
New ways to multiply 3 × 3-matrices1

Marijn J.H. Heule

Computer Science Department, Carnegie Mellon University, Pittsburgh PA, USA

Manuel Kauers

Institute for Algebra, J. Kepler University Linz, Austria

Martina Seidl

Institute for Formal Models and Verification, J. Kepler University Linz, Austria

Abstract

It is known since the 1970s that no more than 23 multiplications are required for computing the
product of two 3 × 3-matrices. For non-commutative coefficient rings, it is not known whether
it can also be done with fewer multiplications. However, there are several mutually inequivalent
ways of doing the job with 23 multiplications. In this article, we extend this list considerably
by providing more than 17,000 new and mutually inequivalent schemes for multiplying 3 × 3-
matrices using 23 multiplications. Moreover, we show that the set of all these schemes is a
manifold of dimension at least 17.

Keywords: bilinear complexity, matrix multiplication, Laderman’s algorithm, SAT solving.

1. Introduction

The classical algorithm for multiplying two n × n matrices performs 2n3 − n2 additions and
multiplications. Strassen’s algorithm (Strassen, 1969) does the job with only O(nlog2 7) arith-
metic operations, by recursively applying a certain scheme for computing the product of two
2 × 2-matrices with only 7 instead of the usual 8 multiplications. The discovery of Strassen’s
algorithm has initiated substantial work during the past 50 years on finding the smallest expo-
nent ω such that matrix multiplication costs O(nω) operations in the coefficient ring. The current
record is ω ≤ 2.3728639 and was obtained by Le Gall (2014). It improves the previous record
of Vassilevska Williams (2012) by just 3 · 10−7. Extensive background in this direction is avail-
able in text books (Bürgisser et al., 2013; Landsberg, 2017) and survey articles (Bläser, 2013;
Pan, 2018). Contrary to wide-spread belief, Strassen’s algorithm is not only efficient in theory

1M.J.H. Heule was supported by NSF under grant CCF-2006363. M. Kauers was supported by the Austrian FWF
grants P31571-N32 and F5004. M. Seidl was supported by the Austrian FWF grant NFN S11408-N23 and the LIT AI
Lab funded by the State of Upper Austria.

Email addresses: marijn@cmu.edu (Marijn J.H. Heule), manuel.kauers@jku.at (Manuel Kauers),
martina.seidl@jku.at (Martina Seidl)

Preprint submitted to Elsevier October 11, 2020

but also in practice. Special purpose software for exact linear algebra, such as the FFLAS and
FFPACK packages (Dumas et al., 2008), have been using it since long, and there are also reports
that its performance in a numerical context is not as bad as its reputation (Huang et al., 2016).

Besides the quest for the smallest exponent, which only concerns the asymptotic complexity
for asymptotically large n, it is also interesting to know how many multiplications are needed for
a specific (small) n to compute the product of two n × n-matrices. Thanks to Strassen, we know
that the answer is at most 7 for n = 2, and it can be shown (Winograd, 1971) that there is no way
to do it with 6 multiplications. It can further be shown that, in a certain sense, Strassen’s scheme
is the only way of doing it with 7 multiplications (de Groote, 1978).

Already for n = 3, the situation is not completely understood. Laderman (1976) showed
that 23 multiplications suffice, and Bläser (2003) showed that at least 19 multiplications are
needed. There is also a way to do it with only 22 multiplications (Marakov, 1986), but this
scheme requires the assumption that the coefficient ring is commutative, which prevents it from
being applied recursively. In this paper, we restrict the attention to schemes that work over non-
commutative coefficient domains, and for this case, no method using less than 23 is currently
known. For larger sizes as well as rectangular matrices, many people have been searching for
new schemes using fewer and fewer coefficient multiplications. For n = 4, the best we know is
to apply Strassen’s scheme recursively, which requires 49 multiplications. For n = 5, the record
of 100 multiplications was held Makarov (1987) for 30 years until it was improved, first to 99
by Sedoglavic (2017b), and shortly later to 98 (see, e.g., Sedoglavic, 2019). For n = 6, there is a
recent scheme by Smirnov (2013) which needs only 160 multiplications. For n = 7, Sedoglavic
(2017c) found a way to compute the product with 250 multiplications. For larger sizes and
rectangular matrices, see the extensive tables compiled by Smirnov (2013, 2017) and Sedoglavic
(2019). Many of the schemes for larger matrix sizes are obtained by combining multiplication
schemes for smaller matrices (Drevet et al., 2011).

Although nobody knows whether there is a scheme using only 22 multiplications for n = 3
(in an exact and non-commutative setting), 23 multiplications can be achieved in many different
ways. Johnson and McLoughlin (1986) have in fact found infinitely many ways. They presented
a family of schemes involving three free parameters. However, their families involve fractional
coefficients and therefore do not apply to arbitrary coefficient rings K. Many others have reported
isolated schemes with fractional or approximate coefficients. Such schemes can be constructed
for example by numerically solving a certain optimization problem, or by genetic algorithms. In
Laderman’s multiplication scheme, all coefficients are +1, −1, or 0, which has the nice feature
that it works for any coefficient ring. As far as we know, there are so far only three other schemes
with this additional property, they are due to Smirnov (2013), Oh et al. (2013), and Courtois et al.
(2011), respectively. We add more than 17,000 new schemes to this list.

The isolated scheme presented by Courtois et al. was not found numerically but with the help
of a SAT solver. SAT (Biere et al., 2009) refers to the decision problem of propositional logic:
given a Boolean formula in conjunctive normal form, is there an assignment of the Boolean
variables such that the formula evaluates to true under this assignment? Although SAT is a
prototypical example of an NP-complete problem, modern SAT solvers are able to solve very
large instances. In addition to various industrial applications, they have recently also contributed
to the solution of difficult mathematical problems, see Heule et al. (2016) and Heule (2018) for
two examples. SAT solvers also play a central role in our approach. As explained in Section 3,
we first use a SAT solver to find multiplication schemes for the coefficient ring Z2, starting from
some known solutions. In a second step, explained in Section 4, we discard solutions that are
equivalent to solutions found earlier. Next, we simplify the new solutions (Sect. 5), and use them

2

as starting points for a new round of searching. Altogether about 35 years of computation time
were spent in several iterations of this process. These computations were distributed on several
nodes of the Lonestar 5 cluster in Austin, Texas, each of which consists of a Xeon E5-2690 v3
chip with 24 cores running at 2.6 GHz and 64 GB memory, as well as several nodes of the Mach
cluster in Linz, Austria, each of which consists of a Xeon E7-8837 chip with 8 cores running
at 2.6 GHz and 64 GB memory, as well as several smaller stand-alone machines with altogether
around 400 cores and 2TB memory. In the end, we lifted the solutions from Z2 to arbitrary
coefficient rings (Sect. 6), and we extracted families with up to 17 free parameters from them
(Sect. 7). Our 17,000 isolated schemes and our parameterized families are provided in various
formats on our website (Heule et al., 2019b).

2. The Brent Equations

The general pattern of a matrix multiplication scheme consists of two sections. In the first
section, several auxiliary quantities M1,M2, . . . ,Mm are computed, each of which is a product
of a certain linear combination of the entries of the first matrix with a certain linear combination
of the entries of the second matrix. In the second section, the entries of the resulting matrix are
obtained as certain linear combinations of the auxiliary quantities M1,M2, . . . ,Mm.

For example, writing

A =

(
a1,1 a1,2
a2,1 a2,2

)
, B =

(
b1,1 b1,2
b2,1 b2,2

)
, and C =

(
c1,1 c1,2
c2,1 c2,2

)
:= AB,

Strassen’s multiplication scheme proceeds as follows:
First section.

M1 = (a1,1 + a2,2)(b1,1 + b2,2)
M2 = (a2,1 + a2,2)(b1,1)
M3 = (a1,1)(b1,2 − b2,2)
M4 = (a2,2)(b2,1 − b1,1)
M5 = (a1,1 + a1,2)(b2,2)
M6 = (a2,1 − a1,1)(b1,1 + b1,2)
M7 = (a1,2 − a2,2)(b2,1 + b2,2)

Second section.
c1,1 = M1 + M4 − M5 + M7
c1,2 = M3 + M5
c2,1 = M2 + M4
c2,2 = M1 − M2 + M3 + M6.

Observe that the number of multiplications is exactly the number of M’s. Also observe that
while it is not obvious how to construct such a scheme from scratch, checking that a given
scheme is correct is an easy and straightforward calculation. For example, c2,1 = M2 + M4 =

(a2,1 + a2,2)(b1,1) + (a2,2)(b2,1 − b1,1) = a2,1b1,1 + a2,2b2,1.
In order to search for a multiplication scheme for a prescribed shape of matrices (e.g., 3 × 3)

and a prescribed number of multiplications (e.g., 23), we can make an ansatz for the coefficients

3

of the various linear combinations,

M1 = (α(1)
1,1a1,1 + α(1)

1,2a1,2 + · · ·)(β(1)
1,1b1,1 + β(1)

1,2b1,2 + · · ·)

M2 = (α(2)
1,1a1,1 + α(2)

1,2a1,2 + · · ·)(β(2)
1,1b1,1 + β(2)

1,2b1,2 + · · ·)

...

M23 = (α(23)
1,1 a1,1 + α(23)

1,2 a1,2 + · · ·)(β(23)
1,1 b1,1 + β(23)

1,2 b1,2 + · · ·)

c1,1 = γ(1)
1,1M1 + γ(2)

1,1M2 + · · · + γ(23)
1,1 M23

c1,2 = γ(1)
1,2M1 + γ(2)

1,2M2 + · · · + γ(23)
1,2 M23

...

c3,3 = γ(1)
3,3M1 + γ(2)

3,3M2 + · · · + γ(23)
3,3 M23

and then compare coefficients such as to enforce ci, j =
∑

k ai,kbk, j. Doing so leads to a system of
polynomial equations for the undetermined coefficients α(ι)

i1,i2
, β(ι)

j1, j2
, γ(ι)

k1,k2
. The equations in this

system are known as the Brent equations (Brent, 1970). For 3×3-matrices and 23 multiplications,
the equations turn out to be

23∑
ι=1

α(ι)
i1,i2
β(ι)

j1, j2
γ(ι)

k1,k2
= δi2, j1δi1,k1δ j2,k2

for i1, i2, j1, j2, k1, k2 ∈ {1, 2, 3}, i.e., there are 621 variables and 729 cubic equations. The δu,v on
the right refer to the Kronecker-delta, i.e., δu,v = 1 if u = v and δu,v = 0 otherwise.

The equations become a bit more symmetric if we connect the matrices A, B,C through C> =

AB rather than C = AB. In the version with the transposition, which we shall use from now on,
and which is also more common in the literature, the right hand side has to be replaced with
δi2, j1δ j2,k1δk2,i1 .

In any case, the problem boils down to finding a solution of the Brent equations. In principle,
this system could be solved using Gröbner bases (Buchberger, 1965; Cox et al., 1992; Buchberger
and Kauers, 2010), but doing so would require an absurd amount of computation time. Some of
the solutions reported in the literature have been found using numerical solvers (Smirnov, 2013;
Oh et al., 2013), and Laderman (1976) claims that his solution was found by solving the Brent
equations by hand. He writes that he would explain in a later paper how exactly he did this, but
apparently this later paper has never been written. Only recently, Sedoglavic (2017a) has given
a convincing explanation of how Laderman’s scheme can be derived from Strassen’s scheme for
2 × 2 matrices. Courtois et al. (2011) found their solution using a SAT solver. We also start our
search using SAT solvers.

3. SAT Encoding and Streamlining

In order to encode the problem as a SAT problem, we view the Brent equations as equations
for the finite field Z2, interpret its elements as truth values, its addition as exclusive or (⊕),
and its multiplication as conjunction (∧). These propositional formulas cannot be directly be
processed by most state-of-the-art SAT solvers, because they require the formulas in conjunctive
normal form (CNF). A formula is in CNF if it is a conjunction of clauses, where a clause is

4

a disjunction (∨) of literals and a literal is a Boolean variable x or the negation of a Boolean
variable (x̄). For avoiding an exponential blow-up when transforming an arbitrary structured
formula to CNF, auxiliary variables are introduced that abbreviate certain subformulas. For every
i1, i2, j1, j2 ∈ {1, 2, 3} and every ι = 1, . . . , 23, we introduce a fresh variable s(ι)

i1,i2, j1, j2
and impose

the condition
s(ι)

i1,i2, j1, j2
↔ (α(ι)

i1,i2
∧ β(ι)

j1, j2
),

whose translation to CNF requires three clauses. Similarly, for every i1, i2, j1, j2, k1, k2 ∈ {1, 2, 3}
and every ι = 1, . . . , 23, we introduce a fresh variable t(ι)

i1,i2, j1, j2,k1,k2
and impose the condition

t(ι)
i1,i2, j1, j2,k1,k2

↔ (s(ι)
i1,i2, j1, j2

∧ γ(ι)
k1,k2

),

whose translation to CNF costs again three clauses.
For each fixed choice i1, i2, j1, j2, k1, k2 ∈ {1, 2, 3}, there is a Brent equation which says that

the number of ι’s for which t(ι)
i1,i2, j1, j2,k1,k2

is set to true should be even (if δi2, j1δi1,k1δ j2,k2 = 0) or
that it should be odd (if δi2, j1δi1,k1δ j2,k2 = 1). It therefore remains to encode the condition that
an even number (or an odd number) of a given set of p variables should be true, i.e., we need
to construct a formula even(x1, . . . , xp) which is true if and only if an even number among the
variables x1, . . . , xp is true. Such a formula can again be constructed using auxiliary variables.
Note that even(x1, . . . , xp) is true if and only if even(x1, . . . , xi, y) ∧ even(xi+1, . . . , xp, y) is true,
because this is the case if and only if both {x1, . . . , xi} and {xi+1, . . . , xp} contain an even number
of variables set to true (and then y is set to false) or both sets contain an odd number of variables
set to true (and then y is set to true). Applying this principle recursively for p = 23 (the number
of summands in each Brent equation), the problem can be broken down to chunks of size four:

even(x1, x2, x3, y1) ∧ even(x4, x5, x6, y2) ∧ even(x7, x8, x9, y3) ∧ even(x10, x11, x12, y4)
∧ even(x13, x14, x15, y5) ∧ even(x16, x17, x18, y6) ∧ even(x19, x20, x21, y7) ∧ even(x22, x23, y1, y8)
∧ even(y2, y3, y4, y9) ∧ even(y5, y6, y7, y10) ∧ even(y8, y9, y10, y11).

The small chunks can be encoded directly by observing that even(a, b, c, d) is equivalent to

(a ∨ b ∨ c ∨ d̄) ∧ (a ∨ b ∨ c̄ ∨ d) ∧ (a ∨ b̄ ∨ c ∨ d) ∧ (ā ∨ b ∨ c ∨ d)∧
(a ∨ b̄ ∨ c̄ ∨ d̄) ∧ (ā ∨ b̄ ∨ c ∨ d̄) ∧ (ā ∨ b ∨ c̄ ∨ d̄) ∧ (ā ∨ b̄ ∨ c̄ ∨ d).

For the cases where an odd number of the variables x1, . . . , x23 must be true, we can apply the
encoding described above to even(x̄1, x2, x3, . . . , x23).

The SAT problems obtained in this way are very hard. In order to make the problems more
tractable, we added further constraints in order to simplify the search performed by the solver.
This approach is known as streamlining (Gomes and Sellmann, 2004). The following restrictions
turned out to be successful:

• Instead of a faithful encoding of the sums in the Brent equations using the even predicate
as described above, we also used a more restrictive sufficient condition which instead of
requiring an even number of arguments to be true enforces that zero or two arguments
should be true. This predicate zero-or-two can be broken into at-most-two and not-exactly-

5

one, which can be efficiently encoded as

not-exactly-one(x1, . . . , xp) =

p∧
i=1

(
xi →

∨
j,i

x j

)
at-most-two(x1, . . . , xp) = (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x̄4)

∧ (x̄1 ∨ x̄3 ∨ x̄4) ∧ (x̄2 ∨ x̄3 ∨ x̄4)
∧ (x̄1 ∨ y) ∧ (x̄2 ∨ y) ∧ (x̄1 ∨ x̄2 ∨ z)
∧ (x̄3 ∨ z) ∧ (x̄4 ∨ z) ∧ (x̄3 ∨ x̄4 ∨ y)
∧ at-most-two(y, z, x5, . . . , xp),

where y and z are fresh variables. The first two lines of at-most-two assert that at most two
variables of x1, x2, x3, x4 are true. If two or more of those variables are true then the new
variables y and z have to be both true, if one variable is true, then either y or z has to be
true, and if all four variables are false, then also y and z can be both false. Encoding this
information in y and z allows to recursively apply at-most-two with two arguments less. A
straightforward direct encoding as in the first two lines is used when p ≤ 4.

• We selected a certain portion, say 50%, of the variables α(ι)
i1,i2

, β(ι)
j1, j2

, γ(ι)
k1,k2

and instantiate
them with the values they have in one of the known solutions. The SAT solver then has to
solve for the remaining variables. It turns out that in many cases, it does not just rediscover
the known solution but finds a truly different one that only happens to have an overlap with
the original solution.

• Another approach was to randomly set half of the terms α(ι)
i1,i2
β(ι)

j1, j2
γ(ι)

k1,k2
with i2 , j1 and

j2 , k1 and k2 , i1 to zero. This strategy was motivated by the observation that in most of
the known solutions, almost all these terms are zero.

• A third approach concerns the terms α(ι)
i1,i2
β(ι)

j1, j2
γ(ι)

k1,k2
with i2 = j1 and j2 = k1 and k2 = i1.

Again motivated by the inspection of known solutions, we specified that for each ι either
one or two such terms should be one. More precisely, we randomly chose a distribution
of the 27 terms with i2 = j1 and j2 = k1 and k2 = i1 to the 23 summands of the scheme,
with the condition that 19 summands should contain one term each and the remaining four
summands should contain two terms each.

Each of the latter three approaches was used in combination with both the ‘even’ and the ‘zero-or-
two’ encoding of the Brent equations. The resulting instances were presented to the SAT solver
yalsat by Biere (2018). When it didn’t find a solution for an instance within a few minutes, the
instance was discarded and a new instance with another random choice was tried. A detailed
analysis of the effect of our optimizations on the performance of the solver is provided in a
separate paper (Heule et al., 2019a).

4. Recognizing Equivalences

From any given solution of the Brent equations we can generate many equivalent solutions.
For example, exchanging α with β and flipping all indices maps a solution to another solution.
This operation corresponds to the fact that (AB)> = B>A>. It is also clear from the equations that
replacing α by β, β by γ, and γ by α maps a solution to another solution, although this operation

6

is less obvious in terms of matrix multiplication. Finally, for any fixed invertible matrix U, we
can exploit the fact AB = AUU−1B to map solutions to other solutions.

The operations just described form a group of symmetries of matrix multiplication which
was introduced by de Groote (1978), who used them for showing that Strassen’s scheme for 2×2
matrices is essentially unique: it is unique modulo the action of this symmetry group. To describe
the group more formally, it is convenient to express matrix multiplication schemes as tensors,

23∑
ι=1


α(ι)

1,1 α(ι)
1,2 α(ι)

1,3
α(ι)

2,1 α(ι)
2,2 α(ι)

2,3
α(ι)

3,1 α(ι)
3,2 α(ι)

3,3

 ⊗

β(ι)

1,1 β(ι)
1,2 β(ι)

1,3
β(ι)

2,1 β(ι)
2,2 β(ι)

2,3
β(ι)

3,1 β(ι)
3,2 β(ι)

3,3

 ⊗

γ(ι)

1,1 γ(ι)
1,2 γ(ι)

1,3
γ(ι)

2,1 γ(ι)
2,2 γ(ι)

2,3
γ(ι)

3,1 γ(ι)
3,2 γ(ι)

3,3

 .
A scheme is correct if and only if it is equal, as element of (K3×3)⊗3, to

∑3
i=1

∑3
j=1

∑3
k=1 Ei,k ⊗

Ek, j ⊗ E j,i, where Eu,v ∈ K3×3 refers to the matrix which has a 1 at position (u, v) and zeros
everywhere else.

A permutation π ∈ S 3 acts on a tensor A ⊗ B ⊗ C by permuting the three factors, and trans-
posing each of them if sgn(π) = −1. For example, (1 2) · (A ⊗ B ⊗ C) = B> ⊗ A> ⊗ C> and
(1 2 3) · (A ⊗ B ⊗C) = B ⊗C ⊗ A. A triple (U,V,W) ∈ GL(K, 3)3 of invertible matrices acts via

(U,V,W) · (A ⊗ B ⊗C) = UAV−1 ⊗ VBW−1 ⊗WCU−1.

A tuple (U,V,W, π) ∈ GL(K, 3)3×S 3 acts on a tensor A⊗B⊗C by first letting the permutation act as
described above, and then applying the matrices as described above. The set G = GL(K, 3)3 ×S 3
is turned into a group by defining the multiplication in such a way that the operation described
above becomes a group action. The action of the group G defined on tensors A⊗B⊗C is extended
to the whole space (K3×3)⊗3 by linearity. In other words, elements of G act on sums of tensors
by acting independently on all summands.

Two matrix multiplication schemes are called equivalent if they belong to the same orbit
under the action of G. Whenever a new matrix multiplication scheme is discovered, the question
is whether it is equivalent to a known scheme, for if it is, it should not be considered as new. A
common test for checking that two schemes are not equivalent proceeds by computing certain
invariants of the group action. For example, since permutation and multiplication by invertible
matrices do not change the rank of a matrix, we can count how many matrices of rank 1, 2,
and 3 appear in the scheme. If the counts differ for two schemes, then these schemes cannot be
equivalent. For example, Courtois et al. (2011) and Oh et al. (2013) proved in this way that their
schemes were indeed new. If ui is the number of matrices of rank i (i = 1, 2, 3) appearing in
a certain scheme, then any two equivalent schemes will have the same tuple (u1, u2, u3), so this
tuple can serve as an invariant. It is only a weak invariant though. A stronger one, which also
takes into account some information about where the matrices of the various ranks are located in
a scheme

∑23
ι=1 Aι ⊗ Bι ⊗Cι, can be expressed as the polynomial

f (x, y, z) :=
23∑
ι=1

∑
π∈S 3

π
(
xrank(Aι)yrank(Bι)zrank(Cι)),

where the permutations π are meant to permute the variables x, y, z. Because of u1x+u2x2+u3x3 =
1
6 (f (x, 1, 1)+ f (1, x, 1)+ f (1, 1, x)), the invariant f (x, y, z) is a refinement of the invariant obtained
by simply counting how many matrices of which rank there are. But also f (x, y, z) does not
capture all the information contained in the ranks. For example, the polynomial

g(w) = w
∑23
ι=1 rank(Aι) + w

∑23
ι=1 rank(Bι) + w

∑23
ι=1 rank(Cι)

7

is an invariant which can distinguish some orbits that f (x, y, z) cannot distinguish. And even
when both f (x, y, z) and g(w) agree for two schemes, they may still be inequivalent. In fact, two
schemes

∑23
ι=1 Aι ⊗ Bι ⊗ Cι,

∑23
ι=1 A′ι ⊗ B′ι ⊗ C′ι may be inequivalent even if rank(Aι) = rank(A′ι),

rank(Bι) = rank(B′ι), rank(Cι) = rank(C′ι) for all ι, so a pure consideration of ranks, while
useful as an efficient and powerful preprocessing step, is in general not sufficient for deciding
equivalence. In fact, many solutions found by the SAT solver were inequivalent despite sharing
the same rank pattern.

Fortunately, it is not too hard to decide the equivalence of two given schemes by constructing,
whenever possible, a group element that maps one to the other. A straightforward way to do so
is as follows. Suppose we are given two multiplication schemes S , S ′ and we want to decide
whether there exists a tuple (U,V,W, π) ∈ GL(K, 3)3 × S 3 such that (U,V,W, π) · S = S ′. As far as
the permutation is concerned, there are only six candidates, so we can simply try each of them.
Writing S =

∑23
ι=1(Aι ⊗ Bι ⊗Cι) and S ′ =

∑23
ι=1(A′ι ⊗ B′ι ⊗C′ι), it remains to find U,V,W that map

all the summands of S to the summands of S ′, albeit possibly in a different order. We search for
a suitable order by the following recursive algorithm, which is initially called with Q being the
full space K3×3 × K3×3 × K3×3.

Algorithm 1. (Equivalence)
Input: two multiplication schemes S =

∑23
ι=1(Aι ⊗ Bι ⊗ Cι), S ′ =

∑23
ι=1(A′ι ⊗ B′ι ⊗ C′ι) as above, a

basis of a subspace Q of K3×3 × K3×3 × K3×3

Output: A triple (U,V,W) ∈ GL(K, 3)3 ∩ Q with (U,V,W) · S = S ′, or ⊥ if no such triple exists.
1 if S and S ′ are empty, then:
2 return any element (U,V,W) of Q with det(U) det(V) det(W) , 0, or ⊥ if no such element

exists.
3 for all summands A′ι ⊗ B′ι ⊗C′ι of S ′, do:
4 if rank(A1) = rank(A′ι) and rank(B1) = rank(B′ι) and rank(C1) = rank(C′ι), then:
5 compute a basis of the space P of all (U,V,W) such that UA1 = A′ιV , VB1 = B′ιW,

WC1 = C′ιU by making an ansatz, comparing coefficients, and solving a homogeneous
linear system.

6 compute a basis of R = P ∩ Q.
7 if R contains at least one triple (U,V,W) with det(U) det(V) det(W) , 0, then:
8 call the algorithm recursively with the first summand of S and the ιth summand of S ′

removed, and with R in place of Q.
9 if the recursive call yields a triple (U,V,W), return it.
10 return ⊥.

The algorithm terminates because each recursive call is applied to a sum with strictly fewer
summands. The correctness of the algorithm is clear because it essentially performs an ex-
haustive search through all options. In order to perform the check in step 7, we can consider
a generic linear combination of the basis elements of R, with variables as coefficients. Then
det(U) det(V) det(W) is a polynomial in these variables, and the question is whether this poly-
nomial vanishes identically on K. For the case K = Z2, we can answer this by an exhaustive
search.

The recursive structure of the algorithm with up to 23 recursive calls at every level may
seem prohibitively expensive. However, the two filters in lines 4 and 7 turn out to cut down the
number of recursive calls considerably. A straightforward implementation in Mathematica needs

8

no more than about one second of computation time to decide whether or not two given schemes
are equivalent. Of course, we first compare the invariants, which is almost for free and suffices
to settle many cases.

As pointed out by one of the referees, a similar but more sophisticated algorithm for checking
the equivalence of any two given schemes was recently proposed by Berger et al. (2019).

For each scheme found by the SAT solver we have checked whether it is equivalent (for K =

Z2) to one of the schemes found earlier, or to one of the four known schemes found by Laderman,
Smirnov, Oh et al., and Courtois et al., respectively. From the roughly 300,000 solutions found
by the SAT solver that were distinct modulo the order of the summands, we isolated about 17,000
schemes that were distinct modulo equivalence over K = Z2. These are the schemes announced
in the introduction. In the appendix, we list the number of schemes we found separated by
invariant.

5. Simplifying Solutions

We can use the symmetries introduced in the previous section not only to recognize that a
seemingly new scheme is not really new. We can also use them for simplifying schemes. A
scheme can for example be regarded as simpler than another scheme if the number of terms
α(ι)

i1,i2
β(ι)

j1, j2
γ(ι)

k1,k2
in it which evaluate to 1 is smaller. We call this number the weight of a scheme.

For example, a summand 0 0 0
0 0 0
1 0 0

 ⊗
0 1 0
0 1 0
0 1 0

 ⊗
1 0 0
0 1 1
0 1 1


would contribute 1 · 3 · 5 = 15 to the weight of a scheme. Note that the weight of a scheme
defined in this way is not directly related to the computational cost associated with it (e.g., to the
number of additions needed). Instead, the definition motivated by the observation that schemes
with low weight seem to be more fertile when used as seed in the search for further schemes.

Ideally, we would therefore like to replace every scheme S by an equivalent scheme with
smallest possible weight. In principle, we could find such a minimal equivalent element by
applying all elements of G to S and taking the smallest result. Unfortunately, even for K = Z2,
the group G has 1683 · 6 = 28 449 792 elements, so trying them all might be feasible if we had to
do it for a few schemes, but not for thousands of them. If we do not insist on the smallest possible
weight, we can take a pragmatic approach and just spend for every scheme S a prescribed amount
of computation time (say half an hour) applying random elements of G to S :

Algorithm 2. (Weight reduction)
Input: a multiplication scheme S
Output: an equivalent multiplication scheme whose weight is less than or equal to the weight
of S .
1 while the time limit is not exhausted, do
2 pick a group element g at random
3 if weight(g(S)) < weight(S), then set S = g(S)
4 return S

9

With this algorithm, we were able to replace about 20% of the new schemes found by the SAT
solver by equivalent schemes with smaller weight. It is not too surprising that no improvement
was found for the majority of cases, because the way we specified the problem to the SAT solver
already induces a bias towards solutions with a small weight.

The figure below shows the distribution of our 17,000 schemes according to weight, after
simplification. It is clear that the weight is always odd, hence the small gaps between the bars.
It is less clear why we seem to have an overlay of three normal distributions, but we believe that
this is rather an artifact of the way we generated the solutions than a structural feature of the
entire solution set.

weight

count

160 180 200 220 240 260 280 300
0

100

200

300

400

500

600

6. Generalizing the Coefficient Ring

At this point, we have a considerable number of new matrix multiplication schemes for the
coefficient field K = Z2. The next step is to lift them to schemes that work in any coefficient
ring. The SAT solver presents us with a solution for Z2 in which all coefficients are 0 or 1, and in
order to lift such a solution, we make the hypothesis that this solution originated from a solution
for an arbitrary coefficient ring in which all coefficients are +1, −1, or 0. The distinction between
+1 and −1 gets lost in Z2, and the task consists in recovering it. There is a priori no reason why
such a lifting should exist, and indeed, we have seen a small number of instances where it fails.
One such example is given in the appendix. Interestingly however, these examples seem to be
very rare. In almost all cases, a lifting turned out to exist. Note also that any two schemes that
are inequivalent over Z2 will lift to schemes that are necessarily inequivalent over Z, albeit not
necessarily over Q.

In order to explain the lifting process, we return to the Brent equations discussed in Section 2.
We set variables corresponding to coefficients that are zero in the SAT solution to zero, which
simplifies the system considerably. According to the axioms of tensor products, we have (λA) ⊗
B ⊗ C = A ⊗ (λB) ⊗ C = A ⊗ B ⊗ (λC) for any A, B,C and every constant λ. We may therefore
select in every summand A ⊗ B ⊗C one variable appearing in A and one variable appearing in B
and set them to +1. This reduces the number of variables further. However, the resulting system
is still to hard to be solved directly.

Before calling a general purpose Gröbner basis engine, we apply some simplifications to the
system, which take into account that we are only interested in solutions whose coordinates are
−1 or +1. In particular, we can replace any exponent k appearing in any of the polynomials
by k mod 2, we can cancel factors that clearly do not vanish on the points of interest, and we

10

can replace polynomials of the from xy ± 1 by x ± y. These simplifications may bring up some
linear polynomials. By triangularizing the linear system corresponding to these polynomials,
we can eliminate some of the variables. We can then simplify again, and possibly obtain new
linear equations. The process is repeated until no further linear equations appear. We then
add for each variable x the polynomial x2 − 1 and compute a Gröbner basis with respect to a
degree order. If this leads to new linear polynomials, we return to iterating triangularization,
elimination, and simplification until no further linear equations show up, and then compute again
a degree Gröbner basis. The whole process is repeated until we obtain a Gröbner basis that
does not contain any new linear equations. If there are more than 15 variables left, we next
compute a minimal associated prime ideal of an elimination ideal involving only five variables,
and check whether adding it to the original system and computing a Gröbner basis leads to new
linear equations. If it does, we start over with the whole procedure. Otherwise, we compute the
minimal associated prime ideal of the whole system and return the solution corresponding to one
of the prime factors. The process is summarized in the following listing.

Algorithm 3. (System Solving for Lifting)
Input: A finite subset B of Q[x1, . . . , xn]
Output: A common root ξ ∈ {−1, 1}n of all the elements of B, or ⊥ if no such common root
exists.
1 Replace every exponent k appearing in an element of B by k mod 2
2 For every p ∈ B and every i with xi | p, replace p by p/xi

3 Replace every element of the form xy − 1 or −xy − 1 by x − y or x + y, respectively.
4 if B now contains linear polynomials, then:
5 Use them to eliminate some variables, say y1, . . . , yk

6 Call the procedure recursively on the resulting set of polynomials
7 if there is a solution, extend it to the eliminated variables y1, . . . , yk and return the result
8 if there is no solution, return ⊥.
9 Compute a Gröbner basis G of B ∪ {x2

i − 1 : i = 1, . . . , n} with respect to a degree order
10 if G = {1}, return ⊥
11 if G contains linear polynomials, then call this procedure recursively and return the result
12 if n > 15, then:
13 Compute a basis P of one of the minimal associated prime ideals of 〈G〉 ∩Q[x1, . . . , x5].
14 Compute a Gröbner basis G′ of G ∪ P with respect to a degree order
15 if G′ contains linear polynomials, then call this procedure recursively and return the result
16 Compute a basis P of one of the minimal associated prime ideals of 〈G〉 ⊆ Q[x1, . . . , xn].
17 Return the common solution ξ of P.

An implementation of this procedure in Mathematica is available on the website of this ar-
ticle (Heule et al., 2019b). In this implementation, we use Singular (Greuel and Pfister, 2002)
for doing the Gröbner basis calculations and for the computation of minimal associated prime
ideals. Despite the large number of variables, Singular handles the required computations with
impressive speed. The task of signing all the solutions was distributed on several Linux servers
with up to 128 cores and up to 386GB of memory and took only about 20 seconds sequential
computing time per solution on the average. Only a small number of cases, which happen to
have a few more variables than the others, need much longer, up to a few hours.

11

7. Introducing Parameters

The idea of instantiating some of the variables based on a known scheme and then solving for
the remaining variables approach not only applies to SAT solving. It also has an algebraic coun-
terpart. Solving the Brent equations with algebraic methods is infeasible because the equations
are nonlinear, but observe that we only have to solve a linear system if we start from a known
scheme and only replace all γ(ι)

k1,k2
by fresh variables. Solving linear systems is of course much

easier than solving nonlinear ones.
More generally, we can select for each ι ∈ {1, . . . , 23} separately whether we want to replace

all α(ι)
i1,i2

’s or all β(ι)
j1, j2

’s or all γ(ι)
k1,k2

’s by fresh variables, and we still just get a linear system for
these variables. Once we make a selection, solving the resulting linear system yields an affine
vector space. One might expect this affine space will typically consist of a single point only, but
this is usually not the case.

A solution space with positive dimension can be translated into a multiplication scheme in-
volving one or more free parameters. Starting from the resulting parameterized scheme, we can
play the same game with another selection of variables, which may allow us to introduce further
parameters. If we repeat the procedure several times with random selections of which variables
are known, we obtain huge schemes involving 40 or more parameters. These parameters are
however algebraically dependent, or at least it is too costly check whether they are dependent or
not. We got better results by proceeding more systematically, as summarized int in the following
listing.

Algorithm 4. (Introducing Parameters)
Input: A matrix multiplication scheme S =

∑23
ι=1(Aι ⊗ Bι ⊗ Cι). Write Aι = ((α(ι)

i, j)), Bι = ((β(ι)
i, j)),

Cι = ((γ(ι)
i, j)).

Output: A family of matrix multiplication schemes with parameters x1, x2, . . .

1 for ι = 1, . . . , 23, do:
2 for every choice u, v ∈ {α, β, γ} with u , v, do:
3 replace all entries u(ι)

i, j for i, j = 1, . . . , 3 in S by fresh variables

4 replace all entries v(m)
i, j for i, j = 1, . . . , 3 and m , ι in S by fresh variables

5 equate the resulting scheme S to
∑

i, j,k Ei, j ⊗ E j,k ⊗ Ek,i and compare coefficients
6 solve the resulting inhomogeneous linear system for the fresh variables introduced in

steps 3 and 4
7 substitute the generic solution, using new parameters xi, xi+1, . . . , into S
8 return S

With this algorithm and some slightly modified variants (e.g., letting the outer loop run back-
wards or transposing the inner and the outer loop), we were able to obtain schemes with alto-
gether up to 17 parameters. Although all new parameters introduced in a certain iteration can
only appear linearly in the scheme, old parameters that were considered as belonging to the
ground ring during the linear solving can later appear rationally. However, by manually applying
suitable changes of variables, we managed to remove all denominators from all the families we
inspected. We do not even need integer denominators. Using Gröbner bases, we can further
check whether the parameters are independent, and for several families with 17 parameters they
turn out to be. In the language of algebraic geometry, this means that the solution set of the Brent
equations has at least dimension 17 as an algebraic variety.

12

One of our families is shown in the appendix, and some further ones are provided electron-
ically on our website. These families should be contrasted with the family found by Johnson
and McLoughlin (1986). In particular, while they lament that their family contains fractional
coefficients such as 1

2 and 1
3 and therefore does not apply in every coefficient ring, our families

only involve integer coefficients and therefore have no such restriction. Moreover, their family
has only three parameters, and with the method described above, only 6 additional parameters
can be introduced into it. The number of parameters we managed to introduce into the known
solutions by Laderman, Courtois et al., Oh et al., and Smirnov are 0, 6, 10, and 14, respectively.

8. Concluding Remarks

Although we have found many new multiplication schemes with 23 multiplications, we did
not encounter a single scheme with 22 multiplications. We have checked all schemes whether
some of their summands can be merged together using tensor product arithmetic. For doing so,
it would suffice if a certain scheme contains some summands which share the same A’s, say, and
where the corresponding B’s, say, of these rows are linearly dependent. We could then express
one of these B’s in terms of the others and eliminate the summand in which it appears. For
example, if B3 = β1B1 + β2B2, then we have A ⊗ B1 ⊗ C1 + A ⊗ B2 ⊗ C2 + A ⊗ B3 ⊗ C3 =

A⊗ B1 ⊗ (C1 + β1C3) + A⊗ B2 ⊗ (C2 + β2C3). Since none of our schemes admits a simplification
of this kind, it remains open whether a scheme with 22 multiplications exists.

Another open question is: how many further schemes with 23 multiplications and coefficients
in {−1, 0, 1} are there? We have no evidence that we have found them all. In fact, we rather
believe that there are many further ones, possibly including schemes that are very different from
ours. There may also be parametrized families with more than 17 parameters, and it would be
interesting to know the maximal possible number of parameters, i.e., the actual dimension of the
solution set of the Brent equations.

Acknowledgments

We acknowledge the Texas Advanced Computing Center at The University of Texas at Austin
for providing HPC resources that have contributed to the research results reported within this
paper. We also thank the referees for their valuable remarks and suggestions.

References

Berger, G. O., Absil, P.-A., Lathauwer, L. D., Jungers, R. M., Barel, M. V., 2019. Equivalent polyadic decompositions of
matrix multiplication tensors. Tech. Rep. 1902.03950, arxiv.

Biere, A., 2018. CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT Entering the SAT Competition 2018. In:
Proc. of SAT Competition 2018 – Solver and Benchmark Descriptions. Vol. B-2018-1 of Department of Computer
Science Series of Publications B. University of Helsinki, pp. 13–14.

Biere, A., Heule, M. J. H., van Maaren, H., Walsh, T. (Eds.), 2009. Handbook of Satisfiability. Vol. 185 of Frontiers in
Artificial Intelligence and Applications. IOS Press.

Bläser, M., 2003. On the complexity of the multiplication of matrices of small formats. Journal of Complexity 19 (1),
43–60.

Bläser, M., 2013. Fast Matrix Multiplication. No. 5 in Graduate Surveys. Theory of Computing Library.
URL http://www.theoryofcomputing.org/library.html

Brent, R. P., 1970. Algorithms for matrix multiplication. Tech. rep., Department of Computer Science, Stanford.
Buchberger, B., 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimen-

sionalen Polynomideal. Ph.D. thesis, Universität Innsbruck.

13

Buchberger, B., Kauers, M., 2010. Gröbner basis. Scholarpedia 5 (10), 7763, http://www.scholarpedia.org/
article/Groebner_basis.

Bürgisser, P., Clausen, M., Shokrollahi, M. A., 2013. Algebraic complexity theory. Vol. 315. Springer Science & Business
Media.

Courtois, N., Bard, G. V., Hulme, D., 2011. A new general-purpose method to multiply 3 × 3 matrices using only 23
multiplications. CoRR abs/1108.2830.
URL http://arxiv.org/abs/1108.2830

Cox, D., Little, J., OShea, D., 1992. Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer.
de Groote, H. F., 1978. On varieties of optimal algorithms for the computation of bilinear mappings i. the isotropy group

of a bilinear mapping. Theoretical Computer Science 7 (1), 1–24.
Drevet, C., Islam, M. N., Schost, É., 2011. Optimization techniques for small matrix multiplication. Theor. Comput. Sci.

412 (22), 2219–2236.
Dumas, J.-G., Giorgi, P., Pernet, C., 2008. Dense linear algebra over word-size prime fields: the fflas and ffpack packages.

ACM Trans. on Mathematical Software (TOMS) 35 (3), 1–42.
Gomes, C., Sellmann, M., 2004. Streamlined constraint reasoning. In: Principles and Practice of Constraint Programming

(CP 2004). Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 274–289.
Greuel, G.-M., Pfister, G., 2002. A Singular Introduction to Commutative Algebra. Springer.
Heule, M. J. H., 2018. Schur number five. In: McIlraith, S. A., Weinberger, K. Q. (Eds.), Proceedings of the Thirty-

Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial In-
telligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18).
AAAI Press, pp. 6598–6606.
URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952

Heule, M. J. H., Kauers, M., Seidl, M., 2019a. Local Search for Fast Matrix Multiplication. In: Proceedings of SAT’19.
Vol. 11628 of LNCS. pp. 155–163, also ArXiv 1903.11391.

Heule, M. J. H., Kauers, M., Seidl, M., 2019b. Matrix multiplication repository. http://www.algebra.uni-linz.
ac.at/research/matrix-multiplication/.

Heule, M. J. H., Kullmann, O., Marek, V. W., 2016. Solving and verifying the boolean Pythagorean triples problem via
cube-and-conquer. In: Creignou, N., Berre, D. L. (Eds.), Proceedings of the 19th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2016). Vol. 9710 of Lecture Notes in Computer Science. Springer, pp.
228–245.
URL https://doi.org/10.1007/978-3-319-40970-2_15

Huang, J., Smith, T. M., Henry, G. M., van de Geijn, R. A., 2016. Strassen’s algorithm reloaded. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis. SC’16. IEEE Press,
Piscataway, NJ, USA, pp. 59:1–59:12.
URL http://dl.acm.org/citation.cfm?id=3014904.3014983

Johnson, R. W., McLoughlin, A. M., 1986. Noncommutative bilinear algorithms for 3 × 3 matrix multiplication. SIAM
J. Comput. 15 (2), 595–603.
URL https://doi.org/10.1137/0215043

Kerber, A., 1991. Algebraic Combinatorics via Finite Group Actions. BI-Wissenschaftsverlag.
Laderman, J. D., 1976. A noncommutative algorithm for multiplying 3× 3 matrices using 23 multiplications. Bulletin of

the American Mathematical Society 82 (1), 126–128.
Landsberg, J. M., 2017. Geometry and complexity theory. Vol. 169. Cambridge University Press.
Le Gall, F., 2014. Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International Symposium

on Symbolic and Algebraic Computation. ISSAC’14. ACM, pp. 296–303.
URL http://doi.acm.org/10.1145/2608628.2608664

Makarov, O., 1987. A non-commutative algorithm for multiplying 5 × 5 matrices using one hundred multiplications.
USSR Computational Mathematics and Mathematical Physics 27 (1), 205 – 207.
URL http://www.sciencedirect.com/science/article/pii/0041555387901455

Marakov, O., 1986. An algorithm for multiplying 3 × 3 matrices. Zh. Vychisl. Mat. i Mat. Fiz. 26 (2), 293–294.
Oh, J., Kim, J., Moon, B.-R., 2013. On the inequivalence of bilinear algorithms for 3× 3 matrix multiplication. Informa-

tion Processing Letters 113 (17), 640–645.
Pan, V. Y., 2018. Fast feasible and unfeasible matrix multiplication. CoRR abs/1804.04102.

URL http://arxiv.org/abs/1804.04102

Sedoglavic, A., 2017a. Laderman matrix multiplication algorithm can be constructed using strassen algorithm and related
tensor’s isotropies. CoRR abs/1703.08298.
URL http://arxiv.org/abs/1703.08298

Sedoglavic, A., 2017b. A non-commutative algorithm for multiplying 5 × 5 matrices using 99 multiplications. CoRR
abs/1707.06860.
URL http://arxiv.org/abs/1707.06860

14

Sedoglavic, A., 2017c. A non-commutative algorithm for multiplying 7 × 7 matrices using 250 multiplications. CoRR
abs/1712.07935.
URL http://arxiv.org/abs/1712.07935

Sedoglavic, A., 2019. Yet another catalogue of fast matrix multiplication algorithms. https://fmm.univ-lille.fr/,
accessed: 2019-03-17.

Smirnov, A. V., 2013. The bilinear complexity and practical algorithms for matrix multiplication. Computational Math-
ematics and Mathematical Physics 53 (12), 1781–1795.

Smirnov, A. V., 2017. Several bilinear algorithms for matrix multiplication. Tech. rep., Technical report.
Strassen, V., 1969. Gaussian elimination is not optimal. Numerische Mathematik 13 (4), 354–356.
Vassilevska Williams, V., 2012. Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of the 44th

Annual ACM Symposium on Theory of Computing. STOC’12. ACM, New York, NY, USA, pp. 887–898.
URL http://doi.acm.org/10.1145/2213977.2214056

Winograd, S., 1971. On multiplication of 2 × 2 matrices. Linear algebra and its applications 4 (4), 381–388.

15

Appendix

Table 1. Number of non-equivalent schemes by invariant f (x, y, z) as defined in Section 4. This
table is based on the schemes for Z2 and include the few schemes that could not be lifted to Z.
The fact that the rank of a matrix appearing in a scheme can only be 1, 2, or 3 restricts the
number of different polynomials that can arise as value of the invariant f (x, y, z) to 28048800.
We have encountered 106 of them. The following table shows those for which we found more
than 10 orbits, together with the respective counts. The remaining ones can be found on our
website (Heule et al., 2019b).

12 x3y2z + x2y3z + x3yz2 + 24x2y2z2 + xy3z2 + x2yz3 + xy2z3 + 2x3yz + 2x2y2z + 2xy3z + 2x2yz2 + 2xy2z2 +

2xyz3 + 12x2yz + 12xy2z + 12xyz2 + 60xyz
14 24x2y2z2 + 2x3yz + 2x2y2z + 2xy3z + 2x2yz2 + 2xy2z2 + 2xyz3 + 22x2yz + 22xy2z + 22xyz2 + 36xyz
14 24x2y2z2 + 4x3yz + 2x2y2z + 4xy3z + 2x2yz2 + 2xy2z2 + 4xyz3 + 8x2yz + 8xy2z + 8xyz2 + 72xyz
15 24x2y2z2 + 2x3yz + 2xy3z + 2xyz3 + 22x2yz + 22xy2z + 22xyz2 + 42xyz
15 24x2y2z2 + 2x3yz + 2xy3z + 2xyz3 + 28x2yz + 28xy2z + 28xyz2 + 24xyz
15 24x2y2z2 + 4x3yz + 2x2y2z + 4xy3z + 2x2yz2 + 2xy2z2 + 4xyz3 + 14x2yz + 14xy2z + 14xyz2 + 54xyz
16 24x2y2z2 + 2x3yz + 2xy3z + 2xyz3 + 8x2yz + 8xy2z + 8xyz2 + 84xyz
16 24x2y2z2 + 6x3yz + 2x2y2z + 6xy3z + 2x2yz2 + 2xy2z2 + 6xyz3 + 4x2yz + 4xy2z + 4xyz2 + 78xyz
19 24x2y2z2 + 4x3yz + 2x2y2z + 4xy3z + 2x2yz2 + 2xy2z2 + 4xyz3 + 10x2yz + 10xy2z + 10xyz2 + 66xyz
21 24x2y2z2 + 4x2y2z + 4x2yz2 + 4xy2z2 + 14x2yz + 14xy2z + 14xyz2 + 60xyz
21 24x2y2z2 + 4x3yz + 4xy3z + 4xyz3 + 10x2yz + 10xy2z + 10xyz2 + 72xyz
27 24x2y2z2 + 4x3yz + 4xy3z + 4xyz3 + 16x2yz + 16xy2z + 16xyz2 + 54xyz
31 24x2y2z2 + 6x3yz + 2x2y2z + 6xy3z + 2x2yz2 + 2xy2z2 + 6xyz3 + 16x2yz + 16xy2z + 16xyz2 + 42xyz
36 24x2y2z2 + 4x3yz + 4xy3z + 4xyz3 + 12x2yz + 12xy2z + 12xyz2 + 66xyz
40 24x2y2z2 + 2x3yz + 2x2y2z + 2xy3z + 2x2yz2 + 2xy2z2 + 2xyz3 + 6x2yz + 6xy2z + 6xyz2 + 84xyz
42 24x2y2z2 + 2x3yz + 2x2y2z + 2xy3z + 2x2yz2 + 2xy2z2 + 2xyz3 + 20x2yz + 20xy2z + 20xyz2 + 42xyz
45 24x2y2z2 + 4x2y2z + 4x2yz2 + 4xy2z2 + 10x2yz + 10xy2z + 10xyz2 + 72xyz
53 24x2y2z2 + 6x3yz + 2x2y2z + 6xy3z + 2x2yz2 + 2xy2z2 + 6xyz3 + 6x2yz + 6xy2z + 6xyz2 + 72xyz
54 24x2y2z2 + 2x3yz + 2xy3z + 2xyz3 + 24x2yz + 24xy2z + 24xyz2 + 36xyz
59 24x2y2z2 + 2x3yz + 2xy3z + 2xyz3 + 10x2yz + 10xy2z + 10xyz2 + 78xyz
63 24x2y2z2 + 2x3yz + 2xy3z + 2xyz3 + 18x2yz + 18xy2z + 18xyz2 + 54xyz
68 24x2y2z2 + 6x3yz + 2x2y2z + 6xy3z + 2x2yz2 + 2xy2z2 + 6xyz3 + 14x2yz + 14xy2z + 14xyz2 + 48xyz
77 24x2y2z2 + 20x2yz + 20xy2z + 20xyz2 + 54xyz
79 24x2y2z2 + 4x2y2z + 4x2yz2 + 4xy2z2 + 12x2yz + 12xy2z + 12xyz2 + 66xyz
81 24x2y2z2 + 2x3yz + 2x2y2z + 2xy3z + 2x2yz2 + 2xy2z2 + 2xyz3 + 18x2yz + 18xy2z + 18xyz2 + 48xyz
83 24x2y2z2 + 2x3yz + 2xy3z + 2xyz3 + 20x2yz + 20xy2z + 20xyz2 + 48xyz
91 24x2y2z2 + 2x3yz + 2x2y2z + 2xy3z + 2x2yz2 + 2xy2z2 + 2xyz3 + 16x2yz + 16xy2z + 16xyz2 + 54xyz

101 24x2y2z2 + 6x3yz + 2x2y2z + 6xy3z + 2x2yz2 + 2xy2z2 + 6xyz3 + 8x2yz + 8xy2z + 8xyz2 + 66xyz
102 24x2y2z2 + 6x3yz + 2x2y2z + 6xy3z + 2x2yz2 + 2xy2z2 + 6xyz3 + 12x2yz + 12xy2z + 12xyz2 + 54xyz
105 24x2y2z2 + 2x3yz + 2x2y2z + 2xy3z + 2x2yz2 + 2xy2z2 + 2xyz3 + 8x2yz + 8xy2z + 8xyz2 + 78xyz
106 24x2y2z2 + 2x3yz + 2xy3z + 2xyz3 + 14x2yz + 14xy2z + 14xyz2 + 66xyz
114 24x2y2z2 + 2x3yz + 2xy3z + 2xyz3 + 16x2yz + 16xy2z + 16xyz2 + 60xyz
144 24x2y2z2 + 6x3yz + 2x2y2z + 6xy3z + 2x2yz2 + 2xy2z2 + 6xyz3 + 10x2yz + 10xy2z + 10xyz2 + 60xyz
148 24x2y2z2 + 2x3yz + 2x2y2z + 2xy3z + 2x2yz2 + 2xy2z2 + 2xyz3 + 10x2yz + 10xy2z + 10xyz2 + 72xyz
150 24x2y2z2 + 2x3yz + 2x2y2z + 2xy3z + 2x2yz2 + 2xy2z2 + 2xyz3 + 14x2yz + 14xy2z + 14xyz2 + 60xyz
176 24x2y2z2 + 2x3yz + 2xy3z + 2xyz3 + 12x2yz + 12xy2z + 12xyz2 + 72xyz
186 24x2y2z2 + 2x3yz + 2x2y2z + 2xy3z + 2x2yz2 + 2xy2z2 + 2xyz3 + 12x2yz + 12xy2z + 12xyz2 + 66xyz
248 24x2y2z2 + 6x2yz + 6xy2z + 6xyz2 + 96xyz
264 24x2y2z2 + 2x2y2z + 2x2yz2 + 2xy2z2 + 16x2yz + 16xy2z + 16xyz2 + 60xyz
402 24x2y2z2 + 8x2yz + 8xy2z + 8xyz2 + 90xyz
431 24x2y2z2 + 2x2y2z + 2x2yz2 + 2xy2z2 + 8x2yz + 8xy2z + 8xyz2 + 84xyz
745 24x2y2z2 + 18x2yz + 18xy2z + 18xyz2 + 60xyz
828 24x2y2z2 + 2x2y2z + 2x2yz2 + 2xy2z2 + 14x2yz + 14xy2z + 14xyz2 + 66xyz
902 24x2y2z2 + 2x2y2z + 2x2yz2 + 2xy2z2 + 10x2yz + 10xy2z + 10xyz2 + 78xyz

16

1027 24x2y2z2 + 2x2y2z + 2x2yz2 + 2xy2z2 + 12x2yz + 12xy2z + 12xyz2 + 72xyz
1431 24x2y2z2 + 10x2yz + 10xy2z + 10xyz2 + 84xyz
2374 24x2y2z2 + 16x2yz + 16xy2z + 16xyz2 + 66xyz
2795 24x2y2z2 + 12x2yz + 12xy2z + 12xyz2 + 78xyz
3304 24x2y2z2 + 14x2yz + 14xy2z + 14xyz2 + 72xyz

Table 2. Number of non-equivalent schemes by invariant g(w) as defined in Section 4. This table
is based on the schemes for Z2 and include the few schemes that could not be lifted to Z. The
fact that the rank of a matrix appearing in a scheme can only be 1, 2, or 3 restricts the number of
different polynomials that can arise as value of the invariant g(w) to 17343. We have encountered
the following 77 of them.

1 2w28 + w27 1 w33 + w32 + w30 1 w34 + 2w31 3 w34 + 2w30

3 w34 + 2w32 5 2w33 + w32 5 w34 + 2w29 6 w33 + w31 + w28

6 w34 + w30 + w29 6 w34 + w31 + w29 9 w34 + w32 + w30 14 w33 + 2w30

15 2w32 + w28 15 w32 + 2w30 16 2w33 + w31 16 w30 + w28 + w27

16 w33 + w32 + w29 17 w33 + w31 + w29 18 2w31 + w27 19 w33 + w31 + w30

20 3w30 25 w31 + w28 + w27 31 w33 + w30 + w29 33 2w32 + w29

35 2w32 + w30 41 w33 + w32 + w31 42 2w32 + w27 43 w33 + w30 + w28

46 w33 + 2w32 51 3w32 63 3w28 63 w33 + 2w31

73 w32 + w31 + w27 96 3w31 96 w31 + 2w30 104 w33 + w29 + w27

106 2w31 + w28 112 w32 + w31 + w29 122 w32 + w31 + w28 123 3w29

134 w33 + 2w29 138 w31 + w29 + w27 145 2w30 + w29 146 2w32 + w31

160 2w31 + w30 165 w32 + w30 + w29 175 w32 + w31 + w30 185 w29 + w28 + w27

190 2w31 + w29 191 w31 + 2w28 192 w29 + 2w28 198 2w29 + w27

201 w32 + 2w31 214 w30 + 2w28 216 w30 + 2w29 220 w31 + w30 + w27

240 2w30 + w27 245 w30 + w29 + w27 266 2w29 + w28 297 2w30 + w28

312 w32 + w30 + w27 330 w32 + w30 + w28 365 w33 + w29 + w28 401 w33 + 2w28

459 w32 + 2w29 472 w30 + w29 + w28 496 w33 + 2w27 540 w31 + 2w29

548 w31 + w30 + w29 575 w31 + w30 + w28 684 w32 + 2w27 733 w31 + w29 + w28

749 w33 + w28 + w27 776 w32 + w29 + w27 1317 w32 + 2w28 1590 w32 + w28 + w27

1596 w32 + w29 + w28

Table 3. The polynomial invariants f (x, y, z) and g(w) proposed in the text do not contain all the
information provided by the rank pattern of a scheme. The rank pattern can be viewed as a table
R ∈ {1, 2, 3}3×23, the (i, ι)-th entry of which is the rank of Aι, Bι,Cι if i is 1, 2, 3, respectively.
The table R itself is not an invariant, but if we consider two such tables R,R′ as equivalent if we
can map one to the other by suitably permuting rows and columns, then the equivalence classes
w.r.t. this equivalence relation are invariants. Using Polya theory (e.g. Kerber, 1991), it can
be calculated that the set {1, 2, 3}3×23 splits into 9724560295640 such equivalence classes. We
encountered 303 of them. In the table below, we list those for which we found more than 100 or-
bits, together with the respective counts. The remaining ones can be found on our website (Heule
et al., 2019b).

111 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 111 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

2
1
1

2
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 112 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
1
1

2
1
2

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

118 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
2
1

1
2
1

2
1
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 119 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
3

1
2
1

1
2
1

1
3
1

2
1
1

2
1
2

2
2
2

2
2
2

2
2
2

2
2
2

3
1
1

)
]∼ 123 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

2
1
1

2
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

125 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 126 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
1
2

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 148 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

156 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

1
2
1

2
1
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 166 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 171 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
1
1

2
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

17

172 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 181 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 182 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
1
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

183 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
1
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 185 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 188 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

192 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

1
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 195 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
1
2

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 198 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
2
1

1
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

214 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 214 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 215 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
2

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

230 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

1
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 243 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 249 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

265 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
2
1

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 285 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

1
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 297 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
2

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

317 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
1
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 350 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 375 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
2

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

430 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 467 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

2
1
2

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 496 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

557 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 579 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 684 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

729 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 850 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼ 992 [

(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

1
2
1

2
1
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

1215 [
(1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
1

1
1
2

1
1
2

1
1
2

1
1
2

1
1
2

1
2
1

2
2
2

2
2
2

2
2
2

2
2
2

)
]∼

Table 4. A multiplication scheme for the coefficient ring Z2 that cannot be extended to a scheme
for Z by replacing some of the 1’s by −1’s. It may still be possible to find a scheme with
coefficients in Z which reduces to this scheme modulo 2, but any such scheme must have at least
one coefficient with absolute value ≥ 2.0 0 0

0 0 0
1 0 0

 ⊗
0 1 0
0 1 0
0 1 0

 ⊗
1 0 0
0 1 1
0 1 1

 +

0 0 0
0 0 0
0 0 1

 ⊗
0 0 0
1 0 0
1 0 0

 ⊗
1 1 1
0 0 0
0 0 0


+

0 0 0
0 0 0
0 1 1

 ⊗
0 0 0
1 0 0
0 0 0

 ⊗
0 0 1
0 0 1
0 0 1

 +

0 0 0
1 0 0
0 0 0

 ⊗
1 0 0
0 0 0
0 0 0

 ⊗
1 1 1
0 0 0
0 0 0


+

0 0 0
1 0 0
1 0 0

 ⊗
1 0 0
0 0 0
0 0 0

 ⊗
1 0 1
0 0 0
0 0 0

 +

0 0 0
1 0 0
1 0 0

 ⊗
0 0 1
0 0 0
0 0 0

 ⊗
0 0 0
0 1 0
0 1 0


+

0 0 0
0 1 0
0 0 0

 ⊗
0 1 1
0 1 1
0 1 1

 ⊗
0 0 0
0 0 0
0 1 1

 +

0 0 0
0 1 0
1 0 0

 ⊗
0 1 1
0 1 0
0 1 0

 ⊗
0 0 0
0 1 0
0 1 1


+

0 0 0
0 1 0
0 1 0

 ⊗
0 0 0
1 0 1
0 0 0

 ⊗
0 0 0
0 0 0
0 0 1

 +

0 0 0
0 1 0
0 0 1

 ⊗
0 0 0
1 0 0
0 0 1

 ⊗
0 1 0
0 0 0
0 0 1


+

0 0 0
0 0 1
0 0 1

 ⊗
0 0 0
0 0 0
1 0 1

 ⊗
0 1 0
0 0 0
0 0 0

 +

0 0 0
0 1 1
0 0 0

 ⊗
0 0 0
0 0 0
0 0 1

 ⊗
0 1 0
0 0 0
1 1 0


+

1 0 0
0 0 0
0 0 0

 ⊗
0 1 0
0 1 0
0 0 0

 ⊗
1 0 0
1 0 0
1 0 0

 +

1 0 0
0 0 0
1 0 0

 ⊗
1 1 0
1 1 0
0 0 0

 ⊗
1 0 0
0 0 0
0 0 0


+

0 1 0
0 0 0
0 0 0

 ⊗
0 0 0
0 1 1
0 1 1

 ⊗
0 0 0
0 0 0
1 0 0

 +

1 1 0
0 0 0
0 0 0

 ⊗
0 0 0
0 1 0
0 1 0

 ⊗
0 0 0
1 0 1
1 0 0


18

+

1 1 0
0 0 0
1 1 0

 ⊗
0 0 0
1 1 0
0 0 0

 ⊗
0 0 0
0 0 1
0 0 0

 +

1 1 0
0 0 0
1 0 1

 ⊗
0 0 0
1 0 0
0 1 0

 ⊗
1 0 0
0 0 1
0 0 0


+

0 0 1
0 0 0
0 0 1

 ⊗
0 0 0
0 0 0
1 1 0

 ⊗
1 0 0
0 0 0
0 0 0

 +

0 1 1
0 1 1
0 0 0

 ⊗
0 1 1
0 0 0
0 1 1

 ⊗
0 0 0
0 0 0
1 0 0


+

1 1 1
0 0 0
0 0 0

 ⊗
0 0 0
0 0 0
0 1 0

 ⊗
1 0 0
1 1 0
0 0 0

 +

1 1 1
1 0 1
0 0 0

 ⊗
0 1 1
0 0 0
0 0 0

 ⊗
0 0 0
0 1 0
0 0 0


+

1 1 1
0 1 1
0 0 0

 ⊗
0 1 1
0 0 0
0 1 0

 ⊗
0 0 0
0 1 0
1 0 0


Table 5. A general multiplication scheme with 17 parameters. The parameters are x1, . . . , x17,
and we use the following shortcuts:

xi, j = xix j + 1 p1 = x9x6,8 + x6

p2 = x5x1,4 + x1 p3 = x16x3,15 + x3

p4 = x13x11,12 + x11 p5 = x2x10x1,4 − x10x17x1,4 + x2x4

p6 = x2x5x10x1,4 − x5x17x10x1,4 + x2x4,5 + x1x2x10 − x1x17x101 −1 −1
1 0 0
0 0 0

 ⊗

0 1 0
0 0 0
0 0 0

 ⊗

−1 0 0
1 0 0
1 0 0


+

1 −1 0
0 0 0
1 0 0

 ⊗

1 1 0
0 0 0
0 0 0

 ⊗

1 0 0
0 0 0
0 0 0


+

x4,5 0 p2
x4,5 0 p2
p6 0 p2 x17

 ⊗

0 −x1,4 x1,4
0 0 0
0 x4 −x4

 ⊗

0 0 0
0 0 0
1 0 0


+

0 1 1
0 0 0
1 0 0

 ⊗

 0 1 0
0 0 0
−1 0 0

 ⊗

−1 0 0
0 0 1
0 0 1


+

0 1 1
0 0 0
0 0 1

 ⊗

0 0 0
0 0 0
1 1 0

 ⊗

0 0 0
0 0 1
0 0 1


+

0 1 1
0 0 0
0 0 0

 ⊗

0 1 0
0 0 0
0 1 0

 ⊗

0 0 0
1 0 −1
1 0 −1


+

0 1 0
1 0 0
0 0 0

 ⊗

 1 1 0
1 0 0
−1 0 0

 ⊗

 1 0 0
−1 1 0
0 0 0


+

0 x15,16 0
0 x15,16 0
0 p3 0

 ⊗

0 0 0
0 −1 1
0 0 0

 ⊗

0 x14 x15 x14 x15
0 −x3,15 x15
0 0 0


+

0 1 0
0 0 −1
0 0 0

 ⊗

0 0 0
0 0 1
0 −1 0

 ⊗

0 0 0
0 1 0
1 0 0


+

0 1 0
0 0 0
0 0 0

 ⊗

 1 1 0
1 1 0
−1 −1 0

 ⊗

0 0 0
1 −1 0
0 0 0


+

x4 0 x1,4
x4 0 x1,4
p5 0 x17 x1,4

 ⊗

0 p2 −p2
0 0 0
0 −x4,5 x4,5

 ⊗

0 0 0
0 0 0
1 0 0


+

0 0 0
1 −1 0
0 1 0

 ⊗

 0 0 0
−1 0 0
1 0 0

 ⊗

0 1 0
0 0 0
0 0 0


19

+

 0 0 0
p1 0 x8,9
0 0 0

 ⊗

 x7 x8 0 x8
x7 x8 0 x6,8
−x7 x8 0 −x6,8

 ⊗

0 0 0
0 0 0
1 −1 0


+

0 0 0
1 0 0
0 0 0

 ⊗

 1 0 0
1 0 0
−1 0 0

 ⊗

−1 1 0
1 −1 0
x7 −x7 0


+

 0 0 0
x6,8 0 x8
0 0 0

 ⊗

 x7 x8,9 0 x8,9
x7 x8,9 0 p1
−x7 x8,9 0 −p1

 ⊗

 0 0 0
0 0 0
−1 1 0


+

0 0 0
0 1 1
1 −1 −1

 ⊗

0 0 0
0 0 0
1 0 0

 ⊗

0 0 −1
0 0 1
0 0 1


+

0 0 0
0 1 1
0 −1 0

 ⊗

0 0 0
0 0 1
1 0 0

 ⊗

0 1 1
0 0 −1
0 0 −1


+

0 0 0
0 1 1
0 0 0

 ⊗

0 0 0
0 0 1
0 0 0

 ⊗

0 −1 −1
0 1 1
0 1 1


+

0 0 0
0 0 0
1 0 0

 ⊗

p4 x12,13 −x12,13
0 0 0
p4 x10 x12,13 −x10 x12,13

 ⊗

 x12 0 −x12
0 0 0

x2 x11,12 0 −x11,12


+

 0 0 0
0 0 0
−1 0 0

 ⊗

x11,12 x12 −x12
0 0 0

x11,12 x10 x12 −x10 x12

 ⊗

x12,13 0 −x12,13
0 0 0

p4 x2 0 −p4


+

0 0 0
0 0 0
0 1 0

 ⊗

0 0 0
1 −x14 x14 + 1
0 0 0

 ⊗

0 1 1
0 0 0
0 0 0


+

0 x15 0
0 x15 0
0 x3,15 0

 ⊗

0 0 0
0 1 −1
0 0 0

 ⊗

0 x14 x15,16 x14 x15,16
0 −p3 x15,16
0 0 0


+

 0 0 0
0 0 0
−x10 0 1

 ⊗

0 0 0
0 0 0
0 1 −1

 ⊗

 0 0 0
0 0 0

x17 0 −1



20

