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ABSTRACT

Flip graphs were recently introduced in order to discover new ma-
trix multiplication methods for matrix sizes. The technique applies
to other tensors as well. In this paper, we explore how it performs
for polynomial multiplication.
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1 INTRODUCTION

Matrix multiplication can be viewed as a bilinear map

Kk gkxm _y gnxm (A B) s AB.

As such, it can also be described as an element of the tensor product
space KXk g gkxm g gnXm 1ndeed, if we write a;,j for the element
of K<k having a 1 at position (i, j) and zeros in all other positions,
and we write b; ; and c; ; for the elements of K¥*™ and K<™
defined analogously, then the matrix multiplication tensor can be
written as

This is a sum of nkm “pure” tensors, i.e., tensors that can be written
in the form M ® M’ ® M’ for certain M € K"k M’ € Kk*M and
M’ € Kn><k

There are other, less obvious ways to write the matrix multipli-
cation tensor as a sum of pure tensors. The rank of a tensor T is
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defined as the minimal number of pure tensors such that T is the
sum of these tensors. Pure tensors are therefore tensors of rank 1.

The quest for fast matrix multiplication algorithms boils down
to the question what the rank of the matrix multiplication tensor is.
We do not know. For n, k, m all equal and asymptotically large, the
rank is O(n®) for a certain number « which is known to be less
than 2.371 [1, 18]. For various small and specific values of n, k, m,
Sedoglavic [14] keeps track of the best known upper bounds for
the corresponding ranks.

Low rank tensor decompositions for small and specific matrix
formats can be found in several ways. Some have been found by
hand [10, 13, 17], some by numerical techniques [15, 16], some by
SAT solvers [6, 8, 9], some by machine learning [7]. Most recently,
Kauers and Moosbauer [11] proposed the idea of flip graphs for
searching for such schemes. The idea of flip graphs is summarized
in Section 2 below.

These search techniques are not restricted to the matrix multi-
plication tensor but can also be applied to other bilinear maps. For
example, if K[x] <, denotes the vector space of all polynomials of
degree at most n, then polynomial multiplication can be viewed as
a bilinear map

K(x]<n X K[x] <m — K[x]<n+m
and thus as an element of the tensor product
K([x]<n ® K[x]<m ® K[x] <n+m-

Stated in this language, the multiplication tensor forn = m = 1
reads

ap ® by ® co
+a1 ® by ® c1
+ay®b; ®cy
+a1 ®b; ®cs.

By adding the term ag ® by ® c; to the second summand and sub-
tracting it from the first, and by adding the term a; ® b1 ® c1 to the
third summand and subtracting it from the fourth, we can see that
the tensor can also be written as follows:

ao®bo®(co—c1)
+(ag+ay1) ® bg ® c1
+(ag+a;) ®b; ®cy
+a; ® b1 Q (c2 —c1).



Now the second and the third summand can be merged into one,
and we obtain

ao ®b0®(co —01)
+ (ap +ay) ® (bg +b1) ® c1
+a1®b1 ® (Cz —Cl).

This is exactly Karatsuba’s algorithm in tensor notation, derived
with the idea of flip graphs.

The purpose of this paper is to explore more generally how the
flip graph technique performs for the polynomial multiplication
tensor. Polynomial multiplication is much better understood than
matrix multiplication. In particular, we know that the tensor rank
for multiplying polynomials of degree n with polynomials of degree
m (over a sufficiently large coefficient field) is equal to n + m — 1.
Our goal is not to use flip graphs to learn something new about
polynomial multiplication, but to use polynomial multiplication
to learn something new about flip graphs. Our main result is that
the flip graph technique can find the best possible multiplication
algorithms (again assuming a sufficiently large coefficient field),
and to bound the length of the path from the standard algorithm
to the optimal algorithm. In addition, in Section 5 we report on
some experiments we did searching for polynomial multiplication
algorithms for the coefficient field Z,.

2 TENSORS AND FLIP GRAPHS

Recall that the tensor product U ® V ® W of three vector spaces
U,V,W over some field K consists of all K-linear combinations of
equivalence classes of elements of U X V X W subject to the relations

(u1 +uz,0,w) = (u1,9,w) + (u,0, w)
(u,01 + 02, w) = (1,01, w) + (u,02, W)
(u, 0, w1 +w2) = (u,0,w1) + (4,0, w2)

a(u,0,w) = (au, v, w) = (4, o, w) = (4,0, aw)

foralla € K, u,uy,up € U,v,01,03 € V,and w, w1, wy € W. Instead
of (u,v, w), we write u ® v ® w. Every element of the tensor product
U ® V ® W can thus be written in the form

(u1 ®v1 @ wi) + -+ + (U ® v ® wWy)

for certain uy,...,ux € U, 01,...,0p € V,and wy, ..., w € W.

If a tensor T is given in this form, the question is whether it
can also be written as a sum of fewer than k tensors of the form
u ® v ® w. If this is not the case, then k is called the rank of T.

Using the relations quoted above, it is easy to turn a given tensor
representation with k terms into one with k + 1 terms. To do so,
just pick one of its terms, say u ® v ® w, write u as u’ +u’’ for some
vectors u’,u’’ € U, and replace the term u ® v ® w by the two terms
v ®@v®wandu” ®v®w. This operation is called a split.

It is less obvious whether we can go in the other direction. If we
are lucky and the given tensor representation contains two terms
u; ®v; ® w; and u; ®v; ® w; that agree in two positions, say v; = v;
and w; = wj, then we can merge them into (u; + u;) ® v; ® w;.
This operation is called a reduction. A reduction is a split applied
backwards.

If we are not lucky and the given tensor representation does not
allow for a reduction, this does in general not mean that k is the

tensor rank. We have seen this in the example in the introduction:
even though the tensor representation

ay®by®co+a; ®by®c1+ag®b; ®c1+a; by ®cy
does not admit a reduction, the tensor can also be written as
ay®byg® (co—c1)+(ap+a1)®(bg+b1)®c1+a; ®by ®(cz —c1),

so the rank is (at most) 3.

As we saw, this representation can be found with the help of
an operation that is applicable to any two terms u; ® v; ® w; and
uj®vj®w;j that agree in one position, say u; = u;. For every choice
A € K, we have

Ui®vi@w;i+u; ®0vj @ w;j
:ui®(vi—/lvj)®wi+ui®vj®(Wj+)Lwi),

so we can replace the two terms in the first row by the two terms
in the second. This operation is called a flip.

In summary, a split increases the number of terms by one, a
reduction decreases the number of terms by one, and a flip leaves
the number of terms unchanged. In fact, a flip can be decomposed
into a split followed by a reduction:

Ui®vi@w;i+u; ®vj @w;j

=u; Q (v —/IU]' +AUj)®Wi+ui ®v; @wWj

st u; @ (v; —Avj) QwWi+u; ® (Avj)®w,~+ui ®vj @ wj

=u; ® (0; —A0j) @wi +u; ®vj ® (Aw;) +1; ® 0 ® W

reduction

= ui®(v,——Avj)®wi+ui®vj®(wj+ﬂwi).
Note also that flips are reversible: if a tensor representation T’ can
be reached from a tensor representation T by applying a flip, then
T can also be reached from T’ via a flip.

In [11], Kauers and Moosbauer introduced the flip graph of a
tensor T € U ® V ® W. Every tensor representation is a vertex in
this graph, and two vertices are connected if one can be reached
from the other by either a flip or a reduction. For some matrix
multiplication tensors, they found shorter representations than
previously known by performing a random search in the flip graph.
Arai, Ichikawa and Hukushima [2] enriched the flip graph with
some edges representing splits and found further improvements
for some matrix formats with their variant.

Having edges for splits in the graph has advantages and disad-
vantages. An advantage is that in the version with split edges, the
graph is strongly connected, i.e., any tensor representation can be
reached from any other via a finite path. This was shown in Thm. 9
of [11] for the matrix multiplication tensor but applies mutatis
mutandis to every tensor. A disadvantage is that for every tensor
representations there is an extremely large number of options for
applying a split. In a random search, it is not clear how to make a
reasonable choice.

Flips can be seen as an attempt to make reasonable choices for
splits: only choose such splits that allow for doing a reduction in
the next step, because in this combination, the number of terms in
the tensor representation does not go up. However, with only flips
and reductions, the graph is no longer strongly connected. See the
discussion of Kauers and Moosbauer [11] for examples.

For matrix multiplication tensors, we do not know whether a
representation of minimal length can always be reached from the



standard algorithm using only flips and reductions. Here we will
show that flips and reductions are sufficient for polynomial multi-
plication tensors.

3 POLYNOMIAL MULTIPLICATION

For a field K, we consider the multiplication of a polynomial of
degree at most n with a polynomial of degree at most m. For k € N,
we write K [x] < for the K-vector space of all polynomials of degree
at most k. A basis of this vector space is {1, x,... ,xk}. We are
dealing with three such spaces: K[x] <n, K[x] <m, and K[x] <p+m,
and it will be helpful to give distinct names to the basis elements of
these three spaces. The basis elements 1, x, ..., x" of K[x] <, will
be called ay, . . ., an, those of K[x] <, will be called by, ..., by, and
those of K[x] <p+m will be called cq, . . ., ch+m-

DEFINITION 1. The tensor

n m
2.2 ai®b;®cirj € K[xl<n ® K[x] < @ K[X] <nim
i=0 j=0
is called the polynomial multiplication tensor for degrees n and m
over K, and this sum is called its standard representation.

Polynomial multiplication is well understood, and asymptotically
fast algorithms for polynomial multiplication are well known. They
are a staple of computer algebra and covered in every textbook on
computer algebra (cf. e.g., Chapter 8 of [19]). Fast algorithms for
polynomial multiplication are based on the principle of evaluation
and interpolation: if p and g are polynomials of respective degrees n
and m and f = pq is their product, then f is the unique polynomial
whose values at n + m + 1 distinct points xo, . . ., Xp+m € K are the
products p(x;)q(x;) of the values of p and g at these points.

According to Lagrange’s interpolation formula, we have

n+m

fx) =

t’#k

In order to express this using the notation cy, ..., cpem for the
basis elements of K[x]<p+m, let ayx be the coefficient of x! in

g ﬁ so that

x X,
ek Xk T X

n+m

Z apxCe- (1)

We then have

'i’:"( Zn:x a;) Zx]b] ®c(k)) (2)

k=0 i=0
n+m n m
= ZZ (xkai)®(x]b])®c(k))
k=0 i=0 j=0
n+m n m
= ZZ(al ® b ® (x,/ck)))
k=0 i=0 j=0
n m n+m .
= ZZai ®b;® Z x]l:Jc(k).
i=0 j=0 k=0

According to the following lemma, this is exactly the polynomial
multiplication tensor.

LEMMA 2. In the notation introduced above, we have

n+m

25 e =i
k=0
forallie€ {0,...,n} and all j € {0,...,m}.

Proo¥. Consider the polynomials p = a; = x' and ¢ = bj = x.

Their product is pg = x™*J = ¢, ;. The values of pq at xg, . . ., Xn+m
p Pq J rq
are x0+] ., %, Therefore, by the interpolation formula quoted

above, we have

n+m

Civj = pq = Z P q(x)e®) = Z ),

as claimed. =

The representation (2) is the basis of the multiplication algo-
rithms of Toom and Cook. We therefore call it the Toom-Cook
representation of the polynomial multiplication tensor. It implies
that the rank of the polynomial multiplication tensor is at most
n+ m+ 1. Since c(o), el c(mtm) qpe linearly independent over K,
the rank cannot be smaller than n +m + 1, so the Toom-Cook repre-
sentation is optimal with respect to the number of multiplications
(see [3, 20] for a discussion of the required number of additions).

4 THERE IS A PATH

The purpose of this section is to prove the following result about
the flip graph for polynomial multiplication.

THEOREM 3. In the flip graph for polynomial multiplication over
a field containing at least n + m + 1 distinct elements xo, . . ., Xp+m,
there is a path consisting of at most nm(2n + 2m + 1) flips and nm
reductions that leads from the standard representation

n m

Z Z(ai ® bj ® Ci+j)

i=0 j=0
of rank (n+ 1)(m + 1) to the Toom-Cook representation
n+m n . m X
Z ((Z x,’cai) ® (Z x]](bj) ® c(k))
k=0 \ i=0 j=0
of rank n + m + 1, with ¢®) as introduced in (1).

Since the proof of Thm. 3 is somewhat technical, we first illustrate
the construction for the special case n = m = 1. Start with the
standard representation and use the expressions from Lemma 2 for
the ¢;:

ap @ by ® (c(o) +c 4 c(z))
+a1 ®by® (xoc(o) +x1c(1) +x2c(2))
+ay®b1 ® (xoc(o) +xlc(1) +xzc(2))
+a1®b1 ® (xgc(o) +xfc(1) +x§c(2))

We flip the first row with the second and the third with the fourth
to the effect of eliminating ¢® from the second and the fourth



rows. This gives
(ao +x2a1) ® by ® (c'?) + ¢ @)
+a1 ® by ® ((x0 — x2)c'” + (x1 — x2)cV)
+ (ag +x2a1) ® b1 ® (xoc(o) +x10(1) +xgc(2))
+a1® b1 ® (x0(x0 = x2)¢ +x1(x1 — x)c?).

Now we flip the first row with the third and the second with the
fourth to the effect of eliminating ¢ from the second and the
fourth rows. This gives

(a0 +x2a1) ® (bo +x1b1) ® (¢ + (D) 4 ()
+a1 ® (bo +x1b1) ® ((x0 — x2)c® + (x1 — xp)c))
+ (ag +x2a1) ® b1 ® ((x0 = x1)c ¥ + (2 = x1)e®)
+a1® b1 @ ((x0 = x1) (x0 ~ x2)e”),
where the fourth row can also be written as
((x0 = x)a1) ® ((x0 — x2)b1) ® ¢,

Flip this row with the third to the effect of eliminating ¢ from
the third row. This gives

(ap +x2a1) ® (b +x1b1) ® (¢\? + (D) 4 ¢(2))
+a1 ® (bo +x1b1) ® ((x0 — x2)c ) + (x1 = x2)cV)
+(ap +x2a1) ® by ® ((x2 — x1)c?))

+ (ag +x0a1) ® by ® ((x0 — x1)c?),
where the third and the fourth rows can also be written as
+ (a0 +x2a1) ® (2 = x1)b1) ® ¢
+ (ao +x0a1) ® ((x0 — x1)by) @ ¢©).

Flip the third row with the first to the effect of eliminating ¢(%)
from the first row. This gives

(ao +x2a1) ® (bo +x1b1) ® (¢ + 1)
+a1® (bo+x1b1) ® ((x0 = x2)e @ + (1 = x2)e)
+ (ag +x2a1) ® (bo +x2b1) ® c(?)
+(ag +xo0a1) ® ((x0 — x1)b1) ® ).
Rewrite the second row into

Xo — X
((x1 = x2)a1) ® (bo + x1b1) ® (2@ 1 (V)
X1 — X2

and flip this row with the first to the effect of eliminating ¢ from
the second row. This gives

(ap +x1a1) ® (bg + x1b1) ® (C(O) + C(l))

+((x1 — x2)a1) ® (b + x1b1) ® (L c(0))
X1 — X2

+ (ap + x2a1) ® (bg + x2b1) ® C(Z)
+ (ag +x0a1) ® ((x0 — x1)b1) ® ¢
Write the second row again as

((x0 = x1)a1) ® (bo +x1b1) ® ¢V

and finally flip this row with the first to the effect of eliminating
¢(® from the first row. This gives

(ap +x1a1) ® (bo + x1b1) ® ¢V
+ (ao +x0a1) ® (bo +x1b1) ® c®)
+(ag +x2a1) ® (by +x2b1) ® ¢?
+(ag + x0a1) ® ((x0 — x1)b1) ® ).

Now a reduction is applicable to the second and the fourth row.

Although this derivation was somewhat longer than the one
presented in the introduction, it is worth pointing out that for
general n and m, the path length announced in Thm. 3 is short
compared to the length of a path involving splits constructed as in
Thm. 9 of [11]. The construction of this path is most easily described
backwards: starting from the Toom-Cook representation, multiply
out all terms using splits, and then merge common terms using
reductions. In the Toom-Cook representation for polynomials of
degrees n and m, there are n+m+1 tensors of rank one, and in each
of them, the first factor is a sum of n + 1 terms, the second factor is
a sum of m+ 1 terms, and the third factor is a sum of n+m+1 terms.
Multiplying all of them out requires nm(n +m)(n + m+ 1)? splits.
To get from here to the standard representation, which consists of
(n+1)(m+1) terms, we need nm(n+m)(n+m+1)2— (n+1)(m+1)
reductions. Altogether, the length of the resulting path quartic while
the length of the path of Thm. 3 is only cubic.

We now turn to the proof of Thm. 3. To prepare for it, we need
the following two lemmas.

LEMMA 4. It takes no more than nm + (n — 1)(m — 1) + n flips to

get from
n m ntm
ZZ((H ®b;® Z xtl,ﬂc([))
i=0 j=0 =0
~— ———
=Ci+j
to
n m n+m
(Z xn+mal) ® (Z x,];.mbk) ® Z ¢
=0 k=0 £=0
n m n+m—1 ) )
+Z(Gi ® (Z x,]§+mbk) ® Z (xtla - xﬁHm)c([))
i=1 k=0 =0
nom m i ntm-1
+Z Z(ai ® (Z xn-:rjnbk) ® Z x;+]71(XZ — xn+m)c(l))
i=0 j=1 k=j =0

ProOF. In order to be able to refer to terms in the tensor repre-
sentations, let’s number them. We shall refer to the term a; ® b; ®
P xi,ﬂ ¢(®) as the (i, j)th term. While the terms get modified by
flips, we maintain the numbering.

We apply several groups of flips.

First, for each i from 1 to n and for each j from 1 to m, apply a
flip to the (i, 0)th and the (i, j)th term in order to eliminate the term
x,’l{nc(”’") from the third factor of the (i, j)th term. This changes
the second factors of the terms (i, 0) from by to by + b1Xp4m + - -+
bmxp ., and the third factors of the terms (i, j) for j > 0 from
S A to S (587 -, )cl0)



Second, for each j from 1 to m and each i from n down to 1,
apply a flip to the (i, j)th and the (i — 1, j)th term in order to

turn the third factor Y74~ 1(x{i,+j ;ltjm ¢ of the (i, j)th term

to Z'”m 1 l+] 1(X[ - xn+m)c(f). This has the side effect that
Xm+n-fold of the second factor of the (i, j)th term is added to
the second factor of the (i — 1, j)th term. After all these flips
have been performed, the second factor of the (i, j)th term is
bj + Xnembjs1 +- +xn+n{b

Third, for each i from 1 to n, apply a flip to the (0, 0)th and the
(i,0)th term in order to change the third factor of the (i, 0)th term
from Y 74" xt’;c([) to X (xd —xb e All these ﬂips change
the first factor of the (0, 0)th term to ag + Xp+ma1 + - - + X, dn.

At this point, we have reached the announced tensor representa-
tion. We applied nm flips in the first phase, (n — 1)(m — 1) flips in
the second phase, and n flips in the third phase. =

m

LEMMA 5. It takes no more than 2n + 1 flips to get from
ijbj ® (cy +Tp)

(Zn:xial
— =
+Zn:((y —x’)a ® ix b] ®(cy+T,))

to

® (iijj) ® Ty
+Zn:((y —xV)a; ®(Zx]bj)®Tl)
=1

i Jj=0

any’al Zy]bj ® cy.

i=0

ProoF. Number the terms in the tensor representation from 0
to n+ 1, so that, in particular, the ith term in this numbering is also
the ith of the sum in the second line.

First apply a flip to the ith and the 1st term, fori = 2,...,n, so
that the first factor of the 1st term becomes X7 (y* - x")a; and
the third factor of the ith term (i > 2) becomes T; — T;. This takes
n — 1 flips.

Next, apply a flip to the 0th and the 1st term, so that the first
factor of the 1st term becomes Y7 y'a; and the third factor of the
0Oth term becomes Ty — Ty. This takes 1 flip.

Next, apply a flip to the 1st term and the (n + 1)st term, so that
the second factor of the n + 1st term becomes Zm 0 y/b; and the
third factor of the 1st term becomes —cy + T1. ThlS takes 1 flip.

Next, apply a flip to the Oth and the 1st term, so that the third
factor of the Ost term becomes Ty and the first factor of the 1st term
becomes Z?zl(yi — x%)a;. This takes 1 flip.

Finally, apply a flip to the ith and the 1st term, fori =2,...,n,
so that the first factor of the 1st term becomes (y — x)a; and the
third factor of the ith term (i > 2) becomes T;. This takes n — 1 flips.

At this point, we have reached the announced tensor representa-
tion. Altogether, we have made (n—1)+1+1+1+(n—1) =2n+1
flips. =

ProoF oF THM. 3. We apply induction on n + m. The case n =
m = 0 serves as induction base. In this case, the tensor in question is
just ap ® by ® co. This is the tensor representation in the beginning
and in the end, so there obviously is a path connecting them, and it
consists of zero flips.

Now let n,m > 0 be given and assume that the theorem is true
for all n’, m’ with n” + m’ < n+ m. Because of symmetry, we may
assume that m > n. Note that this implies m > 1.

We first apply the flips of Lemma 4. After introducing new vari-
ables

n+mbm (j=0,...,m—-1)

5(0 = (xt’ - xn+m)c([) ([ =0,...,

bj =bjr1+xpimbjia + -
n+m-—1),
the resuting tensor representation has the following form:

n+m

® Z 0

By induction hypothesis, the double sum in the third line of (3) can
be turned into

S (3o (3 s o).

Undoing the change of variables yields

ntm-1, n_ m-1 j
Z ((Z xpai) ® Z xﬁx +{nb]+1 ® (xp — xn+m)c )
=0 \ i=0 7=0 i=0
n+m-—1 n
( th’al Z ; )b ®C([))~

We replace the double sum in the third row of (3) by this expression,
and in each summand of the sum in the second row, we move a fac-
tor of (xé x% ) from the third factor to the first. This transforms
the tensor representation of (3) into

Z Xntmbj
i=0

+ ((x(l) = Xnim)ai ® (Z Xpimbj) ®
=

n+m

® (c® + E )
0 z f n+m {

O n+m

M:

(

xn+mal

S

n+m-—

1
+ ( Zx[a, ®Z(x m+n)bj®c([)).

£=0



Now we are in a pos1t10n to apply Lemma 5, with xp4m, X0, ¢ (0),
Dk ¢ and Dk %c([) in the roles of x,y, ¢y, Ty, Ty, re-

spectively. At the cost of 2n + 1 flips, we arrive at

n+m
Z xn+mal Z xn+mb]) ® (Z (f))
Jj=0 =1
n ) ) m . n+m-—1 xi
+ ((x(l) = Xpim) @i ® (Z Xpmbi) ® ( f 7+m ([)))
i=1 7=0 =1 X0~ *n+m
n m i
(Z x(’)a,) ® (Z xéb]) ®c©®
i=0 =)
n+m-—1 n ) m
o 2 (O © Y ! sttty 060
=1 \i=0 i=1

Next, we move a factor of (xi x;, +m) from the third factor to the
first factor in each summand of the sum in the second row, so that
we can apply Lemma 5 again. After altogether n+m —1 applications
of Lemma 5, we arrive at

n m
foﬁmal Zx +mbj) ) @ (c(mm=1) y c(mem)y
i=0 Jj=0

n

Z ( Xn+m—-1 " n+m)al

i=1

+

(> byl @ c<"+'"-1>)
=0

=0

3
“Ms

m

+(Z alxn+m 1) ® Z(x£+m—l -

i=0 j=1

x{n_'_n)bj ® c(tm=1),

Using n — 1 reductions, the sum in the second line can be merged
into a single term

n m

. . : 1
Z(X;Hmfl = Xn4m)ai ® (Z x{l+mbj) ® cmm),
i=1 =)

where the summation sign is now understood as part of the first
factor. Flip this line with the first line to obtain

n

(Z n+mal Z xn+m ® C(n+m)
i=0
n . m X
(D Xhem-1i) @ (D Xhmbj) ® Y
i=0 j=0
n+m—2 n
+ Z ((Zx[a,)®(2ijj)®c([))
n . m )
+(Z xll1+m—1ai) ® (Z(xyj1+m—1 m+n)b ) ® C(n+m71)‘
i=0 j=1

Finally, we apply a reduction to the second and the last row to
arrive at the desired tensor representation.

If F(n, m) denotes the total number of flips we used, then we
have

Ind.Hyp.
—_—~—
F(n,m)=nm+(n—-1)(m—-1)+n+F(n,m—-1)

Lemma 4

+(n+m—-1)x (2n+1)+1.
———
Lemma 5

It can be easily checked that mn(2n+2m+1) matches this recurrence
and the initial values, so we have F(n, m) = mn(2n + 2m + 1) for all
n, m.

It is also clear that there are altogether nm reductions, because
we start from a tensor of length (n + 1)(m + 1) and we finish with
atensor oflengthn+m—1,andnm = (n+1)(m+1) — (n+m-1).
This completes the proof. =

5 SMALL FIELDS

Unlike Karatsuba’s algorithm, which works for every ground do-
main, the Toom-Cook representations of the polynomial multipli-
cation tensor only exist when the ground field is sufficiently large:
Thm. 3 requires K to contain at least n + m + 1 distinct elements
that can serve as base points for the evaluation and interpolation.

What happens if K is smaller, for example, for K = Z»? We have
adapted the software used by Kauers and Moosbauer [11] to the
polynomial case and used it to search for low rank representations
of the polynomial multiplication tensor for this case. We also in-
cluded some of the improvements proposed in [2]. The results are
given in the following table. For example, for the degrees n = 3 and
m = 4 we found a representation of rank 12.

1 2 3 4 5 6 7 8 9 10

3% 5% 6 8*  9f 11* 12* 14* 15% 17* 1
6* 8% 10 11* 13* 15 17 19" 21" 2

9* 12* 13* 15* 17* 19% 21* 23" 3

13* 16* 18* 19* 227 22 25 4

17t 20% 22% 247 26° 28 5

22t 24 260 28 30 6

260 28 32 37 7

32 3 52 8

39 64 9

66 10

We tried to extend the schemes we found for the field Z; using
Hensel lifting to schemes with coefficients in Zy20. Then we applied
rational reconstruction to obtain schemes with coefficients in Q, or,
ideally, with coefficients in Z. Schemes with coefficients in Z are of
particular interest because they apply to every ground ring, in par-
ticular to other small fields like Z3 or Zs. Schemes with coefficients
in Q only apply to other fields whose characteristic does not divide
the denominator of any coefficient.

For the schemes marked with a star, the extension to integer
coefficients was successful. For the schemes marked with a plus,
rational reconstruction led to coefficients in Z[ 105] This means
that these schemes apply to fields with characteristic other than
3,5,7. For the schemes marked with a dot, we were able to lift
the coefficients to Z,2, but not to Q. The schemes without any
decoration did not admit Hensel lifting.

The first two rows of the table are easily explained.



THEOREM 6. (1) In the flip graph for polynomial multiplication
over an arbitrary field there is a path that leads from the
standard representation for degrees n and 1 to a representation
of rank [%(n +1)].

(2) In the flip graph for polynomial multiplication over an arbi-
trary field there is a path that leads from the standard rep-
resentation for degreesn > 5 and 2 to a representation of
rank 2n + 1.

Proor. We proceed by induction on n.

(1) For small n, the claim is confirmed by the computation. The
large n, the claim follows from the observations that increas-
ing n by 1 raises the rank by no more than 2 and increasing
n by 2 raises the rank by no more than 3.

The first observation simply follows from

1
iz ®bj®ci+j
L
=ZZai®bj®ci+j

i=0 j=0

+ an+1 ® bo ® cp1 + an+1 ® b1 ® cpy2,

and the second observation follows from
n+2 1

Zzai®bj®ci+j

i=0 j=0

1
Z ®bj ® Citj
Jj=0

n+1 ® bo ® cpt1 + an+1 ® b1 ® cpy2

: HM:

+ an+2 ® by ® cpt2 + ant2 ® b1 ® Cpys

:ZZal®bJ®c,+J

i=0 j=
+an+1 ® by ® (cn+1 — cn+2)
+ (an+1 + an+2) ® (bo + b1) ® cpaz
+an+2 ® b1 ® (cn+3 — cn+2).
(2) For small n, the claim is confirmed by the computation. The

large n, the claim follows from the observation that increas-
ing n by 3 raises the rank by no more than 6. This follows

from
n+3 2
ZZai ®bj ®citj
i=0 j=0
n 2 n+3 2
= ai®bj®c,-+j+ Z Zai®bj®c,-+j
i=0 j=0 i=n+1 j=0

and the fact that the multiplication of two quadratic polyno-
mials has rank 6 according to the computation.

Flip graphs are useful for finding low-rank tensor representa-
tions, but it is not clear how to use the technique for checking
whether an optimum has been reached. It could always be that we
fail to find a representation with a lower rank because either the

better scheme is not reachable without splits or they are too well
hidden in the graph. For example, according to the table above, for
K =7Zj and n = m = 2 we only find a representation of rank 6
using flip graphs, while for larger fields, there is a representation
of rank 5. Is the result found by the flip graph search optimal for
K = Z,, or did we miss a better scheme?

In order to answer this question, we can search for a scheme of
rank 5 by solving a nonlinear system. Consider a representation
with undetermined coefficients,

5 2 2 4
Z(Z ae,iao) ® (Z ﬁe,jbj) ® (Z Y[,kck)’
=1 \i=0 Jj=0 k=0

equate it to the polynomial multiplication tensor

2 2
Zzai®bj®ci+j,

i=0 j=0

and compare coefficients. This leads to the system of equations

5
Z atifejyei = ivjk
=1

fori,j=0,1,2and k =0,...,
delta. The analogous equations for the matrix multiplication tensor
are known as the Brent equations [5]. In [9], Heule, Kauers, and
Seidl found many new representations of the matrix multiplication
tensor for 3 X 3 matrices by translating the equations into a boolean
formula and solving it using a SAT solver. Here we used a SAT solver
to prove that for K = Z; and n = m = 2, there is no representation
of rank 5. Some further representations can be proven to be optimal
in the same way:

4, where § refers to the Kronecker

THEOREM 7. For K = Zj, the flip graph for the polynomial mul-
tiplication tensor has a path from the standard representation to an
representation of minimal rank for every

(n.m) € {(1,1),(1,2), (1,3),(1,4), (1,5),(2,2), (2,3), (2,4), (3,3) }.

Proor. For all these pairs (n,m), we were able to prove with
a SAT solver that there is no representation of smaller rank than
what was found by the flip graph search as indicated in the table
above. m

We do not believe that all the rank bounds for higher degrees
reported in the table are tight. Like in the case of matrix multiplica-
tion [2, 11, 12], searching in the flip graph becomes more and more
cumbersome with increasing tensor size.

6 CONCLUSION

We have seen that the concept of flip graphs also works well for the
polynomial multiplication tensor. If the ground field is sufficiently
large, it is capable of finding, at least in principle, an optimal repre-
sentation starting from the standard representation in a relatively
small number of steps.

For fields with more than two elements, we also have to take
into account that constant factors can be freely moved between the
components of a rank-one tensor: (au) v @ w =u® (av) @ w =
u Qv ® (aw). We made free use of this relation in the construction
of the path. A search engine that follows a random path in the
flip graph would somehow have to cope with this freedom, and



it is unclear what is the best way of doing this. This may be an
explanation why an automated search in the flip graph works best
for K = Z,.

For this case, we have found low-rank tensor representations for
various small values of n and m. For some of them, we were able
to show that the representations are optimal, and hence that the
rank of the polynomial multiplication tensor over Z; is sometimes
strictly larger than the rank over larger fields. To get a clearer pic-
ture of the nature of the polynomial multiplication tensor and of
the structure of flip graphs, it would also be interesting to specif-
ically search for low rank representations for other small fields,
e.g., Z3,Zs, or Zy, in particular for those degrees where Hensel-
lifting and rational reconstruction so far only led to schemes with
coefficients in Z[ﬁ].

Moreover, flip graphs could be used to analyze the tensor ranks
for certain types of non-commutative polynomial multiplication,
i.e., the multiplication in a Weyl algebra. For large sizes, it is known
that the complexity of multiplication there is connected to the
complexity of matrix multiplication [4]. For small sizes, there may
however be discrepancies.

Finally, the matrix multiplication tensor is of pivotal interest. For
this tensor, it remains unclear whether it is always possible to reach
an optimal representation starting from the standard representation
(without splits). If so, we would like to know a bound on the length
of the shortest path and perhaps make some statements about its
structure. Such understanding might be helpful for the design of
more efficient search techniques that could help to find low rank
tensor representations for matrix multiplication tensors of sizes
that are currently out of reach.
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