0),

which is false (by inspection or by CAD). The extended induction step fn−1(x) ≥ 0∧fn(x) ≥ 0 ⇒
fn+1(x) ≥ 0 corresponds to the Tarski formula

∀ n, x, p0, p1, s ∈ �
: (−1 ≤ x ≤ 1 ∧ n ≥ 0 ∧ s ≥ 0 ∧ s + p0 ≥ 0) ⇒ (s + p0 + p1 ≥ 0),

which is also false (by inspection or by CAD). The first nontrivial formula appears if we extend
the induction step once again, because then we can use the recurrence equation for the Legendre
polynomials in order to express Pn+2(x) in terms of Pn(x) and Pn+1(x). The formula corresponding
to the extended induction step fn−1(x) ≥ 0 ∧ fn(x) ≥ 0 ∧ fn+1(x) ≥ 0 ⇒ fn+2(x) ≥ 0 thus reads

∀ n, x, p0, p1, s ∈ �
: (−1 ≤ x ≤ 1 ∧ n ≥ 0 ∧ s ≥ 0 ∧ s + p0 ≥ 0 ∧ s + p0 + p1 ≥ 0)

⇒ (s + p0 + p1 − (np0 + p0 − 2nxp1 − 3xp1)/(n + 2) ≥ 0).

Unfortunately, also this formula is false, and so are the next two. Figure 9 depicts the exceptional
set (shaded), projected down to the (x, n)-plane for the formula above and the next two. The
extreme runtime requirements of CAD for big formulas prevented us from going further.
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Figure 9. Exceptional sets for Fejer’s inequality

It can be seen from the picture that the exceptional set is rather big, and although it does seem to
shrink at each extension of the induction step, it does not seem reasonable to expect it to collapse
to the empty set after a few more extensions.

Supplying additional knowledge, as done for Cauchy-Schwarz’ Inequality (Section 3.2), might help,
but it is hard to read from the plots of Figure 9 which sort of additional information might be
helpful. It turns out that specifying −1 ≤ Pk(x) ≤ 1 (−1 ≤ x ≤ 1) as additional knowledge cuts
off the part of the exceptional set located over 0 ≤ x ≤ 1, in other words, we obtain a partial proof
for Fejer’s inequality that applies to nonnegative points x. On the interval [−1, 0), the exceptional
sets are not changed. An induction step applies for a point x if a vertical line through x does not
intersect the exceptional set. With an induction step of length at most five, this turns out to be the
case for x = − 1

2 and x = − 1
4 (1+

√
5) ≈ −.81 (cf. Fig. 9), so we get proofs for Fejer’s inequality also

for these points. Further extension of the induction step will probably deliver proofs for further
isolated negative points x, but not for the entire interval.

It remains an open problem to find a variation of the proving procedure that would deliver a
computer proof for Fejer’s inequality that covers the whole interval [−1, 1]. Any progress towards
such a proof would be very interesting.

There are many more positivity results for sums or orthogonal polynomials [5], like the celebrated
Askey-Gasper inequality [7]

n∑

k=0

P
(α,0)
k (x) ≥ 0 (−1 < x ≤ 1, α ≥ −2, n ≥ 0),

which contains Fejer’s inequality as the special case α = 0. This inequality has played a role in de
Branges’s [18] proof of the Bieberbach conjecture. In view of our humble attempts at constructing
a computer proof that fail already for the special case α = 0, it comes as a surprise that the Askey-
Gasper inequality is one of the very few inequalities for which a CAD-free computer proof has
been given [21]. This proof consists of proving a hypergeometric summation identity from which
the desired inequality follows. A CAD-based proof of this inequality is currently not available.

In the context of higher order finite elements schemes, Schöberl was recently led to a new conjecture
that does not seem to be present in the literature yet: According to this conjecture, the functions

fn(x) :=

n∑

j=0

(4j + 1)(2n − 2j + 1)P2j(0)P2j(x)

are nonnegative for x ∈ [−1, 1] and n ≥ 1. The convergence of a certain numerical algorithm
depends on the validity of this conjecture. As shown in Figure 10, the functions fn(x) are heavily
oscillating, and up to now it was not possible to prove the conjecture with or without use of
computers. (See [25] for some partial results.)
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6. Conclusion

Existing computer algebra tools are strong enough to prove special function inequalities. A simple
proving procedure based on induction and a quantifier elimination algorithm like CAD is sufficient
for obtaining proofs of a number of special function inequalities. As we have illustrated in this
paper, this proving procedure should not be understood as a black-box. Instead, it should be
considered as a proof skeleton which has to be adjusted and modified appropriately in order to
deliver a proof for a particular inequality at hand. In the moment, no general advice can be given
as to which adjustments or modifications are appropriate in a particular situation. This has to be
found out by experimenting. We hope that continued investigations will lead to some progress in
this respect: collecting further modifications that turn out to be useful for proving an inequality
of independent interest is one of the goals of future work.

Our proving procedure applies only to inequalities involving a discrete parameter along which an
induction statement can be set up. If such a parameter is not present, as in sin x ≤ x (x ≥ 0), it
is not known how to coerce our method to give a proof. This is in contrast to proving procedures
for identities. Here, it can often be exploited that a an analytic function is identically zero if
and only if all its Taylor coefficients are zero. Therefore, in order to prove that a continuous
function is zero, it suffices to show that all its Taylor coefficients are zero, which can be done by
induction. The problem for inequalities is that the there is no corresponding equivalence about the
sign of a function and the sign of its Taylor coefficients. For proving special function inequalities
not involving a discrete parameter, there is currently no automated method available. Any such
method capable of proving non-trivial inequalities would obviously be highly interesting.
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[25] Stefan Gerhold, Manuel Kauers, and Joachim Schöberl. On a conjectured inequality for a sum of Legendre

polynomials. Technical Report 2006-11, SFB F013, Johannes Kepler Universität, 2006.
[26] Joseph Gillis and J. Kleeman. A combinatorial proof of a positivity result. Mathematical Proceedings of the

Cambridge Philosopical Society, 86:13–19, 1979.
[27] Joseph Gillis, Bruce Reznick, and Doron Zeilberger. On elementary methods in positivity theory. SIAM Journal

of Mathematical Analysis, 14(2):396–398, 1983.
[28] Godfrey H. Hardy, John E. Littlewood, and George Pólya. Inequalities. Cambridge Mathematical Library.
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[38] István Nemes, Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger. How to do Monthly problems with

your computer. The American Mathematical Monthly, 104, 1997.
[39] Petru Pau and Josef Schicho. Quantifier elimination for trigonometric polynomials by cylindrical trigonometric

decomposition. Journal of Symbolic Computation, 29(9):971–983, 2000.
[40] Peter Paule. A proof of a conjecture of Knuth. Experimental Mathematics, 5:83–89, 1996.
[41] Peter Paule. A computerized proof of ζ(2) = π2/6. In preparation, 2007.
[42] Peter Paule and Markus Schorn. A Mathematica version of Zeilberger’s algorithm for proving binomial coeffi-

cient identities. Journal of Symbolic Computation, 20(5–6):673–698, 1995.
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