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Abstract

We propose a way to split a given bivariate P-recursive sequence into a summable part and a
non-summable part in such a way that the non-summable part is minimal in some sense. This
decomposition gives rise to a new reduction-based creative telescoping algorithm based on the concept
of integral bases.
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1 Introduction

With their book A = B [26], Petkovsek, Wilf, and Zeilberger marked a milestone in the development
of symbolic summation. At the beginning of the 1990s, with the appearance of creative telescoping and
Petkovsek’s algorithm, it seemed that the last word on summation in finite terms had been spoken. The
machinery described in the book can decide whether a given definite hypergeometric sum can be written
as a linear combination of hypergeometric terms. This is not only a remarkable theoretical result, but it
also quickly became an indispensable tool that saves people working in all areas of discrete mathematics
from the struggle of simplifying hypergeometric sums by hand. However, from today’s perspective, it
seems that the pioneering work documented in A = B marks rather the beginning than the end of a
period of research on algorithms for summation and integration. In fact, the development of symbolic
summation has continued in several directions.

One direction of research concerns the generalization of the techniques to more sophisticated types
of sums and integrals [2,18-20,24,27-29,34, etc.]. Thanks to this line of research, we can deal not only
with hypergeometric sums, but also with summands and integrands that are defined in terms of systems
of linear differential and difference equations (D-finite functions), summands and integrands that are
defined in terms of differential or difference fields (elementary functions, I3 expressions), among other
classes of functions.

A second direction of research concerns the refinement of the classical algorithms so as to obtain more
precise information about a given summation problem. For example, while Gosper’s algorithm [21,26] for
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indefinite hypergeometric summation can recognize that a given hypergeometric term is not summable,
the Abramov-Petkovsek reduction [4] goes one step further and extracts from any given hypergeometric
term a maximal summable part. This is in a way a hypergeometric summation analog to the classical
Hermite reduction for indefinite integration of rational functions, which writes any given rational function
as the sum of an integrable rational function and a proper rational function with a squarefree denominator.

A third direction of research concerns efficiency. Algorithms for creative telescoping produce a so-called
telescoper and a so-called certificate. The certificate tends to be much larger than the telescoper and is
often not needed. Starting from 2010, algorithms were developed that can construct a telescoper without
also constructing the corresponding certificate. This family of algorithms is now known as “reduction-
based telescoping”. It was first proposed for rational function integration [7], where it relies on Hermite
reduction. It was then generalized to hyperexponential integrands [8], and later in two different ways to
D-finite integrands: one version relies on Lagrange’s identity [9,32], another on integral bases [12,15,17].
Also for summation, the case of rational functions was settled first [16]. Then, using Abramov-Petkovsek
reduction, it was formulated for the hypergeometric case [14]. Meanwhile, there are also reduction-based
telescoping algorithms for P-recursive sequences based on Lagrange’s identity [10,31].

What is now missing to complete the analogy between the summation case and the integration case
is a reduction-based algorithm for P-recursive sequences using integral bases. The purpose of the present
paper is to introduce such an algorithm. The proposed algorithm is a direct analog of our recent algorithm
for D-finite functions [12], with the integral bases for the differential case provided in [6, 23] replaced by
the integral bases for the shift case provided in [13] (plus a new notion of integrality at infinity, cf.
Sect. 2.2). Although some of the details are somewhat technical, it turns out that there is a full analogy
between the integration case and the summation case. At the present stage, this is merely a theoretical
result. It remains to be seen how implementations of reduction-based algorithms for D-finite functions
or P-recursive sequences based on Lagrange’s identity relate to the corresponding algorithms based on
integral bases. As the performance of these algorithms appears to be sensitive to subtle implementation
details, we prefer to leave a practical comparison to future investigations.

2 Integral bases

Let C be a field of characteristic zero and C be the algebraic closure of C. Let C(x) be the field of
rational functions in z. The shift operator o on C(z) is the automorphism such that o(f(z)) = f(z +1)
for all f € C(x). Let C(x)[S] be an Ore algebra, where S is the shift operator with respect to z and
satisfies the commutation rule Sf = o(f)S for all f € C(x). The difference operator S — 1 is denoted by
A, which satisfies the rule Af = o(f)A+ A(f) for all f € C(z). Let L =4y + (1S +---+£.5" € C[x][5]
with polynomial coefficients ¢; € C[z] and ¢y¢, # 0. Then r is called the order of L. We consider
the left C(x)[S]-module A = C(x)[S]/(L), where (L) = C(x)[S]L. When there is no ambiguity, an
equivalence class f 4+ (L) in A is also denoted by f. Every element of A can be uniquely represented by
f=fo+fiS+-+ f_18" ! with f; € C(z). An element f € A is called summable in A if there exists
g € A such that f = Ag.

2.1 Integral elements at finite places

Let us recall the value functions and integral bases for P-recursive sequences introduced in [13]. Let
C((q)) be the field of formal Laurent series in a new indeterminate g. For each a € C, the operator
L=1"0y+ ¢S4+ (.5 acts on a sequence b: a +7Z — C((q)) via

(L-b)(2) :=Llo(z+q)b(2) + -+ L.(z+ @bz +7) (1)

for all z € a + Z. This gives an action of the algebra C(z)[S] on the space C((¢))**% of all sequences
b: a+7Z — C((q))- Since £ol, # 0, the set Sol, (L) := {b € C((q))**% | L-b =01} is a C((q))-vector space
of dimension r. It is called the solution space of L at «. Since q ¢ C, we have £o(z + q){,(z + q) # 0 for
every z € a+Z. So the sequences by, ...,b.: a+7Z — C((q)) determined by the recurrence L -b; = 0 and
the initial values b;(a + j) = d;; for ¢, = 1,...,r form a basis of Sol,(L), where ¢; ; is the Kronecker
symbol.

The valuation v,(a) of a nonzero formal Laurent series a € C((q)) is the smallest integer m € Z such
that the coefficient [¢"™]a of ¢ in a is nonzero. Set v4(0) = +o00. The value function valy: A — ZU {oo}



is defined by
valo(f) := min (Vq(( £-b)()) — liminf v (b(a — n))) 2)

beSol (L) n—00

for all f € A. The sequence f -b in (2) is defined as Py - b via the action (1), if f = Py + (L) for some
Py € C(x)[S]. By convention, set 0o — oo = co. An element f € A is called (locally) integral at o € C' if
val,(f) > 0. Let Z be a subset of C. An element f € A is called (locally) integral at Z if val,(f) > 0 for
all @ € Z, i.e., f is locally integral at all « € Z.

For a fixed a € C, the set C(x), = {p/q | p,q € C[z], g(a) # 0} forms a subring of C(z). The set of
all elements f € A that are locally integral at some fixed a € C' forms a C(x),-module, denoted by O,.
A basis of this module is called a local integral basis at o of A. For Z C C, a basis of A is called a local
integral basis at Z if it is a local integral basis at all o € Z. If Z is a finite subset of C, a local integral
basis at Z exists and the algorithm [13] for computing such a basis for P-recursive sequences is similar
to that for algebraic functions [33] and D-finite functions [6,23].

Let a € C. For two elements aq, a0 € o+ Z, we say oy < oo if aq — ag < 0. Now we recall some
relevant properties of integral bases in [13, Section 5.2]. The lemma gives a way of computing val, by
choosing an appropriate basis of the solution space Sol, (L).

Lemma 1. For a fivzed o € C, let ( € o+ Z be such that lol, has no roots in {n € a+7Z|n < (}. Let
bi,...,b, be a basis of Sol, (L) defined by the initial values bj(( +i—1) = &;,; fori,j=1,...,r. Then
forall fe Aandn € a+2Z,

valy (f) = min vy ((f - b;)(n).
Proof. See the argument in [13, Section 5.2, item (A)]. =

The following lemma arises from a discussion in [13, Section 5.2, item (E)].

Lemma 2. Let ( € a+ Z with a € C be such that {ol, has no roots in Z :={n € a+7Z|n<(}. Then
{1,S,...,8"1} is a local integral basis of A at Z U {(}.

Proof. Let n be an arbitrary but fixed point in Z U {¢} and by,...,b, be a basis of Sol,(L) such that
bj(n+1i—1) =0,;; forall 4,5 =1,...,r. Since £y¢, has no roots less than 7 in o + Z, by Lemma 1 we
obtain that for all f € A,

valy (f) = min vy (£ - by)(m): 3)

So val, (S"1) = minj_; v, ((S*"! - b;)(n)) = minj_, v4(b;(n+i— 1)) = 0 and hence S~ is integral at n
foralli=1,...,r.

Let f=fo+ fiS+ -+ fr—15"' € A with fo,..., fr—1 € C(z). By the construction of the b;’s, we
have (f-b;)(n) =>i_; ficin+@)bj(n+i—1) = fj_1(n+q) for all j =1,...,r. It follows that

min v, (£ +b;) () = min vy (£5-1.01+ ). @)

Assume f is integral at 7. Then val,(f) > 0 by definition. By (3) and (4), we have v4(f;—1(n+¢)) >0
for all j = 1,...,r, which implies that f;_i(«) has no pole at n. So fj_1 € C(x), for all j =1,...,r.
This proves that {1,S,...,S57 "1} is a local integral basis at . =

Local integral bases and shift operators are related as follows.

Lemma 3. Let o € C. Then

(i) f € A is locally integral at « if and only if Sf is locally integral at o — 1;

(i1) {wi,...,wr} is a local integral basis of A at « if and only if {Sw1,...,Sw,.} is a local integral basis
of A at o — 1.

Proof. (i) Clear by vy (((Sf) - u)(a—1)) = v,((f - u)()) for all f € C(x)[S] and u € C((q))*"2.
(ii) “«<”: Suppose f =>_._, fi(z)w; with f;(z) € C(z) is integral at . By the item (i), we get

r

Sf=8> filw)wi = filx+1)Sw;
i=1

i =

—



is integral at o« — 1. Since {Swy, ..., Sw,} is a local integral basis at o — 1, it follows that f;(z + 1) €
C(2)a-1- So fi(z) € C(x), and hence {w1,...,w,} is a local integral basis at a.

“=7: Suppose g = Y.._, 9i(z)Sw; with g;(z) € C(x) is integral at o — 1. Since (of, # 0, both
{1,8,...,8 '} and {S, S?,...,8"} are C(z)-vector space bases of A. Then the map sending f to Sf is a
bijection from A to itself, because S Y ._; fi(z)S"™t =37 fi(x+1)S" for all f;(x) € C(z). There exists
f € A such that g = Sf. On the other hand, we have g = SY_, gi(z — 1)w;. So f =1, gi(z — Dw;.
By the item (i) and the assumption that g = Sf is integral at o — 1, we obtain that f is integral at a.
Since {w1,...,w,} is a local integral basis at «, it follows that g;(x — 1) € C(z). Thus g;(z) € C(z)a-1-
This completes the proof. =

Abramov’s dispersion function was introduced in rational summation [1,25]. It has a feature that the
dispersion of the denominator of a rational function strictly increases by one after taking the difference.
Now we introduce a local version of dispersion functions and investigate their connection with local
integral bases.

Definition 4. Let a € C and p € C[z]. The dispersion of p in a + Z is defined as
disp,, (p) = max{k e N| 3¢ € a + Z such that p(§) = p(§ + k) = 0}.
By convention, max ) = —oco.

Let W = (wi,...,w,) be a vector space basis of A over C(z) and f = 137  aw; € A with
ai,...,ar,u € Clz]. We write f = 2 where a = (a1,...,a,) € C[z]". The vector SW is defined as
(Swi,...,Sw.). Throughout this subsection, we assume ged(ay,...,a,,u) = 1. Then u is a denominator
of f with respect to W.

Proposition 5. Let f = % and g = %, where a,b € Clz]", u,v € C[z]. Let a € C. Suppose f = Ag
and disp,, (v) > 0.

(i) If W is a local integral basis of A at « + Z, then

disp,, (u) > disp,, (v) + 1.

(ii) Let e € Clz] and M € C[z]"™ " be such that SW = LMW. If W is a local integral basis of A at
Z:={nea+7Z|n<p} withB €a+7Z and 8 is the only possible root of e in o+ Z, then

disp, (& — B)u) > 1.
This means the polynomial u has a Toot in o + Z that is distinct from (3.

Proof. (i) A direct calculation yields

f—Ag—Sgg—Z((i))SWZW. (5)

Since disp,, (v) > 0, the polynomial v has a root in «a + Z. Let v be the minimal root of v in & + Z.
Since x — v | v, we have o(z — ) =z — (y— 1) | o(v). So v — 1 is a root of o(v). Since W is a local
integral basis at a + Z, by Lemma 3 we know that ST is also a local integral basis at o + Z. So both
W and SW are local integral bases at v — 1. Note that o(v) has a root at v — 1, but v does not by
the minimality of 7. So Sg = %SW is not integral at v — 1, but g = %W is integral at v — 1. Thus
f = Sg — g is not integral at v — 1. This implies that its denominator u has a root at v — 1.

Similarly, let 8 be the maximal root of v in a+Z. Then v has a root at 8, but o(v) does not (otherwise
B + 1 would be a root of v). Since both W and SW are local integral bases at (3, it follows that g is not
integral at 8 but Sg is integral at 8. So f = Sg — g is not integral at 5 and hence u has a root at j.

By the definition of dispersion, we have
dispo(u) > B— (v —1) =B — v+ 1 =disp,(v) + 1.

(ii) If v has a root in « + Z that is less than or equal to 3, let 7 be the minimal root of v in o + Z.
Then v < B. Since W is a local integral basis at Z, by Lemma 3 we know that SW is a local integral



basis at Z' = {n—1|n € Z}. So both W and SW are local integral bases at v — 1. By the same
argument as in (i), we obtain that u has a root at v — 1, which is distinct from .

If v has a root in a + Z that is greater than 3, let v be the maximal root of v in a + Z. Then v > 8
and 7 is not a root of o(v). Substituting SW = LMW into (5) yields that

ng<“<b)1Mb>w

o(v)e v

W.

SIS

Note that « is not a root of o(v)e but « is a root of v. So u has a root at v, which is distinct from 5. =

2.2 Integral elements at infinity

In the differential case, a local integral basis at infinity is used to reduce D-finite functions to integrands
with higher valuations at infinity [12]. To achieve the same goal in the shift case, we formulate the notion
of local integral bases at infinity for P-recursive sequences, using the framework of valued vector spaces,
as in [13].

The operator L = £y + {15 + ...+ £,.5" with ¢yl # 0 admits r linearly independent solutions of the
form

T =27 T(2)""¢" exp(p(«’/*))a(z /", log(x)), (6)

where v € N\ {0}, u € Z, s € C, ¢ € C'\ {0}, a € C[[z]][y] and p € C[z] with deg,(p) < v. Such objects
are called generalized series solutions of L at infinity, see [22, Section 2.4]. Let € be the set of all C-linear
combinations of series in the form (6). Then Q equipped with the natural addition and multiplication
forms a ring. Let Sols (L) be the set of all series solutions of L in Q. It is called the solution space of L
at infinity. Then Soly, (L) is a C-vector space of dimension 7.

We shall use series solutions to define a value function on A at infinity. The valuation of a series
at infinity will be defined in terms of the exponent s in (6). Similar to the D-finite case [23], we use a
function ¢ on C to choose an order on these exponents.

Definition 6. Let 1 : C' — R be a function such that for all s,s1,s3 € C and m € Q,

(i) t(s1+ s2) > t(s1) + t(s2);
(i1) t(m+ s) = t(m) + u(s);
(#ii) t(m) = m.
The valuation v (t) of a term t := x5 T'(2)*/?¢® exp(p(z'/?)) log(z)’ is defined as 1(s). The valuation

Voo (b) of a nonzero series b € Q0 at infinity is the minimum of the valuations of all the terms appearing in
b (with nonzero coefficients). Set voo(0) = 0o. A series b € Q is called integral at infinity if veo(b) > 0.

Example 7. For C C C(t) with t being a new indeterminate, let [t%]s € C be the constant term of
s € C when s is expanded as a Puiseuzr series around a fized a € CU {o0}. One choice of 1 : C' = R
is 1(s) = R([t°]s) for all s € C, where R(-) is the real part of a complex number. Unless otherwise

stated, we shall always assume this choice of v with a = oo in the examples given. With this convention,
1, :E*\/jl, 1:7\/5, 2=V gre integral at infinity, but x’\/j“rl,x"/ﬂl are not.

Lemma 8. The function vy on ) satisfies the following properties: for all a,b € €2,
(i) voo(a) = oo if and only if a = 0;
(11) Voo(ab) > veo(a) + Voo (b);

(#1) Voo(a + b) > min{ves(a), v (b)}.

So the set {b € Q| b is integral} forms a subring of Q.

Proof. (i) and (iii) are clear by definition. For (i), note that x~*1x7°2 = = (1F52) and i(sy + s9) >
t(s1) + t(s2) for all s1,s9 € C by the assumption on ¢ in Definition 6. m



The shift o : b(x) — b(x + 1) of series is defined through the rules:

n=0
F(.’L‘ + 1)u/v — m,u/vl—w(x)u/lx
P"H = g9,
exp(c(z + 1)*?) = exp(ca®/?) exp(e((z + 1)*/* — a*/v))

1 k/v N\
_ k/v - k/v—i
= exp(cz"™") E p (cE < ; >z )
n=0 i=1

L _
exp(cxk/“)(l+c ko=l > (ceC,0< k<),

log(z + 1) = (log(m) + log (1 + i))z <10g 3 )Z

n=1
= log(x)’ + tz  log(z) 4 -,

o

where “---” denotes some terms of higher valuations at infinity.

An operator P = pg+p1S+---+p—157"" in C(z)[S] acts on a series b via
P-b= pob+p10’(b)+"'+p7«_10'7”71(b).

For a solution b € Soloo(L) C Q and f € A = C(x)[S]/(L), the action f - b is defined as Py - b if
f = Py + (L) for some Py € C(as)[S] Let b1,...,b, be a basis of Sole (L) in the form of (6). The value
function valoo: A — R U {oo} is defined as

valoo (f) i= minvao(f - i),
Then by Lemma 8, valo,(f) is the minimum valuation of all series f - b at infinity, where b runs through
series solutions in Soly, (L). An element f € A is called (locally) integral at infinity if valy (f) > 0.
Proposition 9. The function vals, satisfies the following properties: for all f,g € A and a € C(z),
(i) valoo(f) = 0o if and only if f =0;
(11) vale (af) = voo(a) + valoo (f);
(i) valoo(f + g) > min{valo, (f), valoo (9)};

where Vs (a) is the valuation of its Laurent series expansion at infinity.

Proof. (i) Let by,...,b, be a basis of Solo(L) in the form of (6). If f = 0, then f -b; is the zero
series for all i = 1,...,7. So valy(f) = co. Conversely, assume that vals(f) = oo, then by definition
Voo(f +b;)) = o0 foralli =1,...,7. So f-b; =0 for i = 1,...,r, which implies that f has at least r
linearly independent series solutions. On the other hand, every nonzero element of A can be written as
f=fo+fiS+--+ fr.8*¥ with f; € C[x], fr # 0 and k < r. If the trailing coefficient fy of f is nonzero,
the dimension of the solution space of f in € can not exceed its order k, see [22, Section 2.4]. So in this
case, f cannot be nonzero.

If fo =0, we write f = Sg with g € A such that the order of g is k — 1. Then S¢-b; = 0 and we claim
that g -b;, =0 for all ¢ = 1,...,r. Otherwise, suppose ¢ - b; # 0 for some ¢ € {1,...,7}. Then ¢g-b; is a
generalized series involves a term

T =2 T (x)"/"¢" exp(p(x'/")) log(x)",

where v € N\ {0}, u € Z, f € N, s € C, ¢ € C\ {0} and p € C[x] with deg,(p) < v. Let T be the
dominant term of g - b;, i.e., among all terms with minimal s the one with the largest exponent ¢. Then

S-T = (x+1)"*T(z+1)""¢" " exp(p((z + 1)"/")) log(z + 1) = pa*/*T + - --



Here ¢ # 0 by the assumption £y, # 0. So ¢pz*/*T is the dominant term of Sg - b; and hence Sg - b; # 0.
This leads to a contradiction. Thus g-b; =0 for all i = 1,...,r. Let j with 1 < j < k be the minimal
integer such that f; # 0. We can write f = S7g with § € A such that the order of g is k — j and the
trailing coefficient of § is nonzero. We proceed similarly with ¢ = $7~!g, and finally obtain that §-b; = 0
foralli=1,...,r. So g cannot be nonzero by the same argument as in the first case. Thus f cannot be
nonzero.

(ii) Every nonzero a € C(x) C C[[z7!]] can be expanded as a Laurent series in the form a =
™™+ Ay 12" ™ L+ where a; € C, m € Z and a,, # 0. By Definition 6, v (a) = t(m) = m is an
integer. Note that for any m € Z and s € C, x™™2~* = 27™"% and +(m + s) = 1(m) + ¢(s) = m + 1(s).
S0 Voo (ab) = Voo (@) + Voo (b) for all a € C(x) and b € Q. Thus (ii) is true.

(iii) Clear by the item (iii) in Lemma 8. =

For a rational function p/q with p,q € C[z], we have voo(p/q) = deg,(q) — deg, (p). The set C(x) =
{p/q|p,q € Clz], deg,(p) < deg,(¢q)} forms a subring of C'(z). By Proposition 9, (4, val,,) is a valued
vector space over the valued field (C(z), V), see [13, Definition 2]. So by Proposition 4 in [13], the
set of all elements f € A that are locally integral at infinity forms a C(z)s.-module, denoted by O
A Dbasis of this module is called a local integral basis at infinity of A. Similar to the algebraic and D-
finite cases [6, 13,23, 33|, such a basis can be computed by Algorithm 10 in [13]. The termination of
this algorithm is guaranteed by the existence of discriminant functions. For a basis wq,...,w, of A, the
discriminant function Disc is defined as

Disc(wi, - .+, wr) = [Voo(det((wi - bj)i i—1))],

where by,...,b, is a basis of Solo(L) in the form of (6). It can be checked that the Disc is indeed a
discriminant function in [13, Definition 12].

A C(x)-vector space basis {w1,...,w,} of A= C(z)[S]/(L) is called normal at infinity if there exist
ai,...,ar € C(z) such that {ajwi,...,a,w,} is a local integral basis at infinity. Given a vector space
basis, Trager’s algorithm [30] can be literally adapted to compute a basis that is normal at infinity and
generates the same C[z]-module as the given basis.

For a nonconstant polynomial g € C[z], we have deg,(A(g)) = deg,(g) — 1. For a rational function
g € C(x), if voo(g) # 0, then voo(A(g9)) = veo(g) + 1. So the valuation at infinity of such a rational
function increases by exactly one under each difference operation. In the P-recursive case, we shall prove
that the valuation at infinity increases by at most one.

The product rule in the shift case says that A(uv) = A(u)v+o(u)A(v) for every u,v € Q. For several
elements u1,...,u, € €, it generalizes to

Z g cU;—1 A(ui)ui_,_l Uy (7)

Proposition 10. Let g € A. If valoo(g) # 0, then valo(Ag) < valoo(g) + 1.

Proof. Let b; be a generalized series solution in Sole (L) such that vale(9) = veo(g - b;). There g - b;
involves a term

T = 27* T(2)"/*¢" exp(p(z'/")) log(2)",

where v € N\ {0}, u € Z, L € N, 5,¢ € C'\ {0} and p € C[x] with deg, (p) < v. For this fixed series b;, let
T be the dominant term of g-b;, i.e., among all terms with minimal r the one with the largest exponent /.
Let k = deg,(p) and ¢ = lc,(p) be the degree and the leading coefficient of p in x respectively (take k = 0

if p(z) = 0).
Now we use Equation (7) to calculate A - T. Note that
Az~ )F(x)u/%ﬁm eXP(p(JUl/U) log(x b= s 1T+
oz ") AT (2)"")¢" exp(p(z'/) =@ DT+,
oz T(x)"/") A(¢") exp(p(a'/") C=(¢p—1)a"/" T+,
)

o (2T (x)"/"¢") Alexp(p(a'/") ‘= #w“/w’“/”-lﬂ e
o(z7 T(x)"/ ¢ exp(p(z/?))) A(log(z)") = pla*/* " log(z) T + - - - .



So by Equation (7), we get

. k
A-T=(—sz7t =14 ¢z + (ﬁix“/“*’k/”_l)T—i—-u .
v

Note that 0 < % < 1because 0 <k <v. So —3 < —% — % + 1. Let Ty be the dominant term of (Ag) - b;.
We make the following case distinction.

(1) Ifu > 0, then —u/v < min {1, 0,—3 — % + 1}. We have Ty = ¢z*/*T. Here ¢ # 0 by the assumption
Lol # 0.

2) If u <0, then 0 < min{l,—%,—% — % + 1}. We have Ty = —T.

3) Ifu=0and ¢ # 1, then 0 <min {1, —£ +1}. We have Ty = (¢ — 1)T..

4) fu=0,¢=1and 0 < k < v, then —%+1<1. We have Ty = <Egk/v=1T,

(2)
3)
(4) =%
()

5) If u=0,¢=1and k=0, then Ty = —sz~'T. Here s # 0 by the assumption valy,(g) # 0.

The above calculation reveals that the valuation of the term A - T in (Ag) - b; is less than or equal to
Voo(T) + 1 by Definition 6, which implies that valoo (Ag) < valo(g) +1. =

3 Suitable bases

Let W = (w1, ...,w,) be a C(z)-vector space basis of A = C(z)[S]/(L). Throughout this subsection, let
ew € Clz] and My, = (m; ;)7 ;=1 € Clz]"™" be such that

SW = iMwW,

w

and ged(ey,m1,1,M1,2,-..,My,) = 1. For algebraic function fields, the name “suitable basis” was intro-
duced by Bronstein [11] in the context of lazy Hermite reduction. It refers to a basis W whose elements
are (globally) integral and the denominator e,, with respect to derivation is squarefree. In this section, we
seek a basis W such that W is a local integral basis at almost all orbits a+Z € C'/Z and the denominator
e (with respect to shift operation) is shift-free. Recall that a polynomial p € C[z] is said to be shift-free
if gcd(p, o?(p)) = 1 for all nonzero i € Z. So for a shift-free polynomial p € C|x], there is no a € C' such
that disp, (p) > 0.

In the differential case, every (global) integral basis is suitable. So Bronstein transforms an arbitrary
basis to a suitable basis, along the way of finding an integral basis. In the shift case, since there are
infinitely many singularities, even “globally” integral elements may not exist. Instead of finding a local
integral basis at all o € C, we seek for a finite subset Z € C such that a local integral basis at Z is
“suitable”. The formal definition of suitable bases will be stated in Definition 12.

We now show that the polynomial e does not depend on the choice of the basis of A but only on the
C'[z]-submodule it generates. Let W and U be two C(x)-vector space bases of A. Let ey, e, € C[z] and
My, M, € Clz]"™" be such that SW = }MwW and SU = éMuU. Suppose that W and U generate
the same submodule of A over Clx]. Then there exists a matrix 7' € Clz]"*" such that W =TU and T
is an invertible matrix over C[z]. Shifting both sides of the equation, we get

SW = o(T)SU = (U(T)lMuTl) W= iMwW.

€y Cw

Since o(T),T~! € C[x]"*", we have e,, divides e,. Similarly the fact that U = RW with R = T~! ¢
Clz]"™" implies that e, divides e,,. Thus e, = e, when e, e, are monic.

For a basis U = {1, 5,...,5" "'} of A, the denominator e, may not be shift-free. However, we can
transform U to a local integral basis W at a finite subset Z of C such that e,, is shift-free.

Example 11. Let T = iifl', which is annihilated by L = 2*(x + 2)S — (x + 1)* € C(x)[S]. Then for

U = {1}, we have SU = g&}g;)U So e, = x2(x + 2) is not shift-free, because it has two roots —2

and 0 in the orbit Z. Starting from U, we can compute a basis W = {(x + 1)x=3}, which is a local




integral basis at Z = {—1,0}. The algorithm of computing an integral basis at Z guarantees that W
and U generate the same C(x)q-module for all o € C\ Z. Then we see that SW = W and hence
ew = 1 is shift-free. In fact, if we choose an integer 8 with 8 > 0 and consider Z = {—1,0,...,3}, then
W ={(z+1)z~3 H?Zl(m — i)"Y} is a local integral basis at Z and SW = (z — B)W with e,, = 1 being
shift-free.

In general, the above idea of finding a basis W with e,, being shift-free works as follows. Recall that
for B,y € a+Z with a € C, we say 8 <y if § —~ <O.

Definition 12. Let L = ly+ 1S+ -+ -+ £,.S" € Clx][S] with Lo, #0. Let a1 +Z,...,a; + Z be distinct
orbits such that for each i with 1 < i < I, the product {yl, has at least one root in oy + Z. For each orbit
o +7Z, let a1 < a0 < ...<ayy, beall roots of Loyly in o, +Z. Let B; € o; +Z be an arbitrary element
such that oy, y, < Bi. A basis W of A = C(x)[S]/(L) is called suitable at {B1,...,Br} if W is a local
integral basis of A at Z = Ufil{'y €a;+Z| a1 <v<pBi} and it generates the same C(x)-module as
U={1,S,...,8 71} foralla e C\ Z.

From the above definition, every suitable basis is a local integral basis at a finite subset Z and the set
Z N (a;+7Z) has an upper bound §; in a; +Z for each ¢ with 1 < ¢ < I. Throughout the paper, we assume
that if a; s, and a4 s, are conjugate over C for some 1 < i # ¢’ < I, then 8; — o 5, = B — v, j,,, which
implies that 8; and B,/ are also conjugate over C. Under this assumption, we show that all conjugates of
B; over C belong to {81, ...,0r}. Then a suitable basis of A at {f1,...,8r} exists and can be computed
(without algebraic extension of the base field C) using the algorithm in [13] for computing an integral
basis at a finite subset Z C C. Since every irreducible polynomial in C[x] is shift-free, all conjugates of
.y, over C belong to distinct orbits in {a; +Z,...,ar +Z} C C/Z. Note that if p(z) € C[z] is the
minimal polynomial of a € C, then o~*(p(x)) is the minimal polynomial of o + k for any integer k. So
the number of conjugates of /3; is the same as that of «; 5. Thus all conjugates of 3; over C' belong to

{Br,.... Br}-
The following theorem says that a suitable basis has the property that e,, is shift-free.

Theorem 13. Let W be a suitable basis of A at {B1,...,0:1}-

(i) Let e, € Clz] and My, € Clz]"™*" be such that SW = iMwW. Then e, is shift-free and By, ..., Br
are all possible roots of ey, in C.

(ii) Let fy, € Clx] and N, € Clz]"™™" be such that W = f%NwSW. Then fo, 1s shift-free and 1, ..., B
are all possible roots of fu, in C.

In particular, M,, and N,, are invertible matrices over C(z).

Proof. (i) A direct calculation yields that

0 1
: . 1
SU = : ) U= —M,U,
0 1 €u
B U
7, 7, Z,

where e, € C[z] and M,, € C[z]"*". So every root of e, must be a root of the leading coefficient ¢,. Let
T € C(x)"™™" be such that W = TU. Taking the shift operation, we get

SW = o(T)SU = o(T)eiMuT’lw = iMwW. (8)

Since W and U generate the same C(z),-module for all a € C'\ Z, both T and T~ belong to C(z)"*".

So T and T~! have no poles at C'\ Z, i.e., all entries of T and T~! have no poles at a € C'\ Z. Then
o(T) has no poles at C'\ Z', where Z' = {y —1|ye Z} =U_{y €ai +Z | a;1 <~ < B —1}. By (8)



we have

{roots of e, } C {poles of o(T)} U {roots of e, } U {poles of 7'}
C Z' U{roots of £, } U Z
I
c U (e, B =1 Ui, @i, 0 g, U{ain + 1,0, Bi)

i

Il
-

N
,CN

©
Il
-

{1,010+ 1,...,5:} 9)

here we use the assumption that a; j;, < f;.
On the other hand, by Lemma 2, we know that for each 1 < i < I, U is a local integral bases at every
o < oy 1 with o € a;; +Z. So by construction, W is a local integral basis at every a < 8; with a € a; +Z.
By Lemma 3, SW is a local integral basis at every a < 3; — 1. Thus e,, has no roots in Z’ because SW
and W generate the same C(z),-module for all & € Z’. Combining this fact and the relation in (9), we
get
{roots of e, } C{B; |1 <i<I}.

Since f; € a; +Z and oy +Z # aj + Z for all 1 < i # j < I, it follows that e,, is shift-free.
Since both W and SW are C(x)-vector space bases of A, the matrix M, is invertible over C(x).
(ii) Note that

R R 7
Lo Lo Lo
1 0 1
U= . SU =: —N,SU,
1 0

where f,, € Clz] and N,, € Clz]"*". So every root of f, must be a root of the trailing coefficient ¢.
By (8), we have

-1
W="T (1Mu> o(T)™'SW = TfiNua(T)*lsW = finSW.

eu u w
Using the same argument as in (i), we get

{roots of f,,} C {poles of T} U {roots of f,} U {poles of o(T)"'}
C Z U {roots of £o} U Z’
I
- U{ai,laai,l‘i‘lw-wﬂi}' (10)
i=1
Since both W and SW are local integral bases at every o < 3; — 1 with o € a; + Z, the only possible
roots of f,, are By,...,B8r. So fy, is shift-free. m

Example 14 Let L = (z + 2)(z + 3)S? — 2(x + 2)S + 1 € C[z][S]. It has two solutions by = =
and by = (»L+1' All roots of Loly are —3,—2 € Z. Let § = —2 and Z = {—2}. A suitable basis of
A =C(z)[S])/(L) at B is W = (1, (x + 2)S). It is a local integral basis of A at Z and generates the same
C(x)q-module as U = {1, S} for all « € C\ Z. Then by Theorem 13, e,, is shift-free and 8 is the only
possible root of e,,. Indeed, we have e,, = x + 2 and M,, = ( 0 ) Moreover, f, =1 is shift-free and

2e4d —x—2 b2
Nw:(i+2 xo)'

4 Generalized Abramov-Petkovsek reduction

In this section, we use a suitable basis to decompose an element f € A into a summable part and a
remainder such that the denominator of this remainder is shift-free. The lemma below presents a matrix
version of Abramov-Petkovsek reduction formula in [5, Lemma 9.

Lemma 15. Let W be a suitable basis of A at {f1,...,B8r}. Let e,é € Clz] and M, M € Clz]"™" be
such that SW = éMW and éM = (éM)*l, Let p; € Clz| be the minimal polynomial of B; over C. Let
q € Clz], a € Clz]" and £ € Z.

10



(i) If ged(q, 0% (p;)) = 1 for alli € {1,...,I} and j € Z, there exist g € A and c € C[z]" such that
—— =Ag+ —. (11)

(it) If g = pi™ with i € {1,...,I} and m > 0, there exist g € A and ¢ € C[z]" such that (11) also holds.

Proof. 1If £ = 0, we only need to take g = 0 and ¢ = eéa.
If £ > 1, we have

W o MM o) o) o) o ()
@ @ e e @ e o1
Ao @ e ) o ) o )
-0 (owq) @ W) P @ 1

By the assumption and Theorem 13. ( ) every irreducible factor of € is a factor of p; for some i € {1,...,T}.
So in either (i) or (ii), we have ged(o*~1(q),071(€)) = 1. By the partial fraction decomposition of ratlonal
functions, there exist v, vy € C[z]” such that

o~ Ha) 007 l(J\ZI) - uW vaW (13)

) o1(@) ot (g) o (@)

Since

combining with (12) and (13), we have

aW u W o(vg) MW

() = 71(g) + = mod A(A).
By the induction hypothesis, the first summand is congruent to 9% for some ¢; € C[z]". Setting
¢ = ¢1 + qo(va) M establishes Equation (11) in the case £ > 1.
If £ < —1, we have
aW aW o(a)MW
ola) <_ UZ(Q)) a+1(q)e

When ¢ = —1, we take g = —U‘m(/ and ¢ = éo(a)M. When ¢ < —1, note that ged(c**1(q),e) = 1 by the

assumption and Theorem 13.(i). The induction can be completed in a similar way as in the case £ > 1.
|

Recall [4,5] that two irreducible polynomials p,q € C[z] are said to be shift-equivalent if p | o*(q) for
some k € Z, denoted by p ~, ¢q. The relation ~, is an equivalence relation. By grouping together the
irreducible factors in the same shift-equivalence classes, every polynomial u € C[z] has a factorization of

the form
o= T o

lléfl

where m,n;p € N, 41,0y € Z with ¢; < {3, ¢; € C[z] is irreducible, and g¢;, ¢ are pairwise shift-
inequivalent for all 1 < # i’ < m. From such a factorization, applying the partial fraction decomposition

of rational functions to all coefficients of f = W € A with a € C[z]", we can decompose f into the form
m a;,
(fo+ZZ ) w o
i=10=¢(

where fo,a; ;0 € Clz]" and deg,(a;s) < deg,(q; ). The degree of a vector in C[z]" is the maximal
degree of all its entries.

11



Proposition 16. Let W be a suitable basis of A at {p1,...,8r}. Then any element f € A can be

decomposed as
cW

f=Ag+h and h= , (15)

<

where g € A, ¢ € Clz]", 4 € Clz] and the product ﬁHiI:l(:E — B;) is shift-free.

Proof. We write f as in (14). Let p; € C[z] be the minimal polynomial of §;. If ¢; is shift-equivalent to
py for some ' € {1,...,I}, we may choose ¢; = py as a representative in this shift equivalence class. By
Lemma 15, there exist g € A and ¢; ; € C[z]” such that

m Lo )
ng+<fo+Zfo’feé>W,

n
i=1 =0, i

where SW = 1MW and %J\Zf = (2M)~'. By Theorem 13, eé Hle(x— B;) is shift-free. Then we get (15)
by setting @ = ee [~ ¢/" with n; = maxﬁiel {nie} and ¢ = fou+ Y v, Zﬁiél (icir)/(g; " €€). By the
assumption on suitable bases, the orbits 8; +Z with 1 < ¢ < I are distinct and all conjugates of 3; belong
to {B1,--.,0r}. So the product p;y Hi[:l(x — Br) is shift-free for all 1 <4’ < I. Thus the polynomial @

satisfies the required condition. =

Theorem 17. Let h € A be in (15) with ¢ = (c1,...,¢.) and ged(@,c,...,¢,) = 1. Let e € Clz] and
M € Clz]™ " be such that SW = LMW . If h is summable in A, then @ divides e and h = A(bW) with
be Clx]".

Proof. Suppose h is summable in A. There exist b = (b1,...,b,) € Clz]” and v € C[z] such that
h = A(+bW) and ged(v,by,...,b,) = 1. We show that v is a constant. Otherwise there exists a € C
such that disp,(v) > 0. Since W is a suitable basis at {f1,...,8r}, by Proposition 5 and Theorem 13,
we have that either disp, (@) > disp,(v) +1 > 1 or disp,, ((z — 3;)@) > 1 for some i € {1,...,I}. This
contradicts the fact that aHle(x — B;) is shift-free. Thus v is a constant in C. Then

1

h=oc(v 'b)SW — v 'bW = <a(u—1b)M —~ v_lb) w=W
€ u

So @t divides e. m

Corollary 18. Let W be a suitable basis of A at {B1,...,B81}. Let e € Clx] and M € C[z]"™*" be such
that SW = %MW Then any element f € A can be decomposed as

E

=A
f 9+

1
PW + ~RW, (16)

where g € A, d € Clz], P,R € Clx]" with deg,(P) < deg,(d) and dHle(:E — B;) being shift-free.
Moreover, if f is summable in A, then P = 0.

Proof. Let g € A and h = ¥ be as in (15). Let {p1,...,pm} be the set of minimal polynomials of the

u

Bi’s over C for all 1 < i < I and let @ = u[[;~, pi" be such that @ € Clz] and ged(a, [[\~, p;) = 1.
Applying the partial fraction decomposition of rational functions to all entries of ¢, we decompose h as

h= <h0+ +>° c,ﬁ)W (17)
i=1 41

b;
where hg, ¢, ¢; € Clz]" satisfy deg,(¢) < deg, () and deg,(c;) < deg, (p;*). Let k; be the multiplicity of
p; in e. If n; > k;, by division with remainder, we write ¢; = aip?i_k"’ + b; such that a;,b; € Clz]” and

deg, (b;) < deg, (p"~*"). Then we have
i b; i
Cniw—<m+‘2>w. (18)
D; Dy i

NI Ks]

(2
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If n; < k;, then (18) holds for b; = 0 and a; = cipff‘_"’i. Let d be the product of @ and p;" for all
1 <4 <m with b; # 0. Combining (17) and (18), we decompose h into two parts:

b N a 1 1
h( > i>W+<ho+Zaki>WAdPW+6RW,
=111 p;

i i=1 Fi

[N NeY

where P = (d/@)e+ Y27, (d/p)b; and R = ehg + Y21, (¢/pF*)a; € Clz]". The product d[]/_, (z — ;) is
shift-free and deg,(P) < deg,(d). Since f = Ag+h, f is summable in A if and only if & is summable in A.
By Theorem 13, {p1,...,pm} are all possible irreducible factors of e. Note that for each i € {1,...,m},
the multiplicity of p; in d is either greater than k; or equal to 0. By Theorem 17, if h is summable in A,

then d belongs to C' and hence P = 0 because deg,(P) < deg,(d). m

Example 19. Let L € C[z][S] be the same operator as in Example 14 and W = (w1, w2) = (1, (z + 2)S)

be a suitable basis of A= C(z)[S]/(L) at {—2}. Thene=xz+2 and M = (_ }). For

1 T

= e e T e e

w2,

applying the reduction described above, we can reduce the dispersion of the denominator of f and decom-
pose it into the form

(—1,1) 1 1
z+1 T+ 2)2 T +2

g ( / ) — ( / ) e~
1/d 1/e

By Theorem 17, f is not summable in A because d ¢ C and P # 0.

In the next section, we shall use a local integral basis at infinity to reduce the degree of R with respect
to = in (16).

5 Reduction at infinity

This section can be viewed as a discrete analog of Hermite reduction at infinity for D-finite func-
tions [12]. Tt is also a generalization of the polynomial reduction in the hypergeometric case [14]. Let
W = (w1, ...,w,) be a local integral basis at infinity of A. Let A € Z be the minimal integer such that

AW =MW  with M = (m;;);,—; € C(x);".

For convenience, we define the degree of a rational function p/q € C(z) as deg,(p) — deg,(q), denoted
by deg,(p/q). The degree of a matrix in C(x)"*" is the maximal degree of all its entries. With this
convention, we have A = deg, (z*M). Let f = 2% > | a;w; € A with k > 0 and ay,...,a, € C(2)o. In
order to reduce the degree k of the coefficient vector of f, we seek by,...,bq,c1,...,¢ € C(2)s such that

" zr: a;w; = A (xk“ zr: biwi> + 2kt i: CiWi. (19)
i=1 i=1 i=1

Using the relation A(uv) = A(u)v 4+ o(u)A(v) for all u € C(x) and v € A, we get

¥ Z a;w; = Z (A(bi)kawi + o(b;)A (xk+1wi) + cixk_lwi)
i=1 i=1

Multiplying by =% and rewriting the difference of zF*1w;, we obtain

Z a;w; = Z (A(bi)xwi + o(bi)x_kA (xk+1wi) + cix_lwi) (20)
i=1 i=1
= Z A(b;)zw; + b))z FA(zF T w; + x_ka(bixk+1)x>‘ Z mi jw; + iz tw; | (21)
i=1 j=1
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Since b; € C(x)oo, we have A(b;)z € 27'C(2). For example, A(1+ L 4. )z = -1 4...0 Also

eFA@RY) = (k+ 1)+ (D2 + - = (k+ 1) mod 2~ So if A < —1, then Equation (21) can be
reduced modulo z71C(z) s

Zaiwi = Z(k 4+ 1)o(bj)w; mod z~ 1. (22)
i=1 i=1

It follows that b; = o~ *((k+1)"'a;) = (k+1)"to~1(a;) = (k+1)"ta; mod z~! is the unique solution
of (22) in C(z)so/(z~1). If A > —1, then multiplying (20) by 2=*~! and reducing this equation modulo
27272 yields

fo)‘flaiwi = Zo(bi)szf)‘flA (z"'w;)  mod 272 (23)
i=1 i=1

Let ¢; := o~ F*1A (wk"’lwi) for i = 1,...,r. To reduce the degree k, we have to show that Equa-
tion (23) always has a solution (by,...,b,) in (C’(x)oo/@*)‘”})r. The solution b = (by,...,b,) in
(C(x)oo/<x*)"2>)r is of the form b; = b;o + bi,li + -+ bi,A+1T1+1 with b; ; € C. In practice, we
hope that 2**13""_ bw; in (19) has only polynomial coefficients and therefore assume k > max{0, A}.
Proposition 20. Let W = {wi,...,w.} be a local integral basis at infinity of A. Let X € Z be the

minimal integer such that A(W) = 2 XMW with M € C(z)7X". For an integer k > 0, we define
Vi = FATIA (R W), If A > —1, then

D C@)oothi € Ose € 2D~ Cl2) 0ot
i=1

i=1

In particular, when X = —1, we have Y., C(2)st)i = Oc. In this case, {¢1,...,¢,} forms a local
integral basis at infinity.

Proof. We prove this proposition using the same technique as in [17, Lemma 10] and [12, Proposition
6]. To show > i, C(2)scti € Oso, we only need to show that for every i = 1,...,r, the element 1;
is integral at infinity. Expanding v;, we get 1; = v ¥ A 1A(z2* D w; + 27 F A~ Lo(zF 1) A(w;). Since
A(W) =2 MW and M € C(x)"X", it follows that the second term in 1); is integral at infinity. The first

o0

term in 1); is also integral at infinity because A +1 > 0. So 1); is integral at infinity.

Next we shall prove Oy, C 22! i C(x)ooths. Suppose to the contrary that there exists an element
f €O\ 2 MY C(x)otpi. Furthermore, we can find such an element f of the form

f=a 2 20(01)1/)1 with ¢; € C(2)o and veo(c;) = 0 for some 7.
i=1

Taking f = 0, we shall prove that the {¢1,...,,} is linearly independent.

Further let g = 22", A(c;)w;, which is integral at infinity for the same reason as between (21)
and (22). Then also their sum

f4+g=aF i (o(e)A (T w;) + Ale;) ¥ wy)
i=1

=gkt Z A(czbtw;) = a7 FHA (271h)
i=1

must be integral, where h = Y\, c;w;.

Since {w1,...,w,} is a local integral basis at infinity, by [12, Lemma 2] (it also works in the setting
of P-recursive sequences), we have 0 < valy(h) < 1. Note that

valoo (2" T1h) = —k — 1 + valoo (h) < —1 + valoo(h) < 0;

here we use the assumption that k& > 0, because k = —1 and val,,(h) = 0 imply that val,,(z*+1h) = 0.
Since val,, (zFT1h) # 0, by Proposition 10 we get

valoo (T F AP TR)) <k —1—k — 14 valo(h) +1 = valo(h) — 1 < 0.
So 2 **1A(2*+1h) = f+ g is not locally integral at infinity, which contradicts the integrality of f. Hence
Ooe CaM Y0 C@)octhi.  m
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Note that the shift operator o does not change the valuation v, of a rational function. The following
theorem follows with the same proof as in [12, Theorem 7).

Theorem 21. Using the same notations as in Proposition 20, let k > 0 and A\ > —1. Then for any
ai,...,ar € C(x)so, the linear system

r

zr: x_k_laiwi = Z U(bz)wz
=1

i=1
has a solution (by,...,by) in (C’(I)OO/@*)"Z))T.

Example 22. Let L € C[x][S] be the same operator as in Example 14. A local integral basis at infinity
of A= C(x)[S]/(L) is given by w1 = (z* +223)S — 23 — 22 and we = (2 + 222)S — 22, Then

713712 T
(Awl):ﬂ “ery 0 <w>
Awsy 0 ot et e 3:2?3: L?)”l wWa

with A = 0. We apply the reduction at infinity to

3 4+2 2% +3

e )

wa.

So we start with k =0, a1 = (23 + 2)/(2?(x + 2)) and az = (223 + 3)/(2*(z + 2)). Then Equation (23)
leads to the following linear system for the unknowns by and bs:

—z4—zz+3z2+3:v+l 0
(z7 ar, 27 ag) = (o(br), o (b2)) ( ! (BH) m4m3+3m2+3x+1> mod z .
23 (2+2)
By Theorem 21, this system always has a solution. Indeed, we find a solution by = —% and by = —%.

Then one step of the reduction at infinity simplifies f to

22 -2z +1 22 -2z +2
w
2@+2) 1 22z +2)

f= A(*Wl - 20-12) + wa.
Remark 23. Let W be a local integral basis at infinity of A = C(x)[S]/(L). Let A\ € Z be the minimal
integer such that AW = x> MW with M € C(z)7X". If the operator L (of order r) admits r linearly
independent solutions in

Cllle™" M = J «*Clle™"/*log ()],

ael
then A < —1. This is similar to the Fuchsian D-finite case, see [17, Lemma 4].

Let W = {w1,...,w,} be alocal integral basis at infinity. Let A\ € Z be the minimal integer such that
AW =2 MW with M € C(x)7X". By a repeated application of the reduction at infinity, one can reduce

o0
the degree in x as far as possible and decompose f € A as

f=Ag+h with h=> huw (24)
1=1

where g € A, h; € C(x) with deg,(h;) < max{0,A} for all i and the coefficients of g are polynomials.
The following lemma follows from Proposition 10 with the same proof as in [12, Lemma 10].

Lemma 24. Let h € A be as in (24). If h is summable in A, then h = A(Y.,_, bw;) with b; € C(x) and
deg, (b;) < max{0, A} for allie {1,...,r}.

6 An additive decomposition

Now we combine the generalized Abramov-Petkovsek reduction and the reduction at infinity to decompose
a P-recursive sequence f as f = Ag + h such that f is summable if and only if the remainder h is zero.

15



This procedure is similar to the hypergeometric case [14], the P-recursive case [10,31] and the differential
case [8,9,12,15,17,32]. It provides an alternative method for solving the accurate integration problem
for P-recursive sequences [3].

In this section, we need two bases to perform the generalized Abramov-Petkovsek reduction and the
reduction at infinity, respectively. Let W = (w1, ...,w,) be a suitable basis of A at {81,..., 8} that is
normal at infinity. By the same proof as in [17, Lemma 18], there exists T = diag (IETl, ... ,x”) € C(x)">r
with 7; € Z such that V := TW is a local integral basis at infinity. Let e,a € Clz] and M, B € C[z]"™*"
be such that SW = %MW and AV = éBV. Since the difference of V is AV = (S — 1)TW =
(1o(T)M — T)T~'V, we may assume that a = 2™ (2 + 1)*2e for some A\, A2 € N. For p1,6 € Z with
p < &, we define a subspace of Laurent polynomials in Clz,z~!] as C[z], 5 := {Zf:u a;z'|a; € C}. The
following theorem decomposes any f € A into a summable part and a remainder such that the remainder
belongs to a finite dimensional vector space over C'.

Theorem 25. Let W,V € A" be as described above. Then any element f € A can be decomposed into

1 1
f:Ag'FaPW‘FEQV» (25)
where g € A, d € Clz], P € Clz]", Q € Clz]}, 5 with deg,(P) < deg,(d), p = min{—7,...,—7,0},

0 = max{deg,(a),deg,(B)} — 1 and the product dHfZl(x — ;) being shift-free. Moreover, f is summable
in A if and only if P =0 and

1 . r
SQVEAWU) with U={cV|ceClaljy}.

where &' = max{0, deg,(B) — deg,(a)}.

Proof. After performing the generalized Abramov-Petkovsek reduction in Section 4, it follows from Corol-
lary 18 that

1
d
where § € A, d € Clz], P,R € Clz]" with deg,(P) < deg,(d) and dHiI:l(x — f3i) being shift-free. We
rewrite the last summand in (26) with respect to the basis V:

1
f=A+-PW+ ERVV, (26)

1 1~
—RW = —-RV,
e a
where R = 2 (2 + 1) RT~! € 2#C[z]". Since V is a local integral basis at infinity, using the reduction
at infinity in Section 5, we obtain from (24) that
1 1
;RW =ARV)+ gRQ‘/, (27)
where R; € C[z]" and Ry € z#Clx]" satisfies
deg, (%) < max {O,degm (%)} —1.

This implies that deg, (R2) < max{deg,(a),deg,(B)} —1 = 4. Thus Ry € Cz]], ; and we finally obtain
the decomposition (25) by setting g = g+ R1V and Q = Ra.
For the last assertion, assume that f is summable (the other direction of the equivalence holds triv-

ially). Then Corollary 18 implies that P = 0. Hence the last summand in (26) is also summable. By
Theorem 17, there exists b € C[z]" such that 2RW = A(bW). By Equation (27), we get

éQV = %RW —ARV) = A((BT ' = R) V) = A(eV),

where ¢ = bT~! — Ry € 2*C[x]". Since V is a local integral basis at infinity, it follows from Lemma 24

that deg,(c) < max {0,deg, (£)} =¢'. Thus c€ Cla], 5. =

The remaining step is to reduce all summable P-recursive sequences to zero. Note that in Theorem 25,
U is a C-vector space of dimension (6’ — u+1). Since A is C-linear, it follows that A(U) is also a finite-
dimensional C-vector space. Using Gaussian elimination, f in (25) can be further decomposed as

1 1
f=Ag+ “PW 4 -QaV, (28)
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where § = g+ g1 with g1 € U and Qs € C’[:E]:"Ms such that f is summable in A if and only if P = @2 = 0.

This decomposition (28) is called an additive decomposition of f.
Proposition 26. We use the same notations as in Theorem 25. The vector Qo in (28) belongs to a
C-vector space of dimension at most

P8 — p+ 1) = r(max{deg, (a), deg, (B)} + max{r,0}),

where T = max{7y,..., 7}

7 Creative Telescoping

Let K(x)[St, Sy] with K = C(t) be an Ore algebra, in which S; and S, are the shift operators with
respect to ¢t and x, respectively. Let J be a left ideal of K(z)[S:, S;] such that A = K(x)[S;, S;]/J is a
K (x)-vector space of dimension r. Assume that there exists a cyclic vector v with respect to S,. This
means that {v,S.7,...,S7 1y} is a basis of A over K(z). Then + is annihilated by L and S; — u; for
some L,u; € K(z)[S;]. We further assume that L = fy + 015, + -+ + .S, € K|[z][S;] with £of, # 0.
Every element f in A can be uniquely written as Py + J for some Py € K(x)[S;]. The map sending f to
Py + (L) gives an isomorphism from A to K (z)[S;]/(L) as a K(x)[S;]-module. Using this isomorphism,
for any f € A, we can apply our additive decomposition to test whether f is summable (in x). If f € A is
not summable, one can ask to find a nonzero operator T' € C(t)[S] (free of x) such that T'(f) is summable.
Such an operator T' if it exists is called a telescoper for f. Applying the additive decomposition with
respect to x in Section 6 to Sif € A yields that

i 1 1
Sif = Ax(gl) + h; with h; = gPiW + anV (29)

where g; € A, d € K[z], P, € K(z]", Q; € K[z}, 5 with deg, (P;) < deg,(d). Moreover, S} f is summable
in A if and only if h; = 0. To compute telescopers for bivariate P-recursive sequences, we are confronted
with the same problem as in the hypergeometric case [14]. The sum of two remainders in the additive
decomposition may not be a remainder. Using the same technique as in the hypergeometric case [14,
Section 5], one can replace h; by h; such that the linear combination of the h;’s over C(t) is still a
remainder. We shall explain how it works by the following example. If there exist co,c1,...,¢p € C (t)
such that Z;io c;h; = 0, then T = Zﬁo ¢;St is a telescoper for f. This approach is the method of
reduction-based telescoping and was developed for various classes of functions [7-10,14,15,17,31,32].

Example 27. Let F = x + 12 + &, which is annihilated by

zl’
L=x+2)@*+E+ D)z +1)S2 - (2P + (2 +5)a® + B2+ Nax + 2 +4)S, + 2> + (2 +3)z +1* +3

and
(2t +1)(z+1) 22+ (12 +2)x — 2t

2+ P+D)r+1"" 2+ @ +Dz+1
A suitable basis of A = K(x)[Sz]/(L) with K = C(t) at {1, 52,03} is

W = (w1, 9) = < (t2 - 1)

2+ 2+ 1)z +1
where B; = —2, Ba and B3 are distinct roots of x® + (2 + 1)z + 1. A local integral basis at infinity is
V = (v1,v2) = (vw1,wsz). Then

Sewi) 1 1 0 w1 S\ t,fﬁf? 0 w1
(G2)-rm (o () G- (57 )0,
Ay 1 22 —x+1 0\ (v S\ tfﬁf? 0 U1
()= (2 D) G- 80

Sy —

, , 1 x4 t?
— 1 o

We compute a minimal telescoper for ﬁF, which corresponds to f = %—&-t € A. Its representation in the
bases is
1
= —(w — (=) (z+t*)w
f = o1 = (= De+ )n)
1

= t(1, —(t —1)%t(t + 1))W + (0, —(t* — 1))V.
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After the reduction at infinity, we obtain

1 1
=A (=, - - D)V)+ — (1, —(t = D>t + 1))W + ————(— o 2),0)V.

F= Bullhy ~( = 12)V) + (== D+ DI + (@ +2).0)
Sincea =xz(x+2), u=—-1,5 =1 and 6’ =0, a basis of the space of all summable sequences in the form
éQV with Q € K[x]i,(S is given by Az(%vl) = —#’:_12)1)1. An additive decomposition of [ is

f=20(g0)+1 ith  h L (1, —(t = 1)*t(t + 1)W + ! (—25,0)V,
= w1 = — —_ — RS U ——
2190 0 0 z+t ) $($+2) 21 )

where go = (5, — (12— 1)$)V+(ﬁ, 0)V. Set hg = hg. Next we consider Sy f, which has an additive

decomposition

1 1
e NS

. 1 t(t+2
Sof = Ap(Sigo) + h1  with hy = m( U2 (¢ —1)t(t + 1)HW +

The sum of two remainders hg and hy is not a remainder, because (x +t)(z 4+t + 1) is not shift-free with
respect to x. Applying the generalized Abramov-Petkoviek reduction to hy by the formula (12), we get

Suf = Al ) b (e (£ 4+ 2)—(t — i+ 1)D)W +

1
y
— (a7, 0)V;

T

z(z +2)
which has another additive decomposition

1 1

m(mao)m

~ ~ 1
Sif = Ap(G1) +h1 with hy = m(tf—jl, —(t—Dtt+1))W +
where g1 € A. Now the sum of ho and hy is a remainder. Since hg and hy are linearly independent over
C(t), we continue with S2f, SPf and compute their refined additive decompositions Si(f) = A (g:) + hi
for i =23, where g2,G3 € A and

~ 1 2 1 2
hy = —— (L2 —(t —1)(t+ 12t + 2))W + ———(——
2 .T+t(t_17 ( )( + ) ( + )) +.’E<.’IJ+2)( tz_lao)‘/a
7 1 (t42)(t3—2t—3) 2 t24t—1
= — — 2 - 1)O)W+ — .
hs xH( 2, —(t+2)(t + 3)(t° — 1)) +x(m+2)( =L 0)V.

Now we see the remainders Bo, l~11, Bg, hs are linearly dependent over C(t), which gives rise to a minimal
telescoper (3t + 3t + 2)S? + (33 + 3t2 — 4t — 6)S? — (6t + 15¢2 + 13t + 2)S; + 3t% + 92 + 8¢.
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