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Abstract

The symmetric product of two ordinary linear differential operators L1, L2 is an operator whose
solution set contains the product fif2 of any solution fi of L; and any solution fa of Lo. It is
well known how to compute the symmetric product of two given operators L1, Lo. In this paper we
consider the corresponding division problem: given a symmetric product L and one of its factors,
what can we say about the other factors?

1 Introduction

This work is about linear differential operators with rational function coefficients, i.e., operators that can
be written in the form
po+pi D+ +p D",

where D refers to the derivation with respect to x, and py, . . ., p, are certain rational functions in x. Such
operators act in a natural way on differential fields, for example on the field of formal Laurent series.
The result of applying the above operators to a series f is meant to be the series

po(@)f(x) +pr(@)f'(x) + -+ pe(2) [ (@),

where by p;(x) we mean the series expansions of the rational function p;.

If L is an operator and f is a series, we write L - f for the series resulting from applying L to f.
A series f is called D-finite [23,35] if there exists a nonzero operator L such that L - f = 0. Such an
L is called an annihilating operator for f. D-finite series play an important role in computer algebra.
There are many algorithms for solving problems about D-finite series, and these algorithms nowadays are
routinely applied in areas in which such problems naturally arise.

A D-finite series is uniquely determined by an annihilating operator and a finite number of initial
terms. For this reason, algorithms for D-finite series rely heavily on computations with operators. To
enable computations with operators, the set C(z)[D] of all operators is turned into a ring by defining
addition and multiplication in such a way that the action of this ring on the field C((x)) of Laurent
series via operator application turns that field into a C(z)[D]-module. This means that addition and
multiplication are set up in such a way that we have (L+M)-f=L-f+M-fand (LM)-f=L-(M- f)
for every L, M € C(z)[D] and every f € C((x)). The resulting ring C(x)[D] of differential operators
is an example of an Ore algebra [10,23,27]. Its multiplication is not commutative but governed by the
commutation rule Dx = xD + 1, which reflects the product rule for differentiation.

The arithmetic in the ring C'(z)[D] of operators is thus quite different from the arithmetic in the
field C((z)). In particular, if L and M are annihilating operators of f and g, respectively, then L + M
is usually not an annihilating operator of f + g, and LM is usually not an annihilating operator of fg.
Nevertheless, if f and g are D-finite, then so are their sum f + g and their product fg. An annihilating
operator for f + g can be obtained from L and M by taking a common left multiple of these operators,
i.e., an operator that can be written as AL and also as BM for certain operators A, B. Such operators
always exist, and there is one of minimal order which is unique up to left-multiplication by nonzero
rational functions. This operator is called the least common left multiple of L and M. See [5,22,23] for
information about the computation of such common left multiples.
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Similarly, there is a construction by which an annihilating operator for the product fg can be obtained
from L and M. Again, among all these operators there is one of minimal order, and this one is unique
up to left-multiplication by nonzero rational functions. It is called the symmetric product of L and M
and denoted by L ® M. This product is not to be confused with the product LM obtained via the
multiplication in the ring C(x)[D]. See [9,17,23] for more about the computation of symmetric products.

So we have two distinct kinds of multiplication for operators: the regular product and the symmetric
product. What are the corresponding divisions? For the regular product, this is easy to answer. With
respect to this product, despite the lack of commutativity the ring C(z)[D] very much behaves like a
commutative univariate polynomial ring. In particular, it is a left Euclidean domain [10,23,27]. We have
a notion of division with remainder which works very much like ordinary polynomial division, and we
have a Euclidean algorithm. In fact, the extended Euclidean algorithm in C(x)[D] gives rise to one way
of computing least common left multiples of operators.

It is less clear how to do division with respect to the symmetric product. Apparently, this question
has not been systematically addressed before, and the purpose of the present article is to develop some
theory and algorithms for this division. The task under consideration is, given two operators M and L,
to find another operator, ), such that M = L ® Q. We call such an operator ) a symmetric quotient
of M and L. The solutions g of a symmetric quotient have the property that for every solution f of L,
the product fg is a solution of M. Note that this is not the same as trying to compute an annihilating
operator for the quotient f/g of a solution f of L by a solution g of M. Indeed, these quotients are
usually not D-finite [18].

We were led to study symmetric division by an attempt to construct a cryptographic key exchange
system based on operator arithmetic. The idea was that Alice chooses two operators L and A and sends L
and L® A to Bob. Bob chooses an operator B and sends L® B back to Alice. Knowing L® B and A, Alice
can compute L ® A ® B (note that the symmetric product is commutative, unlike the regular operator
product), and knowing L ® A and B, Bob can compute L ® A ® B as well, so they have constructed a
shared secret.

The rationale of this crypto system was that while the symmetric product of two operators can be
efficiently computed, it is unclear how to do symmetric division, so an attacker won’t easily be able to
recover A from the knowledge of both L and L ® A. In a way, our main result is that this crypto system
is not secure, because symmetric division can be done. Although we cannot solve the problem in full
generality, our algorithms suffice to render the idea obsolete.

While this motivation may seem a bit far fetched, we believe that symmetric division is of interest in
its own right and that the ideas behind our algorithms are worth being shared. A key tool is the concept of
colon spaces, an adaption of the definition of colon ideals to vector space, which we introduce in Section 3
after reviewing in Section 2 the relevant background for this paper. In Section 4 we present an algorithm
for computing what we will call local quasi-symmetric quotients. This is a variant of the symmetric
division problem that we found most tractable. The algorithm of Section 4 depends on a number of
subroutines which are detailed in Sections 6-9. In Section 5 we discuss how (global) quasi-symmetric
quotients can be constructed for certain special kinds of operators.

2 Preliminaries

Throughout this paper, let C' be an algebraically closed field of characteristic zero. Let C(x) be the field
of rational functions in z over C. Let C[[z]] be the ring of formal power series and let C((x)) be its
quotient field, i.e., the field of formal Laurent series.

2.1 Truncated Series

For any k € Z, let T}, : C((x)) — C(()) be the map defined by

k
Ti(f) = aia',
i=



for all f = 377, a;xt € C((z)) with a; € C. The expression Tj(f) is called a truncation of f at
precision k. We may use the notation

k
Ti(f) = aix’ + O(a*)

i=j
to make the truncation precision more explicit. We recall some basic properties of truncated series, which

follow directly from the definitions of addition and multiplication of series, see [23, §1.1] for details.

Lemma 2.1. Let f = Z;\:)\O aig’ + 0@ ) and g = Y4 bir' +O(x#+1h) be Laurent series in C((x)),
where Ao, A\, o, 4 € Z with A > Ao, > po. Then

min{\,p}
Frg= Y (ai+b)a’ + 0@,

i=min{Ao, o}

Lemma 2.2. Let f = 20 Z;\:lo a;zt + O(zro Tty and g = a0 S bt + Ozt t1) be Laurent
series in C'((z)), where Ao, pio € Z and A, 11 € N.

(i) The product fg satisfies

min{Ai,pu1} [ d
fg= proTHo Z Z ajbifj 2t + O(xmirl{)\l,ul}+/\0+po+1).
i=0 =0

(ii) If ag # 0, then f is invertible and

A1
f*l — 1'7)\0 (Z Cixi> + O(J:/\lf)\(r‘r])7

=0

where co = %, = *%0(22‘:1 a;jci—;) for all1 <i < A

Corollary 2.3. Let r € N\ {0} and let f; = Z?C:i_l ajzd, g = Z;ii_l bjzd be power series in C|[z]],
where 1 <14 <71 and bj—1 # 0 (while a;—1 may be zero). Then for all k > 0, we have

n(5) = (7))

Proof. Since Ty4r—1(g:) = Z?;T:f bjzd +O(zk*7) = 21 Zfig_z bjri—129 +O(xF7), by Lemma 2.2.(ii)

we have é = m + O(xk+7=2%2) for all 1 < i < r. Moreover, m =2~ 3% J¢jad for
some ¢; € C. Since f; = Tir—1(f;) + O(z**7), by Lemma 2.2.(i) we get

fi _ Thyra(fi) 4 Ot r=1= (1), k=20 L (=D (- 1) = (= D+
9 Tryr—1(94)

Therefore, % — % = O(z**r=+1) = O(a**+1) for all 1 <4 < r. This completes the proof. m

2.2 The ring of linear differential operators

Let C(x)[D] be an Ore algebra, where D is the differentiation with respect to = and satisfies the com-
mutation rule Dz = 2D + 1. Operators in C(z)[D] have the form L = £y + ;D +---+ £.D" € C(x)[D]
with £o,¢1,...,¢. € C(x). When £, # 0, we call ord(L) := r the order of L. Let F be a differential ring
and write ’ for its derivation. The Ore algebra C(x)[D] acts on F' via

(go+glp+..._|_gTDT).f:gof+glf’+...+grf(r).

An element f € F is called a solution of an operator L € C(z)[D]if L- f = 0. For L € C(z)[D], we call
Vr(L):={f € F| L-f =0} the solution space of L in F. For convenience, we write V(L) to denote the



solution space of L in the field of formal Laurent series C((x)). An element ¢ € F is called a constant if
D - ¢ =0. The set of constants in a ring forms a subring and in a field forms a subfield.

The Ore algebra C(z)[D] is a right Euclidean domain, and the (extended) Euclidean algorithm carries
over almost literally to this setting [10,23]. For every L1, Lo € C(x)[D], L1 # 0, there exist unique
Q,R € C(x)[D] such that Ly = QL1 + R and ord(R) < ord(Ly). If R = 0, we say that Ly is a right
factor of Ly and that Ly is a left multiple of L1. An element f € F is called D-finite if there exists a
nonzero operator L € C(x)[D] such that L - f = 0. Such an L is called an annihilator of f. Among all
annihilators, one of minimal order is called a minimal annihilator. Since every left ideal of C(x)[D] is
left principal, every annihilator of f is a left multiple of its minimal annihilator. The following lemma
describes properties of the solution spaces of an operator and its right factors.

Lemma 2.4 ([34, Lemma 2.1]). Let Ly, Ls € C(2)[D] and assume that ord(L1) = r1, ord(Lg) = ro. Let
F be a differential field extension of C(x) having the same constant C.

(i) dime Vie(Ly) < 1.
(i) If dime Vip(Ly) = r1 and Ve(L1) C Vi(Ls), then Ly is a right factor of L.
(#i) If dime Vp(L1) = r1 and Lo is a right factor of Ly, then dime Vp(Lg) = ro and Ve(La) C Ve (L1).

An operator L € C(x)[D] is called a common left multiple of two operators Ly, Ly € C(z)[D] if there
exist Ry, Re € C(z)[D] such that L = RyL; = RaLs. Among all such common left multiples, one of
minimal order is called a least common left multiple (Iclm). We write lclm(Lq, Ls) for the unique primitive
lelm of Ly and Lo, i.e., the lclm whose coefficients are coprime polynomials in C[z] and whose leading
coefficient is primitive in x. A key feature of the lclm is that whenever f; is a solution of L; and f,
is a solution of Lg, then their sum f; + f2 is a solution of lelm(L;, Ly). For the efficient computation
of the least common left multiple, see [5]. There is a similar construction for multiplication. For any
two nonzero differential operators L1, Lo € C(x)[D], there exists a unique primitive operator Ly ® Lo of
lowest order, called the symmetric product of L1 and Lo, such that whenever f; is a solution L; and f
is a solution of Loy, then their product fi fs is a solution of Ly ® Lo. As a special case, the s-th symmetric
power of an operator L € C(z)[D] is defined as L®* = L ® --- ® L. For the efficient computation of
the symmetric powers, see [9]. Note that unlike the multiplication in C(z)[D], the symmetric product
is commutative. We recall the following properties of the lclm (see [31, Lemma 3.2] or [23, §4.2, Ex. 13;
solution on p. 578]) and of the symmetric product (see [37, Corollary 2.9] or [32, Proposition 2.6]).

Lemma 2.5. Let Ly,Ls € C(x)[D]. Let F be a differential field extension of C(z) having the same
constant C. Assume that dime (Ve (Ly)) = ord(L;) and dime(Vr(Le)) = ord(Lsz). Then

(i) dime Vp(lelm(Lq, Lo)) = ord(lclm(Ly, La)) and

Ve(lelm(L1, Ly)) = Ve(Ly) + Ve(Lo);

(i) dime Ve(L1 ® Lz) =ord(L; ® L2) and

Vr(L1 ® L) = Span{gh | g € Vr(L1), h € Vp(L2)}.
The following lemma (see [23, §4.1 Ex. 23; solution on p. 575]) shows that the symmetric product is

distributive over the lclm.

Lemma 2.6. Let L,Q1,Q2 € C(z)[D]. Then L ® (lelm(Q1,Q2)) = lelm(L ® @1, L ® Q2).

As a consequence of Lemma 2.6, we obtain the following corollary.

Corollary 2.7. Let L,Q1,Q2, M € C(x)[D]. If both L ® Q1 and L ® Q2 are right factors of M,
then L ® (lelm(Q1,Q2)) is also a right factor of M. In particular, if M = L ® Q1 = L ® Q2, then
M = L X (lclm(Ql, QQ))



2.3 Indicial polynomials

We recall properties of linear differential equations in [20, Chap. XVI, XVII| or [28, Chap. V]. Let
N € C[z][D] be a linear differential operator with polynomial coefficients. If N is given with rational
coefficients, its denominators can be cleared. Then the action of N on a monomial 2° with s € N yields
a polynomial

N -2® =" 7 (po(s) + pr(s)x + -+ + pi(s)ah), (1)

where oy € Z, t € N, p; € C[s] and pg # 0. The coefficients of p;(s) depend on those coefficients
of N. The polynomial py(s) is called the indicial polynomial of N at 0, denoted by indg(L). By linear
combination, the action of N on a formal power series f = Y ;= c;z" € C[[z]] is the formal power series

N-f= Zcz(N . xl) = Z (copr(0) + - -+ + crpo(k)) xk+gN7
i=0 o

where p;(x) = 0 if ¢ > ¢t. Then the differential equation N - f = 0 implies that
copo(0) =0, c1po(1) + cop1(0) =0, ..., ct—1po(t —1) + -+ + cope—1(0) =0 (2)
and the linear recurrence of order ¢
cxpo(k) + -+ ckspe(0) =0, V>t (3)

Let
Zy :={k e N|po(k) =0} (4)

be the set of nonnegative integer roots of the indicial polynomial of N at 0. For all k£ ¢ Zy, the coefficient
¢, is determined from the previous ones. In particular, this discussion leads to the following basic property
of power series solutions, see [20].

Lemma 2.8. Let N € C[z][D] be such that N - z* = x5tV (po(s) + p1(s)z + -+ + pe(s)xt) is in the
form (1). Let ko = max Zy. If f = > 2 iz’ € C[[z]] is a formal power series solution of N, then, for
all k > ko,

1 min{t,k}
Ck = ——F7= cp—ipi(k —1
po(k) ; =

Proof. Since po(k) # 0 for all k > kg, the result follows from the equations (2) and (3). =

2.4 Generalized series solutions

Let L =4y + 6D+ -+ ¢.D" € C(x)[D] be a fixed operator of order r. A point £ € C is called a
singularity of L if it is a pole of one of the rational functions ¢y /¢, ..., ¢._1/¢,. The point oo is called a
singularity if, after the substitution x — z~!, the origin 0 becomes a singularity. A point £ € C'U {occ}
which is not a singularity is called an ordinary point of L. If £ is an ordinary point of L, then after the
change of variables z — x + &, zero becomes an ordinary point of the transformed operator. If 0 is an
ordinary point of L, then L has r linearly independent solutions in C[[z]], see the following lemma. Since
the dimension of the solution space V(L) C C((z)) can not exceed its order, these solutions also form a

basis of V(L).

Lemma 2.9 ( [23, Theorem 3.16]). Let L € C(x)[D] be an operator of order r. If 0 is an ordinary point
of L, then L has r linearly independent solutions in C|[z]] of the form

G =1+0("), g=x+0"), ..., g =z""1+0(").

A singularity ¢ € C' U {00} of L is called apparent if the solution space of L in C[[z —&]] (or C[[z1]]
if £ = 00) has dimension r. A singularity £ € C'U{oo} is called regular if the indicial polynomial of L at
& has degree r, and it is called irreqular otherwise. For each £ € C, an operator L of order r admits r
linearly independent solutions of the form

(z = &) exp(p((z — €)7")b(z — &, log(z — €)) ()



for some a € C, p € C[z'/?] and b € C[[z'/"]][y] with v € N\ {0} and p(0) = 0. Such objects are called
generalized series solutions at &, see [23,39]. For £ = oo, the operator L admits r linearly independent
solutions of the form

w=* exp(p(x))b(z~", log(x)) (6)

for some o € C, p € Clz/]and b € C[[z'/*]][y] with v € N\ {0} and p(0) = 0. If £ is a regular singularity,
then all series solutions of L at £ have p = 0 and v = 1. As a change of variables can always bring us back
to the case ¢ = 0, it suffices to consider the case 2 = 0. Let C[[[z!/*]]] be the ring of all finite C-linear
combinations of series of the form x®b(z,log(x)) with a € C and b € C[[z/*]][y].

Since the series solutions in the form (5) (or (6) at co) may have fractional exponents, we consider
L € C[z'/*][D] in the following lemma. The indicial polynomial of an operator in C[z'/*][D] is defined
similarly to the classical case, see [23, Definition 3.34].

Definition 2.10. For a series f € zC[[z"/?]][log(x)], a term x°log(x)Y is called an initial term of f
if B is minimal among all exponents of x appearing in f, and among the terms with exponent 3, it has
minimal vv. The exponent B is called the local exponent of f.

If « is a p-fold root of the indicial polynomial of L at 0, then L has u linearly independent solutions
in z*C|[x]][log(z)] starting with the initial terms z*log(x)” for some . More precisely, the following
result can be obtained from further computations based on [23, Theorem 3.38 (item 2), Theorem 3.45].

Lemma 2.11. Let L € C[z'/][D] for some v € N\ {0}. Suppose that the indicial polynomial indy(L)
of L at 0 factorizes as
indg(L) = c(s —aq)* -+ (s — ap)*!,

where ¢ € C'\ {0}, pa, ..., ur € N\ {0}, the roots ay,...,ar € C are distinct. Then the solution space of
L in O[[[z"/*]]] has a basis gi; (i =1,....1,5=1,..., ;) in the form:

91,1233“1"’"'» e ng:xal_A'_...,
g2 =2 log(z) + -+, ey gr2 =z log(x) + -+ -,
91 = 2 log(z) 7 - I grpu—1 =z log(z) 171 4+

where x% log(x)7~ is the initial term of g; ;.

The operator L is called Fuchsian if all its singularities in C' U {oo} are regular. Let L € C(z)[D] be
a Fuchsian operator. For each £ € C' U {00}, let

r(r—1)

Se(L) =Y ei(6) - (7

where the numbers e;(£) are the local exponents of L at £ (they are the roots of the indicial polynomial
of L at §). If £ is an ordinary point, then, by Lemma 2.9, we have S¢(L) = 0. The Fuchs relation
(see [20, §15.4] or [28, §20]) states that

Yo Sell)=-r(r-1) (8)
£€Sing(L)U{co}

where Sing(L) is the set of singularities of L in C.

Example 2.12. The operator Q = (z — 1)3D? — 3(x — 1)2D? + 6(z — 1)D — 6 € C(x)[D] is Fuchsian,
with two reqular singularities at 1 and oco. At the point 1, the indicial polynomial

ind1(Q) =(s—1)(s —2)(s — 3)

has degree 3, corresponding to the series solutions (x — 1), (x — 1)%, (x — 1)3 with local exponents 1, 2, 3
respectively. At the point & = oo, the indicial polynomial

indeo (Q) =(s+3)(s+2)(s+1)



also has degree 3, corresponding to the series solutions z® (1+0(1)),2*(1+0(2)),2(1+0(2)) with local
exponents —3, —2, —1 respectively. Thus, for the operator Q:

$1(Q)=14+24+3-3=3,
S5(Q)=—-3-2—-1-3= -9,

and the Fuchs relation (8) reduces to
3—9=—6.

Let L =l + 1D + -+ £.D" € C[z][D]. For each term 27 occurring in ¢;(z), draw a halfline in
the plane that starts at (¢,7) and continues in the direction (—1,—1), and determine the convex hull of
all these halflines. The boundary of this convex hull is called the Newton polygon of L at 0. Then every
slope 1 — ¢ width w corresponds to w linearly independent solutions with an exponential part in the form
exp(p(z~)) with deg(p) = —c for some p € [, cn (0 C[z'/"], see [23, §3.4].

Suppose that f(z) = exp(p(z~'))g(x) is a solution of L for some series g(x), where p € C[z'/?] with
v € N\ {0}. Then g(z) is a solution of L = exp(—p(x~!)) L exp(p(z~1)).

Definition 2.13. Let L € C[z][D] and p € C[z/*] with v € N\ {0}. The generalized indicial polynomial
of L at 0 and exp(p(z~1)), denoted by indg exp(p(z—1)) (L), is defined as the indicial polynomial of L=
exp(—p(z™)) L exp(p(z~1)) € Clz*/?,z=V/*|[D]. When p(x~') = 0, the generalized indicial polynomial
coincides with the classical indicial polynomial of L at 0.

Let L be an operator of order r. For each £ € C'U{oo}, S¢(L) is defined as before:

Se1) =3 ee) - D, Q

j=1

but now e;(£) are the generalized local exponents of L at £, see [11, p. 297] or [1, §3.3] for their definition
(they are the roots of the generalized indicial polynomials of L at £). Let

I¢(L) =2 Z deg(p; — p;) (10)

where p; are the exponential parts of L at . If £ is a regular singularity, then I¢(L) = 0. The generalized
Fuchs relation (see [3,11] or [1, §3.5]) states that

S (Sel) — SIe(E) = —r(r - 1) ()
£eSing(L)U{oo}

Example 2.14. The operator Q = (x—1)D?*+xD—1 € C(z)[D] is non-Fuchsian. It has two singularities
at 1 and co. The point 1 is reqular and apparent. Its indicial polynomial

ind; (Q) = s(s — 2)

has degree 2, corresponding to the series solutions 1+O(z—1), (x —1)2+O((x —1)3) with local exponents
0, 2 respectively. Its Newton polygon at 0 has one edge of slop 1 and width 2. The point £ = oo is
wrreqular. Its generalized indicial polynomials are

indoo,exp(o) (Q) =s+ ]-7 indoo,exp(x)(Q) = —S,

corresponding to series solutions x,exp(x) with generalized local exponents are —1, 0 respectively. Its
Newton polygon at oo (i.e. the Newton polygon at 0 of the operator obtained by substituting x — x~1 into
Q) has two edges: one of slop 1 and width 1, and one of slope 2 and width 1. For the operator Q,

Q) =0+2—-1=1,
So(Q) = —140—1=—2,

and the generalized Fuchs relation (11) reduces to

1-2-1=-2.



3 The colon space

For two ideals I, J of a commutative ring R, the set
(I:J):=={reR|rJCI}

is called the ideal quotient (or colon ideal) of I by J. If R is a polynomial ring in several variables over C|,
one can compute a Grébner basis of a colon ideal, see details in [15, §4.4].

In this section, let K be a ring extension of C'. Then K is naturally a C-algebra, i.e., a C-vector space
equipped with a compatible ring structure. A typical choice for K is the ring of formal power series C[[z]]
or the field of formal Laurent series C'((z)). As an analog of colon ideals, we introduce the following
notion.

Definition 3.1. Let V be a C-vector subspace of K and U be a subset of K. The colon space of V by
U in K is defined as the set
(V:U):={he K|hU CV},

which is a C-vector subspace of K.

The solution space of a symmetric quotient is contained in the corresponding colon space.

Lemma 3.2. Let L,Q, M € C(x)[D] be such that L&Q is a right factor of M. Let F be a differential ring
extension of C(x) and let (Vp(M) : Vr(L)) be the colon space in F. Then Vr(Q) C (Vr(M) : Vr(L)).

Proof. For any h € Vr(Q), we have h € F and hVp(L) C Vg (M) by the definition of symmetric products.
This implies h € (Vp(M) : Vp(L)) by the definition of the colon space. =

The colon space satisfies the following basic properties, analogous to those of colon ideals in the
polynomial ring, (see [15, Proposition 13 and Theorem 14 in §4.4]).

Proposition 3.3. Let g be an invertible element in K and let V,U,Uy,...,U, be C-vector subspaces
of K. Then

(1) (V:{gt) ={f/g| feV}
(ii) If {f1,.... fn} generates V as a C-vector space, then (V : {g}) is generated by {%, . f?}
(iii) If {g1,...,9r} generates U as a C-vector space, then (V :U) = (V : {g1,...,9r})-
(iv) (V: (51 Up) = M= (V2 Uj).
Proof. (i) follows from the definition of the colon space.

(ii) By item (i), % belongs to (V' : {g}) for all 1 <4 < n. For any h € (V : {g}), again by (i), there

exists f € V such that h = 5' Since f is a C-linear combination of f1,..., f,, it follows that h = %

is a C-linear combination of %, ey %.

(iii) Since {g1,...,9-} is a subset of U, by the definition of colon spaces we obtain that (V : U) is a
subset of (V' : {g1,...,9r}). Conversely, suppose h € (V : {g1,...,9-}). Then by definition, hg; € V
for all 1 <4 < n. Every element g in U can be written as a C-linear combination g = >_._, b;g; with
bi,...,bp € C. Thus hg = Y_;_, b;j(hg;) € V because V is a C-vector space. By the arbitrariness
of g, we have hU C V. Therefore h € (V : U).

(iv) For every h € V, we have h € (V : (327, Uj)) & h(X,_ Uj)) CV & VI <j<r hlU; CV &
he Mo (V:U;).
Corollary 3.4. Let V = Spans{fi,..., fn} and U = Span{g1,...9,} be two C-vector subspaces of K.
If g1, ..., g, are invertible elements of K, then

r

(V:U):ﬂ(V:{gi}):mSpanC{{;,...,fn}.

i=1 9i



Proof. For each i =1,...,r, let U; = Spans{g;}. Then U = Uy + --- + U,. By Proposition 3.3, we have

(iv) - (iid) - (i) f fa
(V:U)=(V:(Ui+--+U) = ((V:U) = [((V:{g}) = mSpanc{;7...79}. .
i=1 i=1 i=1 ¢ ’
Example 3.5. Let L = 22D? — 22D +2,Q = x3D? — 322D? + 62 — 6 € C(z)[D], and
M=L®Q=z*D*—8xD? + 3622D? — 962D + 120.
We consider the solution spaces of these operators in K = C((x)):
V(L) = Spanc{z, 2%}, V(Q) = Spanc{z,z% 2%}, V(M) = Spanc{2?, 23, 2%, 2°}. (12)

By Corollary 3.4, we have

(V(M) : V(L)) = (V(M) : {a}) N (V(M) : {2?})
= Spanc{z, 2% 2% 2*} N Spanc{1, x, 22, 23}

= Spang{z,z? 23},

By Lemma 3.2, the solution space V(Q) of the quotient Q) is contained in the colon space (V (M) : V(L)).
In this example, we have equality V(Q) = (V(M) : V(L)).

4 Symmetric division algorithm

4.1 The maximal symmetric quotient

Unlike polynomial division, symmetric division may admit infinitely many quotients. Even the order of
the quotient may not be unique. If L, M € C(x)[D] are of positive order such that M = L ® @ for some
Q € C(z)[D], it is known that

ord(L) 4+ ord(Q) — 1 < ord(M) < ord(L) ord(Q). (13)
Since ord(L) # 0, this implies
(ord(M)/ord(L)) < ord(Q) < ord(M) —ord(L) + 1. (14)
Therefore, only finitely many orders can appear for the symmetric quotients.
Example 4.1. Let L,Q, M € C(z)[D] be the same as in Ezample 3.5. Let
Qo = (—az? — 22°)D? + (2ax + 62%)D + (—2a — 62),

where a € C. These operators have enough solutions in C((x)). The solution spaces V (L), V(Q), V(M)
are listed in (12). The solution space of Qq in C((x)) is

V(Qa) = Spang{z, z* + az?}.
Since
V(M) = Spanc{gh|g € V(L) and h € V(Q)} = Spanc{gh | g € V(L) and h € V(Q.)},

it follows that
M=LRQ=L®Q, foralacC.

Thus, for all a € C, the operator Qs is a second-order quotient of M by L with respect to symmetric
product. The operator Q is also a quotient but of order three. By (14), @ attains the mazimal order
among all symmetric quotients of M by L. In this example,

V(Qa) CV(Q) and Q= RaQa,
where Ry = (——2%-D + —2_) € C(x)[D]. Therefore Q is a left multiple of Q4 for all a € C.

- a+2x a+2x




If L =0, then L&Q =0for any @ € C(x)[D]. If L € C(x)\{0}, then L&Q =1 for any Q € C(z)[D].
To avoid such degenerate cases, we consider only operators of positive order in symmetric division. In
this section, we prove that maximal-order symmetric quotients are unique up to left multiplication by
nonzero rational functions.

Proposition 4.2. Let L, M € C(z)[D] be of positive order. Then there exists a unique primitive operator
Q € C(x)[D] of mazimal order such that L ® Q is a right factor of M. Moreover, this operator Q is a
least common left multiple (lclm) of all operators P such that L ® P is a right factor of M.

Proof. Let
0 := max{ord(P) | P € C(z)[D], L ® P is a right factor of M}.

This set of orders is non-empty because for any L, M € C(x)[D] of positive order, L ® 1 =1 is a trivial
right factor of M. By (14), if My := L ® P is a right factor of M for some P € C(z)[D], then

ord(P) < ord(Mp) —ord(L) + 1 < ord(M) — ord(L) + 1.

Hence the set of ord(P) is finite and therefore it admits a maximum value 4.

Let Pi, P, € C(x)[D] be operators of order ¢ such that L ® P; and L ® P, are right factors of M.
Suppose that both P; and P, are primitive operators but P, # P,. By Corollary 2.7, we obtain that
L ® P is a right factor of M, where P = lclm(Py, P2). However, ord(P) > ord(P;) = §, which contradicts
the maximality of . So there exists a unique primitive operator @ € C(z)[D] of order ¢ such that L ® Q
is a right factor of M.

Suppose that L ® P is a right factor of M for some P € C(z)[D]. We need to show that @Q is a left
multiple of P. Using Corollary 2.7 again, we obtain that Py := lclm(P, Q) is a right factor of P. If Q is
not a left multiple of P, then ord(FPy) > ord(P) = §, which contradicts the maximality of 6. m

Definition 4.3. Let L, M € C(x)[D] be of positive order. The (global) quasi-symmetric quotient of M
by L, denoted by qsquo(M, L), is defined as the unique primitive operator Q € C(x)[D] of mazimal order
such that L ® Q is a right factor of M.

By Proposition 4.2, a quasi-symmetric quotient exists and is unique. In particular, let L, M € C(z)[D]
be of positive order, and suppose that M = L ® P for some P € C(x)[D]. Then there exists a quasi-
symmetric quotient @ of M by L. By Corollary 2.7, L® Q = L®lclm(Q, P) = lclm(L® Q,L® P) = M.
So @ is a symmetric quotient, i.e., the unique primitive operator of maximal order such that L& Q = M.

4.2 Overview of the algorithm

Given two operators L, M € C(x)[D] of positive order, we want to find the quasi-symmetric quotient @
of M by L. To do this, we first search for the power series solutions of ). Then we try to recover the
coefficients of ) from its solution space by solving a linear system over C. In this section, we work with
solution spaces in the field of formal Laurent series C((x)). After change of variables, we may assume
without loss of generality that 0 is an ordinary point of both L and M. Then a new upper bound for the
orders of symmetric quotients is given as follows.

Proposition 4.4. Let L, M € C(x)[D] be of positive order such that L ® Q is a right factor of M for
some Q € C(x)[D]. Let V(L),V(Q),V (M) be the solution spaces of L,Q, M in C((z)), respectively. Let
(V(M) : V(L)) be the colon space in C((z)). If 0 is an ordinary point of L and M, then

(i) 0 is either an ordinary point or an apparent singularity of Q.
(i) V(Q) € (V(M) : V(L)).
(iti) ord(Q) = dimc V(Q) < dime(V(M) : V(L)),
Proof. (i) Suppose on the contrary that 0 is a singularity of @ but not an apparent singularity. Then

the solution space of @ in C[[z]] has dimension strictly less than ord(Q). This implies that @ has
a solution h € F'\ C[[z]], where F is a differential ring extension of C|[x]] with constant field C.

Since 0 is an ordinary point of L, it follows from Lemma 2.9 that L has a formal power series
solution g of the form g = 1+ O(z). Then g is an invertible element in C[[x]].
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By the definition of symmetric product, gh € F is a solution of L ® Q. Then gh is also a solution
of M, because L ® @ is a right factor of M. Since 0 is an ordinary point of M, it follows from
Lemma 2.9 that M has ord(M) linearly independent solutions in C][x]]. The dimension of the
solution space of M in F' can not exceed its order. Therefore f := gh € C][z]], which implies that
h = fg=! € C[[z]]. This leads to a contradiction.

(ii) follows from Lemma 3.2 by taking F' = C((z)).

(iii) By (ii), we obtain dim¢ V(Q) < dime(V (M) : V(L)). Since 0 is an ordinary point of M and L, it
follows from (i) that 0 is either an ordinary point of an apparent singularity of Q. In either case,
we have ord(Q) = dimec V(Q). =

Before presenting the symmetric division algorithm, we give an example to illustrate its main idea.

Example 4.5. Let L, M be two operators in C(x)[D]:

L= (2% -2z +2)(x—1)?D? +2x(x — 1)(z — 2)D + 2
M=L®P=(2?—2x+2)(x—1)*"D* = 8(x — 1)3D? 4 36(x — 1)2D? — 96(x — 1) D + 120,

for some unknown P € C(x)[D]. We want to compute a symmetric quotient of M by L.

We first compute the power series solutions of L and M at the ordinary point x = 0. The operator
M has four linear independent solutions in C[[z]]:

1 1 1
fi=1l—z— 5952 + 02® 4 1x4+ 1x5—|—0(x6),

1 1
fo=x—2%— §x3 + 0z + 1335 +0(2°),

1
fa=a?—2%— §x4 + 02° + O(2%),
. 1
fa=a—a* - §x5 +0(2%).
The operator L has two linearly independent solutions in C[[x]]:

1 1 1
g =1+40x— 5:52 - §x3 - Za:4 + 02° + O(2%),

1 1 1
g2 = x +0z% — §x3 - §z4 — zxs +O0(z%).

Then V(M) = Spanc{ f1, f2, f3, fa} and V(L) = Spanc{g1, g2}
Let (V(M): V(L)) be the colon space in C((x)). By Corollary 3.4, we have
fi fa fs f4} {fl f2 3 f4}
V(M) : V(L) = (V(M) : N V(M) : S Julz s Jalng otz s Jat
(V(M): V(L)) = (V(M) : {g1}) N (V(M) : {g2}) = Spanc {91 a0 P s
Our algorithm in Section 7 finds dimc(V (M) : V(L)) = 3, with a basis given by

hi =1 —z + 02% + 02 4 02* + O (),
hy =z — 2% + 0% + 02° + 0z* + O(a”),
hs = 22 — 2® 4+ 022 4 023 + 0z + O(a).

By Proposition 4.4.(i1), if M = LR Q for some Q € C(z)[D], then the solution space V(Q) in C((x)) is a
subspace of (V(M) : V(L)). We search for an operator Q of order three such that V(Q) = (V(M) : V(L)).
Our algorithm in Section 9 shows that the degrees of coefficients of Q are at most dy = 27. In this example,
we find

Q= (xr—1)3D*-3(x—-1>2D*+6(x—1)D—6

It can be verified that M = L ® Q. Since ord(Q) = dime(V (M) : V(L)), Proposition 4.2 implies that Q
has maximal order among all symmetric quotients of M by L. In fact, P = (x — 1)2D? — 3(x — 1)D + 3
s another symmetric quotient of M by L, but of order two. Moreover, Q = RP is a left multiple of P,
where R = ﬁ((z —1)3D — 222 + 42 — 2).
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Definition 4.6. Let L, M € C(z)[D] be of positive order and let £ € C be an ordinary point of both L
and M. Let Ve(L) and Ve(M) denote the respective solution spaces of L and M in C((x —&)) and let
(Ve(M) : Ve(L)) be the colon space in C((x —§)). A local quasi-symmetric quotient of M by L at z =&,
denoted by qsquo(M, L,z = &), is defined as a primitive operator Q € C(x)[D] such that the solution
space of Q in C((x —&)) equals (Ve(M) : Ve(L)), and L @ Q is a right factor of M.

Throughout the remainder of this paper, all colon spaces (V (M) : V(L)) are taken in C((x)).

Lemma 4.7. Let L, M € C(x)[D] be of positive order, with 0 an ordinary point of both L and M. Then
a local quasi-symmetric quotient of M by L at 0, if it exists, is the global quasi-symmetric quotient.

Proof. Suppose there exists a local quasi-symmetric quotient of M by L at 0, denoted by . Then L ® @
is a right factor of M. It suffices to show that @) has maximal order. By Proposition 4.4.(iii), for any
operator P € C(x)[D] such that L ® P is a right factor of M, we have ord(P) < dim¢(V(M) : V(L)).
By the definition of the local quasi-symmetric quotient, ord(Q) = dime(V(M) : V(L)). Therefore
ord(P) < ord(Q). Thus @ is the global quasi-symmetric quotient of M by L. =

The next lemma leads to an equivalent description of local quasi-symmetric quotients, given in the
subsequent corollary.

Lemma 4.8. Let L, M € C(x)[D] be of positive order, with 0 an ordinary point of both L and M. For
any operator QQ € C( D), if V(Q) C (V(M) : V(L)), then L ® Q is a right factor of M if and only if
dime V(Q) = ord(Q).

Proof. For Q € C(z)[D], suppose that V(Q) C (V(M) : V(L)) and L ® Q is a right factor of M,
Proposition 4.4.(iii) implies dim¢e V(Q) = ord(Q).

For the converse, suppose V(Q) C (V(M) : V(L)) and dime V(Q) = ord(Q). By Definition 3.1 of the
colon space, if g € V(L) and h € V(Q), then

gh=hg e hV(L) CV(M), (15)

i.e., gh is a solution of M in C((z)). Since 0 is an ordinary point of L, it follows from Lemma 2.9
that dime V(L) = ord(L). By the assumption, we have dime V(Q) = ord(®). Then, by Lemma 2.5 on
properties of the symmetric product, we obtain

V(L® Q) =Spang{gh|ge V(Q), he V(L)} and dimc(V(L®Q)) =ord(L®Q).  (16)

Combining (15) and (16) yields that the solution space of L ® @ in C((x)) has full dimension and is a
subspace of V(M). Thus Lemma 2.4.(ii) implies that L ® @ is a right factor of M. m

Corollary 4.9. Let L, M € C(x)[D] be of positive order, with 0 an ordinary point of both L and M.
Then a primitive operator @ € C(x)[D] is a local quasi-symmetric quotient of M by L at 0 if and only if

V(Q)={VM): V(L) and dimcV(Q) = ord(Q).
Proof. Tt follows from the definition of local quasi-symmetric quotients and Lemma 4.8. =

If we can compute a basis {h1,...,hs} of (V(M) : V(L)) to sufficient precision k and have an upper
bound on the degrees of the coefficients of an order-0 quasi-symmetric quotient @ of M by L, we can
make an ansatz for () and set up a linear system @ - h; = O(z*=9) for all j = 1,...,6. When a nonzero
solution is found, we check whether ord(Q) = § and L ® @ is a right factor of M. If so, @ is a local
quasi-symmetric quotient. The procedure is summarized in the following algorithm. Our symmetric
division algorithm is inspired by Algorithm 1 in [7], which finds the minimal annihilator of a D-finite
power series. Its correctness and termination arguments are very similar.

Algorithm 4.10. INPUT: L, M € C(z)[D] of positive order, with 0 an ordinary point of both L and M.
OUTPUT: a local quasi-symmetric quotient Q € C(xz)[D] of M by L at x = 0, or None if no such Q
exists.

1 function QUASISYMMETRICQUOTIENTATZERO(M, L)
2 setr:=ord(L).
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3§ := COLONSPACEDIMENSION(M, L).

4 ifd=0, return Q :=1.

5 ifd>0,

6 set ko := max Zy — @ and k = ko + 1, where N = M @ L2~ and Zy is defined in (4).
7 dp := BOUNDDEGREEOFQUASISYMMETRICQUOTIENTCOEFFS(M, L, J).

8 while true do:

9 {h1,...,hs} == COLONSPACEBASIS(M, L, k).

10 d := min{do, [(k —9)/(6 +1)|}.

11 Q := APPROXIMANTANNIHILATOR(hy, ..., hs;d, ..., d; k)

12 ifQ=0and k> (6 +1)(do + 1) + 6, then return None.

13 ifQ#0,

14 if ord(Q) =6 and L ® Q is a right factor of M, then return Q.
15 k= 2k.

The above algorithm relies on several sub-algorithms that we now summarize.

COLONSPACEDIMENSION computes the dimension of the colon space (V(M) : V(L)) in C((x)) over C,
see Section 7.

COLONSPACEBASIS computes a C-vector space basis of the colon space (V(M) : V(L)) in C((z)) at
precision k, see Section 7.

BOUNDDEGREEOFQUASISYMMETRICQUOTIENTCOEFFS returns an upper bound on the degree of each
of the coefficients of an order-§ global quasi-symmetric quotient of M by L, see Section 9.

APPROXIMANTANNIHILATOR takes as input 0 power series (hy,...,hs) that are the truncations at pre-
cision k; 0 + 1 nonnegative integers (sg,...,Ss) and the precision k. It returns a primitive operator
Q=q+q@D+--+qD? with ¢; € C[r] and deg(g;) < s; such that

(go+ @D+ ---+qsD°) - hy = O(a*?) (17)

for all j =1,...,6; or returns () if there is no such an operator Q. Since only one annihilator is required,
this can be computed by solving a linear system. If one wants to compute all such annihilators, one can
first compute a basis B(z) = (B;;)o<i j<s € C[z]0TV*EFY) of the C[z]-module

{(q0,q1,---,95) € Cla]*C*V | goh; + q1h); +- "%hg-é) = O0(z*7%)} (18)
forall j =1,...,0, in shifted Popov form [2,21,29,36] with shift vector (—sq, ..., —s5). This implies that
any solution of (18) with degrees bounded (so,...,$s) is a linear combination of the rows of B whose

index ¢ satisfies deg(B; ;) < s;. Efficient algorithms to compute such bases are known [21].
Theorem 4.11. Algorithm 4.10 terminates and is correct.

Proof. 1. (Correctness assuming termination) In line 3, set § := dimg(V(M) : V(L)). If § = 0,
then in line 4, @ := 1 satisfies that V(Q) = 0 = (V(M) : V(L)) and L ® Q = 1 is a right
factor of M. If § > 0, Theorem 7.3 in Section 7 guarantees that, when & > kg in line 6, the
truncation of (V(M) : V(L)) at precision k has the same dimension as (V(M) : V(L)). In line 9,
we compute a basis {h1,...,hs} of (V(M) : V(L)) at precision k. All series hj, h’;, .. .7h§5) are
known at precision k — 9 for each j = 1,...,§. By Lemma 4.7, the degree bound dj in line 7 for
the coefficients of global quasi-symmetric quotients also applies in the local case. In line 12, the
condition k > (§ + 1)(dp + 1) + § ensures that in line 11, we have [(k —6)/(d +1)] > do + 1 and
hence d = dy. If APPROXIMANTANNIHILATOR returns empty with the given degree bounds on the
degrees of the coefficients in line 12, then there is no operator @ of order § such that L ®Q is a right
factor of M. Otherwise, in line 14, if there exists an operator @ € C(z)[D] of order ¢ such that L&Q
is a right factor of M. Then by Proposition 4.4.(iii) and line 3, we get V(Q) = (V(M) : V(L)).
Thus @ is a local quasi-symmetric quotient of M by L at 0.
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2. (Termination) The only possible source on non-termination in Algorithm 4.10 is the loop where k
is doubled every time no @ in line 14 is found. Let Uy be the set of all solutions (qo, ¢1,--.,¢s5) €
C[z]®*+1D) of (17) with degrees bounded by (dy, .. .,do). Then for all k > ko, Uy, is a C-vector space
of finite dimension and U411 C Uy. Thus there exists k' such that Uy is the intersection of all Uy, for
k> k'. Any operator Q = qo+q1 D+ - -+ ¢sD? returned by APPROXIMANTANNIHILATOR in line 11
for k > k' has the property that Q-h; = O(z?) for all p > k—¢ and thus annihilates (V/(M) : V/(L)).
Since (V(M) : V(L)) has dimension § and Q = gy +q1 D + - - - + ¢sD° has order at most 4, it follows
that

V(Q) = (V(M): V(L) and ord(Q) = & = dimo(V(Q)).

By Lemma 4.8, L ® @ is a right factor of M. This guarantees termination of Algorithm 4.10. m

In practice, line 6 of Algorithm 4.10 is not optimal especially when there exists a local quasi-symmetric
quotient. Let {g1,...,9,} be a basis of V(L) and let n = ord(M). One may first try smaller values of k,
without computing Zy. For any k, one can compute a basis {h1, ..., hs, } of the truncated space

T

ﬂ T (V(M) : {g:}),

=1

which contains Ty, (i_;(V (M) : {g;})) = Te(V (M) : V(L)), and therefore provides a good approximation
of (V(M) : V(L)) at precision k. If k > Zn — #7 we will prove in Proposition 7.3 that these two
truncated spaces are equal and their dimension is the dimension of the colon space (V(M) : V(L)).
If K > n—1, we will show in Lemma 7.2 that T}, is an injective map from (\,_; Tk+1(V (M) : {g;}) to
Ni—; Tu(V(M) : {g;}) and hence &y > d511. Since the chain of dimensions d,,_1 > J,, > ... is decreasing
and eventually stabilizes at . Thus éx > 0 for all k > n — 1.

Using an upper bound on the degrees of the coefficients of an order-d; quasi-symmetric quotient, one
can try to search for a possible local quasi-symmetric quotient. If, for a sufficiently large k (k > n — 1),
we find an operator @Q of order d; such that L ® @ is a right factor of M, then Proposition 4.4.(iii) implies
that dx < §. Thus 0 = § and @ is a local quasi-symmetric quotient of M by L.

If §;, > 0 and one wants to prove that no local quasi-symmetric quotient exists, then in our approach

it is necessary to compute Zy, or at least an upper bound Zy, to determine the exact dimension § of
the colon space (V(M) : V(L)).

5 Three special cases

In this section, we show that in certain special cases, the order bound for symmetric quotients in Propo-
sition 4.4 is sharp, and a local quasi-symmetric quotients always exists. Moreover, in these cases, the
following algorithm returns the global quasi-symmetric quotient. The correctness of this algorithm fol-
lows from Lemma 4.7. In our experiments, for random operators M, L € C(x)[D] such that M = L ® P
for some unknown P € C(z)[D], the algorithm always finds the global quasi-symmetric quotient of M
by L. However, in the general case, a theoretical proof or counterexample remains open.

Algorithm 5.1. INPUT: L, M € C(x)[D)] of positive order.
OUTPUT: the global quasi-symmetric quotient Q@ € C(z)[D] of M by L, or Fail (which does not imply
nonexistence; existence is guaranteed by Proposition 4.2).

1 function QUASISYMMETRICQUOTIENT(M, L)

2 choose an arbitrary ordinary point £ of L and M.

transform L and M by substituting x — = + £ to obtain L¢ and M.
compute Q¢ = QUASISYMMETRICQUOTIENTATZERO (M, L¢).

if Q¢ = None, then return Fail.

otherwise, transform Q¢ back via x — x — & to obtain Q.

QL S w A W

return ().

Based on Corollary 4.9, we give another equivalent description of local quasi-symmetric quotients.
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Lemma 5.2. Let L, M € C(z)[D] be of positive order, with 0 an ordinary point of both L and M. Then
there exists a local quasi-symmetric quotient Q € C(z)[D] of M by L at 0 if and only if the colon space
(V(M) : V(L)) satisfies the following two conditions:

(a) every series h € (V(M) : V(L)) is D-finite;
(b) for each h € (V(M) : V(L)), if Qn is a minimal annihilator of h in C(x)[D], then
V(Qr) C(V(M): V(L)) and dimcV(Qp)=ord(Qp).

Proof. Suppose that @ € C(z)[D] is a local quasi-symmetric quotient of M by L at 0. Then by Corol-
lary 4.9, there exists @ € C'(z)[D] such that V(Q) = (V(M) : V(L)) and ord(Q) = dime V(Q). So every
h € (V(M) : V(L)) is D-finite because @ is an annihilator of h. For each h € (V(M) : V(L)), let Qn
be a minimal annihilator of h. Then @, is a right factor of ). Thus, by Lemma 2.4.(iii), P satisfies the
required condition in (b).

For the converse, since V(M) and V(L) are finite-dimensional C-vector subspaces of C'((z)), it follows
from Corollary 3.4 that (V(M) : V(L)) is also finite-dimensional. Let 0 := dimg(V (M) : V(L)). If § = 0,
then take @ = 1. If § > 0, suppose that {hi,...,hs} is a basis of (V(M) : V(L)). For each 1 < j < 4,
by the condition (a), the series h; is D-finite. Let Q); € C'(z)[D] be a minimal annihilator of h;. We will
show that @ := lclm?»:l Q; is a desired operator.

By the condition (b), we know
V(Q;) € (V(M): V(L)) and dime V(Q;) = ord(Q;).
By Lemma 2.5.(i) on properties of the lclm, we have
V(Q)=V(Q1)+ - +VI(Qs) € (V(M): V(L)) and dimcV(Q)=ord(Q).

Since {h1,...,hs} is a basis of (V(M) : V(L)), we obtain that V(Q) = (V(M) : V(L)). By Corollary 4.9,
Q@ is a local quasi-symmetric quotient of M by L at 0. m

5.1 The hyperexponential case

Let F' be a differential field extension of C'(x). Recall that a nonzero element f € F' is said to be hyperez-
ponential over C(zx) if its logarithmic derivative (D - f)/f is a rational function in C(z). Equivalently, f
is hyperexponential if it is a nonzero solution of some first-order operator uD — v with u,v € C(z), u # 0.
If f € F is hyperexponential, then its inverse f~! is also hyperexponential.

Lemma 5.3. Let L € C(x)[D] be a first-order operator and let g be a nonzero solution of L in C((x)).
Let h € C((x)), h # 0 be D-finite and let @ € C(x)[D] be a minimal annihilator of h. Then L ® Q is a
minimal annihilator of gh.

Proof. By definition of symmetric products, L ® @ is an annihilator of gh. To show it is of minimal order,
suppose for contradiction that there exists an annihilator M € C(z)[D] of gh with ord(M) > ord(L ® Q).
Since L is of first order, we write L = uD — v, where u,v € C(x), u # 0. Then R := (uD + v) is an
annihilator of g~. So the symmetric product R® M is also an annihilator of h = g~ !gh. Since ord(R) = 1,
by (13) we have ord(R ® M) = ord(M) > ord(L ® Q) = ord(Q). This contradicts the assumption that
@ is a minimal annihilator of h. =

Remark 5.4. If L is not of first order, Lemma 5.3 may not hold. For example, the second-order operator
L =—-222D?+ 2D — 1 € C(z)[D] is a minimal annihilator of g = x + \/z, and Q = —22>D? + 2D — 1
is a minimal annihilator of h = x — \/x. The product gh = x> — x is hypererponential and hence
it has a minimal annihilator (—x + x2)D + (1 — 2x) of order 1. The symmetric product L @ Q =
2¢D? — 322D? + 62D — 6 is an annihilator of gh, but not a minimal annihilator.

Theorem 5.5. Let L, M € C(x)[D] be of positive order. If L = lclm!_, L; where the L; are first-order
operators in C(z)[D], then Algorithm 5.1 returns the global quasi-symmetric quotient of M by L.
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Proof. In line 3 of Algorithm 5.1, after the shift x — x + £ , L¢ is still the lclm of some first-order
operators. So we may further assume that 0 is an ordinary point of L and M. It suffices to show that
in line 4 there exists a local quasi-symmetric quotient of M by L at 0. Thus we only need to verify the
conditions (a) and (b) in Lemma 5.2.

Since L is the lclm of several first-order operators L;, it follows from Lemma 2.5.(i) that

V(L) = Spanc{gla v 791}3
where g; is a nonzero solution of L; for 1 <4 < I. By Corollary 3.4 we get

1

(V(M): V(L) = (VM) {g:}) € V(M) : {g1}) = {for " | f € V(M)}. (19)

i=1
(a): Since g; is hyperexponential, its inverse g; ! is D-finite. Since the product of any two D-finite
functions is also D-finite, it follows from (19) that every element of (V (M) : V(L)) is D-finite.

(b): Foreach h € (V(M) : V(L)), let Qp be a minimal annihilator of h in C'(z)[D]. For each 1 < ¢ < I,
Lemma 5.3 implies that L; ® Q) is a minimal annihilator of g;h, . By the definition of the colon space,
gih € V(M), i.e., M is an annihilator of g;h. Since L; ® @}, has minimal order among all annihilators of
gih, the operator L; ® Q) is a right factor of M for all 1 < ¢ < I. Since L = lclmf:1 L;, it follows from
Corollary 2.7 that L®Q), is a right factor of M. Thus, by Proposition 4.4, we get V(Qp) € (V(M) : V(L))
and ord(Qp) = dimc V(Qp). =

5.2 The C-finite case

In the shift case, the Hadamard quotient of two linear recurrence sequences with constant coefficients was
studied in [13,14,43]. Kauers and Zeilberger [25] presented a complete factorization algorithm for linear
recurrence equations with constant coefficients with respect to symmetric product, based on polynomial
factorization. In the differential case, factorization theory for exponential polynomials was initiated by
Ritt [30] and extended in a general setting by MacCol [26] and later by Everest and van der Poorten [16].

In this section, we consider the symmetric quotient of two linear differential operators with constant
coefficients. A nonzero power series f € C[[z]] is called C-finite if there exists L € C[D] \ {0} such that
L - f =0. We will show that for any input with constant coefficients, Algorithm 5.1 always returns the
global quasi-symmetric quotient with constant coefficients, instead of rational coefficients. So dy = 0 is
a natural degree bound for the quotient. In Section 7, the computation of degree bounds for symmetric
quotients in the general case is based on the C-finite case. In practice, our symmetric division algorithm
with constant coefficients relies only on linear algebra, although polynomial factorization is used in theory.

Lemma 5.6 ([20, Section 6.1]). Let L = £, D" + £, _1D"™ ' + .-« + 04D + 4y € C[D] be a differential
operator with constant coefficients of order r. Suppose that P factorizes as

L= 6,(D = 1) (D — ag)" -+ (D — a,)" (20)
where w1, ..., ur € N\ {0} and the roots a,...,ar € C are distinct. Then the elements

exp(oyz) (i=1,...,1,5=0,...,1 — 1)
are r linearly independent solutions of L in C[[z]].

The following lemma is an immediate consequence of Lemmas 5.6 and 2.5.
Lemma 5.7. Let L = [[]_,(D — a;)* and Q = H§'=1(D — Bj) be factorizations in C[D], where
Wi, Aj € N\ {0}, s, 8; € C, the a; (resp. the B;) are pairwise distinct. Then
L®Q =lem;_, lcmz-:l(D — ;= Byt
A variant of Lemma 5.3 for annihilators of products is as follows.

Lemma 5.8. Let g = 2/ exp(ax) with j €N, a € C. Let

p

h = Zui(x)exp(ﬁix), (21)

i=1

where 61,...,0, € C are distinct, and u1, ... ,u, € Clz]\ {0} with deg, (u;) = d;. If L and Q are minimal
annihilators of g and h in C[D], respectively, then L ® Q is a minimal annihilator of gh in C[D].
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Proof. Since the 6; are distinct, it is known that L := (D — )™ and Q := [[/_, (D —6;)%*! are minimal
annihilators of g and h in C[D], respectively. By Lemma 5.7, we get L ® Q = [[/_,(D — 0; — a)%i+i+1
and hence it is a minimal annihilator of gh = >°7_, 29u;(z) exp((0; + @)z). =

Theorem 5.9. Let L, M € C[D] be of positive order. Then Algorithm 5.1 returns the global quasi-
symmetric quotient Q in C[D] of M by L, rather than in C(z)[D].

Proof. The proof is similar to that of Theorem 5.5. We write L = [[/_, (D — ;)" with p; € N\ {0} and
distinct o; € C. By Lemma 5.6, we have

V(L) = Spang{x? exp(oyx) | i=1,...,8,j=0,..., 1 — 1}.
By Corollary 3.4, we get

pi—1

M () (VM) : {27 explaia)}) (22)

(V(M) : V(L))

—
<

% 0
(V(M) : exp(arz)) = {fexp(—aiz) | f € V(M)}. (23)

N

For a fixed h € (V(M) : V(L)), since M € C[D], combining (23) and Lemma 5.6 yields that h can be
written in the form Y7, u;(z)exp(6;x) as in (21). Thus, h is C-finite.

Let @y be a minimal annihilator of h in C[D]. For each g; ; := 27 exp(a;z), L; j := (D — ;)7 +1 is its
minimal annihilator in C[D]. By Lemma 5.8, L; ; ® @5, is a minimal annihilator of g; jh in C[D]. By the
definition of the colon space, M is also an annihilator of g; jh. Thus L; ; ® Q is a right factor of M.
Since L = lem;_, lcmz-‘;_ol L; ;, it follows from Corollary 2.7 that L ® @, is a right factor of M. Thus, by
Proposition 4.4, we get V(Qp) € (V(M) : V(L)) and ord(Q) = dime V(Q).

By literally adapting Lemma 5.2 to the C-finite case, we obtain the existence of a local quasi-symmetric
quotient @ € C[D] of M by L at 0. Hence, by Lemma 4.7, Algorithm 5.1 returns a global quasi-symmetric
quotient Q@ € C[D]of M by L. =

5.3 The algebraic case

A series f € C((x)) is called algebraic if there exists a nonzero polynomial m(z,y) € C(z)[y] such
that m(x, f) = 0. Let C(x) be the algebraic closure of C(z). For an algebraic series f € C((x)) with
minimal polynomial m € C(z)[y], the roots of m in C(x) are conjugates of f. An algebraic function
field E = C(x)[y]/(m) is a field extension of the rational function field C'(z) of finite degree, where m
is an irreducible polynomial in C(z)[y]. The usual derivation ’ on C(z) extends uniquely to the field
E = C(2)[y]/(m). For any f € E, all its derivatives f, f, f”,... belong to E. Hence every algebraic
function is D-finite. An operator L € C(x)[D] has only algebraic solutions [8,12,24,32] if there is a
differential field E = C(x)[y]/(m) such that the solution space Vg (L) of L in E has dimension ord(L).
For an algebraic function, its minimal annihilator has only algebraic solutions [12,32]. Moreover, the
solution space of its minimal annihilator is spanned by all the conjugates of f, see the following lemma.

Lemma 5.10. Let L € C(x)[D] with r = ord(L). Assume that L has a nonzero solution f which is
algebraic over C(x). Let E be the algebraic extension of C(x) generated by all conjugates of f.

(i) All conjugates of [ are solutions of L.

(i) If L is a minimal annihilator of f, then the solution space of L in E has dimension v and is spanned
by all conjugates of f.

Proof. The field E is a Galois extension of C(z). Let Gal(E/C(x)) be the Galois group of F over C(x).

(i) Theset {7(f) | 7 € Gal(E/C(z))} consists of all conjugates of f. Since L € C(z)[D] has coefficients
in C(xz), for any 7 € Gal(E/C(x)), we have L -7(f) =7(L- f) = 0.

(ii) Let fi,..., fs be all conjugates of f. For each f;, the operator L; = fiD— f! is a minimal annihilator
of f; in E[D]. We take L := lclm(Lq,...,Ls). For any automorphism 7 € Gal(E/C(z)), 7(L) is
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obtained by applying 7 to the coefficients of L. Since taking the least common left multiple (Iclm)
is commutative, it follows that

7(L) = lelm(7(Ly),...,7(Ls)) = lelm(Ly, ..., Ly) = L.

This implies that L has coefficients in C(x). Since dime Vg(L;) = ord(L;) = 1 for alli = 1,...,s,
by Lemma 2.5.(i) we have

Ve(L) = Ve(Ly) + -+ Ve(Ls) = Spanc{f1,..., fs} and dim¢ Ve(L) = ord(L).

By the item (i), all conjugates of f must be solutions of its annihilator. Thus L is a minimal
annihilator of f in C'(x)[D]. Since L is also a minimal annihilator of f in C(x)[D], we get L = ulL
for some u € C'(z) \ {0}. So L and L have the same solution space. =

Theorem 5.11. Let L, M € C(z)[D] be of positive order. If L and M have only algebraic solutions,
then Algorithm 5.1 returns the global quasi-symmetric quotient of M by L.

Proof. In line 3 of Algorithm 5.1, after the shift © — z+¢ , M, and L still have only algebraic solutions.
So we may further assume that 0 is an ordinary point of L and M. Similar to the proof of Theorem 5.5,
we only need to verify the conditions (a) and (b) in Lemma 5.2.

Since 0 is an ordinary point of L and M, it follows from Lemma 2.9 that L has r = ord(L) lin-
early independent solutions {gi,...,¢,} in C[[z]] and M has n = ord(M) linearly independent solutions
{f1,.-+, fn} in C[[z]]. By the assumption, g1,...,Gr, f1,--., fn are algebraic over C(z). Let E be the
algebraic extension of C'(x) generated by g1,...,gr, f1,..., fn and all their conjugates. Then F is a Galois
extension of C(z). Let Gal(E/C(x)) = {71,..., 7} be the Galois group of F over C(x).

By Lemma 5.10, for each 1 < ¢ <r and each 1 < j <t, the element 7;(g;) is still a solution of L. So
the set {7;(¢g;) | 1 <i <1< j <t}is also a generating set of the solution space V(L). Note that the
computation of the colon space (V(M) : V(L)) does not depend on the choice of generating sets of V(L).
Using Corollary 3.4, we obtain that

wOn v = A 000 (= (N srme { s s} e en

i=1j=1

(a): By (24), every power series in (V(M) : V(L)) is algebraic and hence it is D-finite.
(b): For a fixed element h € (V(M) : V(L)), let @ be a minimal annihilator of h in C(z)[D]. By (24),
we have h7;(g;) € V(M) for all 1 <¢ <r and all 1 <j <t¢. Then Lemma 5.10.(i) implies that

7(h7j(9:)) = 7(h)(T 0 75)(¢9:) € V(M) for all 7 € Gal(E/C(x)). (25)

For each fixed 7 € Gal(E/C(x)), ToT; for j =1,...,¢ run through all elements of the group Gal(E/C(z)).
It follows from (24) and (25) that 7(h) € (V(M) : V(L)) for all 7 € Gal(E/C(x)). Then all conjugates
of h belong to (V(M) : V(L)). Therefore, by Lemma 5.10.(ii), we have V(Qn) C (V(M) : V(L)) and
dime V(Qpr) = ord(Qp). =

6 Truncation and intersection of power series subspaces

For an operator N € Cx][D], let V' be the solution space of N in the ring of formal power series C|[x]].
Then V is a C-vector space of finite dimension, at most ord(N). By linear algebra, the intersection of
several C-vector subspaces of V is still a C-vector space of finite dimension. However, the elements of V'
are formal power series with infinitely many coefficients. To compute a basis of the intersection space, or
to determine its dimension, we shall work with truncated power series to approximate the intersection.
Since power series solutions of N satisfy a recurrence relation, the required truncation precision can be
determined by the following proposition. This result will be used in the next section to determine the
dimension of the colon space (V (M) : V(L)), and to compute a basis for it.

For a C-vector subspace W of C[[z]], and g € C[[z]], we write gW to denote the set {gf | f € W}.
Then gW is also a C-vector subspace of C[[x]].

Proposition 6.1. Let V be the solution space of an operator N € C[z][D] in C[lx]]. Let Wy,..., W, be
C-vector subspaces of C|[x]] such that gW7,...,gW, are C-vector subspaces of V, where g = Z;’iu bt
with b; € C and b, # 0. Let kg = max Zn — pu, where Zy is defined in (4). Then for all k > ko,
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(i) dime (=, Wi) = dime (N2, Te(Wi))
(“) Ty (ﬂ;:l WZ) = ﬂ::1 Tk(Wi)

To prove this proposition, we need several lemmas. Let CY denote the set of all infinite sequences
(ap,ai1,as,...) with a; € C. A formal power series can be viewed as a sequence in CN via its sequence of
coefficients. Under this identification, C[[x]] is isomorphic to C as a ring. In particular, CV is also a C-
vector space of infinite dimension. The coefficient vector of a formal power series ¢ = > a;z" € C[[z]]
is defined as the column vector:

Coeft(p) := (ao, a1, az,...)" € OV,

where the i-th entry of Coeff() is the coefficient of f in z°~1. Let ¢1,...,¢, be several formal power

series in C[[z]]. We write each ¢; = Y7 a; ja* with a;; € C. The coefficient matriz of ¢1,...,p, is
defined as
a/O,l PN ao’p
Coeff(p1,...,p,) := (Coeff (1), ..., Coeff(p,)) = [ 411 =+ @1p| e ON¥P,

For a matrix A = (a; ;) € CN*?, its row space is defined by
Row(A) := Spanc{(ai1,...,a:,) € C? |ie N},

which is a C-vector subspace of C?. The kernel of A is defined by

p
ker(A) := ¢ (s1,...,5,) € C”? Zam»sj =0forallieN

j=1
If A= Coeff(¢1,...,0,) € CN*P with ¢; € C[[]], then ker(A4) = {(s1,...,5,) € C” | > f_y sipi =0}

Lemma 6.2. Let N € Clz][D] and let {¢1,...,¢,} be a finite set of solutions of N in C[[z]]. Let
ko = max Zy. Then for all k > ko, the row spaces of

Coeff(p1,...,0,) and Coeff(Ty(p1),...,Tk(¢y))

are equal.

oo

Proof. For each 1 < j < p, we write ¢; = > .7 a;;x" with a;; € C. For each i € N, let a; =
(@in,...,a;,) € CP. Then the row space of Coeff(yp1,...,¢,) is generated by {a; | i« € N}. The row
space of Coeft (Tx(¢1), ..., Tk(p,)) is generated by {a; | 0 < i < k}. So it suffices to show by induction
on k that a, € Span{ay,...,a,} forall £ > 0. For 0 < k < ko, it is clearly true. For k > ko, we assume
that a; € Spans{ag,...,ak,} for 0 <i <k —1. We write N - 2° = 257N (go(s) + q1(s)x + - - - + ¢ (s)z?)
in the form (1). Since the ¢; are power series solutions of N and k > kg, it follows from Lemma 2.8 that

min{¢,k}
1 )
ay = “w® Z ar_iqi(k — 1) | € Spang{ar_1,..., s _min{t,k}} € SpPang{ar_1,...,a0}.
i=1

By the induction hypothesis, we get a; € Spans{ay,...,ag, }. This completes the proof. =

Lemma 6.3. Let {¢1,...,9,} C C[[z]] and let g = 372, biz' € C[[z]] with b; € C and b, # 0. Then
for all k > 0, the row spaces of

Coeff (Ti(¢1), -+ Thl(pp))  and  Coeft(Thyu(9p1):- -+ Thrn(99p))

are equal. Therefore the row spaces of

Coeft(¢1,...,0,) and Coeff(ger,...,9¢,)

are equal.
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Proof. For each 1 < j < p, we denote ¢; := gyp;, and write p; = Z?io ai,jxi and ¢; = Z?io cmmi, where
a;j,¢; € C. Foreach i € N, let a; = (ai,1,...,a:,) and ¢; = (¢;i,1,...,¢,p). It suffices to prove the first
statement in the lemma. In other words, we need to show the claim that

Spanc{ag,ai,...,ap} = Spans{cg,cy,...,Crq,} for all £ > 0.
Since ¥; = gy, it follows that for all 1 < j < p,
cje=0forall0 </l <pu, and cjr=beajo+bi—1a;1+---+buaj,—, forall £ > pu.

Therefore, for all 0 < £ < u, ¢, = 0 and for all £ > u, ¢, = beag + by—1ay + --- + b,a,—, is a C-

linear combination of ag,as,...,a,—,. Thus Span-{co,...,cr+,} € Spanc{ay,...,ar}. Since g is an
invertible element in C((x)), we have ¢; = g~'4;, where g~ ! = Z;’i_# bzt € C((x)) with b; € C and
B*u = b;l # 0. Similarly, we get Spans{ay,...,a,} C Spans{co,...,Cr+,}. This proves the claim. m

Lemma 6.4. Let V be the solution space of an operator N € C(z)[D] in C[[z]]. Let Wy, Wy be C-vector
subspaces of C[[x]] such that gW,gWa are C-vector subspaces of V', where g = Zfiu bzt € Cl[z]] with
b, #0. Let kg = max Zx — p. Then for all k > ko,

(Z) dim¢e (Wl M Wg) = dim¢ (Tk(Wl) n Tk(Wg))
(’LZ) Ty (W1 N Wg) = Tk(Wl) n Tk(Wg)
Proof. Since V is a C-vector space of finite dimension, it follows that Wy, Ws, gW7, gWs are also C-vector
spaces of finite dimension. Let {¢1,...,¢,, } and {¢1,..., ¢,, } be bases of W; and Wy, respectively. Then
{9¢¥1,...,90p, } and {gé1,...,g¢,,} are bases of gW; and gWs, respectively.
Let A = Coeff(p1,...,0p, P1yerbpy) € CVXP1HP2) and let A, € CRHD*(1+r2) he the matrix

consisting of the first & + 1 rows of A. Then, for all ¥ > 0, Row(A) is equal to the row space of
Coeft (T (1), - -, Te(@p1), Tk(#1), - - -, Tk(®p,)). By linear algebra, we know

P1 P2
(Sl,...,Spl,tl,...,tpz)Eker(A) = Zsi(piz—zt]‘d)j EWlﬂWQ, (26)
j=1

j=1

and for all k > 0,

pP1 P2
(S1,-- s 8o b1, tpy) Eker(Ar) & > siTh(ps) = — > t;Te(¢s) € Te(W1) NTi(Wa).  (27)
j=1 j=1

Moreover, we have dimgc (W7 N Wa) = dimg(ker(A)) and if dime(T(W;)) = p; for ¢ = 1,2, then
dimc (Tx (W1) N T (W2)) = dimc (ker(Ag)).

(i) Tt suffices to show that for all k > ko, ker(A) = ker(A) and dime (T (W;)) = p; for i = 1,2. If this
holds, then for all k£ > kg, we have

dimg (W7 N W) = dimg(ker(A)) = dime (ker(Ag)) = dime (T (W1) N T (W2)).

To prove this claim, we use the assumption that gWW;, gWs are subspaces of the solution space V'
of the linear differential operator N. Let B = Coeff(gp1,...,g9p,, g1, - - -, 9bp,) € CN*(P1F02)
and let By, € C*k+1x(p1+r2) he the matrix consisting of the first k + 1 rows of B. Then, for all
k > 0, Row(By) is equal to the row space of Coeft(Tx(g¢1), ..., Te(9¢p1), Tk(9®1), - - -, Tk(9Pp,))-

By the assumption, {g¢p; ?1:17 {9¢; jp-z:l are solutions of the linear differential operator N. Thus

by Lemmas 6.2 and 6.3 we obtain that for all & > ko,
Row(A) = Row(B) = Row(Bj4,) = Row(Ay). (28)
Since the kernel of a matrix is determined by its row space, it follows from (28) that
ker(A) = ker(Ay). (29)
Considering the first p; columns of A and Ay, we obtain from (28) that
Row (Coeff(¢1,...,¢,,)) = Row(Coeff (T (¢1), ..., Tk(¢p,)))-

Thus p; = dime(Wy) = dime(Tk(W1)) because the column rank of a matrix is equal to its row
rank. Similarly, we get pa = dimg(Wa) = dime (T (Wa2)).
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(ii) Since Wy N Ws is a subspace of Wy, it follows that T (W7 N Wa) C Ti(W1). Similarly, we have
Tk(Wl n WQ) Q Tk(WQ) Therefore Tk(Wl n Wg) Q Tk(Wl) n Tk(WQ)

On the other hand, fix an arbitrary integer k > kg, and suppose that f € Tp(W7) N T (Wa).
Then f = 301, 5 Ti(p;) = — 252, tjTi(¢,) for some s;,t; € C. By (27) and (29), we get
(S1,-.38p, b1, ..., tp,) € ker(Ay) = ker(A). It then follows from (26) that

pP1 P2
g:= ZSJQDJ = —th(b] e Wy nWs.
j=1

j=1

Thus f =Ty (g) € T(W1 NW>) because s;,t; € C, and hence Tj,(W1) NTp(W2) C Tp(W1NW2). =

Proof of Propostion 6.1. (i) For r = 1, since gW; is a subspace of the solution space V of the oper-
ator N and g = 77 biz' € Cl[z]] with b, # 0, it follows from Lemmas 6.2 and 6.3 that for all
k > ko,
dimc (Wl) = dimc(gwl) = dilnc(j}c_,_H (ng)) = dimc (Tk(Wl))

Here we use the fact that the column rank of a matrix is equal to its row rank. Suppose r > 1.
Note that g(Wo N ---NW,) = (gWa) N --- N (gW;) because g is invertible in C'((z)). Then by the
assumption, gW; and g(Ws N --- N W,.) are two C-vector subspaces of the solution space V. By
Lemma 6.4, we obtain

dimec (Wi N (Wan---NW,)) =dime (T (Wi N (WanN---NW,.))).
Thus dime ((,—; Wi) = dime (Ty ((i—; W3)) because Ni_, W; = Win (Wan---NW,).
(ii) We prove the statement by induction on r. For r = 1, it is clearly true. For » > 1, by Lemma 6.4,
we have Ty, (W7) N T, (Wa) = T, (W1 N W3). By the induction hypothesis on r — 1, we have
T (WiNWo)NT (W) N - NT (W) = T (Wi N W) N Wi N - - NW,).
Therefore T, (W1) N T (Wo) N ---NTy (W) =Th(WiNWoN---NW,.). =

7 Order bounds for symmetric quotients

An upper bound for the orders of symmetric quotients is given in (14). A smaller upper bound is given
in Proposition 4.4 using the dimension of the colon space. To compute a basis of this colon space, we
need the following notations.

Convention 7.1. Let L, M € C(z)[D] be of positive order, with 0 an ordinary point of both L and M.
Let {g1,...,gr} be a basis of the solution space V(L) in C((z)), where r = ord(L) and g; = =1 + O(a?)
fori=1,...,r. Let {f1,..., fn} be a basis of the solution space V(M) in C((z)), where n = ord(M) and
fi=a714+0(2%) fori=1,...,n. Let (V(M) : V(L)) be the colon space in C((z)). For eachi=1,...,r,
let W, = (V(M) : {g;}) N C[x]], where (V(M) : {g:}) is the colon space in C((x)).

Lemma 7.2. Let V(L), V(M) and W; be as in Convention 7.1. Then
(i) (V(M): V(L)) = (Niey Wi

(i) for eachi=1,...,r, Wi:Spanc{ﬁ @};

gi’ ’ 9i
(iii) for eachi=1,...,r and for all k >0,
) — L fJ — Thogr— (fz) Thyr— (fn)
T, (W;) = Spang {T;C (g:v) oo, Ty (gi )} = Spang {Tk (T21r71(9¢)> oo, Ty (7ﬁiri(gi) )}

(iv) for all k > n — 1, Ty is an injective map from (Vi Trt1(W;) to Nie; Tu(Ws). In particular,
dimc n;zl Tk+1(Wi) S dimc m::l Tk(Wz)

Proof. (i) By Corollary 3.4, we have (V(P) : V(L)) = (i;(V(P) : {g;}). Since g1 = 1+ O(z) is
invertible in C[[x]], it follows from Proposition 3.3.(ii) that (V(P) : {g1}) = Span- {;—1, cee %} is
a subspace of C[[z]]. Therefore (V(P): V(L)) C (V(P):{¢1}) C CJ[z]] and hence

T T

(V(P): V(L) = (V(P): V(L)) NClla]] = ((V(P) : {g:}) n Cl[]]) = [ W

1=1 i=1

21



(i) By Proposition 3.3.(ii), W; = Spang {? . {T"} N C[lz]]. By Convention 7.1, {fi,..., fa} are
linearly independent over C and satisfy f; = 297!+ O(27) for j = 1,...,n. Since g; = 2'~' + O(z"),
it follows that g—J = 297" + O(277**1). Therefore for a fixed i, a linear combination of g—f with

j=1,...,n lies in C[[z]] if and only if the linear combination involves only % for j =4,...,n.

(iii) Since Ty is a C-linear map, it follows from (ii) that T} (W;) = Span, {Tk (?) oo I (J;—")} for
all k > 0. By Corollary 2.3, we have T} (g—f) =Ty (M) forall j =4,...,n and all k£ > 0.

Titr-1(9
Thus we obtained the desired result.

(iv) Since J;—J = 271+ O(29711) it follows that T, (i) oo T (J;—l) are linearly independent over C
forall k >n—1andall i =1,...,r. Therefore, for all k > n — 1, dimc Tp(W;) =n—i+ 1 and T}
is an injective map from Tj4q1(W;) to Ti(W;). Since (_; Tr4+1(W;) is a subspace of Tjy11(W;), it

follows that T} is an injective map from (,_; Th+1(W;) to N, Tu(W;). =

Theorem 7.3. With Convention 7.1, let N = M @ L1 € C(x)[D] and ko = max Zy — @ Then
for all k > kg,

(i) dime(V(M) : V(L)) = dime (Vi_y Te(W5);

(ii) Te(V(M) : V(L)) = Nizy Te(Wi).-

gi”’ ’ gi
determine the dimension of the intersection of W;, we shall multiply W; by g := ¢;1 ... g, and consider
the solution space V of N = M @ L®=1 in C[[z]].

For each g;, let g; = & = H;:l,j;ﬁi gi € C[[z]]. Then for each 1 < i<,

gWi = Spang {gifi, ..., gifa} C C[[z]],

is a subspace V, because g; is a solution of L&~V and fj is a solution of M for j =1,...,n. Note that
r(r—1) r(r—1)

g=x2 +O(x =z T1) e C[[z]]. It follows from Lemma 7.2 and Proposition 6.1 that for all k > ko,

Proof. By Lemma 7.2, we obtain that (V (M) : V(L)) = (;_; Wi, where W; = Spang {ﬁ f—"} To

dimc(V(M) : V(L)) = dimc (h WZ> = dimc <ﬁTk(Wz)>

and

Example 7.4. We continue with Example 4.5. We want to compute the dimension of (V(M) : V(L))
and a basis for it at precision k > ko. We have r = ord(L) = 2, n = ord(M) = 4, and
N=M®L®"D = (22 — 22 + 2)%(x — 1)°D® + 5(2® — 2z + 2)(2® — 22 — 2)(z — 1)*D*
+40(z% — 22 +4)(z — 1) D3 — 120(2* — 22 + 6)(z — 1)?D?
+120(z — 1)(22? — 42 + 17)D — 120(22° — 4x + 23).
The indicial polynomial of N at 0 s indg(N) = s(s —1)(s —2)(s —3)(s —4). The set of nonnegative roots
of indg(L) is Zn = {0,1,2,3,4}. Thus kg = max Zy — "1 =3,
By Lemma 7.2, we have (V(M) : V(L)) = W1 N Wa, where

W1 = Spang {i]%’ g%’ g—i’, ;—‘1‘} = Spanc{l—z+0(2%),x — 22+ O(25), 22 — 23 + O(25), 23 —2* + O(25)},

Wy = Spang {!%, 5%’ 5—‘2‘} = Spanc{l — z + O(2®),z — 22 + O(2®), 22 — 2° + O(25)}.
Let k=Fko+1=4. Then by Theorem 7.3,

Ty(V(M) : V(L)) = Ty(W1) N Tu(W2) = Spanc{l -z + O(a”),z — 2® + O(2”),2* — 2° + O(2”)}. (30)

Since the above truncated spaces have dimension three, Theorem 7.3 implies that (V (M) : V(L)) also has
dimension three. The truncated basis in (30) can be uniquely extended to a basis of (V(M) : V(L)).
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8 Symmetric products of generalized indicial polynomials

Given two linear differential operators L, Q € C(z)[D], the (generalized) local exponents of their symmet-
ric product L ® @ were studied by Singer [31, Lemma 3.2] and by van Hoeij and Weil [42, §3]. However,
the multiplicities of these local exponents remain unclear. In terms of indicial polynomials, we will show
that the symmetric product of their indicial polynomials is a divisor of the indicial polynomial of their
symmetric product L ® . This result also extends to the generalized indicial polynomials. To avoid
ambiguity, we use s as the variable in the (generalized) indicial polynomials. Here, the symmetric product
in C[s] refers to the symmetric product of linear differential operators with constant coefficients.

Lemma 8.1. Let L € C[z'/?][D] for some v € N\ {0}. If L has a solution g in x*C[[z"/*]][log(z)] with
initial term 2 log(z)* 1, then a is a root of the indicial polynomial indg(L) with multiplicity at least p.

Proof. Suppose that

indo(L) = u(s)(s —aq)* -+ (s — ap)"1,
where p1,. .., ur € N\ {0}, the roots aq,...,a; € a+ Z are distinct, and u(z) € C[z] does not have any
root in a + Z. We may further assume that

o < - <oy,

where «; < a; means «; — «;y < 0. Now we consider the ring of all finite C-linear combinations of series
of the form z#b(x,log(x)) with 8 € a + Z and b € C[[z'/"]][y]. By Lemma 2.11, the solution space of L
in this ring has a basis of the form:

givjzx‘”log(x)j_l—i—u' (i=1,...,1,5=1,..., 1),

where 2% log(z)’~! is the initial term of gi,j- Then g is a linear combination of the g; ;’s.

Suppose that

Hi

I
9= Z Z Ci,j9i.5

i=1 j=1
for some nonzero ¢; ; € C. Let ig € {1,...,I} be the minimal index ¢ such that g; ; appears in this
linear combination for some j, and jo € {1,...,p;,} be the minimal index j such that g;, ; appears.

Then the initial term of 25:1 ;“:1 ¢i,j9i,; is %0 log(z)7°~1. By the assumption, the initial term of g is

1% log(x)*~1. Comparing initial terms, we conclude that o = a;, and u — 1 = jo — 1 < p;, — 1, which
implies p < ;. Thus « is a root of indg(L) with multiplicity at least u. =

Theorem 8.2. Let L,Q € C(x)[D] and let p,q € Clz"/*] with v € N\ {0}. Let indg exp(p(z—1)) (L),
indg exp(q(z—1))(Q) be the generalized indicial polynomial of L and Q at x = 0 with respect to exponential
parts exp(p(x~1)) and exp(q(x~1)), respectively. Then the symmetric product

indO,exl:)(p(a:*1 ) (L) Y indO,exp(q(avfl)) (Q)
dz’vides indo)exp(p(w71)+q(ajf1)) (L ® Q)

Proof. Suppose that a € C is a root of indg exp(p(z—1))(L) with multiplicity u, and 8 € C is a root
of indg exp(qz-1)) (@) with multiplicity A\. By Lemma 5.7, it suffices to prove that a + 3 is a root of
indg exp(p(z-1)+qx-1)) (L @ Q) with multiplicity at least o+ A — 1.

By Definition 2.13, « is a root of the indicial polynomial of L = exp(—p(z™)) L exp(p(z~')) with
multiplicity g. By Lemma 2.11, L has a solution § € z*C[[x]][log(x)] with initial term 2 log(z)*~*.
Therefore L has a solution

g(x) = exp(p(z™"))g(x).

Similarly, the operator @ has a solution
h(z) = exp(q(z~"))h(z),

where h € 2P C[[z'/?]][log(x)] with initial term z® log(z)*~!. By definition of symmetric product,

f(@) = g(@)h(z) = exp(p(z ") + q(z™")) f(x)
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is a solution of M := L ® Q, where
f(@) = §()h(z) = 2°F log(x) 272 + - € 2* P C[[a]][log(x)]

with the initial term z*+# log(z)***~2. Thus f is a solution of

M = exp(—p(z~') — q(z71)) M exp(p(z~!) + q(a™ 1)) € C[z'/*, 27| D).

Applying Lemma 8.1 to the operator M, we obtain that «+ 3 is a root of the indicial polynomial indg (M )
with multiplicity at least A+p—1. By Definition 2.13, o+ is a root of the generalized indicial polynomial
indg exp(p(z—1)+q(z—1)) (M) with multiplicity at least A +p —1. =

Taking p = ¢ = 0 in Theorem 8.2 yields the following corollary.

Corollary 8.3. Let L,Q € C(z)[D] and let indo(L), indog(Q) be their indicial polynomials at 0. Then
the symmetric product
indo (L) ® 1nd0(Q)

divides indo(L ® Q).

Example 8.4. Let L = (22 —1)D* — 42D +4, Q = (x — 1)D* — 2D + 1 € C(z)[D]. The point % is an
apparent singularity of L, but an ordinary point of @ and L ® Q. We have

ind; (L) = s(s — 2),
indy (@) = s(s — 1),
indy (L® Q) = s(s = 1)(s = 2)(s = 3).

Then indy (L) ® ind1 (Q) = s(s — 1)(s — 2)(s — 3) divides indy (L ® Q). The roots & (i = 1,2,3,4) of
122* — 4423 + 6322 — 52z + 18 are apparent singularities of L ® Q, but ordinary points of L and Q. For
each &;, we have

inde, (L) = s(s — 1),
indg, (Q) = s(s — 1),
inde,( L ® Q) =s(s—1)(s —2)(s — 4).

Then inde, (L) ® inde, (Q) = s(s — 1)(s — 2) divides indg, (L ® Q).

Let L,M € C(z)[D]. If M = LQ for some @ € C(x)[D] under usual multiplication, then indy(Q)
divides indg(M). So one can find the possible indicial polynomials of a right factor by factoring indy (M),
see [7,39]. For symmetric product, if M = L ® @ for some @ € C(x)[D], combining Corollary 8.3 and
Proposition 4.2 yields that the indicial polynomial indy(Q) divides the global quasi-symmetric quotient
gsquo(indg(M),indg(L)). So we can compute the possible indicial polynomials of a symmetric quotient.
The procedure extends to generalized indicial polynomials as follows, see examples in the next section.

Proposition 8.5. Let L, M € C(x)[D] be of positive order and let 0 # Q € C(z)[D] be such that L ® Q
is a right factor of M. Then one can determine a finite set {exp(gi(z=1))}, where q¢; € Clx'/*] with
v € N\ {0}, consisting of candidates for the exponential parts of the series solutions of Q at 0. Moreover,

for each exp(q;(x™1)), one can compute a polynomial ifnvdoﬁxp(qi(m_l))(Q) € C[s] that is a multiple of the
generalized indicial polynomial indo,exp(qi(wq))(Q).

Proof. Let {exp(p;(z~"))}]_, and {exp(w:(x~"))}/_; be the exponential parts of the series solutions of
L and M at 0, respectively, where p;,w, € C[z'/"] with v € N\ {0}. If exp(g(z~1)) is an exponential
part of Q at 0, then for all 1 < j <n, exp(g(z~') 4+ p;(z~!)) is an exponential part of M at 0. Thus the
exponential parts of @ at 0 belong to the set

() {explwi(@™) —pj@™),... exp(wy(e™) —p;(a™"))},
j=1

where two exponential parts are considered identical if they differ by multiplication by a nonzero constant
in C. Let {exp(q1(z™1)),...,exp(gs(z71))} denote this set.
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For a fixed exp(g;(z~1)), let

A; = {(t,5) | exp(qi(z™1)) = cexp(wi(z™) — p;j(x~ 1)) for some ¢ € C'\ {0}}.

Then for each pair (¢,7) € A;, by Theorem 8.2, we obtain that

ind&exp(qi(w_l))(L) & indO,exp(pj(w_l))(Q) ‘ ind&exp(wt(a:_l))(L & Q) | indO,exp(wt(z_l))(‘Zu-)'

Let pj(s) := indgexp(p, (1)) (L) and v,(s) = indg exp(w, (@-1))(M). By Proposition 4.2, we get that
indg exp(q; (z-1)) (@) divides the global quasi-symmetric quotient gsquo(v(s),u;(s)) for all (t,5) € A;.
Thus we can take

indg,exp(q; (@-1)) (@) == ged  asquo(ve(s), pj(s)). = (31)
(t,g)EN;

9 Degree bounds for symmetric quotients

Let L, M € C(z)[D] be given. Let Q = D° + bs_1(z)D°"! + --- + by(x) with b; € C(x) be such that
L ® Q is a right factor of M. In this section, we compute bounds for the degrees of the numerators and
denominators of the b;. Our work is inspired by the computation of degree bounds for a right factor of
a given linear differential operator [6,7,38]; see [6] for a detailed computation and [4] for an explicit and
challenging example. Similarly, these bounds for @) are known when:

e for every b; and for every point ¢ € Sing(L) U Sing(M) U {cc}, we have a lower bound for the
valuation of b; € C(x) at &;

e we have an upper bound for the number of extra singularities. A point £ € C is called an eztra
singularity of the quotient @ if £ is an ordinary point of L and M, but a singularity of Q.

By Proposition 8.5, we can compute the possible exponential parts of @ at 0. Let exp(g(z~!)) with
7 € Upem (0} C[z'/?] be one of them such that ¢ := — deg(q) is minimal. Then 1 —c is the largest possible
slope of Newton Polygon of @ at 0, see [23, §3.4]. A lower bound for the valuation of b; at 0 can be
obtained from the study of the Newton Polygon of @ at 0, see [6]. The same process can be performed
at every point £ € C'U{oo}. So we only need an upper bound for the number of extra singularities.

9.1 The Fuchsian case

Assume that @ is Fuchsian. Note that L, M need not necessarily be Fuchsian. Let Extra(Q) be the set
of all extra singularities of Q). If £ € C is an extra singularity of ), then by Proposition 4.4, £ is an
apparent singularity of Q. Therefore the quantity S¢(Q) in (7) is a positive integer. So applying the
Fuchs relation (8) to @, the number of extra singularities is upper bounded by

#Extra(Q) < Y Se(@=-60-1)- > S(Q), (32)

£€Extra(Q) £€8ing* (Q)U{oo}

where Sing™(Q) is a subset of Sing(Q) that are not extra singularities of ). By the definition of extra
singularities, we get Sing*(Q) C Sing(L) U Sing(M). By Proposition 8.5, for each & € C U {0}, one
can compute a multiple of ind¢(Q), denoted by i/rﬁg(Q). For example, the quasi-symmetric quotient
gsquo(indg (M), indg (L)) is a multiple of ind¢(Q). Then the roots of ind¢(Q) are roots of i,r;ig(Q). There-
fore, by (7), we get S¢(Q) > gg(Q), where gg(Q) denotes the sum of the § smallest roots of i,nvdg(Q),

minus @. It follows from (32) that

#Extra(Q) < —0(6 —1) — Z 55(62)

£€Sing(L)USing(M)U{co}

This process can be used whenever the operator Q to be found is known to be Fuchsian. In particular,
when L and M are Fuchsian, Proposition 8.5 implies that @) is Fuchsian.

If the degree of i,I;ag(Q) is less than 4, i.e., the number of roots of i?lag(Q) in C is less than 4, then
there is no operator @) of order § such that L ® @ is a right factor of M.
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Example 9.1. We continue with Examples 4.5 and 7.4. We show how to compute a degree bound for an
unknown operator Q € C(x)[D] of order 3 such that L ® Q is a right factor of M. Both L and M have
four singularities: 1,&1,& and oo, where &1, & are distinct roots of ©2 — 2x + 2. These four singularities
are regular. Hence L and M are Fuchsian, and therefore Q is also Fuchsian. At the point 1, we have

indy (M) =(s—2)(s=3)(s —4)(s —5), indi(L)=(s—1)(s—2).

Then i}le(Q) = gsquo(ind; (M),ind; (L)) = (s — 1)(s — 2)(s — 3) is a multiple of ind;(Q). At the point
& (1=1,2), we have

indg,(M) = (s+1)s(s —1)(s —2), indg (L) = (s+1)s.

Then 1?12151(62) = gsquo(indg, (M), indg, (L)) = s(s — 1)(s — 2) is a multiple of inde, (Q). At the point oo,
we have
inde, (M) = (s +3)(s+2)(s+1)s, indg, (L) =s(s—1).

Then 1?12100(Q) = qsquo(indeo (M), indo (L)) = (s +3)(s + 2)(s+ 1) is a multiple of indo(Q). Therefore,
for the operator Q,

Thus the number of extra singularities of Q is upper bounded by:
#Extra(Q) < —3(3—1)— (3+0+0—-9)=0.

This implies that QQ has no extra singularities.

Since QQ is Fuchsian, it can be written

s, @2(%) o ai(z) ao(z)
Q=D +A(aj)D +A(x)2D+A(x)37

where a;, A € Clz] and deg(a;) < deg(A*) — (3 —i). Suppose A(x) = Aj(x)Aa(x), where the roots of A
are elements of Sing™(Q) and the roots of Ay are elements of Extra(Q). It follows that

deg(A1) < # Sing™(Q) < #(Sing(L) U Sing(M)) = #{1,&1,82} = 3

and deg(As) < # Extra(Q) = 0. Clearing the denominator of Q gives the bounds (27,26,25,24) on the
degrees of the coefficients of (D3, D?, D, 1). This is the bound used in Example 4.5 leading to the discovery
of the symmetric quotient Q). From Example 2.12, we see that Q) has only two singularities 1 and oo.
Thus, @ indeed has no extra singularities.

9.2 The general case

Applying the generalized Fuchs relation (11) to @, we obtain the analogue of (32):

#Bm@ s Y (56@-3r@)=-66-1- > (5@-;4@). @3

¢€Extra(Q) §€Sing* (Q)U{oo}

As in the Fuchsian case, Sing"(Q) C Sing(L) U Sing(M). By Proposition 8.5, for each £ € C, one can
compute the possible exponential parts {exp(q;((x — &)~1))}%; of the series solutions of @ at &, where
¢ € Clr'/] with v € N\ {0} and ¢;(0) = 0. One can also compute a multiple of the generalized
indicial polynomial indg¢ cxp(q:((z—g)-1))(Q), denoted by iﬁa§7cxp(qi((z_£)fl))(Q). Therefore, by (9), we get
Se(Q) > §5(Q), where §§(Q) denotes the sum of the § smallest roots of []:_, iﬁa&exp(qi((x_g)_l))(Q),

. 5(5—1)
minus - -

For each 1 <4 < &, there are at most d; linearly independent solutions of @ at £ with the exponential
part exp(q;((z — &)™), where d; is the degree of indg exp (g ((z—)-1))(Q)- So counting exp(g; ((x — &)™)
repeated d; times, we get a list exp(Gi((z — &)71)),...,exp(Gs((z — £)™')) of the possible exponential
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parts for the operator Q at &, where 6 = >, d;. Therefore, by (10), we get I¢(Q) > E(Q), where fg(Q)
denotes twice the sum of the 15(5 — 1) smallest values among deg(g; — g;) for all 1 <i < j <.
The case at £ = oo is similar. It then follows from (33) that

#Extra(Q) < (65— 1) - ) (3@ - 37@).

£€Sing(L)USing(M)U{oco}

If § < &, then there is no operator Q of order § such that L @ Q is a right factor of M.
To compute a sharper degree bound for @), one may use integer linear programming as in [7].
Example 9.2. Let L, M € C(z)[D] be two operators:
L= (20 —1)D? — 4xD + 4,
M = (122* — 442% + 6322 — 52z + 18) D* + (—722* + 2162° — 2462% + 1862 — 56) D>
+ (13223 — 23222 + 99z — 96)xD? + (—72z* — 10823 + 23222 + 18z + 96) D + 144> — 4822 — 234.

Since dimc(V (M) : V(L)) = 2, we assume that Q € C(z)[D] is an operator of order two such that L ® Q
is a right factor of M. We compute an upper bound on the number of extra singularities of Q. The
singularities of L are: % and co. The singularities of M are: & (1 = 1,2,3,4) and oo, where the &; are
distinct roots of 122 — 44x3 + 6322 — 52x + 18. As shown in Example 8.4, the point % s an apparent
singularity of L. The points &; are apparent singularities of M. Similar to Example 9.1 in the Fuchsian
case, we have

1;171%(@) = gsquo(ind (M), indy (L)) = gsquo(s(s — 1)(s — 2)(s — 3),s(s — 2)) = s(s — 1),

i;l\agi (@) = gsquo(indg, (M), ind¢, (L)) = gsquo(s(s — 1)(s — 2)(s — 4),s(s — 1)) = s(s — 1).
The point co is an irregular singularity of L and M. The generalized indicial polynomials of L are

indog exp(0) (L) = 2(s + 1),  indes exp(20) (L) = —25.
The generalized indicial polynomials of M are
indog exp(0) (M)=6(s + 2), indog exp(z) (M)=—2(s + 1), indog exp(22) (M)=2(s + 1), indog exp(32) (M )=—6s.
Thus by Proposition 8.5, the possible exponential parts of QQ are
{exp(0), exp(x), exp(2), exp(3z) } N {exp(—2z), exp(—2), exp(0), exp(z) } = {exp(0), exp(z)}.
Since exp(0) = exp(0 — 0) = exp(2z — 2x), we have
iﬁaw7exp(0)(Q) = ged(gsquo(6(s + 2),2(s + 1)), gsquo(2(s + 1), —2s)) = ged(s + 1,s+ 1) = s+ 1.
Since exp(z) = exp(x — 0) = exp(3z — 2x), we have
iﬁaoo_,exp(x)(Q) = ged(qgsquo(—2(s 4+ 1),2(s 4+ 1)), gsquo(—6s, —2s)) = ged(s, s) = s.

Thus, for the operator @,

It follows that
1
#Extra(@) < —22-1) — (0+0+0+0+0-2—-:2)=1.

Since M = L ® Q, with Q as in Examples 2.14 and 8.4, we see that QQ has only two singularities: 1 and
and co. Thus @ indeed has one extra singularity 1.
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10 Another example

Algorithms for factoring operators of orders three and four with respect to symmetric product are
known [19, 33,40, 41]. Here we give an example of computing a symmetric quotient of an operator
of order nine by a factor of order three. Although this example does not fall into any of the three special
cases described in Section 5, Algorithm 5.1 successfully produces a symmetric quotient.

Let L = (z—12D3+ (5(x — 1)+ (x — 1)*)D? + ((x — 1) = 17(x — 1))D + 24 € C(z)[D] and let
M = L® P, where P = (x — 1)3D3 + (11(z — 1)®2 + (z — 1)®)D? 4+ 30(z — 1) + 18 € C(x)[D]. Then
r =ord(L) =3, n = ord(M) = 9. The leading coefficient of M is m(z)(x — 1)®, where

m = 1568z — 1610322 — 20178702° + 312281202% — 50659535927 + 876369217925 — 913703410572
+ 610286581763z* — 35834481872322° + 156544153228682% — 37066249396506x + 24398082715566
is an irreducible polynomial over Q of degree 11. Assume that P is unknown. The goal is to compute

the global quasi-symmetric quotient @ of M by L.

First we compute an upper bound for the order of Q. Since the indicial polynomial of N = M @ L®?
is indg(N) = H?io(x — 1), we take kg =29 —3 =26 and k = ko + 1 = 27. The space (V(M) : V(L)) has
dimension three, with a basis given by

39, 201 1343 . 1737 . 151717 . 125849 . 7269929
By o= 1 4323 4 224 4 205 6 7 8 9 10 (1
L= b e T T T T s Y 000 U T a0 U T T6r200 ¢ @),
57 . 271 . 5123 . 301 . 530161 . 593527 . 23664101
ho — g — 53— 204 2l 5 9129 6 SUL 7 8 _ 9 _ 10 L (g1
T 120 57 76720 ¢ 6048 ¢ 201600 ¢ @),
10 . 27 , 65 . 5471 . 410 . 94985 . 351137 . 18123281
ho = % 4 08 L 2l a D005 6 , U 7 8 9 10 L o(z11
B A T T T T ey T T o T 032 T 12060 © T 604800 ¢ (@)

So the order of @) is at most three. Here if £ = 9, the truncated space ﬂ?zl T (W;) has dimension four.
When k£ > 10, this dimension remains stable: dimc(ﬂf’zl T, (W;)) = dime(V(M) : V(L)) = 3.

Now we compute the number of extra singularities of Q). The singularities of L are: 1 and co. The
singularities of M are: 1, & (i =1,...,11) and oo, where the &; are distinct roots of m(z). The point 1
is a regular singularity of L and M. The points &; are apparent singularities of M. So we have

ind; (Q) = qsquo(ind; (M), ind; (L)) = qsquo(s®(s + 8)(s + 9)2(s + 1), (s + 6)(s — 2)) = (s + 2)(s + 3)2,
i,r;igi(Q) = gsquo(indg, (M), indg, (L)) = gsquo((s — 9) szo(s —1i),s(s —1)(s —2)) = Hfzo(s —1).
The point oo is an irregular singularity of L and M. The generalized indicial polynomials of L are
Indog exp(0) (L) = =57, indog exp(—a) (L) = 5 — 4.
The generalized indicial polynomials of M are
indog exp(0) (M) = —2(s41)?s?, indeo exp(—a) (M) = —(5—3)(s—4)(s—11)*, indog exp(—22) (M) = 16(s—15).
Thus by Proposition 8.5, the possible exponential parts of ) are
{exp(0), exp(—a), exp(~22)} 1 {exp(a), exp(0), exp(~)} = {exp(0), exp(—a)}.
Since exp(0) = exp(0 — 0) = exp(—x — (—x)), we have
iﬁaw,exp(o)(cg) = ged(gsquo(—2(s + 1)%s?, —s?), qsquo(—(s — 3)(s — 4)(s — 11)%, 5 — 4)) = s(s + 1).
Since exp(—z) = exp(—x — 0) = exp(—2x — (—x)), we have
N exp(—a) (@) = ged(gsquo(—(s — 3)(s — 4)(s — 11)2, —52), gsquo(16(s — 15),5 — 4)) = s — 11.
Thus, for the operator @,

51(Q)=-2-3-3-3=—11,
Se(Q) =0+1+2-3=0,

S (@) =0-1+11-3=7,
Io(Q)=2-2=4



It follows that .
#Extra(Q) < —3(3 —1) = (-11+0+7— -4) =0.

Therefore, @) has no extra singularities and at most 13 singularities: 1, £;(i = 1,...,11) and oo.

Since the singularities 1, &(¢ = 1,...,11) are regular, the Newton polygons of @) at each of these
points have only one edge with slope 1. At the point oo, since the possible exponential parts of @ are
exp(0) and exp(—=x), the possible slopes of the Newton polygon of @ are 1 and 2. We write

A3(2) 1o n Ai(z) n Ao(z)

_ 3
Q=P B P T Bw P B

where A;, B € C[z]. Then deg(B) < 3(114+1+2) =45 and deg(A;) < deg(B)+3(2—1) = 48, see details
in [6]. Clearing the denominator of @ gives the bounds (45,48, 48,48) on the degrees of the coefficients
of (D3, D% D, 1). By solving the linear system Q - h; = O(z*) for j = 1,2,3 and sufficiently large k, we
find that @ = P is the global quasi-symmetric quotient of M by L.
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