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Abstract

The symmetric product of two ordinary linear differential operators L1, L2 is an operator whose
solution set contains the product f1f2 of any solution f1 of L1 and any solution f2 of L2. It is
well known how to compute the symmetric product of two given operators L1, L2. In this paper we
consider the corresponding division problem: given a symmetric product L and one of its factors,
what can we say about the other factors?

1 Introduction

This work is about linear differential operators with rational function coefficients, i.e., operators that can
be written in the form

p0 + p1D + · · ·+ prD
r,

where D refers to the derivation with respect to x, and p0, . . . , pr are certain rational functions in x. Such
operators act in a natural way on differential fields, for example on the field of formal Laurent series.
The result of applying the above operators to a series f is meant to be the series

p0(x)f(x) + p1(x)f
′(x) + · · ·+ pr(x)f

(r)(x),

where by pi(x) we mean the series expansions of the rational function pi.

If L is an operator and f is a series, we write L · f for the series resulting from applying L to f .
A series f is called D-finite [23, 35] if there exists a nonzero operator L such that L · f = 0. Such an
L is called an annihilating operator for f . D-finite series play an important role in computer algebra.
There are many algorithms for solving problems about D-finite series, and these algorithms nowadays are
routinely applied in areas in which such problems naturally arise.

A D-finite series is uniquely determined by an annihilating operator and a finite number of initial
terms. For this reason, algorithms for D-finite series rely heavily on computations with operators. To
enable computations with operators, the set C(x)[D] of all operators is turned into a ring by defining
addition and multiplication in such a way that the action of this ring on the field C((x)) of Laurent
series via operator application turns that field into a C(x)[D]-module. This means that addition and
multiplication are set up in such a way that we have (L+M) ·f = L ·f +M ·f and (LM) ·f = L · (M ·f)
for every L,M ∈ C(x)[D] and every f ∈ C((x)). The resulting ring C(x)[D] of differential operators
is an example of an Ore algebra [10, 23, 27]. Its multiplication is not commutative but governed by the
commutation rule Dx = xD + 1, which reflects the product rule for differentiation.

The arithmetic in the ring C(x)[D] of operators is thus quite different from the arithmetic in the
field C((x)). In particular, if L and M are annihilating operators of f and g, respectively, then L +M
is usually not an annihilating operator of f + g, and LM is usually not an annihilating operator of fg.
Nevertheless, if f and g are D-finite, then so are their sum f + g and their product fg. An annihilating
operator for f + g can be obtained from L and M by taking a common left multiple of these operators,
i.e., an operator that can be written as AL and also as BM for certain operators A,B. Such operators
always exist, and there is one of minimal order which is unique up to left-multiplication by nonzero
rational functions. This operator is called the least common left multiple of L and M . See [5, 22, 23] for
information about the computation of such common left multiples.
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grant 10.55776/PAT8258123, 10.55776/I6130, and 10.55776/PAT9952223.
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Similarly, there is a construction by which an annihilating operator for the product fg can be obtained
from L and M . Again, among all these operators there is one of minimal order, and this one is unique
up to left-multiplication by nonzero rational functions. It is called the symmetric product of L and M
and denoted by L ⊗ M . This product is not to be confused with the product LM obtained via the
multiplication in the ring C(x)[D]. See [9,17,23] for more about the computation of symmetric products.

So we have two distinct kinds of multiplication for operators: the regular product and the symmetric
product. What are the corresponding divisions? For the regular product, this is easy to answer. With
respect to this product, despite the lack of commutativity the ring C(x)[D] very much behaves like a
commutative univariate polynomial ring. In particular, it is a left Euclidean domain [10,23,27]. We have
a notion of division with remainder which works very much like ordinary polynomial division, and we
have a Euclidean algorithm. In fact, the extended Euclidean algorithm in C(x)[D] gives rise to one way
of computing least common left multiples of operators.

It is less clear how to do division with respect to the symmetric product. Apparently, this question
has not been systematically addressed before, and the purpose of the present article is to develop some
theory and algorithms for this division. The task under consideration is, given two operators M and L,
to find another operator, Q, such that M = L ⊗ Q. We call such an operator Q a symmetric quotient
of M and L. The solutions g of a symmetric quotient have the property that for every solution f of L,
the product fg is a solution of M . Note that this is not the same as trying to compute an annihilating
operator for the quotient f/g of a solution f of L by a solution g of M . Indeed, these quotients are
usually not D-finite [18].

We were led to study symmetric division by an attempt to construct a cryptographic key exchange
system based on operator arithmetic. The idea was that Alice chooses two operators L and A and sends L
and L⊗A to Bob. Bob chooses an operator B and sends L⊗B back to Alice. Knowing L⊗B and A, Alice
can compute L ⊗ A ⊗ B (note that the symmetric product is commutative, unlike the regular operator
product), and knowing L ⊗ A and B, Bob can compute L ⊗ A ⊗ B as well, so they have constructed a
shared secret.

The rationale of this crypto system was that while the symmetric product of two operators can be
efficiently computed, it is unclear how to do symmetric division, so an attacker won’t easily be able to
recover A from the knowledge of both L and L⊗A. In a way, our main result is that this crypto system
is not secure, because symmetric division can be done. Although we cannot solve the problem in full
generality, our algorithms suffice to render the idea obsolete.

While this motivation may seem a bit far fetched, we believe that symmetric division is of interest in
its own right and that the ideas behind our algorithms are worth being shared. A key tool is the concept of
colon spaces, an adaption of the definition of colon ideals to vector space, which we introduce in Section 3
after reviewing in Section 2 the relevant background for this paper. In Section 4 we present an algorithm
for computing what we will call local quasi-symmetric quotients. This is a variant of the symmetric
division problem that we found most tractable. The algorithm of Section 4 depends on a number of
subroutines which are detailed in Sections 6–9. In Section 5 we discuss how (global) quasi-symmetric
quotients can be constructed for certain special kinds of operators.

2 Preliminaries

Throughout this paper, let C be an algebraically closed field of characteristic zero. Let C(x) be the field
of rational functions in x over C. Let C[[x]] be the ring of formal power series and let C((x)) be its
quotient field, i.e., the field of formal Laurent series.

2.1 Truncated Series

For any k ∈ Z, let Tk : C((x)) → C((x)) be the map defined by

Tk(f) =

k∑
i=j

aix
i,
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for all f =
∑∞

i=j aix
i ∈ C((x)) with ai ∈ C. The expression Tk(f) is called a truncation of f at

precision k. We may use the notation

Tk(f) =

k∑
i=j

aix
i +O(xk+1)

to make the truncation precision more explicit. We recall some basic properties of truncated series, which
follow directly from the definitions of addition and multiplication of series, see [23, §1.1] for details.

Lemma 2.1. Let f =
∑λ

i=λ0
aix

i+O(xλ+1) and g =
∑µ

i=µ0
bix

i+O(xµ+1) be Laurent series in C((x)),
where λ0, λ, µ0, µ ∈ Z with λ ≥ λ0, µ ≥ µ0. Then

f + g =

min{λ,µ}∑
i=min{λ0,µ0}

(ai + bi)x
i +O(xmin{λ,µ}+1).

Lemma 2.2. Let f = xλ0
∑λ1

i=0 aix
i + O(xλ0+λ1+1) and g = xµ0

∑µ1

i=0 bix
i + O(xµ0+µ1+1) be Laurent

series in C((x)), where λ0, µ0 ∈ Z and λ1, µ1 ∈ N.

(i) The product fg satisfies

fg = xλ0+µ0

min{λ1,µ1}∑
i=0

 i∑
j=0

ajbi−j

xi +O(xmin{λ1,µ1}+λ0+µ0+1).

(ii) If a0 ̸= 0, then f is invertible and

f−1 = x−λ0

(
λ1∑
i=0

cix
i

)
+O(xλ1−λ0+1),

where c0 = 1
a0
, ci = − 1

a0
(
∑i

j=1 ajci−j) for all 1 ≤ i ≤ λ1.

Corollary 2.3. Let r ∈ N \ {0} and let fi =
∑∞

j=i−1 ajx
j , gi =

∑∞
j=i−1 bjx

j be power series in C[[x]],
where 1 ≤ i ≤ r and bi−1 ̸= 0 (while ai−1 may be zero). Then for all k ≥ 0, we have

Tk

(
fi
gi

)
= Tk

(
Tk+r−1(fi)

Tk+r−1(gi)

)
.

Proof. Since Tk+r−1(gi) =
∑k+r−1

j=i−1 bjx
j+O(xk+r) = xi−1

∑k+r−i
j=0 bj+i−1x

j+O(xk+r), by Lemma 2.2.(ii)

we have 1
gi

= 1
Tk+r−1(gi)

+ O(xk+r−2i+2) for all 1 ≤ i ≤ r. Moreover, 1
Tk+r−1(gi)

= x−(i−1)
∑∞

j=0 cjx
j for

some cj ∈ C. Since fi = Tk+r−1(fi) +O(xk+r), by Lemma 2.2.(i) we get

fi
gi

=
Tk+r−1(fi)

Tk+r−1(gi)
+O(xmin{k+r−1−(i−1), k+r−2i+1+(i−1)}+(i−1)−(i−1)+1).

Therefore, fi
gi

− Tk+r−1(fi)
Tk+r−1(gi)

= O(xk+r−i+1) = O(xk+1) for all 1 ≤ i ≤ r. This completes the proof.

2.2 The ring of linear differential operators

Let C(x)[D] be an Ore algebra, where D is the differentiation with respect to x and satisfies the com-
mutation rule Dx = xD + 1. Operators in C(x)[D] have the form L = ℓ0 + ℓ1D + · · ·+ ℓrD

r ∈ C(x)[D]
with ℓ0, ℓ1, . . . , ℓr ∈ C(x). When ℓr ̸= 0, we call ord(L) := r the order of L. Let F be a differential ring
and write ′ for its derivation. The Ore algebra C(x)[D] acts on F via

(ℓ0 + ℓ1D + · · ·+ ℓrD
r) · f = ℓ0f + ℓ1f

′ + · · ·+ ℓrf
(r).

An element f ∈ F is called a solution of an operator L ∈ C(x)[D] if L · f = 0. For L ∈ C(x)[D], we call
VF (L) := {f ∈ F | L · f = 0} the solution space of L in F . For convenience, we write V (L) to denote the
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solution space of L in the field of formal Laurent series C((x)). An element c ∈ F is called a constant if
D · c = 0. The set of constants in a ring forms a subring and in a field forms a subfield.

The Ore algebra C(x)[D] is a right Euclidean domain, and the (extended) Euclidean algorithm carries
over almost literally to this setting [10, 23]. For every L1, L2 ∈ C(x)[D], L1 ̸= 0, there exist unique
Q,R ∈ C(x)[D] such that L2 = QL1 + R and ord(R) < ord(L1). If R = 0, we say that L1 is a right
factor of L2 and that L2 is a left multiple of L1. An element f ∈ F is called D-finite if there exists a
nonzero operator L ∈ C(x)[D] such that L · f = 0. Such an L is called an annihilator of f . Among all
annihilators, one of minimal order is called a minimal annihilator. Since every left ideal of C(x)[D] is
left principal, every annihilator of f is a left multiple of its minimal annihilator. The following lemma
describes properties of the solution spaces of an operator and its right factors.

Lemma 2.4 ([34, Lemma 2.1]). Let L1, L2 ∈ C(x)[D] and assume that ord(L1) = r1, ord(L2) = r2. Let
F be a differential field extension of C(x) having the same constant C.

(i) dimC VF (L1) ≤ r1.

(ii) If dimC VF (L1) = r1 and VF (L1) ⊆ VF (L2), then L1 is a right factor of L2.

(iii) If dimC VF (L1) = r1 and L2 is a right factor of L1, then dimC VF (L2) = r2 and VF (L2) ⊆ VF (L1).

An operator L ∈ C(x)[D] is called a common left multiple of two operators L1, L2 ∈ C(x)[D] if there
exist R1, R2 ∈ C(x)[D] such that L = R1L1 = R2L2. Among all such common left multiples, one of
minimal order is called a least common left multiple (lclm). We write lclm(L1, L2) for the unique primitive
lclm of L1 and L2, i.e., the lclm whose coefficients are coprime polynomials in C[x] and whose leading
coefficient is primitive in x. A key feature of the lclm is that whenever f1 is a solution of L1 and f2
is a solution of L2, then their sum f1 + f2 is a solution of lclm(L1, L2). For the efficient computation
of the least common left multiple, see [5]. There is a similar construction for multiplication. For any
two nonzero differential operators L1, L2 ∈ C(x)[D], there exists a unique primitive operator L1 ⊗ L2 of
lowest order, called the symmetric product of L1 and L2, such that whenever f1 is a solution L1 and f2
is a solution of L2, then their product f1f2 is a solution of L1⊗L2. As a special case, the s-th symmetric
power of an operator L ∈ C(x)[D] is defined as L⊗s = L ⊗ · · · ⊗ L. For the efficient computation of
the symmetric powers, see [9]. Note that unlike the multiplication in C(x)[D], the symmetric product
is commutative. We recall the following properties of the lclm (see [31, Lemma 3.2] or [23, §4.2, Ex. 13;
solution on p. 578]) and of the symmetric product (see [37, Corollary 2.9] or [32, Proposition 2.6]).

Lemma 2.5. Let L1, L2 ∈ C(x)[D]. Let F be a differential field extension of C(x) having the same
constant C. Assume that dimC(VF (L1)) = ord(L1) and dimC(VF (L2)) = ord(L2). Then

(i) dimC VF (lclm(L1, L2)) = ord(lclm(L1, L2)) and

VF (lclm(L1, L2)) = VF (L1) + VF (L2);

(ii) dimC VF (L1 ⊗ L2) = ord(L1 ⊗ L2) and

VF (L1 ⊗ L2) = SpanC{gh | g ∈ VF (L1), h ∈ VF (L2)}.

The following lemma (see [23, §4.1 Ex. 23; solution on p. 575]) shows that the symmetric product is
distributive over the lclm.

Lemma 2.6. Let L,Q1, Q2 ∈ C(x)[D]. Then L⊗ (lclm(Q1, Q2)) = lclm(L⊗Q1, L⊗Q2).

As a consequence of Lemma 2.6, we obtain the following corollary.

Corollary 2.7. Let L,Q1, Q2,M ∈ C(x)[D]. If both L ⊗ Q1 and L ⊗ Q2 are right factors of M ,
then L ⊗ (lclm(Q1, Q2)) is also a right factor of M . In particular, if M = L ⊗ Q1 = L ⊗ Q2, then
M = L⊗ (lclm(Q1, Q2)).
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2.3 Indicial polynomials

We recall properties of linear differential equations in [20, Chap. XVI, XVII] or [28, Chap. V]. Let
N ∈ C[x][D] be a linear differential operator with polynomial coefficients. If N is given with rational
coefficients, its denominators can be cleared. Then the action of N on a monomial zs with s ∈ N yields
a polynomial

N · xs = xs+σN (p0(s) + p1(s)x+ · · ·+ pt(s)x
t), (1)

where σN ∈ Z, t ∈ N, pi ∈ C[s] and p0 ̸= 0. The coefficients of pi(s) depend on those coefficients
of N . The polynomial p0(s) is called the indicial polynomial of N at 0, denoted by ind0(L). By linear
combination, the action of N on a formal power series f =

∑∞
i=0 cix

i ∈ C[[x]] is the formal power series

N · f =

∞∑
i=0

ci(N · xi) =
∞∑
k=0

(c0pk(0) + · · ·+ ckp0(k))x
k+σN ,

where pi(x) = 0 if i > t. Then the differential equation N · f = 0 implies that

c0p0(0) = 0, c1p0(1) + c0p1(0) = 0, . . . , ct−1p0(t− 1) + · · ·+ c0pt−1(0) = 0 (2)

and the linear recurrence of order t

ckp0(k) + · · ·+ ck−tpt(0) = 0, ∀ k ≥ t. (3)

Let
ZN := {k ∈ N | p0(k) = 0} (4)

be the set of nonnegative integer roots of the indicial polynomial of N at 0. For all k /∈ ZN , the coefficient
ck is determined from the previous ones. In particular, this discussion leads to the following basic property
of power series solutions, see [20].

Lemma 2.8. Let N ∈ C[x][D] be such that N · xs = xs+σN (p0(s) + p1(s)x + · · · + pt(s)x
t) is in the

form (1). Let k0 = maxZN . If f =
∑∞

i=0 cix
i ∈ C[[x]] is a formal power series solution of N , then, for

all k > k0,

ck = − 1

p0(k)

min{t,k}∑
i=1

ck−ipi(k − i)

 .

Proof. Since p0(k) ̸= 0 for all k > k0, the result follows from the equations (2) and (3).

2.4 Generalized series solutions

Let L = ℓ0 + ℓ1D + · · · + ℓrD
r ∈ C(x)[D] be a fixed operator of order r. A point ξ ∈ C is called a

singularity of L if it is a pole of one of the rational functions ℓ0/ℓr, . . . , ℓr−1/ℓr. The point ∞ is called a
singularity if, after the substitution x 7→ x−1, the origin 0 becomes a singularity. A point ξ ∈ C ∪ {∞}
which is not a singularity is called an ordinary point of L. If ξ is an ordinary point of L, then after the
change of variables x 7→ x + ξ, zero becomes an ordinary point of the transformed operator. If 0 is an
ordinary point of L, then L has r linearly independent solutions in C[[x]], see the following lemma. Since
the dimension of the solution space V (L) ⊆ C((x)) can not exceed its order, these solutions also form a
basis of V (L).

Lemma 2.9 ( [23, Theorem 3.16]). Let L ∈ C(x)[D] be an operator of order r. If 0 is an ordinary point
of L, then L has r linearly independent solutions in C[[x]] of the form

g1 = 1 +O(xr), g2 = x+O(xr), . . . , gr = xr−1 +O(xr).

A singularity ξ ∈ C ∪ {∞} of L is called apparent if the solution space of L in C[[x− ξ]] (or C[[x−1]]
if ξ = ∞) has dimension r. A singularity ξ ∈ C ∪ {∞} is called regular if the indicial polynomial of L at
ξ has degree r, and it is called irregular otherwise. For each ξ ∈ C, an operator L of order r admits r
linearly independent solutions of the form

(x− ξ)α exp(p((x− ξ)−1))b(x− ξ, log(x− ξ)) (5)

5



for some α ∈ C, p ∈ C[x1/v] and b ∈ C[[x1/v]][y] with v ∈ N \ {0} and p(0) = 0. Such objects are called
generalized series solutions at ξ, see [23, 39]. For ξ = ∞, the operator L admits r linearly independent
solutions of the form

x−α exp(p(x))b(x−1, log(x)) (6)

for some α ∈ C, p ∈ C[x1/v]and b ∈ C[[x1/v]][y] with v ∈ N\{0} and p(0) = 0. If ξ is a regular singularity,
then all series solutions of L at ξ have p = 0 and v = 1. As a change of variables can always bring us back
to the case ξ = 0, it suffices to consider the case x = 0. Let C[[[x1/v]]] be the ring of all finite C-linear
combinations of series of the form xαb(x, log(x)) with α ∈ C and b ∈ C[[x1/v]][y].

Since the series solutions in the form (5) (or (6) at ∞) may have fractional exponents, we consider
L ∈ C[x1/v][D] in the following lemma. The indicial polynomial of an operator in C[x1/v][D] is defined
similarly to the classical case, see [23, Definition 3.34].

Definition 2.10. For a series f ∈ xαC[[x1/v]][log(x)], a term xβ log(x)γ is called an initial term of f
if β is minimal among all exponents of x appearing in f , and among the terms with exponent β, it has
minimal γ. The exponent β is called the local exponent of f .

If α is a µ-fold root of the indicial polynomial of L at 0, then L has µ linearly independent solutions
in xαC[[x]][log(x)] starting with the initial terms xα log(x)γ for some γ. More precisely, the following
result can be obtained from further computations based on [23, Theorem 3.38 (item 2), Theorem 3.45].

Lemma 2.11. Let L ∈ C[x1/v][D] for some v ∈ N \ {0}. Suppose that the indicial polynomial ind0(L)
of L at 0 factorizes as

ind0(L) = c(s− α1)
µ1 · · · (s− αI)

µI ,

where c ∈ C \ {0}, µ1, . . . , µI ∈ N \ {0}, the roots α1, . . . , αI ∈ C are distinct. Then the solution space of
L in C[[[x1/v]]] has a basis gi,j (i = 1, . . . , I, j = 1, . . . , µi) in the form:

g1,1 = xα1 + · · · , · · · , gI,1 = xαI + · · · ,
g1,2 = xα1 log(x) + · · · , · · · , gI,2 = xαI log(x) + · · · ,

...
...

g1,µ1
= xα1 log(x)µ1−1 + · · · , · · · , gI,µI−1 = xαI log(x)µI−1 + · · · .

where xαi log(x)j−1 is the initial term of gi,j.

The operator L is called Fuchsian if all its singularities in C ∪ {∞} are regular. Let L ∈ C(x)[D] be
a Fuchsian operator. For each ξ ∈ C ∪ {∞}, let

Sξ(L) :=

r∑
j=1

ej(ξ)−
r(r − 1)

2
(7)

where the numbers ej(ξ) are the local exponents of L at ξ (they are the roots of the indicial polynomial
of L at ξ). If ξ is an ordinary point, then, by Lemma 2.9, we have Sξ(L) = 0. The Fuchs relation
(see [20, §15.4] or [28, §20]) states that ∑

ξ∈Sing(L)∪{∞}

Sξ(L) = −r(r − 1) (8)

where Sing(L) is the set of singularities of L in C.

Example 2.12. The operator Q = (x − 1)3D3 − 3(x − 1)2D2 + 6(x − 1)D − 6 ∈ C(x)[D] is Fuchsian,
with two regular singularities at 1 and ∞. At the point 1, the indicial polynomial

ind1(Q) = (s− 1)(s− 2)(s− 3)

has degree 3, corresponding to the series solutions (x− 1), (x− 1)2, (x− 1)3 with local exponents 1, 2, 3
respectively. At the point ξ = ∞, the indicial polynomial

ind∞(Q) = (s+ 3)(s+ 2)(s+ 1)
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also has degree 3, corresponding to the series solutions x3 (1+O( 1x )), x
2(1+O( 1x )), x(1+O( 1x )) with local

exponents −3, −2, −1 respectively. Thus, for the operator Q:

S1(Q) = 1 + 2 + 3− 3 = 3,

S∞(Q) = −3− 2− 1− 3 = −9,

and the Fuchs relation (8) reduces to
3− 9 = −6.

Let L = ℓ0 + ℓ1D + · · · + ℓrD
r ∈ C[x][D]. For each term xj occurring in ℓi(x), draw a halfline in

the plane that starts at (i, j) and continues in the direction (−1,−1), and determine the convex hull of
all these halflines. The boundary of this convex hull is called the Newton polygon of L at 0. Then every
slope 1− c width w corresponds to w linearly independent solutions with an exponential part in the form
exp(p(x−1)) with deg(p) = −c for some p ∈

⋃
v∈N\{0} C[x

1/v], see [23, §3.4].

Suppose that f(x) = exp(p(x−1))g(x) is a solution of L for some series g(x), where p ∈ C[x1/v] with
v ∈ N \ {0}. Then g(x) is a solution of L̃ = exp(−p(x−1))L exp(p(x−1)).

Definition 2.13. Let L ∈ C[x][D] and p ∈ C[x1/v] with v ∈ N\{0}. The generalized indicial polynomial
of L at 0 and exp(p(x−1)), denoted by ind0,exp(p(x−1))(L), is defined as the indicial polynomial of L̃ =

exp(−p(x−1))L exp(p(x−1)) ∈ C[x1/v, x−1/v][D]. When p(x−1) = 0, the generalized indicial polynomial
coincides with the classical indicial polynomial of L at 0.

Let L be an operator of order r. For each ξ ∈ C ∪ {∞}, Sξ(L) is defined as before:

Sξ(L) :=

r∑
j=1

ej(ξ)−
r(r − 1)

2
, (9)

but now ej(ξ) are the generalized local exponents of L at ξ, see [11, p. 297] or [1, §3.3] for their definition
(they are the roots of the generalized indicial polynomials of L at ξ). Let

Iξ(L) := 2
∑

1≤i<j≤r

deg(pi − pj) (10)

where pi are the exponential parts of L at ξ. If ξ is a regular singularity, then Iξ(L) = 0. The generalized
Fuchs relation (see [3, 11] or [1, §3.5]) states that∑

ξ∈Sing(L)∪{∞}

(Sξ(L)−
1

2
Iξ(L)) = −r(r − 1). (11)

Example 2.14. The operator Q = (x−1)D2+xD−1 ∈ C(x)[D] is non-Fuchsian. It has two singularities
at 1 and ∞. The point 1 is regular and apparent. Its indicial polynomial

ind1(Q) = s(s− 2)

has degree 2, corresponding to the series solutions 1+O(x−1), (x−1)2+O((x−1)3) with local exponents
0, 2 respectively. Its Newton polygon at 0 has one edge of slop 1 and width 2. The point ξ = ∞ is
irregular. Its generalized indicial polynomials are

ind∞,exp(0)(Q) = s+ 1, ind∞,exp(x)(Q) = −s,

corresponding to series solutions x, exp(x) with generalized local exponents are −1, 0 respectively. Its
Newton polygon at ∞ (i.e. the Newton polygon at 0 of the operator obtained by substituting x 7→ x−1 into
Q) has two edges: one of slop 1 and width 1, and one of slope 2 and width 1. For the operator Q,

S1(Q) = 0 + 2− 1 = 1,

S∞(Q) = −1 + 0− 1 = −2,

I∞(Q) = 2 · 1 = 2,

and the generalized Fuchs relation (11) reduces to

1− 2− 1 = −2.
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3 The colon space

For two ideals I, J of a commutative ring R, the set

(I : J) := {r ∈ R | rJ ⊆ I}

is called the ideal quotient (or colon ideal) of I by J . If R is a polynomial ring in several variables over C,
one can compute a Gröbner basis of a colon ideal, see details in [15, §4.4].

In this section, let K be a ring extension of C. Then K is naturally a C-algebra, i.e., a C-vector space
equipped with a compatible ring structure. A typical choice for K is the ring of formal power series C[[x]]
or the field of formal Laurent series C((x)). As an analog of colon ideals, we introduce the following
notion.

Definition 3.1. Let V be a C-vector subspace of K and U be a subset of K. The colon space of V by
U in K is defined as the set

(V : U) := {h ∈ K | hU ⊆ V },

which is a C-vector subspace of K.

The solution space of a symmetric quotient is contained in the corresponding colon space.

Lemma 3.2. Let L,Q,M ∈ C(x)[D] be such that L⊗Q is a right factor ofM . Let F be a differential ring
extension of C(x) and let (VF (M) : VF (L)) be the colon space in F . Then VF (Q) ⊆ (VF (M) : VF (L)).

Proof. For any h ∈ VF (Q), we have h ∈ F and hVF (L) ⊆ VF (M) by the definition of symmetric products.
This implies h ∈ (VF (M) : VF (L)) by the definition of the colon space.

The colon space satisfies the following basic properties, analogous to those of colon ideals in the
polynomial ring, (see [15, Proposition 13 and Theorem 14 in §4.4]).

Proposition 3.3. Let g be an invertible element in K and let V,U, U1, . . . , Ur be C-vector subspaces
of K. Then

(i) (V : {g}) = {f/g | f ∈ V }.

(ii) If {f1, . . . , fn} generates V as a C-vector space, then (V : {g}) is generated by
{

f1
g , . . . ,

fn
g

}
.

(iii) If {g1, . . . , gr} generates U as a C-vector space, then (V : U) = (V : {g1, . . . , gr}).

(iv) (V : (
∑r

j=1 Uj)) =
⋂r

j=1(V : Uj).

Proof. (i) follows from the definition of the colon space.

(ii) By item (i), fi
g belongs to (V : {g}) for all 1 ≤ i ≤ n. For any h ∈ (V : {g}), again by (i), there

exists f ∈ V such that h = f
g . Since f is a C-linear combination of f1, . . . , fn, it follows that h = f

g

is a C-linear combination of f1
g , . . . ,

fn
g .

(iii) Since {g1, . . . , gr} is a subset of U , by the definition of colon spaces we obtain that (V : U) is a
subset of (V : {g1, . . . , gr}). Conversely, suppose h ∈ (V : {g1, . . . , gr}). Then by definition, hgi ∈ V
for all 1 ≤ i ≤ n. Every element g in U can be written as a C-linear combination g =

∑r
i=1 bigi with

b1, . . . , br ∈ C. Thus hg =
∑r

i=1 bi(hgi) ∈ V because V is a C-vector space. By the arbitrariness
of g, we have hU ⊆ V . Therefore h ∈ (V : U).

(iv) For every h ∈ V , we have h ∈ (V : (
∑r

j=1 Uj)) ⇔ h(
∑r

j=1 Uj) ⊆ V ⇔ ∀ 1 ≤ j ≤ r, hUj ⊆ V ⇔
h ∈

⋂r
j=1(V : Uj).

Corollary 3.4. Let V = SpanC{f1, . . . , fn} and U = SpanC{g1, . . . gr} be two C-vector subspaces of K.
If g1, . . . , gr are invertible elements of K, then

(V : U) =

r⋂
i=1

(V : {gi}) =
r⋂

i=1

SpanC

{
f1
gi
, . . . ,

fn
gi

}
.
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Proof. For each i = 1, . . . , r, let Ui = SpanC{gi}. Then U = U1 + · · ·+ Ur. By Proposition 3.3, we have

(V : U) = (V : (U1 + · · ·+ Ur))
(iv)
=

r⋂
i=1

(V : Ui)
(iii)
=

r⋂
i=1

(V : {gi})
(ii)
=

r⋂
i=1

SpanC

{
f1
gi
, . . . ,

fn
gi

}
.

Example 3.5. Let L = x2D2 − 2xD + 2, Q = x3D3 − 3x2D2 + 6x− 6 ∈ C(x)[D], and

M = L⊗Q = x4D4 − 8xD3 + 36x2D2 − 96xD + 120.

We consider the solution spaces of these operators in K = C((x)):

V (L) = SpanC{x, x2}, V (Q) = SpanC{x, x2, x3}, V (M) = SpanC{x2, x3, x4, x5}. (12)

By Corollary 3.4, we have

(V (M) : V (L)) = (V (M) : {x}) ∩ (V (M) : {x2})
= SpanC{x, x2, x3, x4} ∩ SpanC{1, x, x2, x3}
= SpanC{x, x2, x3}.

By Lemma 3.2, the solution space V (Q) of the quotient Q is contained in the colon space (V (M) : V (L)).
In this example, we have equality V (Q) = (V (M) : V (L)).

4 Symmetric division algorithm

4.1 The maximal symmetric quotient

Unlike polynomial division, symmetric division may admit infinitely many quotients. Even the order of
the quotient may not be unique. If L,M ∈ C(x)[D] are of positive order such that M = L⊗Q for some
Q ∈ C(x)[D], it is known that

ord(L) + ord(Q)− 1 ≤ ord(M) ≤ ord(L) ord(Q). (13)

Since ord(L) ̸= 0, this implies

(ord(M)/ ord(L)) ≤ ord(Q) ≤ ord(M)− ord(L) + 1. (14)

Therefore, only finitely many orders can appear for the symmetric quotients.

Example 4.1. Let L,Q,M ∈ C(x)[D] be the same as in Example 3.5. Let

Qα = (−αx2 − 2x3)D2 + (2αx+ 6x2)D + (−2α− 6x),

where α ∈ C. These operators have enough solutions in C((x)). The solution spaces V (L), V (Q), V (M)
are listed in (12). The solution space of Qα in C((x)) is

V (Qα) = SpanC{x, x3 + αx2}.

Since

V (M) = SpanC{ gh | g ∈ V (L) and h ∈ V (Q)} = SpanC{ gh | g ∈ V (L) and h ∈ V (Qα)},

it follows that
M = L⊗Q = L⊗Qα for all α ∈ C.

Thus, for all α ∈ C, the operator Qα is a second-order quotient of M by L with respect to symmetric
product. The operator Q is also a quotient but of order three. By (14), Q attains the maximal order
among all symmetric quotients of M by L. In this example,

V (Qα) ⊆ V (Q) and Q = RαQα,

where Rα = (− x
α+2xD + 3

α+2x ) ∈ C(x)[D]. Therefore Q is a left multiple of Qα for all α ∈ C.
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If L = 0, then L⊗Q = 0 for any Q ∈ C(x)[D]. If L ∈ C(x)\{0}, then L⊗Q = 1 for any Q ∈ C(x)[D].
To avoid such degenerate cases, we consider only operators of positive order in symmetric division. In
this section, we prove that maximal-order symmetric quotients are unique up to left multiplication by
nonzero rational functions.

Proposition 4.2. Let L,M ∈ C(x)[D] be of positive order. Then there exists a unique primitive operator
Q ∈ C(x)[D] of maximal order such that L ⊗ Q is a right factor of M . Moreover, this operator Q is a
least common left multiple (lclm) of all operators P such that L⊗ P is a right factor of M .

Proof. Let
δ := max{ord(P ) | P ∈ C(x)[D], L⊗ P is a right factor of M}.

This set of orders is non-empty because for any L,M ∈ C(x)[D] of positive order, L⊗ 1 = 1 is a trivial
right factor of M . By (14), if M0 := L⊗ P is a right factor of M for some P ∈ C(x)[D], then

ord(P ) ≤ ord(M0)− ord(L) + 1 ≤ ord(M)− ord(L) + 1.

Hence the set of ord(P ) is finite and therefore it admits a maximum value δ.

Let P1, P2 ∈ C(x)[D] be operators of order δ such that L ⊗ P1 and L ⊗ P2 are right factors of M .
Suppose that both P1 and P2 are primitive operators but P1 ̸= P2. By Corollary 2.7, we obtain that
L⊗P is a right factor of M , where P = lclm(P1, P2). However, ord(P ) > ord(P1) = δ, which contradicts
the maximality of δ. So there exists a unique primitive operator Q ∈ C(x)[D] of order δ such that L⊗Q
is a right factor of M .

Suppose that L ⊗ P is a right factor of M for some P ∈ C(x)[D]. We need to show that Q is a left
multiple of P . Using Corollary 2.7 again, we obtain that P0 := lclm(P,Q) is a right factor of P . If Q is
not a left multiple of P , then ord(P0) > ord(P ) = δ, which contradicts the maximality of δ.

Definition 4.3. Let L,M ∈ C(x)[D] be of positive order. The (global) quasi-symmetric quotient of M
by L, denoted by qsquo(M,L), is defined as the unique primitive operator Q ∈ C(x)[D] of maximal order
such that L⊗Q is a right factor of M .

By Proposition 4.2, a quasi-symmetric quotient exists and is unique. In particular, let L,M ∈ C(x)[D]
be of positive order, and suppose that M = L ⊗ P for some P ∈ C(x)[D]. Then there exists a quasi-
symmetric quotient Q of M by L. By Corollary 2.7, L⊗Q = L⊗ lclm(Q,P ) = lclm(L⊗Q,L⊗P ) =M .
So Q is a symmetric quotient, i.e., the unique primitive operator of maximal order such that L⊗Q =M .

4.2 Overview of the algorithm

Given two operators L,M ∈ C(x)[D] of positive order, we want to find the quasi-symmetric quotient Q
of M by L. To do this, we first search for the power series solutions of Q. Then we try to recover the
coefficients of Q from its solution space by solving a linear system over C. In this section, we work with
solution spaces in the field of formal Laurent series C((x)). After change of variables, we may assume
without loss of generality that 0 is an ordinary point of both L and M . Then a new upper bound for the
orders of symmetric quotients is given as follows.

Proposition 4.4. Let L,M ∈ C(x)[D] be of positive order such that L ⊗ Q is a right factor of M for
some Q ∈ C(x)[D]. Let V (L), V (Q), V (M) be the solution spaces of L,Q,M in C((x)), respectively. Let
(V (M) : V (L)) be the colon space in C((x)). If 0 is an ordinary point of L and M , then

(i) 0 is either an ordinary point or an apparent singularity of Q.

(ii) V (Q) ⊆ (V (M) : V (L)).

(iii) ord(Q) = dimC V (Q) ≤ dimC(V (M) : V (L)),

Proof. (i) Suppose on the contrary that 0 is a singularity of Q but not an apparent singularity. Then
the solution space of Q in C[[x]] has dimension strictly less than ord(Q). This implies that Q has
a solution h ∈ F \ C[[x]], where F is a differential ring extension of C[[x]] with constant field C.

Since 0 is an ordinary point of L, it follows from Lemma 2.9 that L has a formal power series
solution g of the form g = 1 +O(x). Then g is an invertible element in C[[x]].
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By the definition of symmetric product, gh ∈ F is a solution of L⊗Q. Then gh is also a solution
of M , because L ⊗ Q is a right factor of M . Since 0 is an ordinary point of M , it follows from
Lemma 2.9 that M has ord(M) linearly independent solutions in C[[x]]. The dimension of the
solution space of M in F can not exceed its order. Therefore f := gh ∈ C[[x]], which implies that
h = fg−1 ∈ C[[x]]. This leads to a contradiction.

(ii) follows from Lemma 3.2 by taking F = C((x)).

(iii) By (ii), we obtain dimC V (Q) ≤ dimC(V (M) : V (L)). Since 0 is an ordinary point of M and L, it
follows from (i) that 0 is either an ordinary point of an apparent singularity of Q. In either case,
we have ord(Q) = dimC V (Q).

Before presenting the symmetric division algorithm, we give an example to illustrate its main idea.

Example 4.5. Let L,M be two operators in C(x)[D]:

L = (x2 − 2x+ 2)(x− 1)2D2 + 2x(x− 1)(x− 2)D + 2

M = L⊗ P = (x2 − 2x+ 2)(x− 1)4D4 − 8(x− 1)3D3 + 36(x− 1)2D2 − 96(x− 1)D + 120,

for some unknown P ∈ C(x)[D]. We want to compute a symmetric quotient of M by L.

We first compute the power series solutions of L and M at the ordinary point x = 0. The operator
M has four linear independent solutions in C[[x]]:

f1 = 1− x− 1

2
x2 + 0x3 +

1

4
x4 +

1

4
x5 +O(x6),

f2 = x− x2 − 1

2
x3 + 0x4 +

1

4
x5 +O(x6),

f3 = x2 − x3 − 1

2
x4 + 0x5 +O(x6),

f4 = x3 − x4 − 1

2
x5 +O(x6).

The operator L has two linearly independent solutions in C[[x]]:

g1 = 1 + 0x− 1

2
x2 − 1

2
x3 − 1

4
x4 + 0x5 +O(x6),

g2 = x+ 0x2 − 1

2
x3 − 1

2
x4 − 1

4
x5 +O(x6).

Then V (M) = SpanC{f1, f2, f3, f4} and V (L) = SpanC{g1, g2}.
Let (V (M) : V (L)) be the colon space in C((x)). By Corollary 3.4, we have

(V (M) : V (L)) = (V (M) : {g1}) ∩ (V (M) : {g2}) = SpanC

{
f1
g1
,
f2
g1
,
f3
g1
,
f4
g1

}
∩ SpanC

{
f1
g2
,
f2
g2
,
f3
g2
,
f4
g2

}
.

Our algorithm in Section 7 finds dimC(V (M) : V (L)) = 3, with a basis given by

h1 = 1− x+ 0x2 + 0x3 + 0x4 +O(x5),

h2 = x− x2 + 0x2 + 0x3 + 0x4 +O(x5),

h3 = x2 − x3 + 0x2 + 0x3 + 0x4 +O(x5).

By Proposition 4.4.(ii), if M = L⊗Q for some Q ∈ C(x)[D], then the solution space V (Q) in C((x)) is a
subspace of (V (M) : V (L)). We search for an operator Q of order three such that V (Q) = (V (M) : V (L)).
Our algorithm in Section 9 shows that the degrees of coefficients of Q are at most d0 = 27. In this example,
we find

Q = (x− 1)3D3 − 3(x− 1)2D2 + 6(x− 1)D − 6

It can be verified that M = L⊗Q. Since ord(Q) = dimC(V (M) : V (L)), Proposition 4.2 implies that Q
has maximal order among all symmetric quotients of M by L. In fact, P = (x− 1)2D2 − 3(x− 1)D + 3
is another symmetric quotient of M by L, but of order two. Moreover, Q = RP is a left multiple of P ,
where R = 1

(x−1)2 ((x− 1)3D − 2x2 + 4x− 2).
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Definition 4.6. Let L,M ∈ C(x)[D] be of positive order and let ξ ∈ C be an ordinary point of both L
and M . Let Vξ(L) and Vξ(M) denote the respective solution spaces of L and M in C((x − ξ)) and let
(Vξ(M) : Vξ(L)) be the colon space in C((x− ξ)). A local quasi-symmetric quotient of M by L at x = ξ,
denoted by qsquo(M,L, x = ξ), is defined as a primitive operator Q ∈ C(x)[D] such that the solution
space of Q in C((x− ξ)) equals (Vξ(M) : Vξ(L)), and L⊗Q is a right factor of M .

Throughout the remainder of this paper, all colon spaces (V (M) : V (L)) are taken in C((x)).

Lemma 4.7. Let L,M ∈ C(x)[D] be of positive order, with 0 an ordinary point of both L and M . Then
a local quasi-symmetric quotient of M by L at 0, if it exists, is the global quasi-symmetric quotient.

Proof. Suppose there exists a local quasi-symmetric quotient of M by L at 0, denoted by Q. Then L⊗Q
is a right factor of M . It suffices to show that Q has maximal order. By Proposition 4.4.(iii), for any
operator P ∈ C(x)[D] such that L ⊗ P is a right factor of M , we have ord(P ) ≤ dimC(V (M) : V (L)).
By the definition of the local quasi-symmetric quotient, ord(Q) = dimC(V (M) : V (L)). Therefore
ord(P ) ≤ ord(Q). Thus Q is the global quasi-symmetric quotient of M by L.

The next lemma leads to an equivalent description of local quasi-symmetric quotients, given in the
subsequent corollary.

Lemma 4.8. Let L,M ∈ C(x)[D] be of positive order, with 0 an ordinary point of both L and M . For
any operator Q ∈ C(x)[D], if V (Q) ⊆ (V (M) : V (L)), then L ⊗ Q is a right factor of M if and only if
dimC V (Q) = ord(Q).

Proof. For Q ∈ C(x)[D], suppose that V (Q) ⊆ (V (M) : V (L)) and L ⊗ Q is a right factor of M ,
Proposition 4.4.(iii) implies dimC V (Q) = ord(Q).

For the converse, suppose V (Q) ⊆ (V (M) : V (L)) and dimC V (Q) = ord(Q). By Definition 3.1 of the
colon space, if g ∈ V (L) and h ∈ V (Q), then

gh = hg ∈ hV (L) ⊆ V (M), (15)

i.e., gh is a solution of M in C((x)). Since 0 is an ordinary point of L, it follows from Lemma 2.9
that dimC V (L) = ord(L). By the assumption, we have dimC V (Q) = ord(Q). Then, by Lemma 2.5 on
properties of the symmetric product, we obtain

V (L⊗Q) = SpanC{gh | g ∈ V (Q), h ∈ V (L)} and dimC(V (L⊗Q)) = ord(L⊗Q). (16)

Combining (15) and (16) yields that the solution space of L ⊗ Q in C((x)) has full dimension and is a
subspace of V (M). Thus Lemma 2.4.(ii) implies that L⊗Q is a right factor of M .

Corollary 4.9. Let L,M ∈ C(x)[D] be of positive order, with 0 an ordinary point of both L and M .
Then a primitive operator Q ∈ C(x)[D] is a local quasi-symmetric quotient of M by L at 0 if and only if

V (Q) = (V (M) : V (L)) and dimC V (Q) = ord(Q).

Proof. It follows from the definition of local quasi-symmetric quotients and Lemma 4.8.

If we can compute a basis {h1, . . . , hδ} of (V (M) : V (L)) to sufficient precision k and have an upper
bound on the degrees of the coefficients of an order-δ quasi-symmetric quotient Q of M by L, we can
make an ansatz for Q and set up a linear system Q · hj = O(xk−δ) for all j = 1, . . . , δ. When a nonzero
solution is found, we check whether ord(Q) = δ and L ⊗ Q is a right factor of M . If so, Q is a local
quasi-symmetric quotient. The procedure is summarized in the following algorithm. Our symmetric
division algorithm is inspired by Algorithm 1 in [7], which finds the minimal annihilator of a D-finite
power series. Its correctness and termination arguments are very similar.

Algorithm 4.10. INPUT: L,M ∈ C(x)[D] of positive order, with 0 an ordinary point of both L and M .
OUTPUT: a local quasi-symmetric quotient Q ∈ C(x)[D] of M by L at x = 0, or None if no such Q
exists.

1 function QuasiSymmetricQuotientAtZero(M,L)

2 set r := ord(L).
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3 δ := ColonSpaceDimension(M,L).

4 if δ = 0, return Q := 1.

5 if δ > 0,

6 set k0 := maxZN − r(r−1)
2 and k = k0 + 1, where N =M ⊗ L⊗(r−1) and ZN is defined in (4).

7 d0 := BoundDegreeOfQuasiSymmetricQuotientCoeffs(M,L, δ).

8 while true do:

9 {h1, . . . , hδ} := ColonSpaceBasis(M,L, k).

10 d := min{d0, ⌊(k − δ)/(δ + 1)⌋}.
11 Q := ApproximantAnnihilator(h1, . . . , hδ; d, . . . , d; k)

12 if Q = ∅ and k ≥ (δ + 1)(d0 + 1) + δ, then return None.

13 if Q ̸= ∅,
14 if ord(Q) = δ and L⊗Q is a right factor of M , then return Q.

15 k := 2k.

The above algorithm relies on several sub-algorithms that we now summarize.

ColonSpaceDimension computes the dimension of the colon space (V (M) : V (L)) in C((x)) over C,
see Section 7.

ColonSpaceBasis computes a C-vector space basis of the colon space (V (M) : V (L)) in C((x)) at
precision k, see Section 7.

BoundDegreeOfQuasiSymmetricQuotientCoeffs returns an upper bound on the degree of each
of the coefficients of an order-δ global quasi-symmetric quotient of M by L, see Section 9.

ApproximantAnnihilator takes as input δ power series (h1, . . . , hδ) that are the truncations at pre-
cision k; δ + 1 nonnegative integers (s0, . . . , sδ) and the precision k. It returns a primitive operator
Q = q0 + q1D + · · ·+ qδD

δ with qi ∈ C[x] and deg(qi) ≤ si such that

(q0 + q1D + · · ·+ qδD
δ) · hj = O(xk−δ) (17)

for all j = 1, . . . , δ; or returns ∅ if there is no such an operator Q. Since only one annihilator is required,
this can be computed by solving a linear system. If one wants to compute all such annihilators, one can
first compute a basis B(x) = (Bi,j)0≤i,j≤δ ∈ C[x](δ+1)×(δ+1) of the C[x]-module

{(q0, q1, . . . , qδ) ∈ C[x]1×(δ+1) | q0hj + q1h
′
j + · · · qδh(δ)j = O(xk−δ)} (18)

for all j = 1, . . . , δ, in shifted Popov form [2,21,29,36] with shift vector (−s0, . . . ,−sδ). This implies that
any solution of (18) with degrees bounded (s0, . . . , sδ) is a linear combination of the rows of B whose
index i satisfies deg(Bi,i) ≤ si. Efficient algorithms to compute such bases are known [21].

Theorem 4.11. Algorithm 4.10 terminates and is correct.

Proof. 1. (Correctness assuming termination) In line 3, set δ := dimC(V (M) : V (L)). If δ = 0,
then in line 4, Q := 1 satisfies that V (Q) = ∅ = (V (M) : V (L)) and L ⊗ Q = 1 is a right
factor of M . If δ > 0, Theorem 7.3 in Section 7 guarantees that, when k > k0 in line 6, the
truncation of (V (M) : V (L)) at precision k has the same dimension as (V (M) : V (L)). In line 9,

we compute a basis {h1, . . . , hδ} of (V (M) : V (L)) at precision k. All series hj , h
′
j , . . . , h

(δ)
j are

known at precision k − δ for each j = 1, . . . , δ. By Lemma 4.7, the degree bound d0 in line 7 for
the coefficients of global quasi-symmetric quotients also applies in the local case. In line 12, the
condition k ≥ (δ + 1)(d0 + 1) + δ ensures that in line 11, we have ⌊(k − δ)/(δ + 1)⌋ ≥ d0 + 1 and
hence d = d0. If ApproximantAnnihilator returns empty with the given degree bounds on the
degrees of the coefficients in line 12, then there is no operator Q of order δ such that L⊗Q is a right
factor ofM . Otherwise, in line 14, if there exists an operator Q ∈ C(x)[D] of order δ such that L⊗Q
is a right factor of M . Then by Proposition 4.4.(iii) and line 3, we get V (Q) = (V (M) : V (L)).
Thus Q is a local quasi-symmetric quotient of M by L at 0.
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2. (Termination) The only possible source on non-termination in Algorithm 4.10 is the loop where k
is doubled every time no Q in line 14 is found. Let Uk be the set of all solutions (q0, q1, . . . , qδ) ∈
C[x](δ+1) of (17) with degrees bounded by (d0, . . . , d0). Then for all k > k0, Uk is a C-vector space
of finite dimension and Uk+1 ⊆ Uk. Thus there exists k

′ such that Uk′ is the intersection of all Uk for
k > k′. Any operator Q = q0+q1D+ · · ·+qδDδ returned by ApproximantAnnihilator in line 11
for k > k′ has the property that Q·hj = O(xp) for all p ≥ k−δ and thus annihilates (V (M) : V (L)).
Since (V (M) : V (L)) has dimension δ and Q = q0+ q1D+ · · ·+ qδDδ has order at most δ, it follows
that

V (Q) = (V (M) : V (L)) and ord(Q) = δ = dimC(V (Q)).

By Lemma 4.8, L⊗Q is a right factor of M . This guarantees termination of Algorithm 4.10.

In practice, line 6 of Algorithm 4.10 is not optimal especially when there exists a local quasi-symmetric
quotient. Let {g1, . . . , gr} be a basis of V (L) and let n = ord(M). One may first try smaller values of k,
without computing ZN . For any k, one can compute a basis {h1, . . . , hδk} of the truncated space

r⋂
i=1

Tk(V (M) : {gi}),

which contains Tk (
⋂r

i=1(V (M) : {gi})) = Tk(V (M) : V (L)), and therefore provides a good approximation

of (V (M) : V (L)) at precision k. If k > ZN − r(r−1)
2 , we will prove in Proposition 7.3 that these two

truncated spaces are equal and their dimension is the dimension of the colon space (V (M) : V (L)).
If k ≥ n − 1, we will show in Lemma 7.2 that Tk is an injective map from

⋂r
i=1 Tk+1(V (M) : {gi}) to⋂r

i=1 Tk(V (M) : {gi}) and hence δk ≥ δk+1. Since the chain of dimensions δn−1 ≥ δn ≥ . . . is decreasing
and eventually stabilizes at δ. Thus δk ≥ δ for all k ≥ n− 1.

Using an upper bound on the degrees of the coefficients of an order-δk quasi-symmetric quotient, one
can try to search for a possible local quasi-symmetric quotient. If, for a sufficiently large k (k ≥ n− 1),
we find an operator Q of order δk such that L⊗Q is a right factor ofM , then Proposition 4.4.(iii) implies
that δk ≤ δ. Thus δk = δ and Q is a local quasi-symmetric quotient of M by L.

If δk > 0 and one wants to prove that no local quasi-symmetric quotient exists, then in our approach
it is necessary to compute ZN , or at least an upper bound ZN , to determine the exact dimension δ of
the colon space (V (M) : V (L)).

5 Three special cases

In this section, we show that in certain special cases, the order bound for symmetric quotients in Propo-
sition 4.4 is sharp, and a local quasi-symmetric quotients always exists. Moreover, in these cases, the
following algorithm returns the global quasi-symmetric quotient. The correctness of this algorithm fol-
lows from Lemma 4.7. In our experiments, for random operators M,L ∈ C(x)[D] such that M = L⊗ P
for some unknown P ∈ C(x)[D], the algorithm always finds the global quasi-symmetric quotient of M
by L. However, in the general case, a theoretical proof or counterexample remains open.

Algorithm 5.1. INPUT: L,M ∈ C(x)[D] of positive order.
OUTPUT: the global quasi-symmetric quotient Q ∈ C(x)[D] of M by L, or Fail (which does not imply
nonexistence; existence is guaranteed by Proposition 4.2).

1 function QuasiSymmetricQuotient(M,L)

2 choose an arbitrary ordinary point ξ of L and M .

3 transform L and M by substituting x→ x+ ξ to obtain Lξ and Mξ.

4 compute Qξ = QuasiSymmetricQuotientAtZero(Mξ, Lξ).

5 if Qξ = None, then return Fail.

6 otherwise, transform Qξ back via x→ x− ξ to obtain Q.

7 return Q.

Based on Corollary 4.9, we give another equivalent description of local quasi-symmetric quotients.
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Lemma 5.2. Let L,M ∈ C(x)[D] be of positive order, with 0 an ordinary point of both L and M . Then
there exists a local quasi-symmetric quotient Q ∈ C(x)[D] of M by L at 0 if and only if the colon space
(V (M) : V (L)) satisfies the following two conditions:

(a) every series h ∈ (V (M) : V (L)) is D-finite;

(b) for each h ∈ (V (M) : V (L)), if Qh is a minimal annihilator of h in C(x)[D], then

V (Qh) ⊆ (V (M) : V (L)) and dimC V (Qh) = ord(Qh).

Proof. Suppose that Q ∈ C(x)[D] is a local quasi-symmetric quotient of M by L at 0. Then by Corol-
lary 4.9, there exists Q ∈ C(x)[D] such that V (Q) = (V (M) : V (L)) and ord(Q) = dimC V (Q). So every
h ∈ (V (M) : V (L)) is D-finite because Q is an annihilator of h. For each h ∈ (V (M) : V (L)), let Qh

be a minimal annihilator of h. Then Qh is a right factor of Q. Thus, by Lemma 2.4.(iii), P satisfies the
required condition in (b).

For the converse, since V (M) and V (L) are finite-dimensional C-vector subspaces of C((x)), it follows
from Corollary 3.4 that (V (M) : V (L)) is also finite-dimensional. Let δ := dimC(V (M) : V (L)). If δ = 0,
then take Q = 1. If δ > 0, suppose that {h1, . . . , hδ} is a basis of (V (M) : V (L)). For each 1 ≤ j ≤ δ,
by the condition (a), the series hj is D-finite. Let Qj ∈ C(x)[D] be a minimal annihilator of hj . We will

show that Q := lclmδ
j=1Qj is a desired operator.

By the condition (b), we know

V (Qj) ⊆ (V (M) : V (L)) and dimC V (Qj) = ord(Qj).

By Lemma 2.5.(i) on properties of the lclm, we have

V (Q) = V (Q1) + · · ·+ V (Qδ) ⊆ (V (M) : V (L)) and dimC V (Q) = ord(Q).

Since {h1, . . . , hδ} is a basis of (V (M) : V (L)), we obtain that V (Q) = (V (M) : V (L)). By Corollary 4.9,
Q is a local quasi-symmetric quotient of M by L at 0.

5.1 The hyperexponential case

Let F be a differential field extension of C(x). Recall that a nonzero element f ∈ F is said to be hyperex-
ponential over C(x) if its logarithmic derivative (D · f)/f is a rational function in C(x). Equivalently, f
is hyperexponential if it is a nonzero solution of some first-order operator uD− v with u, v ∈ C(x), u ̸= 0.
If f ∈ F is hyperexponential, then its inverse f−1 is also hyperexponential.

Lemma 5.3. Let L ∈ C(x)[D] be a first-order operator and let g be a nonzero solution of L in C((x)).
Let h ∈ C((x)), h ̸= 0 be D-finite and let Q ∈ C(x)[D] be a minimal annihilator of h. Then L ⊗Q is a
minimal annihilator of gh.

Proof. By definition of symmetric products, L⊗Q is an annihilator of gh. To show it is of minimal order,
suppose for contradiction that there exists an annihilator M ∈ C(x)[D] of gh with ord(M) > ord(L⊗Q).
Since L is of first order, we write L = uD − v, where u, v ∈ C(x), u ̸= 0. Then R := (uD + v) is an
annihilator of g−1. So the symmetric product R⊗M is also an annihilator of h = g−1gh. Since ord(R) = 1,
by (13) we have ord(R ⊗M) = ord(M) > ord(L ⊗ Q) = ord(Q). This contradicts the assumption that
Q is a minimal annihilator of h.

Remark 5.4. If L is not of first order, Lemma 5.3 may not hold. For example, the second-order operator
L = −2x2D2 + xD − 1 ∈ C(x)[D] is a minimal annihilator of g = x +

√
x, and Q = −2x2D2 + xD − 1

is a minimal annihilator of h = x −
√
x. The product gh = x2 − x is hyperexponential and hence

it has a minimal annihilator (−x + x2)D + (1 − 2x) of order 1. The symmetric product L ⊗ Q =
2xD3 − 3x2D2 + 6xD − 6 is an annihilator of gh, but not a minimal annihilator.

Theorem 5.5. Let L,M ∈ C(x)[D] be of positive order. If L = lclmI
i=1 Li where the Li are first-order

operators in C(x)[D], then Algorithm 5.1 returns the global quasi-symmetric quotient of M by L.
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Proof. In line 3 of Algorithm 5.1, after the shift x 7→ x + ξ , Lξ is still the lclm of some first-order
operators. So we may further assume that 0 is an ordinary point of L and M . It suffices to show that
in line 4 there exists a local quasi-symmetric quotient of M by L at 0. Thus we only need to verify the
conditions (a) and (b) in Lemma 5.2.

Since L is the lclm of several first-order operators Li, it follows from Lemma 2.5.(i) that

V (L) = SpanC{g1, . . . , gI},

where gi is a nonzero solution of Li for 1 ≤ i ≤ I. By Corollary 3.4 we get

(V (M) : V (L)) =

I⋂
i=1

(V (M) : {gi}) ⊆ (V (M) : {g1}) = {fg−1
1 | f ∈ V (M)}. (19)

(a): Since g1 is hyperexponential, its inverse g−1
1 is D-finite. Since the product of any two D-finite

functions is also D-finite, it follows from (19) that every element of (V (M) : V (L)) is D-finite.

(b): For each h ∈ (V (M) : V (L)), let Qh be a minimal annihilator of h in C(x)[D]. For each 1 ≤ i ≤ I,
Lemma 5.3 implies that Li ⊗Qh is a minimal annihilator of gih, . By the definition of the colon space,
gih ∈ V (M), i.e., M is an annihilator of gih. Since Li ⊗Qh has minimal order among all annihilators of
gih, the operator Li ⊗Qh is a right factor of M for all 1 ≤ i ≤ I. Since L = lclmI

i=1 Li, it follows from
Corollary 2.7 that L⊗Qh is a right factor ofM . Thus, by Proposition 4.4, we get V (Qh) ⊆ (V (M) : V (L))
and ord(Qh) = dimC V (Qh).

5.2 The C-finite case

In the shift case, the Hadamard quotient of two linear recurrence sequences with constant coefficients was
studied in [13,14,43]. Kauers and Zeilberger [25] presented a complete factorization algorithm for linear
recurrence equations with constant coefficients with respect to symmetric product, based on polynomial
factorization. In the differential case, factorization theory for exponential polynomials was initiated by
Ritt [30] and extended in a general setting by MacCol [26] and later by Everest and van der Poorten [16].

In this section, we consider the symmetric quotient of two linear differential operators with constant
coefficients. A nonzero power series f ∈ C[[x]] is called C-finite if there exists L ∈ C[D] \ {0} such that
L · f = 0. We will show that for any input with constant coefficients, Algorithm 5.1 always returns the
global quasi-symmetric quotient with constant coefficients, instead of rational coefficients. So d0 = 0 is
a natural degree bound for the quotient. In Section 7, the computation of degree bounds for symmetric
quotients in the general case is based on the C-finite case. In practice, our symmetric division algorithm
with constant coefficients relies only on linear algebra, although polynomial factorization is used in theory.

Lemma 5.6 ([20, Section 6.1]). Let L = ℓrD
r + ℓr−1D

r−1 + · · · + ℓ1D + ℓ0 ∈ C[D] be a differential
operator with constant coefficients of order r. Suppose that P factorizes as

L = ℓr(D − α1)
µ1(D − α2)

µ2 · · · (D − αρ)
µI (20)

where µ1, . . . , µI ∈ N \ {0} and the roots α1, . . . , αI ∈ C are distinct. Then the elements

xj exp(αix) (i = 1, . . . , I, j = 0, . . . , µi − 1)

are r linearly independent solutions of L in C[[x]].

The following lemma is an immediate consequence of Lemmas 5.6 and 2.5.

Lemma 5.7. Let L =
∏s

i=1(D − αi)
µi and Q =

∏t
j=1(D − βj)

λj be factorizations in C[D], where
µi, λj ∈ N \ {0}, αi, βj ∈ C, the αi (resp. the βj) are pairwise distinct. Then

L⊗Q = lcms
i=1 lcm

t
j=1(D − αi − βj)

µi+λj−1.

A variant of Lemma 5.3 for annihilators of products is as follows.

Lemma 5.8. Let g = xj exp(αx) with j ∈ N, α ∈ C. Let

h =

ρ∑
i=1

ui(x) exp(θix), (21)

where θ1, . . . , θρ ∈ C are distinct, and u1, . . . , uρ ∈ C[x]\{0} with degx(ui) = di. If L and Q are minimal
annihilators of g and h in C[D], respectively, then L⊗Q is a minimal annihilator of gh in C[D].
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Proof. Since the θi are distinct, it is known that L := (D−α)j+1 and Q :=
∏ρ

i=1(D−θi)di+1 are minimal
annihilators of g and h in C[D], respectively. By Lemma 5.7, we get L ⊗ Q =

∏ρ
i=1(D − θi − α)di+j+1

and hence it is a minimal annihilator of gh =
∑ρ

i=1 x
jui(x) exp((θi + α)x).

Theorem 5.9. Let L,M ∈ C[D] be of positive order. Then Algorithm 5.1 returns the global quasi-
symmetric quotient Q in C[D] of M by L, rather than in C(x)[D].

Proof. The proof is similar to that of Theorem 5.5. We write L =
∏s

i=1(D−αi)
µi with µi ∈ N \ {0} and

distinct αi ∈ C. By Lemma 5.6, we have

V (L) = SpanC{xj exp(αix) | i = 1, . . . , s, j = 0, . . . , µi − 1}.

By Corollary 3.4, we get

(V (M) : V (L)) =

s⋂
i=1

µi−1⋂
j=0

(V (M) : {xj exp(αix)}) (22)

⊆ (V (M) : exp(α1x)) = {f exp(−α1x) | f ∈ V (M)}. (23)

For a fixed h ∈ (V (M) : V (L)), since M ∈ C[D], combining (23) and Lemma 5.6 yields that h can be
written in the form

∑ρ
i=1 ui(x) exp(θix) as in (21). Thus, h is C-finite.

Let Qh be a minimal annihilator of h in C[D]. For each gi,j := xj exp(αix), Li,j := (D−αi)
j+1 is its

minimal annihilator in C[D]. By Lemma 5.8, Li,j ⊗Qh is a minimal annihilator of gi,jh in C[D]. By the
definition of the colon space, M is also an annihilator of gi,jh. Thus Li,j ⊗ Qh is a right factor of M .

Since L = lcms
i=1 lcm

µi−1
j=0 Li,j , it follows from Corollary 2.7 that L⊗Qh is a right factor of M . Thus, by

Proposition 4.4, we get V (Qh) ⊆ (V (M) : V (L)) and ord(Q) = dimC V (Q).

By literally adapting Lemma 5.2 to the C-finite case, we obtain the existence of a local quasi-symmetric
quotient Q ∈ C[D] ofM by L at 0. Hence, by Lemma 4.7, Algorithm 5.1 returns a global quasi-symmetric
quotient Q ∈ C[D] of M by L.

5.3 The algebraic case

A series f ∈ C((x)) is called algebraic if there exists a nonzero polynomial m(x, y) ∈ C(x)[y] such
that m(x, f) = 0. Let C(x) be the algebraic closure of C(x). For an algebraic series f ∈ C((x)) with
minimal polynomial m ∈ C(x)[y], the roots of m in C(x) are conjugates of f . An algebraic function
field E = C(x)[y]/⟨m⟩ is a field extension of the rational function field C(x) of finite degree, where m
is an irreducible polynomial in C(x)[y]. The usual derivation ′ on C(x) extends uniquely to the field
E = C(x)[y]/⟨m⟩. For any f ∈ E, all its derivatives f, f ′, f ′′, . . . belong to E. Hence every algebraic
function is D-finite. An operator L ∈ C(x)[D] has only algebraic solutions [8, 12, 24, 32] if there is a
differential field E = C(x)[y]/⟨m⟩ such that the solution space VE(L) of L in E has dimension ord(L).
For an algebraic function, its minimal annihilator has only algebraic solutions [12, 32]. Moreover, the
solution space of its minimal annihilator is spanned by all the conjugates of f , see the following lemma.

Lemma 5.10. Let L ∈ C(x)[D] with r = ord(L). Assume that L has a nonzero solution f which is
algebraic over C(x). Let E be the algebraic extension of C(x) generated by all conjugates of f .

(i) All conjugates of f are solutions of L.

(ii) If L is a minimal annihilator of f , then the solution space of L in E has dimension r and is spanned
by all conjugates of f .

Proof. The field E is a Galois extension of C(x). Let Gal(E/C(x)) be the Galois group of E over C(x).

(i) The set {τ(f) | τ ∈ Gal(E/C(x))} consists of all conjugates of f . Since L ∈ C(x)[D] has coefficients
in C(x), for any τ ∈ Gal(E/C(x)), we have L · τ(f) = τ(L · f) = 0.

(ii) Let f1, . . . , fs be all conjugates of f . For each fi, the operator Li = fiD−f ′i is a minimal annihilator
of fi in E[D]. We take L̄ := lclm(L1, . . . , Ls). For any automorphism τ ∈ Gal(E/C(x)), τ(L̄) is
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obtained by applying τ to the coefficients of L̄. Since taking the least common left multiple (lclm)
is commutative, it follows that

τ(L̄) = lclm(τ(L1), . . . , τ(Ls)) = lclm(L1, . . . , Ls) = L̄.

This implies that L̄ has coefficients in C(x). Since dimC VE(Li) = ord(Li) = 1 for all i = 1, . . . , s,
by Lemma 2.5.(i) we have

VE(L̄) = VE(L1) + · · ·+ VE(Ls) = SpanC{f1, . . . , fs} and dimC VE(L̄) = ord(L̄).

By the item (i), all conjugates of f must be solutions of its annihilator. Thus L̄ is a minimal
annihilator of f in C(x)[D]. Since L is also a minimal annihilator of f in C(x)[D], we get L = uL̄
for some u ∈ C(x) \ {0}. So L and L̄ have the same solution space.

Theorem 5.11. Let L,M ∈ C(x)[D] be of positive order. If L and M have only algebraic solutions,
then Algorithm 5.1 returns the global quasi-symmetric quotient of M by L.

Proof. In line 3 of Algorithm 5.1, after the shift x 7→ x+ξ , Mξ and Lξ still have only algebraic solutions.
So we may further assume that 0 is an ordinary point of L and M . Similar to the proof of Theorem 5.5,
we only need to verify the conditions (a) and (b) in Lemma 5.2.

Since 0 is an ordinary point of L and M , it follows from Lemma 2.9 that L has r = ord(L) lin-
early independent solutions {g1, . . . , gr} in C[[x]] and M has n = ord(M) linearly independent solutions
{f1, . . . , fn} in C[[x]]. By the assumption, g1, . . . , gr, f1, . . . , fn are algebraic over C(x). Let E be the
algebraic extension of C(x) generated by g1, . . . , gr, f1, . . . , fn and all their conjugates. Then E is a Galois
extension of C(x). Let Gal(E/C(x)) = {τ1, . . . , τt} be the Galois group of E over C(x).

By Lemma 5.10, for each 1 ≤ i ≤ r and each 1 ≤ j ≤ t, the element τj(gi) is still a solution of L. So
the set {τj(gi) | 1 ≤ i ≤ r, 1 ≤ j ≤ t} is also a generating set of the solution space V (L). Note that the
computation of the colon space (V (M) : V (L)) does not depend on the choice of generating sets of V (L).
Using Corollary 3.4, we obtain that

(V (M) : V (L)) =

r⋂
i=1

t⋂
j=1

(V (M) : {τj(gi)}) =
r⋂

i=1

t⋂
j=1

SpanC

{
f1

τj(gi)
, . . . ,

fn
τj(gi)

}
⊆ E ∩ C((x)). (24)

(a): By (24), every power series in (V (M) : V (L)) is algebraic and hence it is D-finite.

(b): For a fixed element h ∈ (V (M) : V (L)), let Qh be a minimal annihilator of h in C(x)[D]. By (24),
we have hτj(gi) ∈ V (M) for all 1 ≤ i ≤ r and all 1 ≤ j ≤ t. Then Lemma 5.10.(i) implies that

τ(hτj(gi)) = τ(h)(τ ◦ τj)(gi) ∈ V (M) for all τ ∈ Gal(E/C(x)). (25)

For each fixed τ ∈ Gal(E/C(x)), τ ◦τj for j = 1, . . . , t run through all elements of the group Gal(E/C(x)).
It follows from (24) and (25) that τ(h) ∈ (V (M) : V (L)) for all τ ∈ Gal(E/C(x)). Then all conjugates
of h belong to (V (M) : V (L)). Therefore, by Lemma 5.10.(ii), we have V (Qh) ⊆ (V (M) : V (L)) and
dimC V (Qh) = ord(Qh).

6 Truncation and intersection of power series subspaces

For an operator N ∈ C[x][D], let V be the solution space of N in the ring of formal power series C[[x]].
Then V is a C-vector space of finite dimension, at most ord(N). By linear algebra, the intersection of
several C-vector subspaces of V is still a C-vector space of finite dimension. However, the elements of V
are formal power series with infinitely many coefficients. To compute a basis of the intersection space, or
to determine its dimension, we shall work with truncated power series to approximate the intersection.
Since power series solutions of N satisfy a recurrence relation, the required truncation precision can be
determined by the following proposition. This result will be used in the next section to determine the
dimension of the colon space (V (M) : V (L)), and to compute a basis for it.

For a C-vector subspace W of C[[x]], and g ∈ C[[x]], we write gW to denote the set {gf | f ∈ W}.
Then gW is also a C-vector subspace of C[[x]].

Proposition 6.1. Let V be the solution space of an operator N ∈ C[x][D] in C[[x]]. Let W1, . . . ,Wr be
C-vector subspaces of C[[x]] such that gW1, . . . , gWr are C-vector subspaces of V , where g =

∑∞
i=µ bix

i

with bi ∈ C and bµ ̸= 0. Let k0 = maxZN − µ, where ZN is defined in (4). Then for all k > k0,
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(i) dimC (
⋂r

i=1Wi) = dimC (
⋂r

i=1 Tk(Wi))

(ii) Tk (
⋂r

i=1Wi) =
⋂r

i=1 Tk(Wi)

To prove this proposition, we need several lemmas. Let CN denote the set of all infinite sequences
(a0, a1, a2, . . .) with ai ∈ C. A formal power series can be viewed as a sequence in CN via its sequence of
coefficients. Under this identification, C[[x]] is isomorphic to CN as a ring. In particular, CN is also a C-
vector space of infinite dimension. The coefficient vector of a formal power series φ =

∑∞
i=0 aix

i ∈ C[[x]]
is defined as the column vector:

Coeff(φ) := (a0, a1, a2, . . .)
T ∈ CN,

where the i-th entry of Coeff(φ) is the coefficient of f in xi−1. Let φ1, . . . , φρ be several formal power
series in C[[x]]. We write each φj =

∑∞
i=0 ai,jx

i with ai,j ∈ C. The coefficient matrix of φ1, . . . , φρ is
defined as

Coeff(φ1, . . . , φρ) := (Coeff(φ1), . . . ,Coeff(φρ)) =

a0,1 · · · a0,ρ
a1,1 · · · a1,ρ
...

...

 ∈ CN×ρ.

For a matrix A = (ai,j) ∈ CN×ρ, its row space is defined by

Row(A) := SpanC{(ai,1, . . . , ai,ρ) ∈ Cρ | i ∈ N},

which is a C-vector subspace of Cρ. The kernel of A is defined by

ker(A) :=

(s1, . . . , sρ) ∈ Cρ

∣∣∣∣∣∣
ρ∑

j=1

ai,jsj = 0 for all i ∈ N


If A = Coeff(φ1, . . . , φρ) ∈ CN×ρ with φi ∈ C[[x]], then ker(A) = {(s1, . . . , sρ) ∈ Cρ |

∑ρ
j=1 siφi = 0}.

Lemma 6.2. Let N ∈ C[x][D] and let {φ1, . . . , φρ} be a finite set of solutions of N in C[[x]]. Let
k0 = maxZN . Then for all k > k0, the row spaces of

Coeff(φ1, . . . , φρ) and Coeff(Tk(φ1), . . . , Tk(φρ))

are equal.

Proof. For each 1 ≤ j ≤ ρ, we write φj =
∑∞

i=0 ai,jx
i with ai,j ∈ C. For each i ∈ N, let ai =

(ai,1, . . . , ai,ρ) ∈ Cρ. Then the row space of Coeff(φ1, . . . , φρ) is generated by {ai | i ∈ N}. The row
space of Coeff(Tk(φ1), . . . , Tk(φρ)) is generated by {ai | 0 ≤ i ≤ k}. So it suffices to show by induction
on k that ak ∈ SpanC{a0, . . . ,ak0

} for all k ≥ 0. For 0 ≤ k ≤ k0, it is clearly true. For k > k0, we assume
that ai ∈ SpanC{a0, . . . ,ak0} for 0 ≤ i ≤ k − 1. We write N · xs = xs+σN (q0(s) + q1(s)x+ · · ·+ qt(s)x

t)
in the form (1). Since the φj are power series solutions of N and k > k0, it follows from Lemma 2.8 that

ak = − 1

q0(k)

min{t,k}∑
i=1

ak−iqi(k − i)

 ∈ SpanC{ak−1, . . . ,ak−min{t,k}} ⊆ SpanC{ak−1, . . . ,a0}.

By the induction hypothesis, we get ak ∈ SpanC{a0, . . . ,ak0
}. This completes the proof.

Lemma 6.3. Let {φ1, . . . , φρ} ⊆ C[[x]] and let g =
∑∞

i=µ bix
i ∈ C[[x]] with bi ∈ C and bµ ̸= 0. Then

for all k ≥ 0, the row spaces of

Coeff(Tk(φ1), . . . , Tk(φρ)) and Coeff(Tk+µ(gφ1), . . . , Tk+µ(gφρ))

are equal. Therefore the row spaces of

Coeff(φ1, . . . , φρ) and Coeff(gφ1, . . . , gφρ)

are equal.
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Proof. For each 1 ≤ j ≤ ρ, we denote ψj := gφj , and write φj =
∑∞

i=0 ai,jx
i and ψj =

∑∞
i=0 ci,jx

i, where
ai,j , ci,j ∈ C. For each i ∈ N, let ai = (ai,1, . . . , ai,ρ) and ci = (ci,1, . . . , ci,ρ). It suffices to prove the first
statement in the lemma. In other words, we need to show the claim that

SpanC{a0,a1, . . . ,ak} = SpanC{c0, c1, . . . , ck+µ} for all k ≥ 0.

Since ψj = gφj , it follows that for all 1 ≤ j < ρ,

cj,ℓ = 0 for all 0 ≤ ℓ < µ, and cj,ℓ = bℓaj,0 + bℓ−1aj,1 + · · ·+ bµaj,ℓ−µ for all ℓ ≥ µ.

Therefore, for all 0 ≤ ℓ < µ, cℓ = 0 and for all ℓ ≥ µ, cℓ = bℓa0 + bℓ−1a1 + · · · + bµaℓ−µ is a C-
linear combination of a0,a1, . . . ,aℓ−µ. Thus SpanC{c0, . . . , ck+µ} ⊆ SpanC{a0, . . . ,ak}. Since g is an

invertible element in C((x)), we have φj = g−1ψj , where g
−1 =

∑∞
i=−µ b̃ix

i ∈ C((x)) with b̃i ∈ C and

b̃−µ = b−1
µ ̸= 0. Similarly, we get SpanC{a0, . . . ,ak} ⊆ SpanC{c0, . . . , ck+µ}. This proves the claim.

Lemma 6.4. Let V be the solution space of an operator N ∈ C(x)[D] in C[[x]]. Let W1,W2 be C-vector
subspaces of C[[x]] such that gW1, gW2 are C-vector subspaces of V , where g =

∑∞
i=µ bix

i ∈ C[[x]] with
bµ ̸= 0. Let k0 = maxZN − µ. Then for all k > k0,

(i) dimC (W1 ∩W2) = dimC (Tk(W1) ∩ Tk(W2))

(ii) Tk (W1 ∩W2) = Tk(W1) ∩ Tk(W2)

Proof. Since V is a C-vector space of finite dimension, it follows thatW1,W2, gW1, gW2 are also C-vector
spaces of finite dimension. Let {φ1, . . . , φρ1

} and {ϕ1, . . . , ϕρ2
} be bases ofW1 andW2, respectively. Then

{gφ1, . . . , gφρ1
} and {gϕ1, . . . , gϕρ2

} are bases of gW1 and gW2, respectively.

Let A = Coeff(φ1, . . . , φρ1
, ϕ1, . . . , ϕρ2

) ∈ CN×(ρ1+ρ2) and let Ak ∈ C(k+1)×(ρ1+ρ2) be the matrix
consisting of the first k + 1 rows of A. Then, for all k ≥ 0, Row(Ak) is equal to the row space of
Coeff(Tk(φ1), . . . , Tk(φρ1), Tk(ϕ1), . . . , Tk(ϕρ2)). By linear algebra, we know

(s1, . . . , sρ1
, t1, . . . , tρ2

) ∈ ker(A) ⇔
ρ1∑
j=1

siφi = −
ρ2∑
j=1

tjϕj ∈W1 ∩W2, (26)

and for all k ≥ 0,

(s1, . . . , sρ1
, t1, . . . , tρ2

) ∈ ker(Ak) ⇔
ρ1∑
j=1

sjTk(φj) = −
ρ2∑
j=1

tjTk(ϕj) ∈ Tk(W1) ∩ Tk(W2). (27)

Moreover, we have dimC(W1 ∩ W2) = dimC(ker(A)) and if dimC(Tk(Wi)) = ρi for i = 1, 2, then
dimC(Tk(W1) ∩ Tk(W2)) = dimC(ker(Ak)).

(i) It suffices to show that for all k > k0, ker(A) = ker(Ak) and dimC(Tk(Wi)) = ρi for i = 1, 2. If this
holds, then for all k > k0, we have

dimC(W1 ∩W2) = dimC(ker(A)) = dimC(ker(Ak)) = dimC(Tk(W1) ∩ Tk(W2)).

To prove this claim, we use the assumption that gW1, gW2 are subspaces of the solution space V
of the linear differential operator N . Let B = Coeff(gφ1, . . . , gφρ1

, gϕ1, . . . , gϕρ2
) ∈ CN×(ρ1+ρ2)

and let Bk ∈ C(k+1)×(ρ1+ρ2) be the matrix consisting of the first k + 1 rows of B. Then, for all
k ≥ 0, Row(Bk) is equal to the row space of Coeff(Tk(gφ1), . . . , Tk(gφρ1

), Tk(gϕ1), . . . , Tk(gϕρ2
)).

By the assumption, {gφj}ρ1

j=1, {gϕj}
ρ2

j=1 are solutions of the linear differential operator N . Thus
by Lemmas 6.2 and 6.3 we obtain that for all k > k0,

Row(A) = Row(B) = Row(Bk+µ) = Row(Ak). (28)

Since the kernel of a matrix is determined by its row space, it follows from (28) that

ker(A) = ker(Ak). (29)

Considering the first ρ1 columns of A and Ak, we obtain from (28) that

Row(Coeff(φ1, . . . , φρ1
)) = Row(Coeff(Tk(φ1), . . . , Tk(φρ1

))).

Thus ρ1 = dimC(W1) = dimC(Tk(W1)) because the column rank of a matrix is equal to its row
rank. Similarly, we get ρ2 = dimC(W2) = dimC(Tk(W2)).
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(ii) Since W1 ∩W2 is a subspace of W1, it follows that Tk(W1 ∩W2) ⊆ Tk(W1). Similarly, we have
Tk(W1 ∩W2) ⊆ Tk(W2). Therefore Tk(W1 ∩W2) ⊆ Tk(W1) ∩ Tk(W2).

On the other hand, fix an arbitrary integer k > k0, and suppose that f ∈ Tk(W1) ∩ Tk(W2).
Then f =

∑ρ1

j=1 sjTk(φj) = −
∑ρ2

j=1 tjTk(ϕj) for some sj , tj ∈ C. By (27) and (29), we get
(s1, . . . , sρ1

, t1, . . . , tρ2
) ∈ ker(Ak) = ker(A). It then follows from (26) that

g :=

ρ1∑
j=1

sjφj = −
ρ2∑
j=1

tjϕj ∈W1 ∩W2.

Thus f = Tk(g) ∈ Tk(W1∩W2) because sj , tj ∈ C, and hence Tk(W1)∩Tk(W2) ⊆ Tk(W1∩W2).

Proof of Propostion 6.1. (i) For r = 1, since gW1 is a subspace of the solution space V of the oper-
ator N and g =

∑∞
i=µ bix

i ∈ C[[x]] with bµ ̸= 0, it follows from Lemmas 6.2 and 6.3 that for all
k > k0,

dimC(W1) = dimC(gW1) = dimC(Tk+µ(gW1)) = dimC(Tk(W1)).

Here we use the fact that the column rank of a matrix is equal to its row rank. Suppose r > 1.
Note that g(W2 ∩ · · · ∩Wr) = (gW2) ∩ · · · ∩ (gWr) because g is invertible in C((x)). Then by the
assumption, gW1 and g(W2 ∩ · · · ∩Wr) are two C-vector subspaces of the solution space V . By
Lemma 6.4, we obtain

dimC (W1 ∩ (W2 ∩ · · · ∩Wr)) = dimC (Tk (W1 ∩ (W2 ∩ · · · ∩Wr))) .

Thus dimC (
⋂r

i=1Wi) = dimC (Tk (
⋂r

i=1Wi)) because
⋂r

i=1Wi =W1 ∩ (W2 ∩ · · · ∩Wr).

(ii) We prove the statement by induction on r. For r = 1, it is clearly true. For r > 1, by Lemma 6.4,
we have Tk(W1) ∩ Tk(W2) = Tk(W1 ∩W2). By the induction hypothesis on r − 1, we have

Tk(W1 ∩W2) ∩ Tk(W3) ∩ · · · ∩ Tk(Wr) = Tk((W1 ∩W2) ∩W3 ∩ · · · ∩Wr).

Therefore Tk(W1) ∩ Tk(W2) ∩ · · · ∩ Tk(Wr) = Tk(W1 ∩W2 ∩ · · · ∩Wr).

7 Order bounds for symmetric quotients

An upper bound for the orders of symmetric quotients is given in (14). A smaller upper bound is given
in Proposition 4.4 using the dimension of the colon space. To compute a basis of this colon space, we
need the following notations.

Convention 7.1. Let L,M ∈ C(x)[D] be of positive order, with 0 an ordinary point of both L and M .
Let {g1, . . . , gr} be a basis of the solution space V (L) in C((x)), where r = ord(L) and gi = xi−1 +O(xi)
for i = 1, . . . , r. Let {f1, . . . , fn} be a basis of the solution space V (M) in C((x)), where n = ord(M) and
fi = xi−1+O(xi) for i = 1, . . . , n. Let (V (M) : V (L)) be the colon space in C((x)). For each i = 1, . . . , r,
let Wi = (V (M) : {gi}) ∩ C[[x]], where (V (M) : {gi}) is the colon space in C((x)).

Lemma 7.2. Let V (L), V (M) and Wi be as in Convention 7.1. Then

(i) (V (M) : V (L)) =
⋂r

i=1Wi;

(ii) for each i = 1, . . . , r, Wi = SpanC

{
fi
gi
, . . . , fngi

}
;

(iii) for each i = 1, . . . , r and for all k ≥ 0,

Tk(Wi) = SpanC

{
Tk

(
fi
gi

)
, . . . , Tk

(
fn
gi

)}
= SpanC

{
Tk

(
Tk+r−1(fi)
Tk+r−1(gi)

)
, . . . , Tk

(
Tk+r−1(fn)
Tk+r−1(gi)

)}
.

(iv) for all k ≥ n − 1, Tk is an injective map from
⋂r

i=1 Tk+1(Wi) to
⋂r

i=1 Tk(Wi). In particular,
dimC

⋂r
i=1 Tk+1(Wi) ≤ dimC

⋂r
i=1 Tk(Wi).

Proof. (i) By Corollary 3.4, we have (V (P ) : V (L)) =
⋂r

i=1(V (P ) : {gi}). Since g1 = 1 + O(x) is

invertible in C[[x]], it follows from Proposition 3.3.(ii) that (V (P ) : {g1}) = SpanC

{
f1
g1
, . . . , fng1

}
is

a subspace of C[[x]]. Therefore (V (P ) : V (L)) ⊆ (V (P ) : {g1}) ⊆ C[[x]] and hence

(V (P ) : V (L)) = (V (P ) : V (L)) ∩ C[[x]] =
r⋂

i=1

((V (P ) : {gi}) ∩ C[[x]]) =
r⋂

i=1

Wi.
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(ii) By Proposition 3.3.(ii), Wi = SpanC

{
f1
gi
, . . . , fngi

}
∩ C[[x]]. By Convention 7.1, {f1, . . . , fn} are

linearly independent over C and satisfy fj = xj−1+O(xj) for j = 1, . . . , n. Since gi = xi−1+O(xi),

it follows that
fj
gi

= xj−i + O(xj−i+1). Therefore for a fixed i, a linear combination of
fj
gi

with

j = 1, . . . , n lies in C[[x]] if and only if the linear combination involves only
fj
gi

for j = i, . . . , n.

(iii) Since Tk is a C-linear map, it follows from (ii) that Tk(Wi) = SpanC

{
Tk

(
fi
gi

)
, . . . , Tk

(
fn
gi

)}
for

all k ≥ 0. By Corollary 2.3, we have Tk

(
fj
gi

)
= Tk

(
Tk+r−1(fj)
Tk+r−1(gi)

)
for all j = i, . . . , n and all k ≥ 0.

Thus we obtained the desired result.

(iv) Since
fj
gi

= xj−i +O(xj−i+1), it follows that Tk

(
fi
gi

)
, . . . , Tk

(
fn
gi

)
are linearly independent over C

for all k ≥ n− 1 and all i = 1, . . . , r. Therefore, for all k ≥ n− 1, dimC Tk(Wi) = n− i+ 1 and Tk
is an injective map from Tk+1(Wi) to Tk(Wi). Since

⋂r
i=1 Tk+1(Wi) is a subspace of Tk+1(Wi), it

follows that Tk is an injective map from
⋂r

i=1 Tk+1(Wi) to
⋂r

i=1 Tk(Wi).

Theorem 7.3. With Convention 7.1, let N =M ⊗L⊗(r−1) ∈ C(x)[D] and k0 = maxZN − r(r−1)
2 . Then

for all k > k0,

(i) dimC(V (M) : V (L)) = dimC

⋂r
i=1 Tk(Wi);

(ii) Tk(V (M) : V (L)) =
⋂r

i=1 Tk(Wi).

Proof. By Lemma 7.2, we obtain that (V (M) : V (L)) =
⋂r

i=1Wi, where Wi = SpanC

{
fi
gi
, . . . , fngi

}
. To

determine the dimension of the intersection of Wi, we shall multiply Wi by g := g1 . . . gr and consider
the solution space V of N =M ⊗ L⊗(r−1) in C[[x]].

For each gi, let ḡi =
g
gi

=
∏r

j=1,j ̸=i gi ∈ C[[x]]. Then for each 1 ≤ i ≤ r,

gWi = SpanC {ḡifi, . . . , ḡifn} ⊆ C[[x]],

is a subspace V , because ḡi is a solution of L⊗(r−1), and fj is a solution of M for j = 1, . . . , n. Note that

g = x
r(r−1)

2 +O(x
r(r−1)

2 +1) ∈ C[[x]]. It follows from Lemma 7.2 and Proposition 6.1 that for all k > k0,

dimC(V (M) : V (L)) = dimC

(
r⋂

i=1

Wi

)
= dimC

(
r⋂

i=1

Tk(Wi)

)
and

Tk(V (M) : V (L)) = Tk

(
r⋂

i=1

Wi

)
=

r⋂
i=1

Tk(Wi).

Example 7.4. We continue with Example 4.5. We want to compute the dimension of (V (M) : V (L))
and a basis for it at precision k > k0. We have r = ord(L) = 2, n = ord(M) = 4, and

N =M ⊗ L⊗(r−1) = (x2 − 2x+ 2)2(x− 1)5D5 + 5(x2 − 2x+ 2)(x2 − 2x− 2)(x− 1)4D4

+ 40(x2 − 2x+ 4)(x− 1)3D3 − 120(x2 − 2x+ 6)(x− 1)2D2

+ 120(x− 1)(2x2 − 4x+ 17)D − 120(2x2 − 4x+ 23).

The indicial polynomial of N at 0 is ind0(N) = s(s−1)(s−2)(s−3)(s−4). The set of nonnegative roots

of ind0(L) is ZN = {0, 1, 2, 3, 4}. Thus k0 = maxZN − r(r−1)
2 = 3.

By Lemma 7.2, we have (V (M) : V (L)) =W1 ∩W2, where

W1 = SpanC

{
f1
g1
, f2g1 ,

f3
g1
, f4g1

}
= SpanC{1−x+O(x5), x−x2+O(x5), x2−x3+O(x5), x3−x4+O(x5)},

W2 = SpanC

{
f2
g2
, f3g2 ,

f4
g2

}
= SpanC{1− x+O(x5), x− x2 +O(x5), x2 − x3 +O(x5)}.

Let k = k0 + 1 = 4. Then by Theorem 7.3,

T4(V (M) : V (L)) = T4(W1) ∩ T4(W2) = SpanC{1− x+O(x5), x− x2 +O(x5), x2 − x3 +O(x5)}. (30)

Since the above truncated spaces have dimension three, Theorem 7.3 implies that (V (M) : V (L)) also has
dimension three. The truncated basis in (30) can be uniquely extended to a basis of (V (M) : V (L)).
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8 Symmetric products of generalized indicial polynomials

Given two linear differential operators L,Q ∈ C(x)[D], the (generalized) local exponents of their symmet-
ric product L⊗Q were studied by Singer [31, Lemma 3.2] and by van Hoeij and Weil [42, §3]. However,
the multiplicities of these local exponents remain unclear. In terms of indicial polynomials, we will show
that the symmetric product of their indicial polynomials is a divisor of the indicial polynomial of their
symmetric product L ⊗ Q. This result also extends to the generalized indicial polynomials. To avoid
ambiguity, we use s as the variable in the (generalized) indicial polynomials. Here, the symmetric product
in C[s] refers to the symmetric product of linear differential operators with constant coefficients.

Lemma 8.1. Let L ∈ C[x1/v][D] for some v ∈ N \ {0}. If L has a solution g in xαC[[x1/v]][log(x)] with
initial term xα log(x)µ−1, then α is a root of the indicial polynomial ind0(L) with multiplicity at least µ.

Proof. Suppose that
ind0(L) = u(s)(s− α1)

µ1 · · · (s− αI)
µI ,

where µ1, . . . , µI ∈ N \ {0}, the roots α1, . . . , αI ∈ α+Z are distinct, and u(x) ∈ C[x] does not have any
root in α+ Z. We may further assume that

α1 < · · · < αI ,

where αi < αi′ means αi −αi′ < 0. Now we consider the ring of all finite C-linear combinations of series
of the form xβb(x, log(x)) with β ∈ α + Z and b ∈ C[[x1/v]][y]. By Lemma 2.11, the solution space of L
in this ring has a basis of the form:

gi,j = xαi log(x)j−1 + · · · (i = 1, . . . , I, j = 1, . . . , µi),

where xαi log(x)j−1 is the initial term of gi,j . Then g is a linear combination of the gi,j ’s.

Suppose that

g =

I∑
i=1

µi∑
j=1

ci,jgi,j

for some nonzero ci,j ∈ C. Let i0 ∈ {1, . . . , I} be the minimal index i such that gi,j appears in this
linear combination for some j, and j0 ∈ {1, . . . , µi0} be the minimal index j such that gi0,j appears.

Then the initial term of
∑I

i=1

∑µi

j=1 ci,jgi,j is xαi0 log(x)j0−1. By the assumption, the initial term of g is

xα log(x)µ−1. Comparing initial terms, we conclude that α = αi0 and µ − 1 = j0 − 1 ≤ µi0 − 1, which
implies µ ≤ µi0 . Thus α is a root of ind0(L) with multiplicity at least µ.

Theorem 8.2. Let L,Q ∈ C(x)[D] and let p, q ∈ C[x1/v] with v ∈ N \ {0}. Let ind0,exp(p(x−1))(L),
ind0,exp(q(x−1))(Q) be the generalized indicial polynomial of L and Q at x = 0 with respect to exponential
parts exp(p(x−1)) and exp(q(x−1)), respectively. Then the symmetric product

ind0,exp(p(x−1))(L)⊗ ind0,exp(q(x−1))(Q)

divides ind0,exp(p(x−1)+q(x−1))(L⊗Q).

Proof. Suppose that α ∈ C is a root of ind0,exp(p(x−1))(L) with multiplicity µ, and β ∈ C is a root
of ind0,exp(q(x−1))(Q) with multiplicity λ. By Lemma 5.7, it suffices to prove that α + β is a root of
ind0,exp(p(x−1)+q(x−1))(L⊗Q) with multiplicity at least µ+ λ− 1.

By Definition 2.13, α is a root of the indicial polynomial of L̃ = exp(−p(x−1))L exp(p(x−1)) with
multiplicity µ. By Lemma 2.11, L̃ has a solution g̃ ∈ xαC[[x]][log(x)] with initial term xα log(x)µ−1.
Therefore L has a solution

g(x) = exp(p(x−1))g̃(x).

Similarly, the operator Q has a solution

h(x) = exp(q(x−1))h̃(x),

where h̃ ∈ xβC[[x1/v]][log(x)] with initial term xα log(x)λ−1. By definition of symmetric product,

f(x) = g(x)h(x) = exp(p(x−1) + q(x−1))f̃(x)
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is a solution of M := L⊗Q, where

f̃(x) = g̃(x)h̃(x) = xα+β log(x)µ+λ−2 + · · · ∈ xα+βC[[x]][log(x)]

with the initial term xα+β log(x)µ+λ−2. Thus f̃ is a solution of

M̃ = exp(−p(x−1)− q(x−1))M exp(p(x−1) + q(x−1)) ∈ C[x1/v, x−1/v][D].

Applying Lemma 8.1 to the operator M̃ , we obtain that α+β is a root of the indicial polynomial ind0(M̃)
with multiplicity at least λ+µ−1. By Definition 2.13, α+β is a root of the generalized indicial polynomial
ind0,exp(p(x−1)+q(x−1))(M) with multiplicity at least λ+ µ− 1.

Taking p = q = 0 in Theorem 8.2 yields the following corollary.

Corollary 8.3. Let L,Q ∈ C(x)[D] and let ind0(L), ind0(Q) be their indicial polynomials at 0. Then
the symmetric product

ind0(L)⊗ ind0(Q)

divides ind0(L⊗Q).

Example 8.4. Let L = (2x− 1)D2 − 4xD + 4, Q = (x− 1)D2 − xD + 1 ∈ C(x)[D]. The point 1
2 is an

apparent singularity of L, but an ordinary point of Q and L⊗Q. We have

ind 1
2
(L) = s(s− 2),

ind 1
2
(Q) = s(s− 1),

ind 1
2
(L⊗Q) = s(s− 1)(s− 2)(s− 3).

Then ind 1
2
(L) ⊗ ind 1

2
(Q) = s(s − 1)(s − 2)(s − 3) divides ind 1

2
(L ⊗ Q). The roots ξi (i = 1, 2, 3, 4) of

12x4 − 44x3 + 63x2 − 52x+ 18 are apparent singularities of L⊗Q, but ordinary points of L and Q. For
each ξi, we have

indξi(L) = s(s− 1),

indξi(Q) = s(s− 1),

indξi(L⊗Q) = s(s− 1)(s− 2)(s− 4).

Then indξi(L)⊗ indξi(Q) = s(s− 1)(s− 2) divides indξi(L⊗Q).

Let L,M ∈ C(x)[D]. If M = LQ for some Q ∈ C(x)[D] under usual multiplication, then ind0(Q)
divides ind0(M). So one can find the possible indicial polynomials of a right factor by factoring ind0(M),
see [7, 39]. For symmetric product, if M = L ⊗ Q for some Q ∈ C(x)[D], combining Corollary 8.3 and
Proposition 4.2 yields that the indicial polynomial ind0(Q) divides the global quasi-symmetric quotient
qsquo(ind0(M), ind0(L)). So we can compute the possible indicial polynomials of a symmetric quotient.
The procedure extends to generalized indicial polynomials as follows, see examples in the next section.

Proposition 8.5. Let L,M ∈ C(x)[D] be of positive order and let 0 ̸= Q ∈ C(x)[D] be such that L⊗Q
is a right factor of M . Then one can determine a finite set {exp(qi(x−1))}κi=1 where qi ∈ C[x1/v] with
v ∈ N\{0}, consisting of candidates for the exponential parts of the series solutions of Q at 0. Moreover,

for each exp(qi(x
−1)), one can compute a polynomial ĩnd0,exp(qi(x−1))(Q) ∈ C[s] that is a multiple of the

generalized indicial polynomial ind0,exp(qi(x−1))(Q).

Proof. Let {exp(pj(x−1))}ηj=1 and {exp(wt(x
−1))}ρt=1 be the exponential parts of the series solutions of

L and M at 0, respectively, where pj , wρ ∈ C[x1/v] with v ∈ N \ {0}. If exp(q(x−1)) is an exponential
part of Q at 0, then for all 1 ≤ j ≤ η, exp(q(x−1) + pj(x

−1)) is an exponential part of M at 0. Thus the
exponential parts of Q at 0 belong to the set

η⋂
j=1

{
exp(w1(x

−1)− pj(x
−1)), . . . , exp(wρ(x

−1)− pj(x
−1))

}
,

where two exponential parts are considered identical if they differ by multiplication by a nonzero constant
in C. Let {exp(q1(x−1)), . . . , exp(qκ(x

−1))} denote this set.
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For a fixed exp(qi(x
−1)), let

Λi := {(t, j) | exp(qi(x−1)) = c exp(wt(x
−1)− pj(x

−1)) for some c ∈ C \ {0}}.

Then for each pair (t, j) ∈ Λi, by Theorem 8.2, we obtain that

ind0,exp(qi(x−1))(L)⊗ ind0,exp(pj(x−1))(Q) | ind0,exp(wt(x−1))(L⊗Q) | ind0,exp(wt(x−1))(M).

Let µj(s) := ind0,exp(pj(x−1))(L) and νρ(s) := ind0,exp(wt(x−1))(M). By Proposition 4.2, we get that
ind0,exp(qi(x−1))(Q) divides the global quasi-symmetric quotient qsquo(νt(s), µj(s)) for all (t, j) ∈ Λi.
Thus we can take

ĩnd0,exp(qi(x−1))(Q) := gcd
(t,j)∈Λi

qsquo(νt(s), µj(s)). (31)

9 Degree bounds for symmetric quotients

Let L,M ∈ C(x)[D] be given. Let Q = Dδ + bδ−1(x)D
δ−1 + · · · + b0(x) with bi ∈ C(x) be such that

L⊗Q is a right factor of M . In this section, we compute bounds for the degrees of the numerators and
denominators of the bi. Our work is inspired by the computation of degree bounds for a right factor of
a given linear differential operator [6,7,38]; see [6] for a detailed computation and [4] for an explicit and
challenging example. Similarly, these bounds for Q are known when:

• for every bi and for every point ξ ∈ Sing(L) ∪ Sing(M) ∪ {∞}, we have a lower bound for the
valuation of bi ∈ C(x) at ξ;

• we have an upper bound for the number of extra singularities. A point ξ ∈ C is called an extra
singularity of the quotient Q if ξ is an ordinary point of L and M , but a singularity of Q.

By Proposition 8.5, we can compute the possible exponential parts of Q at 0. Let exp(q(x−1)) with
q ∈

⋃
v∈N\{0} C[x

1/v] be one of them such that c := −deg(q) is minimal. Then 1−c is the largest possible
slope of Newton Polygon of Q at 0, see [23, §3.4]. A lower bound for the valuation of bi at 0 can be
obtained from the study of the Newton Polygon of Q at 0, see [6]. The same process can be performed
at every point ξ ∈ C ∪ {∞}. So we only need an upper bound for the number of extra singularities.

9.1 The Fuchsian case

Assume that Q is Fuchsian. Note that L,M need not necessarily be Fuchsian. Let Extra(Q) be the set
of all extra singularities of Q. If ξ ∈ C is an extra singularity of Q, then by Proposition 4.4, ξ is an
apparent singularity of Q. Therefore the quantity Sξ(Q) in (7) is a positive integer. So applying the
Fuchs relation (8) to Q, the number of extra singularities is upper bounded by

#Extra(Q) ≤
∑

ξ∈Extra(Q)

Sξ(Q) = −δ(δ − 1)−
∑

ξ∈Sing∗(Q)∪{∞}

Sξ(Q), (32)

where Sing∗(Q) is a subset of Sing(Q) that are not extra singularities of Q. By the definition of extra
singularities, we get Sing∗(Q) ⊆ Sing(L) ∪ Sing(M). By Proposition 8.5, for each ξ ∈ C ∪ {∞}, one
can compute a multiple of indξ(Q), denoted by ĩndξ(Q). For example, the quasi-symmetric quotient

qsquo(indξ(M), indξ(L)) is a multiple of indξ(Q). Then the roots of indξ(Q) are roots of ĩndξ(Q). There-

fore, by (7), we get Sξ(Q) ≥ S̃ξ(Q), where S̃ξ(Q) denotes the sum of the δ smallest roots of ĩndξ(Q),

minus δ(δ−1)
2 . It follows from (32) that

#Extra(Q) ≤ −δ(δ − 1)−
∑

ξ∈Sing(L)∪Sing(M)∪{∞}

S̃ξ(Q).

This process can be used whenever the operator Q to be found is known to be Fuchsian. In particular,
when L and M are Fuchsian, Proposition 8.5 implies that Q is Fuchsian.

If the degree of ĩndξ(Q) is less than δ, i.e., the number of roots of ĩndξ(Q) in C is less than δ, then
there is no operator Q of order δ such that L⊗Q is a right factor of M .

25



Example 9.1. We continue with Examples 4.5 and 7.4. We show how to compute a degree bound for an
unknown operator Q ∈ C(x)[D] of order 3 such that L ⊗Q is a right factor of M . Both L and M have
four singularities: 1, ξ1, ξ2 and ∞, where ξ1, ξ2 are distinct roots of x2 − 2x+ 2. These four singularities
are regular. Hence L and M are Fuchsian, and therefore Q is also Fuchsian. At the point 1, we have

ind1(M) = (s− 2)(s− 3)(s− 4)(s− 5), ind1(L) = (s− 1)(s− 2).

Then ĩnd1(Q) = qsquo(ind1(M), ind1(L)) = (s − 1)(s − 2)(s − 3) is a multiple of ind1(Q). At the point
ξi (i = 1, 2), we have

indξi(M) = (s+ 1)s(s− 1)(s− 2), indξi(L) = (s+ 1)s.

Then ĩndξi(Q) = qsquo(indξi(M), indξi(L)) = s(s− 1)(s− 2) is a multiple of indξi(Q). At the point ∞,
we have

indξi(M) = (s+ 3)(s+ 2)(s+ 1)s, indξi(L) = s(s− 1).

Then ĩnd∞(Q) = qsquo(ind∞(M), ind∞(L)) = (s+3)(s+2)(s+1) is a multiple of ind∞(Q). Therefore,
for the operator Q,

S̃1(Q) = 1 + 2 + 3− 3 = 3,

S̃ξi(Q) = 0 + 1 + 2− 3 = 0,

S̃∞(Q) = −3− 2− 1− 3 = −9.

Thus the number of extra singularities of Q is upper bounded by:

#Extra(Q) ≤ −3(3− 1)− (3 + 0 + 0− 9) = 0.

This implies that Q has no extra singularities.

Since Q is Fuchsian, it can be written

Q = D3 +
a2(x)

A(x)
D2 +

a1(x)

A(x)2
D +

a0(x)

A(x)3
,

where ai, A ∈ C[x] and deg(ai) ≤ deg(Ai)− (3− i). Suppose A(x) = A1(x)A2(x), where the roots of A1

are elements of Sing∗(Q) and the roots of A2 are elements of Extra(Q). It follows that

deg(A1) ≤ #Sing∗(Q) ≤ #(Sing(L) ∪ Sing(M)) = #{1, ξ1, ξ2} = 3

and deg(A2) ≤ #Extra(Q) = 0. Clearing the denominator of Q gives the bounds (27, 26, 25, 24) on the
degrees of the coefficients of (D3, D2, D, 1). This is the bound used in Example 4.5 leading to the discovery
of the symmetric quotient Q. From Example 2.12, we see that Q has only two singularities 1 and ∞.
Thus, Q indeed has no extra singularities.

9.2 The general case

Applying the generalized Fuchs relation (11) to Q, we obtain the analogue of (32):

#Extra(Q) ≤
∑

ξ∈Extra(Q)

(
Sξ(Q)− 1

2
Iξ(Q)

)
= −δ(δ − 1)−

∑
ξ∈Sing∗(Q)∪{∞}

(
Sξ(Q)− 1

2
Iξ(Q)

)
. (33)

As in the Fuchsian case, Sing∗(Q) ⊆ Sing(L) ∪ Sing(M). By Proposition 8.5, for each ξ ∈ C, one can
compute the possible exponential parts {exp(qi((x − ξ)−1))}κi=1 of the series solutions of Q at ξ, where
qi ∈ C[x1/v] with v ∈ N \ {0} and qi(0) = 0. One can also compute a multiple of the generalized

indicial polynomial indξ,exp(qi((x−ξ)−1))(Q), denoted by ĩndξ,exp(qi((x−ξ)−1))(Q). Therefore, by (9), we get

Sξ(Q) ≥ S̃ξ(Q), where S̃ξ(Q) denotes the sum of the δ smallest roots of
∏κ

i=1 ĩndξ,exp(qi((x−ξ)−1))(Q),

minus δ(δ−1)
2 .

For each 1 ≤ i ≤ κ, there are at most di linearly independent solutions of Q at ξ with the exponential

part exp(qi((x− ξ)−1)), where di is the degree of ĩndξ,exp(qi((x−ξ)−1))(Q). So counting exp(qi((x− ξ)−1))
repeated di times, we get a list exp(q̃1((x − ξ)−1)), . . . , exp(q̃δ̃((x − ξ)−1)) of the possible exponential
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parts for the operator Q at ξ, where δ̃ =
∑κ

i=1 di. Therefore, by (10), we get Iξ(Q) ≥ Ĩξ(Q), where Ĩξ(Q)

denotes twice the sum of the 1
2δ(δ − 1) smallest values among deg(q̃i − q̃j) for all 1 ≤ i < j ≤ δ̃.

The case at ξ = ∞ is similar. It then follows from (33) that

#Extra(Q) ≤ −δ(δ − 1)−
∑

ξ∈Sing(L)∪Sing(M)∪{∞}

(
S̃ξ(Q)− 1

2
Ĩξ(Q)

)
.

If δ̃ < δ, then there is no operator Q of order δ such that L⊗Q is a right factor of M .

To compute a sharper degree bound for Q, one may use integer linear programming as in [7].

Example 9.2. Let L,M ∈ C(x)[D] be two operators:

L = (2x− 1)D2 − 4xD + 4,

M = (12x4 − 44x3 + 63x2 − 52x+ 18)D4 + (−72x4 + 216x3 − 246x2 + 186x− 56)D3

+ (132x3 − 232x2 + 99x− 96)xD2 + (−72x4 − 108x3 + 232x2 + 18x+ 96)D + 144x3 − 48x2 − 234.

Since dimC(V (M) : V (L)) = 2, we assume that Q ∈ C(x)[D] is an operator of order two such that L⊗Q
is a right factor of M . We compute an upper bound on the number of extra singularities of Q. The
singularities of L are: 1

2 and ∞. The singularities of M are: ξi (i = 1, 2, 3, 4) and ∞, where the ξi are
distinct roots of 12x4 − 44x3 + 63x2 − 52x + 18. As shown in Example 8.4, the point 1

2 is an apparent
singularity of L. The points ξi are apparent singularities of M . Similar to Example 9.1 in the Fuchsian
case, we have

ĩnd 1
2
(Q) = qsquo(ind 1

2
(M), ind 1

2
(L)) = qsquo(s(s− 1)(s− 2)(s− 3), s(s− 2)) = s(s− 1),

ĩndξi(Q) = qsquo(indξi(M), indξi(L)) = qsquo(s(s− 1)(s− 2)(s− 4), s(s− 1)) = s(s− 1).

The point ∞ is an irregular singularity of L and M . The generalized indicial polynomials of L are

ind∞,exp(0)(L) = 2(s+ 1), ind∞,exp(2x)(L) = −2s.

The generalized indicial polynomials of M are

ind∞,exp(0)(M)=6(s+ 2), ind∞,exp(x)(M)=−2(s+ 1), ind∞,exp(2x)(M)=2(s+ 1), ind∞,exp(3x)(M)=−6s.

Thus by Proposition 8.5, the possible exponential parts of Q are

{exp(0), exp(x), exp(2x), exp(3x)} ∩ {exp(−2x), exp(−x), exp(0), exp(x)} = {exp(0), exp(x)}.

Since exp(0) = exp(0− 0) = exp(2x− 2x), we have

ĩnd∞,exp(0)(Q) = gcd(qsquo(6(s+ 2), 2(s+ 1)), qsquo(2(s+ 1),−2s)) = gcd(s+ 1, s+ 1) = s+ 1.

Since exp(x) = exp(x− 0) = exp(3x− 2x), we have

ĩnd∞,exp(x)(Q) = gcd(qsquo(−2(s+ 1), 2(s+ 1)), qsquo(−6s,−2s)) = gcd(s, s) = s.

Thus, for the operator Q,

S̃ 1
2
(Q) = 0 + 1− 1 = 0,

S̃ξi(Q) = 0 + 1− 1 = 0,

S̃∞(Q) = 0− 1− 1 = −2,

Ĩ∞(Q) = 2 · 1 = 2.

It follows that

#Extra(Q) ≤ −2(2− 1)− (0 + 0 + 0 + 0 + 0− 2− 1

2
2) = 1.

Since M = L⊗Q, with Q as in Examples 2.14 and 8.4, we see that Q has only two singularities: 1 and
and ∞. Thus Q indeed has one extra singularity 1.
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10 Another example

Algorithms for factoring operators of orders three and four with respect to symmetric product are
known [19, 33, 40, 41]. Here we give an example of computing a symmetric quotient of an operator
of order nine by a factor of order three. Although this example does not fall into any of the three special
cases described in Section 5, Algorithm 5.1 successfully produces a symmetric quotient.

Let L = (x − 1)3D3 + (5(x − 1)2 + (x − 1)3)D2 + ((x − 1)2 − 17(x − 1))D + 24 ∈ C(x)[D] and let
M = L ⊗ P , where P = (x − 1)3D3 + (11(x − 1)2 + (x − 1)3)D2 + 30(x − 1) + 18 ∈ C(x)[D]. Then
r = ord(L) = 3, n = ord(M) = 9. The leading coefficient of M is m(x)(x− 1)8, where

m = 1568x11 − 161032x10 − 2017870x9 + 31228120x8 − 506595359x7 + 8763692179x6 − 91370341057x5

+ 610286581763x4 − 3583448187232x3 + 15654415322868x2 − 37066249396506x+ 24398082715566

is an irreducible polynomial over Q of degree 11. Assume that P is unknown. The goal is to compute
the global quasi-symmetric quotient Q of M by L.

First we compute an upper bound for the order of Q. Since the indicial polynomial of N =M ⊗L⊗2

is ind0(N) =
∏29

i=0(x− i), we take k0 = 29− 3 = 26 and k = k0 + 1 = 27. The space (V (M) : V (L)) has
dimension three, with a basis given by

h1 = 1 + 3x3 +
39

4
x4 +

201

10
x5 +

1343

40
x6 +

1737

35
x7 +

151717

2240
x8 +

125849

1440
x9 +

7269929

67200
x10 +O(x11),

h2 = x− 5x3 − 57

4
x4 − 271

10
x5 − 5123

120
x6 − 301

5
x7 − 530161

6720
x8 − 593527

6048
x9 − 23664101

201600
x10 +O(x11),

h3 = x2 +
10

3
x3 +

27

4
x4 +

65

6
x5 +

5471

360
x6 +

410

21
x7 +

94985

4032
x8 +

351137

12960
x9 +

18123281

604800
x10 +O(x11).

So the order of Q is at most three. Here if k = 9, the truncated space
⋂3

i=1 Tk(Wi) has dimension four.

When k ≥ 10, this dimension remains stable: dimC(
⋂3

i=1 Tk(Wi)) = dimC(V (M) : V (L)) = 3.

Now we compute the number of extra singularities of Q. The singularities of L are: 1 and ∞. The
singularities of M are: 1, ξi (i = 1, . . . , 11) and ∞, where the ξi are distinct roots of m(x). The point 1
is a regular singularity of L and M . The points ξi are apparent singularities of M . So we have

ĩnd1(Q) = qsquo(ind1(M), ind1(L)) = qsquo(s3(s+ 8)(s+ 9)2(s+ 1)3, (s+ 6)(s− 2)2) = (s+ 2)(s+ 3)2,

ĩndξi(Q) = qsquo(indξi(M), indξi(L)) = qsquo((s− 9)
∏7

i=0(s− i), s(s− 1)(s− 2)) =
∏5

i=0(s− i).

The point ∞ is an irregular singularity of L and M . The generalized indicial polynomials of L are

ind∞,exp(0)(L) = −s2, ind∞,exp(−x)(L) = s− 4.

The generalized indicial polynomials of M are

ind∞,exp(0)(M) = −2(s+1)2s2, ind∞,exp(−x)(M) = −(s−3)(s−4)(s−11)2, ind∞,exp(−2x)(M) = 16(s−15).

Thus by Proposition 8.5, the possible exponential parts of Q are

{exp(0), exp(−x), exp(−2x)} ∩ {exp(x), exp(0), exp(−x)} = {exp(0), exp(−x)}.

Since exp(0) = exp(0− 0) = exp(−x− (−x)), we have

ĩnd∞,exp(0)(Q) = gcd(qsquo(−2(s+ 1)2s2,−s2), qsquo(−(s− 3)(s− 4)(s− 11)2, s− 4)) = s(s+ 1).

Since exp(−x) = exp(−x− 0) = exp(−2x− (−x)), we have

ĩnd∞,exp(−x)(Q) = gcd(qsquo(−(s− 3)(s− 4)(s− 11)2,−s2), qsquo(16(s− 15), s− 4)) = s− 11.

Thus, for the operator Q,

S̃1(Q) = −2− 3− 3− 3 = −11,

S̃ξi(Q) = 0 + 1 + 2− 3 = 0,

S̃∞(Q) = 0− 1 + 11− 3 = 7,

Ĩ∞(Q) = 2 · 2 = 4.
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It follows that

#Extra(Q) ≤ −3(3− 1)− (−11 + 0 + 7− 1

2
4) = 0.

Therefore, Q has no extra singularities and at most 13 singularities: 1, ξi(i = 1, . . . , 11) and ∞.

Since the singularities 1, ξi(i = 1, . . . , 11) are regular, the Newton polygons of Q at each of these
points have only one edge with slope 1. At the point ∞, since the possible exponential parts of Q are
exp(0) and exp(−x), the possible slopes of the Newton polygon of Q are 1 and 2. We write

Q = D3 +
A2(x)

B(x)
D2 +

A1(x)

B(x)
D +

A0(x)

B(x)
,

where Ai, B ∈ C[x]. Then deg(B) ≤ 3(11+1+2) = 45 and deg(Ai) ≤ deg(B)+3(2−1) = 48, see details
in [6]. Clearing the denominator of Q gives the bounds (45, 48, 48, 48) on the degrees of the coefficients
of (D3, D2, D, 1). By solving the linear system Q · hj = O(xk) for j = 1, 2, 3 and sufficiently large k, we
find that Q = P is the global quasi-symmetric quotient of M by L.
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