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ABSTRACT
Flip graphs were recently introduced in order to discover new ma-

trix multiplication methods for matrix sizes. The technique applies

to other tensors as well. In this paper, we explore how it performs

for polynomial multiplication.
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1 INTRODUCTION
Matrix multiplication can be viewed as a bilinear map

𝐾𝑛×𝑘 × 𝐾𝑘×𝑚 → 𝐾𝑛×𝑚, (𝐴, 𝐵) ↦→ 𝐴𝐵.

As such, it can also be described as an element of the tensor product

space𝐾𝑛×𝑘 ⊗𝐾𝑘×𝑚⊗𝐾𝑛×𝑚
. Indeed, if we write 𝑎𝑖, 𝑗 for the element

of 𝐾𝑛×𝑘
having a 1 at position (𝑖, 𝑗) and zeros in all other positions,

and we write 𝑏𝑖, 𝑗 and 𝑐𝑖, 𝑗 for the elements of 𝐾𝑘×𝑚
and 𝐾𝑛×𝑚

defined analogously, then the matrix multiplication tensor can be

written as

𝑛∑︁
𝑢=1

𝑘∑︁
𝑣=1

𝑚∑︁
𝑤=1

𝑎𝑢,𝑣 ⊗ 𝑏𝑣,𝑤 ⊗ 𝑐𝑢,𝑤 .

This is a sum of 𝑛𝑘𝑚 “pure” tensors, i.e., tensors that can be written

in the form𝑀 ⊗ 𝑀′ ⊗ 𝑀′′
for certain𝑀 ∈ 𝐾𝑛×𝑘

,𝑀′ ∈ 𝐾𝑘×𝑚
and

𝑀′′ ∈ 𝐾𝑛×𝑘
.

There are other, less obvious ways to write the matrix multipli-

cation tensor as a sum of pure tensors. The rank of a tensor 𝑇 is
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defined as the minimal number of pure tensors such that 𝑇 is the

sum of these tensors. Pure tensors are therefore tensors of rank 1.

The quest for fast matrix multiplication algorithms boils down

to the question what the rank of the matrix multiplication tensor is.

We do not know. For 𝑛, 𝑘,𝑚 all equal and asymptotically large, the

rank is 𝑂 (𝑛𝜔 ) for a certain number 𝜔 which is known to be less

than 2.371 [1, 18]. For various small and specific values of 𝑛, 𝑘,𝑚,

Sedoglavic [14] keeps track of the best known upper bounds for

the corresponding ranks.

Low rank tensor decompositions for small and specific matrix

formats can be found in several ways. Some have been found by

hand [10, 13, 17], some by numerical techniques [15, 16], some by

SAT solvers [6, 8, 9], some by machine learning [7]. Most recently,

Kauers and Moosbauer [11] proposed the idea of flip graphs for

searching for such schemes. The idea of flip graphs is summarized

in Section 2 below.

These search techniques are not restricted to the matrix multi-

plication tensor but can also be applied to other bilinear maps. For

example, if 𝐾 [𝑥]≤𝑛 denotes the vector space of all polynomials of

degree at most 𝑛, then polynomial multiplication can be viewed as

a bilinear map

𝐾 [𝑥]≤𝑛 × 𝐾 [𝑥]≤𝑚 → 𝐾 [𝑥]≤𝑛+𝑚

and thus as an element of the tensor product

𝐾 [𝑥]≤𝑛 ⊗ 𝐾 [𝑥]≤𝑚 ⊗ 𝐾 [𝑥]≤𝑛+𝑚 .

Stated in this language, the multiplication tensor for 𝑛 = 𝑚 = 1

reads

𝑎0 ⊗ 𝑏0 ⊗ 𝑐0
+ 𝑎1 ⊗ 𝑏0 ⊗ 𝑐1
+ 𝑎0 ⊗ 𝑏1 ⊗ 𝑐1
+ 𝑎1 ⊗ 𝑏1 ⊗ 𝑐2 .

By adding the term 𝑎0 ⊗ 𝑏0 ⊗ 𝑐1 to the second summand and sub-

tracting it from the first, and by adding the term 𝑎1 ⊗ 𝑏1 ⊗ 𝑐1 to the
third summand and subtracting it from the fourth, we can see that

the tensor can also be written as follows:

𝑎0 ⊗ 𝑏0 ⊗ (𝑐0 − 𝑐1)
+ (𝑎0 + 𝑎1) ⊗ 𝑏0 ⊗ 𝑐1
+ (𝑎0 + 𝑎1) ⊗ 𝑏1 ⊗ 𝑐1
+ 𝑎1 ⊗ 𝑏1 ⊗ (𝑐2 − 𝑐1).



Now the second and the third summand can be merged into one,

and we obtain

𝑎0 ⊗ 𝑏0 ⊗ (𝑐0 − 𝑐1)
+ (𝑎0 + 𝑎1) ⊗ (𝑏0 + 𝑏1) ⊗ 𝑐1
+ 𝑎1 ⊗ 𝑏1 ⊗ (𝑐2 − 𝑐1) .

This is exactly Karatsuba’s algorithm in tensor notation, derived

with the idea of flip graphs.

The purpose of this paper is to explore more generally how the

flip graph technique performs for the polynomial multiplication

tensor. Polynomial multiplication is much better understood than

matrix multiplication. In particular, we know that the tensor rank

for multiplying polynomials of degree 𝑛 with polynomials of degree

𝑚 (over a sufficiently large coefficient field) is equal to 𝑛 +𝑚 − 1.

Our goal is not to use flip graphs to learn something new about

polynomial multiplication, but to use polynomial multiplication

to learn something new about flip graphs. Our main result is that

the flip graph technique can find the best possible multiplication

algorithms (again assuming a sufficiently large coefficient field),

and to bound the length of the path from the standard algorithm

to the optimal algorithm. In addition, in Section 5 we report on

some experiments we did searching for polynomial multiplication

algorithms for the coefficient field Z2.

2 TENSORS AND FLIP GRAPHS
Recall that the tensor product 𝑈 ⊗ 𝑉 ⊗𝑊 of three vector spaces

𝑈 ,𝑉 ,𝑊 over some field 𝐾 consists of all 𝐾-linear combinations of

equivalence classes of elements of𝑈 ×𝑉 ×𝑊 subject to the relations

(𝑢1 + 𝑢2, 𝑣,𝑤) = (𝑢1, 𝑣,𝑤) + (𝑢2, 𝑣,𝑤)
(𝑢, 𝑣1 + 𝑣2,𝑤) = (𝑢, 𝑣1,𝑤) + (𝑢, 𝑣2,𝑤)
(𝑢, 𝑣,𝑤1 +𝑤2) = (𝑢, 𝑣,𝑤1) + (𝑢, 𝑣,𝑤2)

𝛼 (𝑢, 𝑣,𝑤) = (𝛼𝑢, 𝑣,𝑤) = (𝑢, 𝛼𝑣,𝑤) = (𝑢, 𝑣, 𝛼𝑤)

for all 𝛼 ∈ 𝐾 , 𝑢,𝑢1, 𝑢2 ∈ 𝑈 , 𝑣, 𝑣1, 𝑣2 ∈ 𝑉 , and𝑤,𝑤1,𝑤2 ∈𝑊 . Instead

of (𝑢, 𝑣,𝑤), we write 𝑢 ⊗ 𝑣 ⊗𝑤 . Every element of the tensor product

𝑈 ⊗ 𝑉 ⊗𝑊 can thus be written in the form

(𝑢1 ⊗ 𝑣1 ⊗𝑤1) + · · · + (𝑢𝑘 ⊗ 𝑣𝑘 ⊗𝑤𝑘 )

for certain 𝑢1, . . . , 𝑢𝑘 ∈ 𝑈 , 𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 , and𝑤1, . . . ,𝑤𝑘 ∈𝑊 .

If a tensor 𝑇 is given in this form, the question is whether it

can also be written as a sum of fewer than 𝑘 tensors of the form

𝑢 ⊗ 𝑣 ⊗𝑤 . If this is not the case, then 𝑘 is called the rank of 𝑇 .

Using the relations quoted above, it is easy to turn a given tensor

representation with 𝑘 terms into one with 𝑘 + 1 terms. To do so,

just pick one of its terms, say 𝑢 ⊗ 𝑣 ⊗𝑤 , write 𝑢 as 𝑢′ +𝑢′′ for some

vectors 𝑢′, 𝑢′′ ∈ 𝑈 , and replace the term 𝑢 ⊗ 𝑣 ⊗𝑤 by the two terms

𝑢′ ⊗ 𝑣 ⊗𝑤 and 𝑢′′ ⊗ 𝑣 ⊗𝑤 . This operation is called a split.
It is less obvious whether we can go in the other direction. If we

are lucky and the given tensor representation contains two terms

𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖 and𝑢 𝑗 ⊗ 𝑣 𝑗 ⊗𝑤 𝑗 that agree in two positions, say 𝑣𝑖 = 𝑣 𝑗
and 𝑤𝑖 = 𝑤 𝑗 , then we can merge them into (𝑢𝑖 + 𝑢 𝑗 ) ⊗ 𝑣𝑖 ⊗ 𝑤𝑖 .

This operation is called a reduction. A reduction is a split applied

backwards.

If we are not lucky and the given tensor representation does not

allow for a reduction, this does in general not mean that 𝑘 is the

tensor rank. We have seen this in the example in the introduction:

even though the tensor representation

𝑎0 ⊗ 𝑏0 ⊗ 𝑐0 + 𝑎1 ⊗ 𝑏0 ⊗ 𝑐1 + 𝑎0 ⊗ 𝑏1 ⊗ 𝑐1 + 𝑎1 ⊗ 𝑏1 ⊗ 𝑐2
does not admit a reduction, the tensor can also be written as

𝑎0 ⊗ 𝑏0 ⊗ (𝑐0 − 𝑐1) + (𝑎0 +𝑎1) ⊗ (𝑏0 +𝑏1) ⊗ 𝑐1 +𝑎1 ⊗ 𝑏1 ⊗ (𝑐2 − 𝑐1),

so the rank is (at most) 3.

As we saw, this representation can be found with the help of

an operation that is applicable to any two terms 𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖 and

𝑢 𝑗 ⊗𝑣 𝑗 ⊗𝑤 𝑗 that agree in one position, say𝑢𝑖 = 𝑢 𝑗 . For every choice

𝜆 ∈ 𝐾 , we have

𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖 + 𝑢𝑖 ⊗ 𝑣 𝑗 ⊗𝑤 𝑗

= 𝑢𝑖 ⊗ (𝑣𝑖 − 𝜆𝑣 𝑗 ) ⊗𝑤𝑖 + 𝑢𝑖 ⊗ 𝑣 𝑗 ⊗ (𝑤 𝑗 + 𝜆𝑤𝑖 ),

so we can replace the two terms in the first row by the two terms

in the second. This operation is called a flip.
In summary, a split increases the number of terms by one, a

reduction decreases the number of terms by one, and a flip leaves

the number of terms unchanged. In fact, a flip can be decomposed

into a split followed by a reduction:

𝑢𝑖 ⊗ 𝑣𝑖 ⊗𝑤𝑖 + 𝑢𝑖 ⊗ 𝑣 𝑗 ⊗𝑤 𝑗

= 𝑢𝑖 ⊗ (𝑣𝑖 − 𝜆𝑣 𝑗 + 𝜆𝑣 𝑗 ) ⊗𝑤𝑖 + 𝑢𝑖 ⊗ 𝑣 𝑗 ⊗𝑤 𝑗
split

= 𝑢𝑖 ⊗ (𝑣𝑖 − 𝜆𝑣 𝑗 ) ⊗𝑤𝑖 + 𝑢𝑖 ⊗ (𝜆𝑣 𝑗 ) ⊗𝑤𝑖 + 𝑢𝑖 ⊗ 𝑣 𝑗 ⊗𝑤 𝑗

= 𝑢𝑖 ⊗ (𝑣𝑖 − 𝜆𝑣 𝑗 ) ⊗𝑤𝑖 + 𝑢𝑖 ⊗ 𝑣 𝑗 ⊗ (𝜆𝑤𝑖 ) + 𝑢𝑖 ⊗ 𝑣 𝑗 ⊗𝑤 𝑗
reduction

= 𝑢𝑖 ⊗ (𝑣𝑖 − 𝜆𝑣 𝑗 ) ⊗𝑤𝑖 + 𝑢𝑖 ⊗ 𝑣 𝑗 ⊗ (𝑤 𝑗 + 𝜆𝑤𝑖 ) .

Note also that flips are reversible: if a tensor representation 𝑇 ′
can

be reached from a tensor representation 𝑇 by applying a flip, then

𝑇 can also be reached from 𝑇 ′
via a flip.

In [11], Kauers and Moosbauer introduced the flip graph of a

tensor 𝑇 ∈ 𝑈 ⊗ 𝑉 ⊗𝑊 . Every tensor representation is a vertex in

this graph, and two vertices are connected if one can be reached

from the other by either a flip or a reduction. For some matrix

multiplication tensors, they found shorter representations than

previously known by performing a random search in the flip graph.

Arai, Ichikawa and Hukushima [2] enriched the flip graph with

some edges representing splits and found further improvements

for some matrix formats with their variant.

Having edges for splits in the graph has advantages and disad-

vantages. An advantage is that in the version with split edges, the

graph is strongly connected, i.e., any tensor representation can be

reached from any other via a finite path. This was shown in Thm. 9

of [11] for the matrix multiplication tensor but applies mutatis
mutandis to every tensor. A disadvantage is that for every tensor

representations there is an extremely large number of options for

applying a split. In a random search, it is not clear how to make a

reasonable choice.

Flips can be seen as an attempt to make reasonable choices for

splits: only choose such splits that allow for doing a reduction in

the next step, because in this combination, the number of terms in

the tensor representation does not go up. However, with only flips

and reductions, the graph is no longer strongly connected. See the

discussion of Kauers and Moosbauer [11] for examples.

For matrix multiplication tensors, we do not know whether a

representation of minimal length can always be reached from the



standard algorithm using only flips and reductions. Here we will

show that flips and reductions are sufficient for polynomial multi-

plication tensors.

3 POLYNOMIAL MULTIPLICATION
For a field 𝐾 , we consider the multiplication of a polynomial of

degree at most 𝑛 with a polynomial of degree at most𝑚. For 𝑘 ∈ N,
we write𝐾 [𝑥]≤𝑘 for the𝐾-vector space of all polynomials of degree

at most 𝑘 . A basis of this vector space is {1, 𝑥, . . . , 𝑥𝑘 }. We are

dealing with three such spaces: 𝐾 [𝑥]≤𝑛 , 𝐾 [𝑥]≤𝑚 , and 𝐾 [𝑥]≤𝑛+𝑚 ,

and it will be helpful to give distinct names to the basis elements of

these three spaces. The basis elements 1, 𝑥, . . . , 𝑥𝑛 of 𝐾 [𝑥]≤𝑛 will

be called 𝑎0, . . . , 𝑎𝑛 , those of 𝐾 [𝑥]≤𝑚 will be called 𝑏0, . . . , 𝑏𝑚 , and

those of 𝐾 [𝑥]≤𝑛+𝑚 will be called 𝑐0, . . . , 𝑐𝑛+𝑚 .

Definition 1. The tensor
𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝑎𝑖 ⊗ 𝑏 𝑗 ⊗ 𝑐𝑖+𝑗 ∈ 𝐾 [𝑥]≤𝑛 ⊗ 𝐾 [𝑥]≤𝑚 ⊗ 𝐾 [𝑥]≤𝑛+𝑚

is called the polynomial multiplication tensor for degrees 𝑛 and𝑚
over 𝐾 , and this sum is called its standard representation.

Polynomial multiplication is well understood, and asymptotically

fast algorithms for polynomial multiplication are well known. They

are a staple of computer algebra and covered in every textbook on

computer algebra (cf. e.g., Chapter 8 of [19]). Fast algorithms for

polynomial multiplication are based on the principle of evaluation

and interpolation: if 𝑝 and 𝑞 are polynomials of respective degrees 𝑛

and𝑚 and 𝑓 = 𝑝𝑞 is their product, then 𝑓 is the unique polynomial

whose values at 𝑛 +𝑚 + 1 distinct points 𝑥0, . . . , 𝑥𝑛+𝑚 ∈ 𝐾 are the

products 𝑝 (𝑥𝑖 )𝑞(𝑥𝑖 ) of the values of 𝑝 and 𝑞 at these points.

According to Lagrange’s interpolation formula, we have

𝑓 (𝑥) =
𝑛+𝑚∑︁
𝑘=0

𝑝 (𝑥𝑘 )𝑞(𝑥𝑘 )
∏
ℓ≠𝑘

𝑥 − 𝑥ℓ
𝑥𝑘 − 𝑥ℓ

.

In order to express this using the notation 𝑐0, . . . , 𝑐𝑛+𝑚 for the

basis elements of 𝐾 [𝑥]≤𝑛+𝑚 , let 𝛼ℓ,𝑘 be the coefficient of 𝑥 ℓ in∏
ℓ≠𝑘

𝑥−𝑥ℓ
𝑥𝑘−𝑥ℓ , so that

𝑐 (𝑘 ) :=
∏
ℓ≠𝑘

𝑥 − 𝑥ℓ
𝑥𝑘 − 𝑥ℓ

=

𝑛+𝑚∑︁
ℓ=0

𝛼ℓ,𝑘𝑐ℓ . (1)

We then have

𝑛+𝑚∑︁
𝑘=0

( ( 𝑛∑︁
𝑖=0

𝑥𝑖
𝑘
𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑥
𝑗

𝑘
𝑏 𝑗
)
⊗ 𝑐 (𝑘 )

)
(2)

=

𝑛+𝑚∑︁
𝑘=0

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

(
(𝑥𝑖

𝑘
𝑎𝑖 ) ⊗ (𝑥 𝑗

𝑘
𝑏 𝑗 ) ⊗ 𝑐 (𝑘 )

)
=

𝑛+𝑚∑︁
𝑘=0

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

(
𝑎𝑖 ⊗ 𝑏 𝑗 ⊗ (𝑥𝑖+𝑗

𝑘
𝑐 (𝑘 ) )

)
=

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝑎𝑖 ⊗ 𝑏 𝑗 ⊗
𝑛+𝑚∑︁
𝑘=0

𝑥
𝑖+𝑗
𝑘
𝑐 (𝑘 ) .

According to the following lemma, this is exactly the polynomial

multiplication tensor.

Lemma 2. In the notation introduced above, we have

𝑛+𝑚∑︁
𝑘=0

𝑥
𝑖+𝑗
𝑘
𝑐 (𝑘 ) = 𝑐𝑖+𝑗

for all 𝑖 ∈ {0, . . . , 𝑛} and all 𝑗 ∈ {0, . . . ,𝑚}.

Proof. Consider the polynomials 𝑝 = 𝑎𝑖 = 𝑥
𝑖
and 𝑞 = 𝑏 𝑗 = 𝑥

𝑗
.

Their product is 𝑝𝑞 = 𝑥𝑖+𝑗 = 𝑐𝑖+𝑗 . The values of 𝑝𝑞 at 𝑥0, . . . , 𝑥𝑛+𝑚
are 𝑥

𝑖+𝑗
0
, . . . , 𝑥

𝑖+𝑗
𝑛+𝑚 . Therefore, by the interpolation formula quoted

above, we have

𝑐𝑖+𝑗 = 𝑝𝑞 =

𝑛+𝑚∑︁
𝑘=0

𝑝 (𝑥𝑘 )𝑞(𝑥𝑘 )𝑐 (𝑘 ) =
𝑛+𝑚∑︁
𝑘=0

𝑥
𝑖+𝑗
𝑘
𝑐 (𝑘 ) ,

as claimed.

The representation (2) is the basis of the multiplication algo-

rithms of Toom and Cook. We therefore call it the Toom-Cook

representation of the polynomial multiplication tensor. It implies

that the rank of the polynomial multiplication tensor is at most

𝑛 +𝑚 + 1. Since 𝑐 (0) , . . . , 𝑐 (𝑛+𝑚)
are linearly independent over 𝐾 ,

the rank cannot be smaller than 𝑛 +𝑚 + 1, so the Toom-Cook repre-

sentation is optimal with respect to the number of multiplications

(see [3, 20] for a discussion of the required number of additions).

4 THERE IS A PATH
The purpose of this section is to prove the following result about

the flip graph for polynomial multiplication.

Theorem 3. In the flip graph for polynomial multiplication over
a field containing at least 𝑛 +𝑚 + 1 distinct elements 𝑥0, . . . , 𝑥𝑛+𝑚 ,
there is a path consisting of at most 𝑛𝑚(2𝑛 + 2𝑚 + 1) flips and 𝑛𝑚
reductions that leads from the standard representation

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

(
𝑎𝑖 ⊗ 𝑏 𝑗 ⊗ 𝑐𝑖+𝑗

)
of rank (𝑛 + 1) (𝑚 + 1) to the Toom-Cook representation

𝑛+𝑚∑︁
𝑘=0

( ( 𝑛∑︁
𝑖=0

𝑥𝑖
𝑘
𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑥
𝑗

𝑘
𝑏 𝑗
)
⊗ 𝑐 (𝑘 )

)
of rank 𝑛 +𝑚 + 1, with 𝑐 (𝑘 ) as introduced in (1).

Since the proof of Thm. 3 is somewhat technical, we first illustrate

the construction for the special case 𝑛 = 𝑚 = 1. Start with the

standard representation and use the expressions from Lemma 2 for

the 𝑐𝑖 :

𝑎0 ⊗ 𝑏0 ⊗ (𝑐 (0) + 𝑐 (1) + 𝑐 (2) )

+ 𝑎1 ⊗ 𝑏0 ⊗ (𝑥0𝑐 (0) + 𝑥1𝑐 (1) + 𝑥2𝑐 (2) )

+ 𝑎0 ⊗ 𝑏1 ⊗ (𝑥0𝑐 (0) + 𝑥1𝑐 (1) + 𝑥2𝑐 (2) )

+ 𝑎1 ⊗ 𝑏1 ⊗ (𝑥2
0
𝑐 (0) + 𝑥2

1
𝑐 (1) + 𝑥2

2
𝑐 (2) )

We flip the first row with the second and the third with the fourth

to the effect of eliminating 𝑐 (2) from the second and the fourth



rows. This gives

(𝑎0 + 𝑥2𝑎1) ⊗ 𝑏0 ⊗ (𝑐 (0) + 𝑐 (1) + 𝑐 (2) )

+ 𝑎1 ⊗ 𝑏0 ⊗ ((𝑥0 − 𝑥2)𝑐 (0) + (𝑥1 − 𝑥2)𝑐 (1) )

+ (𝑎0 + 𝑥2𝑎1) ⊗ 𝑏1 ⊗ (𝑥0𝑐 (0) + 𝑥1𝑐 (1) + 𝑥2𝑐 (2) )

+ 𝑎1 ⊗ 𝑏1 ⊗ (𝑥0 (𝑥0 − 𝑥2)𝑐 (0) + 𝑥1 (𝑥1 − 𝑥2)𝑐 (2) ).

Now we flip the first row with the third and the second with the

fourth to the effect of eliminating 𝑐 (1) from the second and the

fourth rows. This gives

(𝑎0 + 𝑥2𝑎1) ⊗ (𝑏0 + 𝑥1𝑏1) ⊗ (𝑐 (0) + 𝑐 (1) + 𝑐 (2) )

+ 𝑎1 ⊗ (𝑏0 + 𝑥1𝑏1) ⊗ ((𝑥0 − 𝑥2)𝑐 (0) + (𝑥1 − 𝑥2)𝑐 (1) )

+ (𝑎0 + 𝑥2𝑎1) ⊗ 𝑏1 ⊗ ((𝑥0 − 𝑥1)𝑐 (0) + (𝑥2 − 𝑥1)𝑐 (2) )

+ 𝑎1 ⊗ 𝑏1 ⊗ ((𝑥0 − 𝑥1) (𝑥0 − 𝑥2)𝑐 (0) ),

where the fourth row can also be written as

((𝑥0 − 𝑥1)𝑎1) ⊗ ((𝑥0 − 𝑥2)𝑏1) ⊗ 𝑐 (0) .

Flip this row with the third to the effect of eliminating 𝑐 (0) from
the third row. This gives

(𝑎0 + 𝑥2𝑎1) ⊗ (𝑏0 + 𝑥1𝑏1) ⊗ (𝑐 (0) + 𝑐 (1) + 𝑐 (2) )

+ 𝑎1 ⊗ (𝑏0 + 𝑥1𝑏1) ⊗ ((𝑥0 − 𝑥2)𝑐 (0) + (𝑥1 − 𝑥2)𝑐 (1) )

+ (𝑎0 + 𝑥2𝑎1) ⊗ 𝑏1 ⊗ ((𝑥2 − 𝑥1)𝑐 (2) )

+ (𝑎0 + 𝑥0𝑎1) ⊗ 𝑏1 ⊗ ((𝑥0 − 𝑥1)𝑐 (0) ),

where the third and the fourth rows can also be written as

+ (𝑎0 + 𝑥2𝑎1) ⊗ ((𝑥2 − 𝑥1)𝑏1) ⊗ 𝑐 (2)

+ (𝑎0 + 𝑥0𝑎1) ⊗ ((𝑥0 − 𝑥1)𝑏1) ⊗ 𝑐 (0) .

Flip the third row with the first to the effect of eliminating 𝑐 (2)

from the first row. This gives

(𝑎0 + 𝑥2𝑎1) ⊗ (𝑏0 + 𝑥1𝑏1) ⊗ (𝑐 (0) + 𝑐 (1) )

+ 𝑎1 ⊗ (𝑏0 + 𝑥1𝑏1) ⊗ ((𝑥0 − 𝑥2)𝑐 (0) + (𝑥1 − 𝑥2)𝑐 (1) )

+ (𝑎0 + 𝑥2𝑎1) ⊗ (𝑏0 + 𝑥2𝑏1) ⊗ 𝑐 (2)

+ (𝑎0 + 𝑥0𝑎1) ⊗ ((𝑥0 − 𝑥1)𝑏1) ⊗ 𝑐 (0) .

Rewrite the second row into

((𝑥1 − 𝑥2)𝑎1) ⊗ (𝑏0 + 𝑥1𝑏1) ⊗ ( 𝑥0 − 𝑥2
𝑥1 − 𝑥2

𝑐 (0) + 𝑐 (1) )

and flip this row with the first to the effect of eliminating 𝑐 (1) from
the second row. This gives

(𝑎0 + 𝑥1𝑎1) ⊗ (𝑏0 + 𝑥1𝑏1) ⊗ (𝑐 (0) + 𝑐 (1) )

+ ((𝑥1 − 𝑥2)𝑎1) ⊗ (𝑏0 + 𝑥1𝑏1) ⊗ ( 𝑥0 − 𝑥1
𝑥1 − 𝑥2

𝑐 (0) )

+ (𝑎0 + 𝑥2𝑎1) ⊗ (𝑏0 + 𝑥2𝑏1) ⊗ 𝑐 (2)

+ (𝑎0 + 𝑥0𝑎1) ⊗ ((𝑥0 − 𝑥1)𝑏1) ⊗ 𝑐 (0) .

Write the second row again as

((𝑥0 − 𝑥1)𝑎1) ⊗ (𝑏0 + 𝑥1𝑏1) ⊗ 𝑐 (0)

and finally flip this row with the first to the effect of eliminating

𝑐 (0) from the first row. This gives

(𝑎0 + 𝑥1𝑎1) ⊗ (𝑏0 + 𝑥1𝑏1) ⊗ 𝑐 (1)

+ (𝑎0 + 𝑥0𝑎1) ⊗ (𝑏0 + 𝑥1𝑏1) ⊗ 𝑐 (0)

+ (𝑎0 + 𝑥2𝑎1) ⊗ (𝑏0 + 𝑥2𝑏1) ⊗ 𝑐 (2)

+ (𝑎0 + 𝑥0𝑎1) ⊗ ((𝑥0 − 𝑥1)𝑏1) ⊗ 𝑐 (0) .

Now a reduction is applicable to the second and the fourth row.

Although this derivation was somewhat longer than the one

presented in the introduction, it is worth pointing out that for

general 𝑛 and 𝑚, the path length announced in Thm. 3 is short

compared to the length of a path involving splits constructed as in

Thm. 9 of [11]. The construction of this path is most easily described

backwards: starting from the Toom-Cook representation, multiply

out all terms using splits, and then merge common terms using

reductions. In the Toom-Cook representation for polynomials of

degrees 𝑛 and𝑚, there are 𝑛+𝑚+1 tensors of rank one, and in each

of them, the first factor is a sum of 𝑛 + 1 terms, the second factor is

a sum of𝑚+1 terms, and the third factor is a sum of 𝑛+𝑚+1 terms.

Multiplying all of them out requires 𝑛𝑚(𝑛 +𝑚) (𝑛 +𝑚 + 1)2 splits.
To get from here to the standard representation, which consists of

(𝑛+1) (𝑚+1) terms, we need 𝑛𝑚(𝑛+𝑚) (𝑛+𝑚+1)2− (𝑛+1) (𝑚+1)
reductions. Altogether, the length of the resulting path quartic while

the length of the path of Thm. 3 is only cubic.

We now turn to the proof of Thm. 3. To prepare for it, we need

the following two lemmas.

Lemma 4. It takes no more than 𝑛𝑚 + (𝑛 − 1) (𝑚 − 1) + 𝑛 flips to
get from

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

(
𝑎𝑖 ⊗ 𝑏 𝑗 ⊗

𝑛+𝑚∑︁
ℓ=0

𝑥
𝑖+𝑗
ℓ
𝑐 (ℓ )︸         ︷︷         ︸

=𝑐𝑖+𝑗

)

to ( 𝑛∑︁
𝑖=0

𝑥𝑖𝑛+𝑚𝑎𝑖
)
⊗
( 𝑚∑︁
𝑘=0

𝑥𝑘𝑛+𝑚𝑏𝑘
)
⊗

𝑛+𝑚∑︁
ℓ=0

𝑐 (ℓ )

+
𝑛∑︁
𝑖=1

(
𝑎𝑖 ⊗

( 𝑚∑︁
𝑘=0

𝑥𝑘𝑛+𝑚𝑏𝑘
)
⊗

𝑛+𝑚−1∑︁
ℓ=0

(𝑥𝑖ℓ − 𝑥
𝑖
𝑛+𝑚)𝑐 (ℓ )

)
+

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=1

(
𝑎𝑖 ⊗

( 𝑚∑︁
𝑘=𝑗

𝑥
𝑘− 𝑗
𝑛+𝑚𝑏𝑘

)
⊗

𝑛+𝑚−1∑︁
ℓ=0

𝑥
𝑖+𝑗−1
ℓ

(𝑥ℓ − 𝑥𝑛+𝑚)𝑐 (ℓ )
)

Proof. In order to be able to refer to terms in the tensor repre-

sentations, let’s number them. We shall refer to the term 𝑎𝑖 ⊗ 𝑏 𝑗 ⊗∑𝑛+𝑚
ℓ=0 𝑥

𝑖+𝑗
ℓ
𝑐 (ℓ ) as the (𝑖, 𝑗)th term. While the terms get modified by

flips, we maintain the numbering.

We apply several groups of flips.

First, for each 𝑖 from 1 to 𝑛 and for each 𝑗 from 1 to𝑚, apply a

flip to the (𝑖, 0)th and the (𝑖, 𝑗)th term in order to eliminate the term

𝑥
𝑖+𝑗
𝑛+𝑚𝑐

(𝑛+𝑚)
from the third factor of the (𝑖, 𝑗)th term. This changes

the second factors of the terms (𝑖, 0) from 𝑏0 to 𝑏0 +𝑏1𝑥𝑛+𝑚 + · · · +
𝑏𝑚𝑥

𝑚
𝑛+𝑚 and the third factors of the terms (𝑖, 𝑗) for 𝑗 > 0 from∑𝑛+𝑚

ℓ=0 𝑥
𝑖+𝑗
ℓ
𝑐 (ℓ ) to

∑𝑛+𝑚−1
ℓ=0 (𝑥𝑖+𝑗

ℓ
− 𝑥𝑖+𝑗𝑛+𝑚)𝑐 (ℓ ) .



Second, for each 𝑗 from 1 to 𝑚 and each 𝑖 from 𝑛 down to 1,

apply a flip to the (𝑖, 𝑗)th and the (𝑖 − 1, 𝑗)th term in order to

turn the third factor

∑𝑛+𝑚−1
ℓ=0 (𝑥𝑖+𝑗

ℓ
− 𝑥𝑖+𝑗𝑛+𝑚)𝑐 (ℓ ) of the (𝑖, 𝑗)th term

to

∑𝑛+𝑚−1
ℓ=0 𝑥

𝑖+𝑗−1
ℓ

(𝑥ℓ − 𝑥𝑛+𝑚)𝑐 (ℓ ) . This has the side effect that

𝑥𝑚+𝑛-fold of the second factor of the (𝑖, 𝑗)th term is added to

the second factor of the (𝑖 − 1, 𝑗)th term. After all these flips

have been performed, the second factor of the (𝑖, 𝑗)th term is

𝑏 𝑗 + 𝑥𝑛+𝑚𝑏 𝑗+1 + · · · + 𝑥𝑚− 𝑗
𝑛+𝑚𝑏𝑚 .

Third, for each 𝑖 from 1 to 𝑛, apply a flip to the (0, 0)th and the

(𝑖, 0)th term in order to change the third factor of the (𝑖, 0)th term

from

∑𝑛+𝑚
ℓ=0 𝑥𝑖

ℓ
𝑐 (ℓ ) to

∑𝑛+𝑚−1
ℓ=0 (𝑥𝑖

ℓ
−𝑥𝑖𝑛+𝑚)𝑐 (ℓ ) . All these flips change

the first factor of the (0, 0)th term to 𝑎0 + 𝑥𝑛+𝑚𝑎1 + · · · + 𝑥𝑛𝑛+𝑚𝑎𝑛 .
At this point, we have reached the announced tensor representa-

tion. We applied 𝑛𝑚 flips in the first phase, (𝑛 − 1) (𝑚 − 1) flips in
the second phase, and 𝑛 flips in the third phase.

Lemma 5. It takes no more than 2𝑛 + 1 flips to get from( 𝑛∑︁
𝑖=0

𝑥𝑖𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑥 𝑗𝑏 𝑗
)
⊗ (𝑐𝑦 +𝑇0)

+
𝑛∑︁
𝑖=1

(
(𝑦𝑖 − 𝑥𝑖 )𝑎𝑖 ⊗

( 𝑚∑︁
𝑗=0

𝑥 𝑗𝑏 𝑗
)
⊗ (𝑐𝑦 +𝑇𝑖 )

)
+
( 𝑛∑︁
𝑖=0

𝑦𝑖𝑎𝑖
)
⊗

𝑚∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖 )𝑏𝑖 ⊗ 𝑐𝑦

to ( 𝑛∑︁
𝑖=0

𝑥𝑖𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑥 𝑗𝑏 𝑗
)
⊗ 𝑇0

+
𝑛∑︁
𝑖=1

(
(𝑦𝑖 − 𝑥𝑖 )𝑎𝑖 ⊗ (

𝑚∑︁
𝑗=0

𝑥 𝑗𝑏 𝑗 ) ⊗ 𝑇𝑖
)

+
( 𝑛∑︁
𝑖=0

𝑦𝑖𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑦 𝑗𝑏 𝑗
)
⊗ 𝑐𝑦 .

Proof. Number the terms in the tensor representation from 0

to 𝑛 + 1, so that, in particular, the 𝑖th term in this numbering is also

the 𝑖th of the sum in the second line.

First apply a flip to the 𝑖th and the 1st term, for 𝑖 = 2, . . . , 𝑛, so

that the first factor of the 1st term becomes

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑥𝑖 )𝑎𝑖 and

the third factor of the 𝑖th term (𝑖 ≥ 2) becomes 𝑇𝑖 −𝑇1. This takes
𝑛 − 1 flips.

Next, apply a flip to the 0th and the 1st term, so that the first

factor of the 1st term becomes

∑𝑛
𝑖=0 𝑦

𝑖𝑎𝑖 and the third factor of the

0th term becomes 𝑇0 −𝑇1. This takes 1 flip.
Next, apply a flip to the 1st term and the (𝑛 + 1)st term, so that

the second factor of the 𝑛 + 1st term becomes

∑𝑚
𝑗=0 𝑦

𝑗𝑏 𝑗 and the

third factor of the 1st term becomes −𝑐𝑦 +𝑇1. This takes 1 flip.
Next, apply a flip to the 0th and the 1st term, so that the third

factor of the 0st term becomes𝑇0 and the first factor of the 1st term

becomes

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑥𝑖 )𝑎𝑖 . This takes 1 flip.

Finally, apply a flip to the 𝑖th and the 1st term, for 𝑖 = 2, . . . , 𝑛,

so that the first factor of the 1st term becomes (𝑦 − 𝑥)𝑎1 and the

third factor of the 𝑖th term (𝑖 ≥ 2) becomes𝑇𝑖 . This takes 𝑛 − 1 flips.

At this point, we have reached the announced tensor representa-

tion. Altogether, we have made (𝑛 − 1) + 1 + 1 + 1 + (𝑛 − 1) = 2𝑛 + 1

flips.

Proof of Thm. 3. We apply induction on 𝑛 +𝑚. The case 𝑛 =

𝑚 = 0 serves as induction base. In this case, the tensor in question is

just 𝑎0 ⊗ 𝑏0 ⊗ 𝑐0. This is the tensor representation in the beginning

and in the end, so there obviously is a path connecting them, and it

consists of zero flips.

Now let 𝑛,𝑚 ≥ 0 be given and assume that the theorem is true

for all 𝑛′,𝑚′
with 𝑛′ +𝑚′ < 𝑛 +𝑚. Because of symmetry, we may

assume that𝑚 ≥ 𝑛. Note that this implies𝑚 ≥ 1.

We first apply the flips of Lemma 4. After introducing new vari-

ables

˜𝑏 𝑗 = 𝑏 𝑗+1 + 𝑥𝑛+𝑚𝑏 𝑗+2 + · · · + 𝑥𝑚− 𝑗
𝑛+𝑚𝑏𝑚 ( 𝑗 = 0, . . . ,𝑚 − 1)

𝑐 (ℓ ) = (𝑥ℓ − 𝑥𝑛+𝑚)𝑐 (ℓ ) (ℓ = 0, . . . , 𝑛 +𝑚 − 1),

the resuting tensor representation has the following form:

( 𝑛∑︁
𝑖=1

𝑥𝑖𝑛+𝑚𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑥
𝑗
𝑛+𝑚𝑏 𝑗

)
⊗

𝑛+𝑚∑︁
ℓ=0

𝑐 (ℓ )

+
𝑛∑︁
𝑖=1

(
𝑎𝑖 ⊗

( 𝑚∑︁
𝑗=0

𝑥
𝑗
𝑛+𝑚𝑏 𝑗

)
⊗

𝑛+𝑚−1∑︁
ℓ=0

(𝑥𝑖ℓ − 𝑥
𝑖
𝑛+𝑚)𝑐 (ℓ )

)
(3)

+
𝑛∑︁
𝑖=0

𝑚−1∑︁
𝑗=0

(
𝑎𝑖 ⊗ ˜𝑏 𝑗 ⊗

𝑛+𝑚−1∑︁
ℓ=0

𝑥
𝑖+𝑗−1
ℓ

𝑐 (ℓ )
)
.

By induction hypothesis, the double sum in the third line of (3) can

be turned into

𝑛+𝑚−1∑︁
ℓ=0

( ( 𝑛∑︁
𝑖=0

𝑥𝑖ℓ𝑎𝑖
)
⊗
(𝑚−1∑︁
𝑗=0

𝑥
𝑗
ℓ
˜𝑏 𝑗
)
⊗ 𝑐 (ℓ )

)
.

Undoing the change of variables yields

𝑛+𝑚−1∑︁
ℓ=0

( ( 𝑛∑︁
𝑖=0

𝑥𝑖ℓ𝑎𝑖
)
⊗

𝑚−1∑︁
𝑗=0

𝑗∑︁
𝑖=0

𝑥
𝑗
ℓ
𝑥
𝑖− 𝑗
𝑛+𝑚𝑏 𝑗+1 ⊗ (𝑥ℓ − 𝑥𝑛+𝑚)𝑐 (ℓ )

)
=

𝑛+𝑚−1∑︁
ℓ=0

( ( 𝑛∑︁
𝑖=0

𝑥𝑖ℓ𝑎𝑖
)
⊗

𝑚∑︁
𝑗=1

(𝑥 𝑗
ℓ
− 𝑥 𝑗𝑚+𝑛)𝑏 𝑗 ⊗ 𝑐 (ℓ )

)
.

We replace the double sum in the third row of (3) by this expression,

and in each summand of the sum in the second row, we move a fac-

tor of (𝑥𝑖
0
−𝑥𝑖𝑛+𝑚) from the third factor to the first. This transforms

the tensor representation of (3) into

( 𝑛∑︁
𝑖=0

𝑥𝑖𝑛+𝑚𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑥
𝑗
𝑛+𝑚𝑏 𝑗

)
⊗
(
𝑐 (0) +

𝑛+𝑚∑︁
ℓ=1

𝑐 (ℓ )
)

+
𝑛∑︁
𝑖=1

(
(𝑥𝑖

0
− 𝑥𝑖𝑛+𝑚)𝑎𝑖 ⊗

( 𝑚∑︁
𝑗=0

𝑥
𝑗
𝑛+𝑚𝑏 𝑗

)
⊗
(
𝑐 (0) +

𝑛+𝑚∑︁
ℓ=1

𝑥𝑖
ℓ
− 𝑥𝑖𝑛+𝑚

𝑥𝑖
0
− 𝑥𝑖𝑛+𝑚

𝑐 (ℓ )
) )

+
𝑛+𝑚−1∑︁
ℓ=0

( ( 𝑛∑︁
𝑖=0

𝑥𝑖ℓ𝑎𝑖
)
⊗

𝑚∑︁
𝑗=1

(𝑥 𝑗
ℓ
− 𝑥 𝑗𝑚+𝑛)𝑏 𝑗 ⊗ 𝑐 (ℓ )

)
.



Now we are in a position to apply Lemma 5, with 𝑥𝑛+𝑚 , 𝑥0, 𝑐
(0)

,∑𝑛+𝑚
ℓ=1 𝑐 (ℓ ) , and

∑𝑛+𝑚
ℓ=1

𝑥𝑖ℓ−𝑥𝑖𝑛+𝑚
𝑥𝑖
0
−𝑥𝑖𝑛+𝑚

𝑐 (ℓ ) in the roles of 𝑥,𝑦, 𝑐𝑦,𝑇0,𝑇1, re-

spectively. At the cost of 2𝑛 + 1 flips, we arrive at

( 𝑛∑︁
𝑖=0

𝑥𝑖𝑛+𝑚𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑥
𝑗
𝑛+𝑚𝑏 𝑗

)
⊗
(𝑛+𝑚∑︁
ℓ=1

𝑐 (ℓ )
)

+
𝑛∑︁
𝑖=1

(
(𝑥𝑖

0
− 𝑥𝑖𝑛+𝑚)𝑎𝑖 ⊗

( 𝑚∑︁
𝑗=0

𝑥
𝑗
𝑛+𝑚𝑏 𝑗

)
⊗
(𝑛+𝑚−1∑︁

ℓ=1

𝑥𝑖
ℓ
− 𝑥𝑖𝑛+𝑚

𝑥𝑖
0
− 𝑥𝑖𝑛+𝑚

𝑐 (ℓ )
) )

+
( 𝑛∑︁
𝑖=0

𝑥𝑖
0
𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑥
𝑗

0
𝑏 𝑗
)
⊗ 𝑐 (0)

+
𝑛+𝑚−1∑︁
ℓ=1

( ( 𝑛∑︁
𝑖=0

𝑥𝑖ℓ𝑎𝑖
)
⊗

𝑚∑︁
𝑗=1

(𝑥 𝑗
ℓ
− 𝑥 𝑗𝑚+𝑛)𝑏 𝑗 ⊗ 𝑐 (ℓ )

)
.

Next, we move a factor of (𝑥𝑖
1
− 𝑥𝑖𝑛+𝑚) from the third factor to the

first factor in each summand of the sum in the second row, so that

we can apply Lemma 5 again. After altogether 𝑛+𝑚−1 applications

of Lemma 5, we arrive at

( 𝑛∑︁
𝑖=0

𝑥𝑖𝑛+𝑚𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑥
𝑗
𝑛+𝑚𝑏 𝑗

)
⊗ (𝑐 (𝑛+𝑚−1) + 𝑐 (𝑛+𝑚) )

+
𝑛∑︁
𝑖=1

(
(𝑥𝑖𝑛+𝑚−1 − 𝑥

𝑖
𝑛+𝑚)𝑎𝑖 ⊗

( 𝑚∑︁
𝑗=0

𝑏 𝑗𝑥
𝑗
𝑛+𝑚

)
⊗ 𝑐 (𝑛+𝑚−1)

)
+
𝑛+𝑚−2∑︁
ℓ=0

( ( 𝑛∑︁
𝑖=0

𝑥𝑖ℓ𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑥
𝑗
ℓ
𝑏 𝑗
)
⊗ 𝑐 (ℓ )

)
+
( 𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖
𝑛+𝑚−1

)
⊗

𝑚∑︁
𝑗=1

(𝑥 𝑗
𝑛+𝑚−1 − 𝑥

𝑗
𝑚+𝑛)𝑏 𝑗 ⊗ 𝑐 (𝑛+𝑚−1) .

Using 𝑛 − 1 reductions, the sum in the second line can be merged

into a single term

𝑛∑︁
𝑖=1

(𝑥𝑖𝑛+𝑚−1 − 𝑥
𝑖
𝑛+𝑚)𝑎𝑖 ⊗

( 𝑚∑︁
𝑗=0

𝑥
𝑗
𝑛+𝑚𝑏 𝑗

)
⊗ 𝑐 (𝑛+𝑚−1) ,

where the summation sign is now understood as part of the first

factor. Flip this line with the first line to obtain

( 𝑛∑︁
𝑖=0

𝑥𝑖𝑛+𝑚𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑥
𝑗
𝑛+𝑚𝑏 𝑗

)
⊗ 𝑐 (𝑛+𝑚)

+
( 𝑛∑︁
𝑖=0

𝑥𝑖𝑛+𝑚−1𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=0

𝑥
𝑗
𝑛+𝑚𝑏 𝑗

)
⊗ 𝑐 (𝑛+𝑚−1)

+
𝑛+𝑚−2∑︁
ℓ=0

(
(
𝑛∑︁
𝑖=0

𝑥𝑖ℓ𝑎𝑖 ) ⊗ (
𝑚∑︁
𝑗=0

𝑥
𝑗
ℓ
𝑏 𝑗 ) ⊗ 𝑐 (ℓ )

)
+
( 𝑛∑︁
𝑖=0

𝑥𝑖𝑛+𝑚−1𝑎𝑖
)
⊗
( 𝑚∑︁
𝑗=1

(𝑥 𝑗
𝑛+𝑚−1 − 𝑥

𝑗
𝑚+𝑛)𝑏 𝑗

)
⊗ 𝑐 (𝑛+𝑚−1) .

Finally, we apply a reduction to the second and the last row to

arrive at the desired tensor representation.

If 𝐹 (𝑛,𝑚) denotes the total number of flips we used, then we

have

𝐹 (𝑛,𝑚) =

Lemma 4︷                         ︸︸                         ︷
𝑛𝑚 + (𝑛 − 1) (𝑚 − 1) + 𝑛 +

Ind.Hyp.︷       ︸︸       ︷
𝐹 (𝑛,𝑚 − 1)

+ (𝑛 +𝑚 − 1) × (2𝑛 + 1)︸   ︷︷   ︸
Lemma 5

+1.

It can be easily checked that𝑚𝑛(2𝑛+2𝑚+1) matches this recurrence

and the initial values, so we have 𝐹 (𝑛,𝑚) =𝑚𝑛(2𝑛 + 2𝑚 + 1) for all
𝑛,𝑚.

It is also clear that there are altogether 𝑛𝑚 reductions, because

we start from a tensor of length (𝑛 + 1) (𝑚 + 1) and we finish with

a tensor of length 𝑛 +𝑚 − 1, and 𝑛𝑚 = (𝑛 + 1) (𝑚 + 1) − (𝑛 +𝑚 − 1).
This completes the proof.

5 SMALL FIELDS
Unlike Karatsuba’s algorithm, which works for every ground do-

main, the Toom-Cook representations of the polynomial multipli-

cation tensor only exist when the ground field is sufficiently large:

Thm. 3 requires 𝐾 to contain at least 𝑛 +𝑚 + 1 distinct elements

that can serve as base points for the evaluation and interpolation.

What happens if 𝐾 is smaller, for example, for 𝐾 = Z2? We have

adapted the software used by Kauers and Moosbauer [11] to the

polynomial case and used it to search for low rank representations

of the polynomial multiplication tensor for this case. We also in-

cluded some of the improvements proposed in [2]. The results are

given in the following table. For example, for the degrees 𝑛 = 3 and

𝑚 = 4 we found a representation of rank 12.

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10

3
∗

5
∗
6
∗

6
∗
8
∗
9
∗

8
∗

10
∗

12
∗

13
∗

9
∗

11
∗

13
∗

16
∗

17
+

11
∗

13
∗

15
∗

18
∗

20
∗

22
+

12
∗

15
∗

17
∗

19
∗

22
+

24
·

26
·

14
∗

17
+

19
+

22
+

24
+

26
·

28
·

32

15
∗

19
·

21
∗

22

26
·

28

32

36

39

17
∗

21
·

23
·

25
·

28
·

30

37

52

64

66

We tried to extend the schemes we found for the field Z2 using
Hensel lifting to schemes with coefficients in Z

2
20 . Then we applied

rational reconstruction to obtain schemes with coefficients in Q, or,
ideally, with coefficients in Z. Schemes with coefficients in Z are of
particular interest because they apply to every ground ring, in par-

ticular to other small fields like Z3 or Z5. Schemes with coefficients

in Q only apply to other fields whose characteristic does not divide

the denominator of any coefficient.

For the schemes marked with a star, the extension to integer

coefficients was successful. For the schemes marked with a plus,

rational reconstruction led to coefficients in Z[ 1
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]. This means

that these schemes apply to fields with characteristic other than

3, 5, 7. For the schemes marked with a dot, we were able to lift

the coefficients to Z
2
20 , but not to Q. The schemes without any

decoration did not admit Hensel lifting.

The first two rows of the table are easily explained.



Theorem 6. (1) In the flip graph for polynomial multiplication
over an arbitrary field there is a path that leads from the
standard representation for degrees 𝑛 and 1 to a representation
of rank ⌈ 3

2
(𝑛 + 1)⌉.

(2) In the flip graph for polynomial multiplication over an arbi-
trary field there is a path that leads from the standard rep-
resentation for degrees 𝑛 ≥ 5 and 2 to a representation of
rank 2𝑛 + 1.

Proof. We proceed by induction on 𝑛.

(1) For small 𝑛, the claim is confirmed by the computation. The

large 𝑛, the claim follows from the observations that increas-

ing 𝑛 by 1 raises the rank by no more than 2 and increasing

𝑛 by 2 raises the rank by no more than 3.

The first observation simply follows from

𝑛+1∑︁
𝑖=0

1∑︁
𝑗=0

𝑎𝑖 ⊗ 𝑏 𝑗 ⊗ 𝑐𝑖+𝑗

=

𝑛∑︁
𝑖=0

1∑︁
𝑗=0

𝑎𝑖 ⊗ 𝑏 𝑗 ⊗ 𝑐𝑖+𝑗

+ 𝑎𝑛+1 ⊗ 𝑏0 ⊗ 𝑐𝑛+1 + 𝑎𝑛+1 ⊗ 𝑏1 ⊗ 𝑐𝑛+2,
and the second observation follows from

𝑛+2∑︁
𝑖=0

1∑︁
𝑗=0

𝑎𝑖 ⊗ 𝑏 𝑗 ⊗ 𝑐𝑖+𝑗

=

𝑛∑︁
𝑖=0

1∑︁
𝑗=0

𝑎𝑖 ⊗ 𝑏 𝑗 ⊗ 𝑐𝑖+𝑗

+ 𝑎𝑛+1 ⊗ 𝑏0 ⊗ 𝑐𝑛+1 + 𝑎𝑛+1 ⊗ 𝑏1 ⊗ 𝑐𝑛+2
+ 𝑎𝑛+2 ⊗ 𝑏0 ⊗ 𝑐𝑛+2 + 𝑎𝑛+2 ⊗ 𝑏1 ⊗ 𝑐𝑛+3

=

𝑛∑︁
𝑖=0

1∑︁
𝑗=0

𝑎𝑖 ⊗ 𝑏 𝑗 ⊗ 𝑐𝑖+𝑗

+ 𝑎𝑛+1 ⊗ 𝑏0 ⊗ (𝑐𝑛+1 − 𝑐𝑛+2)
+ (𝑎𝑛+1 + 𝑎𝑛+2) ⊗ (𝑏0 + 𝑏1) ⊗ 𝑐𝑛+2
+ 𝑎𝑛+2 ⊗ 𝑏1 ⊗ (𝑐𝑛+3 − 𝑐𝑛+2).

(2) For small 𝑛, the claim is confirmed by the computation. The

large 𝑛, the claim follows from the observation that increas-

ing 𝑛 by 3 raises the rank by no more than 6. This follows

from

𝑛+3∑︁
𝑖=0

2∑︁
𝑗=0

𝑎𝑖 ⊗ 𝑏 𝑗 ⊗ 𝑐𝑖+𝑗

=

𝑛∑︁
𝑖=0

2∑︁
𝑗=0

𝑎𝑖 ⊗ 𝑏 𝑗 ⊗ 𝑐𝑖+𝑗 +
𝑛+3∑︁
𝑖=𝑛+1

2∑︁
𝑗=0

𝑎𝑖 ⊗ 𝑏 𝑗 ⊗ 𝑐𝑖+𝑗

and the fact that the multiplication of two quadratic polyno-

mials has rank 6 according to the computation.

Flip graphs are useful for finding low-rank tensor representa-

tions, but it is not clear how to use the technique for checking

whether an optimum has been reached. It could always be that we

fail to find a representation with a lower rank because either the

better scheme is not reachable without splits or they are too well

hidden in the graph. For example, according to the table above, for

𝐾 = Z2 and 𝑛 = 𝑚 = 2 we only find a representation of rank 6

using flip graphs, while for larger fields, there is a representation

of rank 5. Is the result found by the flip graph search optimal for

𝐾 = Z2, or did we miss a better scheme?

In order to answer this question, we can search for a scheme of

rank 5 by solving a nonlinear system. Consider a representation

with undetermined coefficients,

5∑︁
ℓ=1

(
2∑︁

𝑖=0

𝛼ℓ,𝑖𝑎0

)
⊗
(

2∑︁
𝑗=0

𝛽ℓ, 𝑗𝑏 𝑗

)
⊗
(

4∑︁
𝑘=0

𝛾ℓ,𝑘𝑐𝑘

)
,

equate it to the polynomial multiplication tensor

2∑︁
𝑖=0

2∑︁
𝑗=0

𝑎𝑖 ⊗ 𝑏 𝑗 ⊗ 𝑐𝑖+𝑗 ,

and compare coefficients. This leads to the system of equations

5∑︁
ℓ=1

𝛼ℓ,𝑖𝛽ℓ, 𝑗𝛾ℓ,𝑘 = 𝛿𝑖+𝑗,𝑘

for 𝑖, 𝑗 = 0, 1, 2 and 𝑘 = 0, . . . , 4, where 𝛿 refers to the Kronecker

delta. The analogous equations for the matrix multiplication tensor

are known as the Brent equations [5]. In [9], Heule, Kauers, and

Seidl found many new representations of the matrix multiplication

tensor for 3× 3 matrices by translating the equations into a boolean

formula and solving it using a SAT solver. Here we used a SAT solver

to prove that for 𝐾 = Z2 and 𝑛 =𝑚 = 2, there is no representation

of rank 5. Some further representations can be proven to be optimal

in the same way:

Theorem 7. For 𝐾 = Z2, the flip graph for the polynomial mul-
tiplication tensor has a path from the standard representation to an
representation of minimal rank for every

(𝑛,𝑚) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (3, 3)}.

Proof. For all these pairs (𝑛,𝑚), we were able to prove with

a SAT solver that there is no representation of smaller rank than

what was found by the flip graph search as indicated in the table

above.

We do not believe that all the rank bounds for higher degrees

reported in the table are tight. Like in the case of matrix multiplica-

tion [2, 11, 12], searching in the flip graph becomes more and more

cumbersome with increasing tensor size.

6 CONCLUSION
We have seen that the concept of flip graphs also works well for the

polynomial multiplication tensor. If the ground field is sufficiently

large, it is capable of finding, at least in principle, an optimal repre-

sentation starting from the standard representation in a relatively

small number of steps.

For fields with more than two elements, we also have to take

into account that constant factors can be freely moved between the

components of a rank-one tensor: (𝛼𝑢) ⊗ 𝑣 ⊗𝑤 = 𝑢 ⊗ (𝛼𝑣) ⊗𝑤 =

𝑢 ⊗ 𝑣 ⊗ (𝛼𝑤). We made free use of this relation in the construction

of the path. A search engine that follows a random path in the

flip graph would somehow have to cope with this freedom, and



it is unclear what is the best way of doing this. This may be an

explanation why an automated search in the flip graph works best

for 𝐾 = Z2.
For this case, we have found low-rank tensor representations for

various small values of 𝑛 and𝑚. For some of them, we were able

to show that the representations are optimal, and hence that the

rank of the polynomial multiplication tensor over Z2 is sometimes

strictly larger than the rank over larger fields. To get a clearer pic-

ture of the nature of the polynomial multiplication tensor and of

the structure of flip graphs, it would also be interesting to specif-

ically search for low rank representations for other small fields,

e.g., Z3,Z5, or Z7, in particular for those degrees where Hensel-

lifting and rational reconstruction so far only led to schemes with

coefficients in Z[ 1
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Moreover, flip graphs could be used to analyze the tensor ranks

for certain types of non-commutative polynomial multiplication,

i.e., the multiplication in a Weyl algebra. For large sizes, it is known

that the complexity of multiplication there is connected to the

complexity of matrix multiplication [4]. For small sizes, there may

however be discrepancies.

Finally, the matrix multiplication tensor is of pivotal interest. For

this tensor, it remains unclear whether it is always possible to reach

an optimal representation starting from the standard representation

(without splits). If so, we would like to know a bound on the length

of the shortest path and perhaps make some statements about its

structure. Such understanding might be helpful for the design of

more efficient search techniques that could help to find low rank

tensor representations for matrix multiplication tensors of sizes

that are currently out of reach.
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