
Noname manuscript No.
(will be inserted by the editor)

Symmetries of Dependency Quantified Boolean
Formulas

Clemens Hofstadler · Manuel Kauers ·
Martina Seidl

Received: date / Accepted: date

Abstract Symmetries have been exploited successfully within the realms of
SAT and QBF to improve solver performance in practical applications and to
devise more powerful proof systems. As a first step towards extending these ad-
vancements to the class of dependency quantified Boolean formulas (DQBFs),
which generalize QBF by allowing more nuanced variable dependencies, this
work develops a comprehensive theory to characterize symmetries for DQBFs.
We also introduce the notion of symmetry breakers of DQBFs, along with a
concrete construction, and discuss how to detect DQBF symmetries algorith-
mically using a graph-based approach.

1 Introduction

Symmetry is an omnipresent phenomenon that we encounter in different forms
in all parts of our lives. From the double helix structure of DNA (exhibiting
two-fold rotation symmetry) on the microscopic scale to the rotational sym-
metry of galaxies on the cosmic scale. Symmetries also play a crucial role in
automated reasoning, where symmetries of problem instances can be used to
simplify the solving process. In practical applications, they can be used to
incorporate additional constraints into a problem, which guide a solver away
from equivalent parts of the search space, accelerating the search [1,3,15]. On
the theoretical side, symmetries can enhance proof systems by introducing new

Parts of this work have been supported by the LIT AI Lab funded by the state of Upper
Austria and by the Austrian Science Fund (FWF) [10.55776/COE12].

C. Hofstadler, M. Seidl
Institute for Symbolic Artificial Intelligence, JKU Linz, Austria
{clemens.hofstadler,martina.seidl}@jku.at

M. Kauers
Institute for Algebra, JKU Linz, Austria
manuel.kauers@jku.at

2 Clemens Hofstadler et al.

deduction rules that exploit symmetries, ultimately resulting in exponentially
more powerful proof systems [16,21,14]

Such symmetry breaking techniques rely on a solid theoretical foundation
for describing and understanding symmetries for different problem classes.
This theory has been developed most prominently for the propositional satisfi-
ability problem (SAT) [19] and for constraint satisfaction problems (CSP) [13].
Two of the authors have also developed a theory of symmetries for quantified
Boolean formulas (QBFs) [15], extending earlier work on the subject [4,3,5].
In this work, we generalize the theory from [15] from QBFs to dependency
quantified Boolean formulas.

Dependency quantified Boolean formulas (DQBFs) [18,6] represent a rich
and expressive class of logical formulas that extends QBF by allowing existen-
tially quantified variables to depend on specific subsets of universally quanti-
fied variables. In contrast to QBFs, which can only encode linear dependen-
cies between variables, the nuanced quantification of DQBFs allows also for
non-linear dependencies. This makes DQBFs a potent framework for encoding
a variety of problems in verification, synthesis, and soft-/hardware engineer-
ing, see [20,7] and references therein. The extended expressive power, however,
comes at the cost of increased computational complexity – the decision prob-
lem for DQBFs is NEXPTIME-complete [18]. This necessitates a need for ad-
vanced methods for solving DQBF instances efficiently. One promising avenue
for mitigating the inherent complexity is the exploitation of symmetries.

In this work, we develop a comprehensive and explicit theory of symmetries
for DQBFs, generalizing concepts established for SAT and QBF. In particular,
analogous to the case of QBF [15] (and CSP [9]), we distinguish between
two kinds of symmetries: those of the problem itself, which we call syntactic
symmetries, and those of the solutions, which we call semantic symmetries. We
use the concepts of groups and group actions to formally characterize these
symmetries. All required concepts will be recalled, and we provide rigorous
proofs of all our results.

One way to exploit symmetries in practice is to extend a given formula
with additional constraints that destroy the formula’s symmetries and thereby
guide a solver away from equivalent areas of the search space. This approach
is called (static) symmetry breaking and the formula encoding the additional
constraints is called a symmetry breaker. In this work, we introduce the notion
of (conjunctive) symmetry breakers for DQBFs and we provide a concrete
construction for such symmetry breakers, generalizing ideas from SAT [8] and
QBF [15, Sec. 8]. Finally, we also describe how to detect symmetries in DQBFs
algorithmically with the help of graph-theoretic methods.

This work extends the symmetry framework for quatified Boolean formulas
that was presented at the SAT 2018 conference [15] to the more general case
of dependency quantified Boolean formulas.

Symmetries of Dependency Quantified Boolean Formulas 3

2 Dependency Quantified Boolean Formulas

Let X = {x1, . . . , xn} and Y = {y1, . . . , yk} be two finite disjoint sets of
propositional variables. For V ⊆ X ∪ Y , we denote by BF(V) a set of (propo-
sitional) Boolean formulas over the variables V . The set BF(V) contains all
well-formed formulas built from the truth constants ⊤ (true) and ⊥ (false),
from the variables in V , and from logical connectives according to some gram-
mar. We note that we make no restrictions on the syntactic structure of the
elements in BF(V) (except for Section 7, where we restrict to formulas in con-
junctive normal form). Boolean formulas will be denoted by lowercase Greek
letters ϕ, ψ,

An assignment for a set of variables V ⊆ X ∪ Y is a function σ : V →
{⊤,⊥}. The set of all assignments for V is denoted by A(V). We assume a
well-defined semantics for the logical connectives used to construct the Boolean
formulas in BF(V). In particular, we use the typical operations ¬ (negation), ∧
(conjunction), ∨ (disjunction),↔ (equivalence),→ (implication), and ⊕ (xor)
with their standard semantics. Then, every assignment σ extends naturally to
a function [·]σ : BF(V)→ {⊤,⊥}, mapping every Boolean formula ϕ ∈ BF(V)
to its truth value [ϕ]σ ∈ {⊤,⊥} under σ.

A quantified Boolean formula (QBF) (in prenex form) on a set of vari-
ables V = {v1, . . . , vm} is a formula of the form Q1v1Q2v2 . . . Qmvm.ϕ, with
quantifiers Q1, . . . , Qm ∈ {∀,∃} and ϕ ∈ BF(V). In a QBF, if a variable vi is
existentially quantified, i.e., Qi = ∃, then vi depends semantically on all uni-
versally quantified variables vj with j < i. This leads to a linear dependency
structure of the variables.

Dependency quantified Boolean formulas (DQBFs) [18] generalize QBFs
by allowing non-linear dependencies of the variables, see also [6, Ch. 4] for an
introduction. These dependencies are specified by explicitly annotating each
existential variable with a set of universal variables. This is formalized by
considering, for any k subsets D1, . . . , Dk ⊆ X, a prefix for X and Y of the
form ∀x1, . . . , xn∃y1(D1), . . . , yk(Dk). The set Di encodes that the existential
variable yi only depends on the universal variables in Di and is called the
dependency set of yi.

Definition 1 Given a prefix P = ∀x1, . . . , xn∃y1(D1), . . . , yk(Dk) forX and Y
with dependency setsD1, . . . , Dk ⊆ X and a Boolean formula ϕ ∈ BF(X ∪ Y),
the formula

P.ϕ = ∀x1, . . . , xn∃y1(D1), . . . , yk(Dk).ϕ

is called a dependency quantified Boolean formula (DQBF).

We will denote DQBFs by uppercase Greek letters Φ, Ψ, Note that, by
definition, DQBFs are always closed formulas, meaning that each variable in
X ∪ Y is quantified in the prefix.

Example 1 An example of a DQBF is

∀x1, x2∃y1
(
{x1}

)
, y2

(
{x2}

)
. (¬x1 → y1) ∧ (x2 ∨ y2) .

4 Clemens Hofstadler et al.

Note that this formula cannot be written as a QBF (in prenex form) because
the quantifier dependencies cannot be expressed linearly. Conversely, however,
every QBF can be expressed as a suitable DQBF. For example, any QBF of
the form ∀x1∃y1∀x2∃y2.ϕ, with ϕ ∈ BF({x1, x2, y1, y2}) can be expressed as
∀x1, x2∃y1

(
{x1}

)
, y2

(
{x1, x2}

)
.ϕ. Note that the linear dependency structure

of the QBF causes the dependency sets of the corresponding DQBF to form
an increasing sequence. This is the case for every DQBF that arises from a
QBF (in prenex form).

For a prefix P = ∀x1, . . . , xn∃y1(D1), . . . , yk(Dk), an interpretation for
P is a tuple s = (s1, . . . , sk) of functions si : {⊤,⊥}|Di| → {⊤,⊥}, for i =
1, . . . , k. Each function si specifies the truth value of the existential variable
yi in dependence of the truth values of the universal variables in Di. The
functions si are called Skolem functions. We denote by S(P) the set of all
interpretations for P .

Remark 1 Every Skolem function si : {⊤,⊥}|Di| → {⊤,⊥} with dependency
setDi = {xi1 , . . . , xid} (i1 < · · · < id) can be represented by a Boolean formula
ϕi ∈ BF(Di), so that, for every assignment σ ∈ A(Di),

si(σ(xi1), . . . , σ(xid)) = [ϕi]σ.

Therefore, an interpretation can be represented as a tuple of such Boolean
formulas. In the following, we will represent interpretations in this way.

Example 2 Consider the prefix P = ∀x1, x2∃y1
(
{x1}

)
, y2

(
{x2}

)
. Two possible

interpretations of P are s = (x1, x2) and s
′ = (⊤,¬x2).

An interpretation s for a prefix P = ∀x1, . . . , xn∃y1(D1), . . . , yk(Dk) can
be visualized as a rooted tree of height n+ k + 1 with some additional edges
to specify the dependencies. The nodes in the first n levels of this tree have
two children and the edges to these children are labeled by ⊤ and ⊥, respec-
tively. These levels represent the universal variables x1, . . . , xn and constitute
a complete binary tree. Each path in this complete binary tree corresponds to
one assignment of the universal variables.

The nodes in the levels n + 1, . . . , n + k only have a single child with an
edge that is either labelled by ⊤ or by ⊥. These levels represent the existential
variables y1, . . . , yk and each such level consists of 2n nodes. Each path through
these levels corresponds to an assignment of the existential variables.

In order to correctly represent the dependencies of the existential variables
on (some of) the universal variables, we introduce additional edges, called
dependency edges, that connect nodes within one level. We further impose
the restriction that, if two nodes are connected by a dependency edge, then
the outgoing edge to their respective child has to be labelled equally. The
dependency edges are constructed as follows: Given two nodes v and w at
level n + l for l ∈ {1, . . . , k}, consider the unique paths from the root node r
to v and w, respectively, say

r
a1−→ ◦ a2−→ ◦ · · · ◦ an+l−1−−−−→ v and r

b1−→ ◦ b2−→ ◦ · · · ◦ bn+l−1−−−−→ w,

Symmetries of Dependency Quantified Boolean Formulas 5

where ai, bi ∈ {⊤,⊥} denote the edge labels, for i = 1, . . . , n+ l− 1. Then, we
draw a dependency edge between v and w if and only if ai = bi for all i such
that xi ∈ Dl.

Remark 2 Informally, we draw a dependency edge between two nodes v and w
at level n+ l if and only if the truth values of all universal variables on which
yl depends are equal on the paths to v and w, respectively.

Example 3 Consider the prefix P = ∀x1, x2∃y1
(
{x1}

)
, y2

(
{x2}

)
. The two in-

terpretations for P given in Example 2 can be visualized as follows:

⊥

⊥

⊥

⊥

⊤

⊥

⊤

⊤

⊥

⊤

⊥

⊤

⊤

⊤

⊥

⊥

⊤

⊤

⊤

⊤

⊥

⊤

⊥

⊤

⊤

⊤

⊤

⊥
y2:

y1:

x2:

x1:

The dependency edges are depicted by dashed edges. Note that whenever
two nodes are connected by a dependency edge, the outgoing edge to their re-
spective child is labelled equally. The converse, however, need not hold. Nodes
that are not connected by a dependency edge can still have outgoing edges
with the same label (as witnessed by the tree on the right).

Each path from the root through the first n+1 layers of such a tree repre-
senting an interpretation s ∈ S(P) corresponds to one assignment σ ∈ A(X)
of the universal variables x1, . . . , xn. Extending this path to a leaf (ignoring
dependency edges) yields an assignment σs ∈ A(X ∪Y) of all variables, called
the induced assignment of σ and s. Formally, it is defined by

σs(xi) = σ(xi) for i ∈ {1, . . . , n},
σs(yi) = si(σ(xi1), . . . , σ(xid)) for i ∈ {1, . . . , k},

where Di = {xi1 , . . . , xid} is the dependency set of yi and i1 < · · · < id.
The truth value of a DQBF under an interpretation s can then be ob-

tained by considering all possible induced assignments of s, i.e., all complete
paths from the root node to a leaf (ignoring dependency edges) in the tree
representing s. Formally, we arrive at the following definition.

Definition 2 Let Φ = P.ϕ be a DQBF and let s ∈ S(P) be an interpretation
for the prefix P . The truth value of Φ under s is

[Φ]s =
∧

σ∈A(X)

[ϕ]σs .

The DQBF Φ is true if there exists s ∈ S(P) with [Φ]s = ⊤ and it is false
otherwise. If Φ is true, then any interpretation s with [Φ]s = ⊤ is called a
model for Φ.

6 Clemens Hofstadler et al.

Example 4 Consider the prefix P = ∀x1, x2∃y1
(
{x1}

)
, y2

(
{x2}

)
and let s =

(x1, x2) and s
′ = (⊤,¬x2) be the interpretations for P from Example 2. Fur-

thermore, let Φ = P.ϕ be the DQBF with

ϕ = (¬x1 → y1) ∧ (x2 ∨ y2) .

The truth value of Φ under s is [Φ]s = ⊥ because the induced assignment
σs that maps all variables to ⊥ yields [ϕ]σs

= ⊥. Note that σs corresponds to
the leftmost path in the left tree in Example 3. The truth value of Φ under s′

is [Φ]s′ = ⊤. There are four induced assignments σs′ of s
′ (one corresponding

to each complete path in the right tree in Example 3) and one can check that
[ϕ]σs′ = ⊤ for all of them. Therefore, we can conclude that the DQBF Φ is
true and that s′ is a model for Φ.

The following lemma, which shall prove useful later, follows easily from the
definitions above.

Lemma 1 Let P be a prefix for X and Y , and let ϕ, ψ ∈ BF(X ∪ Y). Then,
we have [P.(ϕ ∧ ψ)]s = [P.ϕ]s ∧ [P.ψ]s for all s ∈ S(P).

Proof By Definition 2 and by the semantics of conjunction, we obtain

[P.(ϕ ∧ ψ)]s =
∧

σ∈A(X)

[ϕ ∧ ψ]σs =
∧

σ∈A(X)

([ϕ]σs ∧ [ψ]σs)

=
∧

σ∈A(X)

[ϕ]σs ∧
∧

σ∈A(X)

[ψ]σs = [P.ϕ]s ∧ [P.ψ]s.

3 Groups and Group Actions

Symmetries of an object can be described formally using groups and group
actions [2]. We recall these concepts in this section. A group is a setG equipped
with a binary associative operation ∗ : G × G → G, such that G contains a
neutral element and such that every element in G also has an inverse in G. A
prototypical example of a group is the set of integers Z together with addition
as the binary operation.

Another important example of a group, one particularly relevant for de-
scribing symmetries, is the symmetric group Sn. For any fixed n ∈ N, the sym-
metric group Sn is the set of all bijective functions π : {1, . . . , n} → {1, . . . , n}
together with function composition as the binary operation. The elements in
Sn are called permutations. A permutation π ∈ Sn can be conveniently denoted
as a two dimensional array with two rows and n columns π =

(
1 2 ··· n

π(1) π(2) ··· π(n)

)
.

Permutations lend themselves nicely to describing symmetries of (geometric)
objects.

Example 5 Consider the following square with vertices labelled by the symbols
♣,♢,♠,♡.

Symmetries of Dependency Quantified Boolean Formulas 7

♣ ♢

♠♡

If we assign to every symbol a number, say ♣ ↔ 1,♢ ↔ 2,♠ ↔ 3,♡ ↔ 4,
then we can use permutations π ∈ S4 to shuffle around the symbols, moving
each symbol from vertex v to π(v). For example, the permutation π = (1 2 3 4

2 3 4 1)
rotates the square by 90 degrees clockwise, leaving the relative order of the
symbols unchanged (see Figure 1). The permutation σ = (1 2 3 4

1 2 4 3), on the
other hand, changes the relative order of the symbols. In fact, π describes a
symmetry of the square and σ does not.

♡ ♣

♢♠

π
♣ ♢

♠♡

σ
♣ ♢

♡♠

Fig. 1: Transformation of a square by two permutations π = (1 2 3 4
2 3 4 1) and

σ = (1 2 3 4
1 2 4 3).

To formally describe that a group element (e.g., a permutation) can be
used to transform an object (e.g., a square), we consider the notion of a group
action. If G is a group with binary operation ∗ and S is any set, then a group
action of G on S is a map G×S → S, (g, s) 7→ g(s), which is compatible with
the group operation. This means that, for all g, h ∈ G and s ∈ S, we have
(g ∗ h)(s) = g(h(s)) as well as e(s) = s, where e is the neutral element of G. If
we have such a group action, we also say that G acts on the set S.

Example 6 The symmetric group Sn yields a group action on the set S =
{1, . . . , n} by mapping every pair (π, s) ∈ Sn × S to π(s). More generally,
if S is any nonempty set and G is a group consisting of bijective functions
g : S → S (with function decomposition as the binary operation of G), then a
group action of G on S is given by mapping each pair (g, s) ∈ G × S to the
element g(s) ∈ S.

As another example, consider the group action implicitly described in Ex-
ample 5. It can be made explicit by letting the symmetric group S4 act on the
set S = {♣,♢,♠,♡}4 of 4-tuples by permuting indices, i.e., π((x1, . . . , x4)) =
(xπ(1), . . . , xπ(4)). For example, if we consider the original square as the tu-
ple s = (♣,♢,♠,♡) and let π = (1 2 3 4

2 3 4 1) be as in Example 5, then π(s) =
(♡,♣,♢,♠). Analogously, for σ = (1 2 3 4

1 2 4 3), we obtain σ(s) = (♣,♢,♡,♠).
As yet another example, let V = {v1, . . . , vn} be a set of propositional

variables. A group action of the symmetric group Sn on the set of Boolean
formulas BF(V) is given by permuting the variables, i.e., π(ϕ) = ϕ′, where the
formula ϕ′ ∈ BF(V) is obtained from ϕ ∈ BF(V) by replacing each variable vi
in ϕ by vπ(i). For instance, for π = (1 2 3

3 1 2) and ϕ = v2 ⊕ (v1 → ¬v3), we get
π(ϕ) = v1 ⊕ (v3 → ¬v2).

8 Clemens Hofstadler et al.

Remark 3 In Example 6, we have seen that a group G consisting of bijective
functions on a set S naturally induces a group action of G on S. Conversely,
if we have a group action G × S → S, where G is now an arbitrary group,
then we can associate to each group element g ∈ G a unique bijective function
S → S, namely the one given by s 7→ g(s). The defining properties of a group
action imply that this map is indeed bijective for each g ∈ G, with its inverse
given by the map s 7→ g−1(s). Therefore, in the following, when working with
a group action, we may identify the group elements with their corresponding
bijective functions on S.

Often, not all elements of a group are relevant in a particular context. For
instance, in Example 5, we have seen that some elements of the symmetric
group S4 describe symmetries of a square, while others do not. Therefore,
we recall the concept of a subgroup. A nonempty subset H ⊆ G of a group
G is a subgroup if it is closed under the group operation and under taking
inverses. For any subset E ⊆ G, we can consider the smallest subgroup of G
that contains E. This unique subgroup is denoted by ⟨E⟩ and the elements of
E are called generators of ⟨E⟩.

Example 7 The set 42Z = {. . . ,−84,−42, 0, 42, 84, . . . } of integer multiples of
42 is a subgroup of Z. It is generated by 42, i.e., 42Z = ⟨42⟩. A subgroup of
the symmetric group S4 is the eight element set

{id, (1 2 3 4
2 3 4 1), (

1 2 3 4
3 4 1 2), (

1 2 3 4
4 1 2 3), (

1 2 3 4
2 1 4 3), (

1 2 3 4
4 3 2 1), (

1 2 3 4
1 4 3 2), (

1 2 3 4
3 2 1 4)}.

This subgroup describes all symmetries of a square. A set of generators is given
by {(1 2 3 4

2 3 4 1), (
1 2 3 4
2 1 4 3)}.

The action of a group G on a set S allows to define an equivalence relation
on S via s ∼ t ⇐⇒ ∃g ∈ G : t = g(s). It is straightforward to verify that the
properties of a group action ensure that ∼ is indeed an equivalence relation.
The equivalence classes are called the orbits of the group action. So, the orbit
of s ∈ S is the set {t ∈ S | s ∼ t} = {g(s) | g ∈ G}.

Example 8 We reconsider the group action of S4 on the set S = {♣,♢,♠,♡}4
discussed in Example 6. In the example, we have seen that (♣,♢,♠,♡) ∼
(♡,♣,♢,♠). In fact, the orbit of (♣,♢,♠,♡) consists of 24 elements (all
the possible permutations of the four symbols ♣,♢,♠,♡). The orbit of s =
(♡,♡,♡,♡) only consists of a single element, namely s itself.

From a group G with binary operation ∗, we can construct another group,
called the opposite group and denoted by Gop. This group has the same under-
lying set as G, i.e., Gop = G, and its group operation ∗op : Gop ×Gop → Gop

is defined as g ∗op g′ := g′ ∗g. Thus, the operation in Gop is the operation from
the original group G but with the order of the arguments reversed.

Example 9 Consider the group Z of integers together with addition. In this
case, the opposite group Zop is simply Z itself. This follows from the fact that

Symmetries of Dependency Quantified Boolean Formulas 9

integer addition is commutative, i.e., a + b = b + a for all a, b ∈ Z. More
generally, for any commutative group G, the opposite group is simply G itself.

For the noncommutative group S4, the opposite group Sop
4 actually has a

different structure. For example, for π = (1 2 3 4
2 3 4 1) and σ = (1 2 3 4

2 1 4 3) we have

π ◦op σ = σ ◦ π = (1 2 3 4
1 4 3 2) ̸= (1 2 3 4

3 2 1 4) = π ◦ σ.

4 Symmetries of DQBFs

We can use group actions to describe and study symmetries of DQBFs. Like
in the case of QBFs [15], we distinguish between syntactic symmetries and se-
mantic symmetries. The former concern transformations of the syntactic struc-
ture of a formula and arise from group actions of the form G×BF(X ∪ Y)→
BF(X ∪ Y), which transform formulas into other formulas. Semantic symme-
tries, on the other hand, concern the semantics of a formula and arise from
group actions of the form G× S(P)→ S(P), which transform interpretations
of a prefix P into other interpretations. In both cases, we consider groups G
that preserve models of a given DQBF. We first discuss syntactic symmetries.

4.1 Syntactic Symmetries

In this section, we study symmetries of the syntactic structure of DQBFs. To
this end, we consider group actions of the form G×BF(X ∪Y)→ BF(X ∪Y),
for suitable groups G. We cannot allow arbitrary transformations of Boolean
formulas. As a technicality, we have to require that a group action respects
the semantics of propositional satisfiability and that it also respects the depen-
dency structure of DQBFs. We will formalize these compatibility requirements
in Definition 4 and 5 below. An analogous restriction is also required in the
case of QBFs, cf. [15, Def. 3].

For the following, it is convenient to introduce the following auxiliary no-
tion. For a set of variables V ⊆ X∪Y , a function g : BF(V)→ BF(V), and an
assignment σ ∈ A(V), we denote by g(σ) the assignment g(σ) ∈ A(V) defined
by g(σ)(v) = [g(v)]σ for all v ∈ V .

Definition 3 A function g : BF(V)→ BF(V) preserves propositional satisfi-
ability if [g(ϕ)]σ = [ϕ]g(σ) for every assignment σ ∈ A(V) and every formula
ϕ ∈ BF(V).

It follows from the definition that a function g that preserves propositional
satisfiability is compatible with the logical connectives in the sense that g(¬ϕ)
and ¬g(ϕ) are logically equivalent, as are g(ϕ ◦ ψ) and g(ϕ) ◦ g(ψ) for all
ϕ, ψ ∈ BF(V) and every binary connective ◦. Therefore, such a function is
essentially determined by its values on the variables.

10 Clemens Hofstadler et al.

Example 10 Let V = {x, y, z}. There is a function g : BF(V) → BF(V) that
preserves propositional satisfiability and satisfies g(x) = ¬x, g(y) = z, g(z) =
y. For such a function, we have, for example, g((x⊕y)∧¬z) = (¬x⊕z)∧¬y. If a
function h : BF(V)→ BF(V) satisfies h(x∧y) = x, h(x) = x, h(y) = y, then it
cannot preserve propositional satisfiability, because the formulas h(x∧ y) = x
and h(x) ∧ h(y) = x ∧ y are not logically equivalent.

To formally specify that syntactic symmetries have to respect the depen-
dency structure of DQBFs, we fix a prefix P = ∀x1, . . . , xn∃y1(D1), . . . , yk(Dk).
In the following, we say that a Boolean formula ϕ ∈ BF(Y) depends on a vari-
able xi if ϕ contains a variable yj such that xi ∈ Dj .

Definition 4 Let P = ∀x1, . . . , xn∃y1(D1), . . . , yk(Dk) be a prefix for X
and Y . A bijective function g : BF(X∪Y)→ BF(X∪Y) is admissible (w.r.t. P)
if the following conditions are satisfied for all i ∈ {1, . . . , n} and j ∈ {1, . . . , k}:

1. g preserves propositional satisfiability;
2. g(xi) ∈ BF(X) and g(yj) ∈ BF(Y);
3. if g(yj) depends on xi, then g

−1(xi) ∈ BF(Dj);

The first condition is the same as the first condition in [15, Def. 3] for
the QBF case. The other two conditions in Definition 4 generalize the second
condition in [15, Def. 3]. They ensure that admissible functions transform
existential (resp. universal) variables into existential (resp. universal) formulas
and that admissible functions preserve the dependencies of the prefix P .

Example 11 Consider the prefix P = ∀x1, x2∃y1
(
{x1}

)
, y2

(
{x2}

)
. There is an

admissible function g : BF(X∪Y)→ BF(X∪Y) satisfying g(x1) = x2, g(x2) =
x1, g(y1) = y2, g(y2) = y1. A function h : BF(X ∪ Y) → BF(X ∪ Y) with
h(x1) = y1 cannot be admissible because of the second condition. Neither
can be a function h which leaves x1 and x2 fixed but exchanges y1 and y2.
This follows from the third condition, as then h(y1) = y2 depends on x2, but
h−1(x2) = x2 ̸∈ BF({x1}).

Like in the case of QBFs, cf. [15, Thm. 5], admissible functions preserve the
truth value of DQBFs. More precisely, if g is an admissible function w.r.t. a
prefix P , then a DQBF P.ϕ is true if and only if P.g(ϕ) is true. More precisely,
there is an explicit correspondence between models of P.ϕ and those of P.g(ϕ).
We defer the formalization of this statement and its proof to Proposition 1 in
the next section, since they rely on constructions introduced later.

By Remark 3, we can consider the elements of a group G which acts on
BF(X ∪Y) as bijective functions on BF(X ∪Y). Therefore, we extend Defini-
tion 4 above to the elements of such a group and say that g ∈ G is admissible
(w.r.t. P) if the corresponding bijective function is admissible (w.r.t. P).

Definition 5 Let P be a prefix for X and Y and let G be a group. A group
action G × BF(X ∪ Y) → BF(X ∪ Y) is admissible (w.r.t. P) if all elements
g ∈ G are admissible w.r.t. P .

Symmetries of Dependency Quantified Boolean Formulas 11

If we have an admissible group action G× BF(X ∪ Y) → BF(X ∪ Y), we
may also say that G acts admissibly on BF(X ∪ Y). Using admissible group
actions, we can now introduce the concept of syntactic symmetry groups.

Definition 6 Let P.ϕ be a DQBF and let G be a group acting admissibly
on BF(X ∪ Y) w.r.t. P . We call G a syntactic symmetry group for P.ϕ if
[P.ϕ]s = [P.g(ϕ)]s for all g ∈ G and all interpretations s ∈ S(P).

Like in the case of QBFs, cf. the discussion after [15, Def. 6], being a
symmetry group is strictly speaking not a property of the group G itself but
rather of the action of G on the Boolean formulas. We call the elements g ∈ G
of a syntactic symmetry group G (syntactic) symmetries of the DQBF P.ϕ.
Moreover, for any syntactic symmetry g of P.ϕ, the definition above implies
that P.ϕ and P.g(ϕ) have the same models.

We note that this definition of syntactic symmetry groups generalizes the
corresponding notion for QBFs introduced in [15, Def. 6] in two ways: Not
only does Definition 6 apply to DBQFs while [15, Def. 6] only applies to
QBFs, but also, more interestingly, the latter requires logical equivalence of
the Boolean formulas ϕ and g(ϕ), whereas the former only requires equivalence
of the quantified formulas P.ϕ and P.g(ϕ). This more general definition now
allows to deal with syntactic symmetries of (D)QBFs that were not covered
by the previous definition.

Example 12 Consider the DQBF Φ = P.(x ∧ y) with prefix P = ∀x∃y
(
{x}

)
.

A syntactic symmetry group for Φ is G = {id, g}, where g is an admissible
function with g(x) = ¬x and g(y) = y. It is easy to see that

[Φ]s = [P.(x ∧ y)]s = ⊥ = [P.(¬x ∧ y)]s = [P.g(x ∧ y)]s

for all s ∈ S(P). This shows, on the one hand, that g is indeed a symmetry
of Φ, and, on the other hand, that Φ is false. We note that, according to [15,
Def. 6], the function g would not be a symmetry of the QBF ∀x∃y.(x ∧ y)
because the Boolean formulas x ∧ y and g(x ∧ y) = ¬x ∧ y are not equivalent.

4.2 Semantic Symmetries

In the following, we study symmetries of the semantic structure of DQBFs.
To this end, we fix a prefix P and consider transformations of interpretations
for P , i.e., we look at group actions of the form G×S(P)→ S(P), for suitable
groups G. Given a DQBF Φ, we are interested in group actions that transform
models of Φ into other models. In contrast to the previous section, we now
have to impose no technical restrictions on the considered group actions.

Definition 7 Let P.ϕ be a DQBF and let G × S(P) → S(P) be a group
action on S(P). We call the group G a semantic symmetry group for P.ϕ if
[P.ϕ]s = [P.ϕ]g(s) for all g ∈ G and all interpretations s ∈ S(P).

12 Clemens Hofstadler et al.

Analogous to syntactic symmetry groups, we call the elements of a semantic
symmetry group (semantic) symmetries. It was observed for QBFs that many
semantic symmetries arise from syntactic symmetries, cf. [15, Sec. 5]. This ob-
servation also generalizes to DQBFs. To see this, we first note that syntactic
transformations of Boolean formulas naturally lead to semantic transforma-
tions of assignments. In particular, for any set of variables V ⊆ X∪Y , a group
action on BF(V) naturally induces a group action of the opposite group on the
set A(V) of assignments for V . Recall that, for a function g : BF(V)→ BF(V)
and an assignment σ ∈ A(V), the assignment g(σ) is given by g(σ)(v) = [g(v)]σ
for all v ∈ V .

Lemma 2 Let V ⊆ X ∪ Y be a set of variables. If a group G acts on BF(V),
then the opposite group Gop acts on A(V) via the map (g, σ) 7→ g(σ).

Proof We have to verify that the map Gop × A(V) → A(V), (g, σ) 7→ g(σ) is
compatible with the group operation ∗op in Gop, i.e., that for all g, h ∈ Gop

and σ ∈ A(V), we have (g ∗op h)(σ) = g(h(σ)) as well as e(σ) = σ, where e is
the neutral element of Gop.

For the first property, observe that, for all v ∈ V , we have

(g ∗op h)(σ)(v) = [(g ∗op h)(v)]σ = [(h ∗ g)(v)]σ
= [h(g(v))]σ = [g(v)]h(σ) = [v]g(h(σ)),

where the third equality follows from the fact that G acts on BF(V). Similarly,
the second property follows, for all v ∈ V , from

e(σ)(v) = [e(v)]σ = [v]σ = σ(v),

where the second equality uses the fact G acts on BF(V).

The following example shows how a syntactic symmetry of a DQBF natu-
rally gives rise to a semantic symmetry.

Example 13 Consider the DQBF

P.ϕ = ∀x1, x2∃y1
(
{x1}

)
, y2

(
{x2}

)
. (x1 ∨ y1) ∧ (x2 ∨ y2) .

A syntactic symmetry of P.ϕ is given by an admissible function g, which ex-
changes x1 with x2 and y1 with y2. We describe how to translate this syntactic
symmetry into a semantic one.

Each interpretation s = (s1, s2) ∈ S(P) of P consists of two Skolem func-
tions, which, by Remark 1, can be represented by Boolean formulas si ∈
BF({xi}) (i = 1, 2). Now, exchanging x1 with x2 in the original formula P.ϕ
corresponds semantically to exchanging the roles of x1 and x2 in the Skolem
functions s1 and s2, respectively, i.e., it corresponds to replacing si by g(si)
for i = 1, 2. Further, exchanging y1 with y2 in P.ϕ corresponds semantically
to exchanging the order of the Skolem functions in the interpretation s, i.e, it

Symmetries of Dependency Quantified Boolean Formulas 13

corresponds to replacing s = (s1, s2) by (s2, s1). Combining these two steps,
we consider the function f : S(P)→ S(P) defined by

(s1, s2) 7→ (g(s2), g(s1)).

This function f satisfies

[P.g(ϕ)]s = [P.ϕ]f(s),

for all s ∈ S(P). Moreover, since g is a syntactic symmetry of P.ϕ, this implies

[P.ϕ]s = [P.ϕ]f(s),

showing that f is a semantic symmetry of P.ϕ.
For example, for s = (¬x1, x2) ∈ S(P), we have f(s) = (x1,¬x2) and

[P.ϕ]s = ⊥ = [P.ϕ]f(s). Analogously, for s′ = (¬x1,⊤), we get f(s′) = (⊤,¬x2)
and [P.ϕ]s′ = ⊤ = [P.ϕ]f(s′).

The construction from the previous example is formalized in the definition
below. It allows to construct, starting from a syntactic symmetry, a semantic
one, mimicking the same behaviour.

For what follows, we have to generalize one definition slightly. So far, for
V ⊆ X∪Y , the assignment g(σ) ∈ A(V) is defined for a function g : BF(V)→
BF(V) and an assignment σ ∈ A(V) on the same set of variables. In the fol-
lowing, however, we need to consider cases where g : BF(X∪Y)→ BF(X∪Y),
but σ ∈ A(X). For an arbitrary function g, considering g(σ) in this setting
would not make sense, because, for x ∈ X, the formula g(x) could contain
variables from Y and thus g(σ)(x) = [g(x)]σ would not be well-defined. How-
ever, if g is an admissible function, then, by definition, g(x) ∈ BF(X) for all
x ∈ X, and thus, in this case, we can define g(σ) ∈ A(X) as the assignment
defined by g(σ)(x) = [g(x)]σ for all x ∈ X.

Definition 8 Let G be a group acting admissibly on BF(X ∪ Y) w.r.t. a
prefix P . For g ∈ G and s ∈ S(P), we define g(s) ∈ S(P) as the interpretation
t ∈ S(P) with the property that σt = g(g−1(σ)s) for all assignments σ ∈ A(X).

In order to justify this definition, we have to show that the expression
t = g(s) is well-defined. To see this, let j ∈ {1, . . . , k} be arbitrary, and let Dj

be the dependency set of yj . We have to show that, for any two assignments
σ, σ′ ∈ A(X) with σ(x) = σ′(x) for all x ∈ Dj , we have

[yj]g(g−1(σ)s) = [yj]g(g−1(σ′)s).

Suppose otherwise. Then, the admissibility of g implies

[g(yj)]g−1(σ)s ̸= [g(yj)]g−1(σ′)s ,

which means that g(yj) contains a variable y ∈ Y such that

[y]g−1(σ)s ̸= [y]g−1(σ′)s .

14 Clemens Hofstadler et al.

This implies that there must be a variable x in the dependency set of y with

[x]g−1(σ)s ̸= [x]g−1(σ′)s ,

i.e., [g−1(x)]σ ̸= [g−1(x)]σ′ . Then, g−1(x) contains some variable xi ∈ X such
that σ(xi) ̸= σ′(xi). However, by the admissibility of the group action, xi
must belong to Dj , which gives a contradiction to the choice of σ, σ′. Thus, t
is well-defined.

We collect some properties of the interpretation g(s).

Lemma 3 Let Gsyn be a group acting admissibly on BF(X∪Y) w.r.t. a prefix
P . For every g ∈ Gsyn, the bijective function S(P)→ S(P), s 7→ g(s) satisfies
g(σ)g(s) = g(σs) for all s ∈ S(P) and σ ∈ A(X).

Proof The map s 7→ g(s) is clearly a bijective function with inverse given by
s 7→ g−1(s). Furthermore, for any s ∈ S(P) and σ ∈ A(X), we have

g(σ)g(s) = g(g−1(g(σ))s) = g(σs).

The following result formalizes the statement that we can transform syn-
tactic symmetries into semantic ones.

Proposition 1 Let P.ϕ be a DQBF and let Gsyn be a group acting admissibly
on BF(X ∪ Y) w.r.t. P . Then, for every g ∈ Gsyn and all s ∈ S(P), we have

[P.g(ϕ)]s = [P.ϕ]g(s).

In particular, P.ϕ is true if and only if P.g(ϕ) is true, and s is a model of
P.g(ϕ) if and only if g(s) is a model of P.ϕ.

Proof We show that [P.g(ϕ)]s = ⊤ if and only if [P.ϕ]g(s) = ⊤. In fact, since G
is a group, it suffices to show only one direction, say “⇐”. To this end, assume
that [P.ϕ]g(s) = ⊤, i.e., [ϕ]σg(s)

= ⊤ for all σ ∈ A(X). Note that this implies
that also [ϕ]g(σ)g(s) = ⊤ for all σ ∈ A(X). Then, Lemma 3 yields

[g(ϕ)]σs
= [ϕ]g(σs) = [ϕ]g(σ)g(s) = ⊤,

for all σ ∈ A(X).

Starting from a syntactic symmetry group Gsyn, we can collect all bijec-
tive functions that satisfy a similar condition like the ones constructed in
Lemma 3. This yields a semantic symmetry group, which we call the asso-
ciated group of Gsyn. Note that the definition below is slightly more general
than the construction in Lemma 3, in the sense that, in Lemma 3, the element
g ∈ Gsyn is fixed, while, in the definition below, g may depend on s and σ.

Definition 9 Let Gsyn be a group acting admissibly on BF(X ∪ Y) w.r.t. a
prefix P . Furthermore, let Gsem be the set of all bijective functions f : S(P)→
S(P) such that for every s ∈ S(P) and every assignment σ ∈ A(X) there
exists g ∈ Gsyn with g(σ)f(s) = g(σs). Then Gsem is called the associated
group of Gsyn.

Symmetries of Dependency Quantified Boolean Formulas 15

We record the following result for later use. It follows immediately from
Lemma 3 and from the definition of the associated group.

Lemma 4 Let Gsyn be a group acting admissibly on BF(X ∪ Y) w.r.t. a pre-
fix P . For any g ∈ Gsyn, the function S(P) → S(P), s 7→ g(s) lies in the
associated group of Gsyn.

If Gsyn is a syntactic group, then the associated group Gsem is a semantic
symmetry group.

Lemma 5 If Gsyn is a syntactic symmetry group for a DQBF Φ, then the
associated group Gsem of Gsyn is a semantic symmetry group for Φ.

Proof First, we show that Gsem is indeed a group. To this end, note that it
contains the identity function. To see that Gsem is closed under the binary
operation of function decomposition, let f, f ′ ∈ Gsem, and let s ∈ S(P) and
σ ∈ A(X) be arbitrary. We have to show that there exists a g ∈ Gsyn such that
g(σ)(f ′◦f)(s) = g(σs). By assumption on f and f ′, we know that there exist
h, h′ ∈ Gsyn such that h(σ)f(s) = h(σs) and h′(h(σ))f ′(f(s)) = h′(h(σ)f(s)).
Now, with g = h′ ∗op h = h ∗ h′, where ∗ is the group operation in Gsyn, we
obtain,

g(σ)(f ′◦f)(s) = (h′ ∗op h)(σ)(f ′◦f)(s) = h′(h(σ))f ′(f(s))

= h′(h(σ)f(s)) = h′(h(σs)) = (h′ ∗op h)(σs) = g(σs),

where the second and fifth equality follow from Lemma 2. Finally, Gsem is also
closed under taking inverses. To see this, note that g(σ)f(s) = g(σs) implies
g−1(g(σ)f(s)) = σs. But every s can be written as s = f−1(s′) for some
s′ ∈ S(P) and every σ can be written as σ = g−1(σ′) for some σ′ ∈ A(X).
This yields g−1(σ′

s′) = g−1(σ′)f−1(s′) for all s′ ∈ S(P) and σ′ ∈ A(X), and
hence, f−1 ∈ Gsem.

Next, we show that Gsem is a semantic symmetry group. To this end, let
f ∈ Gsem and s ∈ S(P). We have to show that [P.ϕ]s = [P.ϕ]f(s). It suffices
to show that [P.ϕ]s = ⊥ ⇐⇒ [P.ϕ]f(s) = ⊥. In fact, since Gsem is a group,
it even suffices to only show one direction, say “⇒”. Recall that [P.ϕ]f(s) = ⊥
if and only if there exists an assignment τ ∈ A(X) such that [ϕ]τf(s)

= ⊥. By
assumption, there exists an assignment σ ∈ A(X) such that [ϕ]σs

= ⊥. Fix
such a σ and note that, since Gsem is the associated group of Gsyn, there exists
a g ∈ Gsyn such that g(σ)f(s) = g(σs). Then,

[ϕ]g(σ)f(s)

↓
choice of g

= [ϕ]g(σs) =
↑

g admissible

[g(ϕ)]σs

↓
g symmetry

= [ϕ]σs
=
↑

choice of σ

⊥.

This shows that, for τ = g(σ) ∈ A(X), we have [ϕ]τf(s)
= ⊥, implying that

[P.ϕ]f(s) = ⊥ as claimed.

16 Clemens Hofstadler et al.

The associated semantic group is very versatile and typically contains a
lot more symmetries than the corresponding syntactic symmetry group. In
particular, if two interpretations are related via one semantic symmetry, then
the associated group Gsem also contains elements that allow to exchange and
combine these interpretations. For example, for any two interpretations s, s′ ∈
S(P) that are related via some f ∈ Gsem via s′ = f(s), there exists another
symmetry h ∈ Gsem with h(s) = s′, h(s′) = s, and h(t) = t for all other
t ∈ S(P) \ {s, s′}. More generally, the associated group contains elements that
allow to exchange subtrees of interpretations. To formalize this statement,
we introduce the following notion of a section of an interpretation. Recall
from Remark 1 that every Skolem function si with dependency set Di can be
represented by a Boolean formula in BF(Di).

Definition 10 Let P = ∀x1, . . . , xn∃y1(D1), . . . , yk(Dk) be a prefix for X
and Y and let X0 ⊆ X. Furthermore, let s = (s1, . . . , sk) ∈ S(P) be an
interpretation and let σ ∈ A(X0) be an assignment. For i = 1, . . . , k, let
ϕi ∈ BF(Di) denote a Boolean formula representing the Skolem function si
and let ϕi|σ ∈ BF(Di \X0) denote the formula obtained from ϕi by assigning
all the variables in X0 as specified by σ.

The section of the Skolem function si with respect to σ is the Skolem
function si|σ : {⊤,⊥}|Di\X0| → {⊤,⊥} represented by the formula ϕi|σ. The
section of the interpretation s with respect to σ is the interpretation s|σ =
(s1|σ, . . . , sk|σ) ∈ S(P0), where P0 denotes the prefix obtained from P by
discarding all variables in X0.

In other words, the Skolem function si|σ is obtained from si by setting
those inputs of si that are in X0 to the values specified by the assignment σ.
The following example illustrates how this is done.

Example 14 Consider a Skolem function si : {⊤,⊥}3 → {⊤,⊥} for an exis-
tential variable yi with dependency set Di = {x1, x3, x5}. Say that si can be
represented by the Boolean formula

ϕi = (¬x1 ∨ x3) ∧ (¬x1 ∨ x5) ∧ (x1 ∨ ¬x3 ∨ ¬x5).

Then, for X0 = {x2, x4, x5}, the section of si w.r.t. an assignment σ ∈ A(X0)
such that σ(x5) = ⊥ is the Skolem function si|σ : {⊤,⊥}2 → {⊤,⊥} repre-
sented by the Boolean formula

ϕi|σ = (¬x1 ∨ x3) ∧ (¬x1 ∨ ⊥) ∧ (x1 ∨ ¬x3 ∨ ⊤) ≡ ¬x1.

In other words, si|σ is the binary function which returns ⊤ if and only if
its first input is ⊥. Equivalently, si|σ can also be described as si|σ(ξ1, ξ2) =
si(ξ1, ξ2,⊥). Note that, although one input would suffice to describe si|σ, we
still consider si|σ as a binary function.

For τ ∈ A(X0) with τ(x5) = ⊤, we obtain

ϕi|τ = (¬x1 ∨ x3) ∧ (¬x1 ∨ ⊤) ∧ (x1 ∨ ¬x3 ∨ ⊥) ≡ x1 ↔ x3.

Therefore, si|τ is the binary function which returns ⊤ if and only if both its
inputs are equal.

Symmetries of Dependency Quantified Boolean Formulas 17

The section s|σ of an interpretation s with respect to σ can also be visualized
nicely as a subtree of the tree representing the interpretation s. We assume
that X0 contains the first l universal variables, i.e., X0 = {x1, . . . , xl} and
X \X0 = {xl+1, . . . , xk} for some l ∈ {1, . . . , k}. We note that this can always
be achieved by renaming the variables.

The following tree represents an interpretation s. The assignment σ is
visualized as a path starting at the root. The shaded area is the subtree rep-
resenting the section s|σ.

s

σ

X0

X \X0

Y

Using the notion of sections, we can now better describe the structure of the
associated semantic group Gsem. In particular, the associated group contains
elements that allow to exchange sections of an interpretation s ∈ S(P) with
that of f(s) for any f ∈ Gsem. In the simplest case, where we assume that X0

contains the first l universal variables and where we ignore some technicalities,
this fact can be visualized as follows:

σ0

s

σ0

f(s)

f

σ0

s′

h

In the first row, we see an interpretation s and its image f(s) under some
semantic symmetry f ∈ Gsem. In both interpretations, the section with re-
spect to some assignment σ0 ∈ A(X0) is highlighted. The associated semantic
group now contains an element h ∈ Gsem that allows to transform s into the
interpretation s′ depicted in the second row, which coincides with s except for
the fact that the section s|σ0

has been replaced by f(s)|σ0
.

18 Clemens Hofstadler et al.

The following lemma formalizes this fact and generalizes it to arbitrary
subsets X0 ⊆ X.

Lemma 6 Let P be a prefix for X and Y , let Gsyn be a group acting admissibly
on BF(X ∪ Y), and let Gsem be the associated semantic group. Let X0 ⊆ X
and σ0 ∈ A(X0) be such that ρ|X0 = σ0 implies g(ρ)|X0 = σ0 for all g ∈ Gsyn

and all ρ ∈ A(X). Then, for any s ∈ S(P) and f ∈ Gsem, there exists an
interpretation s′ ∈ S(P) such that

s′|τ =

{
f(s)|σ0 if τ = σ0,

s|τ if τ ̸= σ0,

for all τ ∈ A(X0). Furthermore, there exists h ∈ Gsem with h(s) = s′.

Proof The existence of s′ is easy to see. The ith component of s′ is the function
which evaluates to the value of the ith component of f(s) for all assignments
in A(X) whose restriction to X0 is σ0 and which evaluates to the value of the
ith component of s for all remaining assignments.

Define h : S(P) → S(P) by h(s) = s′, h(s′) = s, and h(t) = t for all
t ∈ S(P) \ {s, s′}. Obviously, h is a bijective function. To show that h belongs
to Gsem, we must show that for every t ∈ S(P) and every assignment ρ ∈ A(X)
there exists g ∈ Gsyn such that g(ρ)h(t) = g(ρt). For t ∈ S(P) \ {s, s′} we have
h(t) = t, so g can be chosen as the neutral element of Gsyn. For the other
cases t ∈ {s, s′}, let ρ ∈ A(X) be an assignment. If ρ|X0 ̸= σ0, then ρs′ = ρs
by definition of s′ and we can again choose g as the neutral element of Gsyn.
If ρ|X0

= σ0, then ρs′ = ρf(s), again by definition of s′. By definition of the
associated group, there exists g ∈ Gsyn with

g(ρ)f(s) = g(ρs).

Now, by assumption g(ρ)|X0 = σ0, and thus, g(ρ)s′ = g(ρ)f(s). This yields

g(ρ)h(s) = g(ρ)s′ = g(ρ)f(s) = g(ρs).

Analogously, by definition of Gsem, there exists g′ ∈ Gsyn such that

g′(ρ)f−1(s′) = g′(ρs′).

Furthermore, by assumption g′(ρ)|X0
= σ0, which implies g′(ρ)s′ = g′(ρ)f(s).

Applying f−1 to both interpretations in this identity yields g′(ρ)f−1(s′) =
g′(ρ)s. Thus, ultimately we obtain

g′(ρ)h(s′) = g′(ρ)s = g′(ρ)f−1(s′) = g′(ρs′).

This covers all cases.

Symmetries of Dependency Quantified Boolean Formulas 19

5 Conjunctive Symmetry Breakers

We note that the following discussion is completely analogous to the case of
QBFs, cf. the beginning of [15, Sec. 6].

The action of a syntactic symmetry group for a DQBF P.ϕ splits the set
of Boolean formulas BF(X ∪ Y) into orbits. By definition, for all formulas ψ
in the orbit of ϕ, the original formula P.ϕ and P.ψ share the same models:

the orbit of ϕ

for any ψ in this orbit,
the formula P.ψ has
the same models as P.ϕ

Therefore, for finding a model for P.ϕ, we can replace ϕ by any formula in its
orbit.

A semantic symmetry group for P.ϕ, on the other hand, splits the set of
interpretations S(P) into orbits so that each orbit either contains no models
at all for P.ϕ or only models for P.ϕ:

an orbit containing
no models at all

an orbit containing
only models

Therefore, for finding a model for P.ϕ, it suffices to check only one interpreta-
tion per orbit.

To goal of symmetry breaking is to exploit this fact and to construct a
Boolean formula ψ ∈ BF(X ∪ Y), called a (conjunctive) symmetry breaker, in
a such way that P.ψ has at least one model in every orbit. Then, instead of
solving P.ϕ, we can solve P.(ϕ ∧ ψ). By Lemma 1, every model for the latter
is also a model for the former. Moreover, if P.ϕ has a model, then there exists
a whole orbit consisting only of models. Thus, by construction, this orbit also
contains a model of P.(ϕ ∧ ψ). Ideally, we want to construct ψ in such a way
that P.ψ contains precisely one model per orbit. In this way, we have to inspect
only one element per orbit when solving P.(ϕ ∧ ψ), the one model for P.ψ.

When constructing symmetry breakers, we can also consider the effect of
a syntactic symmetry group for P.ϕ. Such a symmetry group allows us to
exchange a symmetry breaker ψ by g(ψ) for any syntactic symmetry g. Thus,
ultimately we arrive at the following definition.

Definition 11 Let P be a prefix for X and Y , let Gsyn be a group acting
admissibly on BF(X ∪Y), and let Gsem be a group acting on S(P). A formula
ψ ∈ BF(X ∪ Y) is called a conjunctive symmetry breaker for Gsyn and Gsem

if for every s ∈ S(P) there exist gsyn ∈ Gsyn and gsem ∈ Gsem such that
[P.gsyn(ψ)]gsem(s) = ⊤.

20 Clemens Hofstadler et al.

Example 15 Consider the DQBF

P.ϕ = ∀x1, x2∃y1
(
{x1}

)
, y2

(
{x2}

)
. (x1 ∨ y1) ∧ (x2 ∨ y2) .

As noted in Example 13, a syntactic symmetry for P.ϕ is given by an admissible
function g, which exchanges x1 with x2 and y1 with y2. So, we can take Gsyn =
{id, g} as a syntactic symmetry group. Concerning semantic symmetries, we
note that every interpretation in S(P) is of the form:

⊥

⊥

α

γ

⊤

α

δ

⊤

⊥

β

γ

⊤

β

δ

y2:

y1:

x2:

x1:

Semantic symmetries for P.ϕ are given by the function fβ : S(P) → S(P),
which replaces β by ¬β and leaves everything else unchanged, and by fδ : S(P)→
S(P), which replaces δ by ¬δ and leaves everything else unchanged. Thus, the
group Gsem = ⟨fβ , fδ⟩ is a semantic symmetry group for P.ϕ.

We claim that ψ = y1 → y2 is a conjunctive symmetry breaker for Gsyn

and Gsem. To prove this, let s ∈ S(P) be an arbitrary interpretation. Note
that [P.ψ]s = ⊤ if and only if the propositional formula

α→ γ ∧ α→ δ ∧ β → γ ∧ β → δ, (1)

with α, β, γ, δ as specified by s, holds.
Using the syntactic symmetry g and replacing ψ by g(ψ) = y2 → y1 if

necessary, we can always assume that α → γ holds for the interpretation s.
Then, using the semantic symmetries fβ and fδ, we can replace s by gsem(s)
so that β = ⊥ and δ = ⊤. Under this interpretation gsem(s), the formula (1)
evaluates to true. This shows that, for all s ∈ S(P), there exist gsyn ∈ Gsyn

and gsem ∈ Gsem such that [P.gsyn(ψ)]gsem(s) = ⊤. Thus, ψ is a conjunctive
symmetry breaker for Gsyn and Gsem as claimed.

The following theorem is the main property of conjunctive symmetry break-
ers. It generalizes the analogous result [15, Thm. 16] for QBFs.

Theorem 1 Let P.ϕ be a DQBF. Furthermore, let Gsyn and Gsem be a syn-
tactic and a semantic symmetry group, respectively, for P.ϕ. If ψ ∈ BF(X∪Y)
is a conjunctive symmetry breaker for Gsyn and Gsem, then P.ϕ is true if and
only if P.(ϕ ∧ ψ) is true.

Proof The implication “⇐” follows immediately from Lemma 1. For the other
implication “⇒”, suppose that P.ϕ is true. Then there exists s ∈ S(P) such
that [P.ϕ]s = ⊤. We have to show that there exists t ∈ S(P) such that also

Symmetries of Dependency Quantified Boolean Formulas 21

[P.(ϕ∧ψ)]t = ⊤. Since ψ is a conjunctive symmetry breaker for Gsyn and Gsem,
there exist gsyn ∈ Gsyn and gsem ∈ Gsem such that [P.gsyn(ψ)]gsem(s) = ⊤. Using
Lemma 1 and the fact that Gsyn and Gsem are symmetry groups for Φ, we get

[P.gsyn(ϕ ∧ ψ)]gsem(s) = [P.(gsyn(ϕ) ∧ gsyn(ψ))]gsem(s)

= [P.gsyn(ϕ)]gsem(s) ∧ [P.gsyn(ψ)]gsem(s) = ⊤ ∧⊤ = ⊤,

showing that P.gsyn(ϕ∧ψ) is true. By Proposition 1, it follows that P.(ϕ∧ψ)
is true.

Example 16 Reconsider the DQBF

P.ϕ = ∀x1, x2∃y1
(
{x1}

)
, y2

(
{x2}

)
. (x1 ∨ y1) ∧ (x2 ∨ y2) .

and the conjunctive symmetry breaker ψ = y1 → y2 from Example 15. Clearly,
P.ϕ is true and a model is, for example, s = (¬x1,¬x2) ∈ S(P). Moreover,
also P.(ϕ ∧ ψ) is true, with model s′ = (¬x1,⊤) ∈ S(P). Note that s is not a
model for P.(ϕ ∧ ψ), but s′ can be obtained from s by applying the semantic
symmetry fδ from Example 15.

6 Construction of Symmetry Breakers

In the following, we discuss the construction of a conjunctive symmetry breaker
for a given DQBF P.ϕ. What is worth noting here is that such a symmetry
breaker can be constructed without the explicit knowledge of a semantic sym-
metry group. It suffices to know a syntactic symmetry group for P.ϕ; the
associated semantic group will act as the corresponding semantic symmetry
group.

The general idea to construct a conjunctive symmetry breaker for P.ϕ is the
same as for QBF [15, Sec. 8] and similar to the approach for SAT introduced
in [8], see also [19]. First, we impose an order on the set of interpretations
S(P). Then, using the information provided by a syntactic symmetry group,
we construct a formula ψ ∈ BF(X ∪Y) so that P.ψ has (at least) the minimal
element in each orbit (of the associated semantic symmetry group) as a model.
Any such formula is, by construction, a conjunctive symmetry breaker for P.ϕ.
The following theorem provides one way of constructing such a symmetry
breaker. It is a direct generalization of the symmetry breaker construction for
QBF introduced in [15, Thm. 21].

Theorem 2 Let P = ∀x1, . . . , xn∃y1(D1), . . . , yk(Dk) be a prefix for X and Y .
Furthermore, let Gsyn be a group acting admissibly on BF(X∪Y) and let Gsem

be the associated group of Gsyn. Then

ψ =
∧

g∈Gsyn

k∧
i=1

((∧
x∈D1∪···∪Di

(x↔ g(x)) ∧
∧
j<i

(yj ↔ g(yj))
)
→ (yi → g(yi))

)
is a conjunctive symmetry breaker for Gsyn and Gsem.

22 Clemens Hofstadler et al.

Proof Fix an arbitrary order < on the set of assignments A(X). On the set
of interpretations S(P), define an order s < s′ for s = (s1, . . . , sk) and s′ =
(s′1, . . . , s

′
k), if s ̸= s′ and for the smallest index i ∈ {1, . . . , k} with si ̸= s′i and

the smallest assignment σ ∈ A(X) with [yi]σs
̸= [yi]σs′ , we have [yi]σs

= ⊥
and [yi]σs′ = ⊤.

Let s0 ∈ S(P). We need to show that there are gsyn ∈ Gsyn and gsem ∈
Gsem such that [gsyn(ψ)]gsem(s0) = ⊤. Let gsyn = id and let gsem be such that
s := gsem(s0) is as small as possible in the order defined above. Note that such
a choice of s is always possible since the set of interpretations S(P) is finite.

We show that [ψ]s = ⊤. Assume, for contradiction, that [ψ]s = ⊥. Then
there exists an assignment σ ∈ A(X) such that [ψ]σs = ⊥. In particular, there
exist g ∈ Gsyn and i ∈ {1, . . . , k} satisfying the following properties:

1. [x]σ = [g(x)]σ for all x ∈ X0 := D1 ∪ · · · ∪Di;
2. [yj]σs

= [g(yj)]σs
for all j < i;

3. [yi]σs
= ⊤ ≠ ⊥ = [g(yi)]σs

.

Fix such an i and such an assignment σ. We may assume that the chosen σ is
minimal with respect to the order fixed at the beginning (among all σ’s that
qualify for the chosen i).

We will now construct another interpretation s′ = gsem(s0) for a suitable
gsem ∈ Gsem satisfying s′ < s, which will contradict the minimality of s.

By Lemma 3 and 4, the element g ∈ Gsyn can be translated into an element
f ∈ Gsem such that g(σ)f(s) = g(σs). In particular, the three conditions above
imply:

1. [yj]σs
= [yj]σf(s)

for all j < i;
2. [yi]σf(s)

= ⊥.

By Lemma 6, applied to σ0 := σ|X0
and the subgroup G0 ⊆ Gsyn con-

sisting of all g0 ∈ Gsyn with [x]σ = [g0(x)]σ for all x ∈ X0, there exists an
interpretation s′ such that

s′|τ =

{
f(s)|σ0 if τ = σ0,

s|τ if τ ̸= σ0,

for all τ ∈ A(X0). Furthermore, there is h ∈ Gsem with h(s) = s′. By construc-
tion, we have [yj]τs = [yj]τs′ for all τ ∈ A(X) and all j < i, i.e., the functions
in the jth components of s and s′ agree for all j < i. Furthermore, at the ith
component, we have [yi]τs = [yi]τs′ for all τ < σ by the minimality of σ and
the choice of s′. Finally, we have [yi]σs = ⊤ ̸= ⊥ = [yi]σs′ . Therefore, s

′ < s,
in contradiction to the minimality of s.

Note that, if a formula ψ1 ∧ ψ2 is a conjunctive symmetry breaker, then
so are ψ1 and ψ2. Therefore, when constructing the symmetry breaker from
Theorem 2, we are free to limit the outermost conjunction to a subset of the
elements from Gsyn. This can be beneficial in situations where the syntactic
symmetry group contains a lot of elements, as it often happens in practice. In
such cases, picking a set E of generators for Gsyn and using only (some of)

Symmetries of Dependency Quantified Boolean Formulas 23

the elements from E to construct the symmetry breaker can help maintain a
manageable formula size.

Like in the case of SAT or QBF, also DQBF solvers typically expect their
input to be in conjunctive normal form (CNF). Recall that a DQBF P.ϕ is in
CNF if ϕ is a disjunction of clauses, where a clause is a conjunction of literals
and a literal is either a variable or its negation. While the symmetry breaker
from Theorem 2 as presented is not in CNF, it can be readily encoded in
this form. To this end, we generalize the encoding from [15, Sec. 8] for QBFs,
which, in turn, is based on the propositional case [11,19].

Fix a prefix P = ∀x1, . . . , xn∃y1(D1), . . . , yk(Dk) for X and Y . To simplify
the following discussion, we consider the following order of the propositional
variables X ∪ Y :

D1 , y1, D2 \ D1 , y2, . . . , Di \ (
⋃

j<i Dj) , yi, . . . , Dk \(
⋃

j<k Dj) , yk

Within each block Di \ (
⋃

j<i Dj) of universal variables, we assume an

arbitrary but fixed order. We denote by vj the jth variable in this sequence,
for j ∈ {1, . . . , n+k}. Using this order, we can, for g ∈ Gsyn and i ∈ {1, . . . , k},
write the subformula(∧

x∈D1∪···∪Di

(x↔ g(x)) ∧
∧
j<i

(yj ↔ g(yj))
)
→ (yi → g(yi))

of ψ from Theorem 2 as(di−1∧
j=1

(vj ↔ g(vj))
)
→ (vdi

→ g(vdi
)),

where di = |D1 ∪ · · · ∪Di|+ i.
Now, with a set of new variables {zg0 , . . . , z

g
n+k−1}, we recursively encode

the antecedent of the outer implication above by setting

zgj ↔ (zgj−1 ∧ (vj ↔ g(vj))

for j ∈ {1, . . . , n+ k− 1} and assuming the base case zg0 to be true. Thus, the
variable zgj encodes that vr and g(vr) are equivalent for all 1 ≤ r ≤ j. With
this, ψ is equivalent to the formula

zg0 ∧ (2)

n+k−1∧
j=1

(
zgj ↔

(
zgj−1 ∧ (vj ↔ g(vj))

))
∧ (3)

k∧
i=1

(
zgdi−1 → (vdi

→ g(vdi
))
)
, (4)

where again di = |D1 ∪ · · · ∪Di|+ i.
Before translating this formula into CNF, we note that the subformula (4)

can be used to simplify the conjunction (3). In particular, for each j, the outer

24 Clemens Hofstadler et al.

equivalence in (3) and be replaced by an implication ←, and if vj appears
in (4), then also the inner equivalence can be replaced by an implication ←.
For further details, see the proof of [11, Thm. 1]. Note that vj appears in (4)
if and only if vj ∈ Y . With this, the CNF encoding of the symmetry breaker
from Theorem 2 is given by the conjunction of the following formula for all
desired g ∈ Gsyn:

zg0 ∧
n+k−1∧
j=1
vj∈X

((
zgj ∨ ¬z

g
j−1 ∨ vj ∨ g(vj)

)
∧
(
zgj ∨ ¬z

g
j−1 ∨ ¬vj ∨ ¬g(vj)

))
∧

n+k−1∧
j=1
vj∈Y

((
zgj ∨ ¬z

g
j−1 ∨ ¬vj

)
∧
(
zgj ∨ ¬z

g
j−1 ∨ g(vj)

))
∧

k∧
i=1

(
¬zgdi−1 ∨ ¬vdi

∨ g(vdi
)
)
.

When using this encoding, the prefix P has to be extended with the exis-
tential variables zg0 , . . . , z

g
n+k−1 for all used g ∈ Gsyn. The dependency set of

zgi is given by {vj ∈ X | j ≤ i}.

7 Detection of Symmetries

To detect symmetries of DQBFs in conjunctive normal form, we introduce a
representation of DQBFs as undirected, colored graphs. Based on these graphs
we can employ tools like Saucy1 to detect the symmetries. This is also the
standard approach for detecting symmetries in SAT [19]. In this encoding,
also the different types of quantifiers as well as the dependencies have to be
taken into account. The (D)QBF is translated to a colored graph as follows.

Definition 12 Let

Φ = ∀x1, . . . , xn∃y1(D1), . . . yk(Dk).

d∧
i=1

Ci

be a DQBF in CNF, that is, C1, . . . , Cd are clauses, with universal variables
X = {x1, . . . , xn} and existential variables Y = {y1, . . . , yk}. The DQBF graph
(V,E, f) of Φ is a directed colored graph with vertices V , edges E, and coloring
f : V → {1, 2, 3}. The set of vertices V = X ∪ Y ∪ L ∪ C is composed of the
disjoint sets

1. variables nodes X ∪ Y ,
2. literal nodes nodes L =

⋃
v∈X∪Y {+v,−v},

1 http://vlsicad.eecs.umich.edu/BK/SAUCY/

http://vlsicad.eecs.umich.edu/BK/SAUCY/

Symmetries of Dependency Quantified Boolean Formulas 25

3. clause nodes C = {C1, . . . , Cd}.
The coloring f : V → {1, 2, 3} is defined as follows:

f(v) =


1 if v ∈

⋃
x∈X{x,+x,−x}

2 if v ∈
⋃

y∈Y {y,+y,−y}
3 if v ∈ C

Finally, the set of edges E = Ev ∪ Ed ∪ Ec is defined by

1. variable edges Ev =
⋃

v∈X∪Y {(v,+v), (v,−v), (+v,−v), (−v,+v)},
2. dependency edges Ed = {(yi, x) | x ∈ Di, i = 1, . . . , k},
3. clause occurrence edges Ec = {(c, l) | c ∈ C, l ∈ L, l appears in c}.

In the graph, we distinguish between variable nodes X ∪Y , literal nodes L
that represent the positive and negative literal of a variable, and clause nodes
C that represent the different clauses of the formula. With the coloring, we
partition the nodes in universal variables and literals (color 1), existential vari-
ables and literals (color 2), and clause nodes (color 3). This coloring ensures
that only nodes of the right type are matched by the symmetry detection algo-
rithm. Note that a variable and its two corresponding literal nodes are colored
in the same color which indicates the type of quantification. The existential
variables are connected to the universal variables on which they depend.

Example 17 The DQBF

∀x1, x2∃y1
(
{x1, x2}

)
. (x1 ∨ x2 ∨ y1) ∧ (¬x1 ∨ ¬x2 ∨ y1) ∧ (x1 ∨ x2 ∨ ¬y1)

has the following DQBF graph.

x2x1 y1

+x1 −x1 +x2 −x2 +y1 −y1

x1 ∨ x2 ∨ y1 ¬x1 ∨ ¬x2 ∨ y1 x1 ∨ x2 ∨ ¬y1

26 Clemens Hofstadler et al.

In the illustration, we distinguish between the different node types by using
various shapes: variable nodes are represented as pentagons, literal nodes as
circles, and clause nodes as rectangles. Similarly, the different edge types are
differentiated by distinct line styles: variable edges are shown with dotted
arrows, dependency edges with dashed arrows, and clause occurrence edges
with solid arrows. Finally, the coloring is illustrated by different shades of the
nodes: universal nodes are white, existential nodes are in a lighter gray, and
clause nodes are in a darker gray.

We have implemented the translation in a tool called dqsym that can pro-
cess formulas in the DQDIMACS format. This format is a more general version
of the QDIMACS format and it allows for the explicit specification of quanti-
fier dependencies. Our tool is able to process both QBFs and DQBFs in prenex
conjunctive normal form (PCNF), which is also the supported format of most
state-of-the-art (D)QBF solvers.

We have applied symmetry detection to the QBFs from the PCNF track
and to the formulas of the DQBF track used in the QBFGallery 2023, the
most recent QBF competition event.2 The QBF set contains 377 formulas and
the DQBF set contains 354 formulas.

For each DQBF, generating the graph encoding and detecting the symme-
tries took less than a second. The sizes of the symmetry groups are shown
on the left of Figure 2. In particular, the figure presents a histogram show-
ing the number of instances with group size of at most 100, 101, 102, and 103,
respectively, as well as those with group size greater than 103.

More than half of the formulas (190) do not have any symmetries. The
group size of 116 formulas is between 2 and 10, indicating that a few variables
can be exchanged safely. There are, however, 14 formulas with huge group
sizes, the largest having a size of 7.622 442× 1030.

For 350 of the 377 QBFs, the generation of the graph and the symmetry
detection took less than 10 seconds. For one formula, the symmetries could
not be detected within a time limit of 15 seconds, and for three formulas
the graph became too large to be processed. One of these graphs had almost
two billion edges, which can be explained as follows. In the DQBF graph, the
dependencies between variables are represented by edges between the variable
nodes. In this case, there were many universally quantified variables occurring
to the left of the huge last quantifier block. Therefore, it was necessary to
include an edge between each of these existential and universal variables.

In order to get a more compact encoding, the different quantifier blocks
could be colored in different colors. This approach would, however, only work
for QBFs, but not for DQBFs.

The right side of Figure 2 shows some statistics on the group sizes of the
QBFs. Here, almost half of the instances have a lot of symmetries. It remains
to be explored to what extent these symmetries can be exploited in practice.

2 https://qbf23.pages.sai.jku.at/gallery/

https://qbf23.pages.sai.jku.at/gallery/

Symmetries of Dependency Quantified Boolean Formulas 27

100 101 102 103 > 103
0

50

100

150

200 190

116

31

3
14

DQBF-Formulas
100 101 102 103 > 103

0

50

100

150

200

79

111

5
20

158

QBF-Formulas

Fig. 2: Histograms of symmetry group sizes for different (D)QBFs

8 Conclusion

With this work, we lay a solid theoretical foundation for the study of symme-
tries of DQBFs, which hopefully sparks further exploration and innovation in
both QBF/DQBF theory and solver development. Based on the concise def-
inition of symmetry breakers given in this paper, there are many promising
directions for future work. For example, one could investigate different con-
structions for symmetry breakers [17] or try to lift more recent improvements
in symmetry breaking from SAT [11] to DQBF. Further, in this work, we focus
solely on static symmetry breaking, where a formula is extended by a symme-
try breaker as a preprocessing step. It could be beneficial to investigate also
dynamic symmetry breaking techniques [12,10], which interfere directly in the
solving process. Another promising direction of future work could be to extend
existing DQBF proof systems with symmetry rules, analogous to [16,21,14],
and investigate their properties.

References

1. F. A. Aloul, K. A. Sakallah, and I. L. Markov. Efficient Symmetry Breaking for Boolean
Satisfiability. IEEE Transactions on Computers 55(5), p. 549–558 (2006)

2. M. Artin. Algebra. Pearson Prentice Hall (2011)
3. G. Audemard, S. Jabbour, and L. Säıs. Symmetry Breaking in Quantified Boolean For-
mulae. In: Proceedings of International Joint Conference on Artificial Intelligence, p. 2262–
2267. (2007)

4. G. Audemard, B. Mazure, and L. Säıs. Dealing with Symmetries in Quantified Boolean
Formulas. In: Proceedings of Theory and Applications of Satisfiability Testing. Online
Proceedings (2004)

5. G. Audemard, S. Jabbour, and L. Säıs. Efficient symmetry breaking predicates for Quan-
tified Boolean Formulae. In: Proceedings of Workshop on Symmetry and Constraint Sat-
isfaction Problems, 7 pages (2007)

6. U. Bubeck. Model-Based Transformations for Quantified Boolean Formulas. PhD thesis,
University of Paderborn (2009)

7. F. H. Chen, S.-C. Huang, Y.-C. Lu, and T. Tan Reducing NEXP-complete problems to
DQBF. In: Proceedings of FMCAD, p. 199–204. TU Wien Academic Press (2022)

28 Clemens Hofstadler et al.

8. J. M. Crawford, M. L. Ginsberg, E. M. Luks, A. Roy. Symmetry-Breaking Predicates
for Search Problems. In: Proceedings of the 5th International Conference on Principles of
Knowledge Representation and Reasoning, p. 148–159. Morgan Kaufmann (1996)

9. D. Cohen, P. Jeavons, C. Jefferson, K. E. Petrie, and B. M. Smith. Constraint Sym-
metry and Solution Symmetry. In: Proceedings of the National Conference on Artificial
Intelligence, p. 1589–1592. AAAI Press (2006)

10. J. Devriendt, B. Bogaerts, B., and M. Bruynooghe. Symmetric explanation learning: Ef-
fective dynamic symmetry handling for SAT. In: Proceedings of Theory and Applications
of Satisfiability Testing, p. 83–100. Springer (2017)

11. J. Devriendt, B. Bogaerts, M. Bruynooghe, and M. Denecker. Improved static symmetry
breaking for SAT. In: Proceedings of Theory and Applications of Satisfiability Testing,
p. 104–122. Springer (2016)

12. J. Devriendt, B. Bogaerts, B. De Cat, M. Denecker, C. Mears. Symmetry Propagation:
Improved Dynamic Symmetry Breaking in SAT. In: IEEE 24th International Conference
on Tools with Artificial Intelligence, p. 49–56. IEEE (2012)

13. I. P. Gent, K. E. Petrie, and J. Puget. Symmetry in Constraint Programming. In:
Handbook of Constraint Programming, p. 329–376. Elsevier (2006)

14. M. Kauers and M. Seidl. Short proofs for some symmetric quantified Boolean formulas.
Information Processing Letters 140, p. 4–7 (2018)

15. M. Kauers and M. Seidl. Symmetries of Quantified Boolean Formulas. In: International
Conference on Theory and Applications of Satisfiability Testing, p. 199–216. Springer
(2018)

16. B. Krishnamurthy. Short Proofs for Tricky Formulas. Acta informatica 22, p. 253–275
(1985)

17. N. Narodytska and T. Walsh. Breaking Symmetry with Different Orderings. In: Inter-
national Conference on Principles and Practice of Constraint Programming, p. 545–561.
Springer (2013)

18. G. Peterson, J. Reif, and S. Azhar. Lower Bounds for Multiplayer Non-Cooperative
Games of Incomplete Information. Computers and Mathematics with Applications 41(7–
8), p. 957–992 (2001)

19. Karem A. Sakallah. Symmetry and Satisfiability. In: Handbook of Satisfiability, 2nd
edition, p. 289–338. IOS Press (2021)

20. C. Scholl and R. Wimmer. Dependency Quantified Boolean Formulas: An Overview of
Solution Methods and Applications In: International Conference on Theory and Applica-
tions of Satisfiability Testing, p. 3–16. Springer (2018)

21. A. Urquhart. The symmetry rule in propositional logic. Discrete Applied Mathematics
96, p. 177–193 (1999)

	Introduction
	Dependency Quantified Boolean Formulas
	Groups and Group Actions
	Symmetries of DQBFs
	Conjunctive Symmetry Breakers
	Construction of Symmetry Breakers
	Detection of Symmetries
	Conclusion

