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ABSTRACT
We propose a summation analog of the paradigm of parallel inte-

gration. Using this paradigm, we make some first steps towards

an indefinite summation algorithm applicable to summands that

rationally depend on the summation index and a P-recursive se-

quence and its shifts. Under the assumption that the corresponding

difference field has no unnatural constants, we are able to com-

pute a bound on the normal part of the denominator of a potential

closed form. We can also handle the numerator. Our algorithm

is incomplete so far as we cannot predict the special part of the

denominator. However, we do have some structural results about

special polynomials for the setting under consideration.
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1 INTRODUCTION
The main difference between the first and the second edition of

Manuel Bronstein’s classical textbook on symbolic integration [8]

is an additional tenth chapter about parallel integration, which is

based on his last paper [9] on the subject. Parallel integration is an

alternative approach to the more widely known Risch algorithm

for indefinite integration, whose careful description dominates the

remainder of Bronstein’s book. Parallel integration is also known
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as the Risch-Norman algorithm [12–14, 19, 20, 23, 31] and as poor-

man’s integrator [50].

Although the technique is not complete, i.e., it fails to find a

closed form of certain integrals, it is an attractive alternative to a

full implementation of the Risch algorithm, which is guaranteed to

find a closed form whenever there is one. One advantage is that it

is much easier to program. Indeed, Bronstein’s Maple implementa-

tion [50] barely needs 100 lines of code. A second advantage is that

it extends more easily to integrals of non-elementary functions. For

example, it can find the evaluation∫
𝑥2 + (𝑥2 + 2)𝑊 (𝑥2)
𝑥 (1 +𝑊 (𝑥2))2

𝑑𝑥 =
1

2

𝑥2

𝑊 (𝑥2)
+ log(1 +𝑊 (𝑥2))

involving the Lambert𝑊 function [11]. This is not only interesting

because𝑊 is defined by a nonlinear equation, but also because

there is a factor in the denominator of the closed form that is not

already present in the integrand.

In a seminar talk that never led to a formal publication, Zim-

mermann observed that parallel integration can be combined with

the concept of creative telescoping [49] in order to handle definite

integrals involving a parameter, similar as done by Raab [36] with

Risch’s algorithm. A version of parallel integration for integrals

involving algebraic functions was presented by Böttner in [6] and

for integrals of Airy functions by Du and Raab in [15].

To our knowledge, the idea of parallel integration has not yet

been translated to the setting of symbolic summation. The goal of

the present paper is to do so. A summation example that is similar

to the above integral can be given in terms of the logistic sequence

𝑡𝑛 [17, Example 1.9, Chapter 1] satisfying the nonlinear recurrence

equation 𝑡𝑛+1 = 𝑡𝑛 (1 − 𝑡𝑛) with 𝑡0 ∈ (0, 1). Here we have the

summation identity

𝑛−1∑︁
𝑘=0

1

1 − 𝑡𝑘
=

𝑛∑︁
𝑘=1

(
1

𝑡𝑘+1

− 1

𝑡𝑘

)
=

1

𝑡𝑛
− 1

𝑡0
,

and again, the denominator of the closed form contains a factor

that is not already present in the summand.

On the other hand, the denominator of a closed form is not

completely unpredictable. Like in parallel integration, we can dis-

tinguish the special and the normal part of a denominator. Based on

this distinction, we show in Section 2 how the normal part of the

denominator of a closed form depends on the normal part of the

denominator of the corresponding summand. Unfortunately, we

do not have a complete understanding of the special part, but we

do have some results that limit the number of special polynomials

(Sect. 2.2). More can be said if we focus on a more specific setting.

Sect. 2 is about the general paradigm of parallel summation,

which in principle could be applied to many different specific set-

tings. In Sect. 3 we restrict the attention to one such setting. We
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consider summation problems of the form

𝑛∑︁
𝑘=0

rat(𝑘, 𝑓 (𝑘), 𝑓 (𝑘 + 1), . . . , 𝑓 (𝑘 + 𝑟 − 1)),

where rat is a multivariate rational function and 𝑓 is defined by

a linear recurrence of order 𝑟 with polynomial coefficients. The

task is to decide whether a given sum of this type can be written

as a rational function in 𝑛, 𝑓 (𝑛), . . . , 𝑓 (𝑛 + 𝑟 − 1). While we are not

(yet) able to solve this task in full generality, the idea of parallel

summation provides a significant step towards such an algorithm.

We can describe more precisely the structure of special polynomials

in this case (Sect. 3.1), andwe can effectively solve the𝜎-equivalence

problem (Sect. 3.2), which implies that we can completely identify

the normal part of the denominator of any closed form. Similar as

in the differential case [8, 9], the special part has to be determined

heuristically, unless we impose further restrictions on the setting

(Sect. 4).

2 PARALLEL SUMMATION
Similar to parallel integration, the general idea of parallel summa-

tion is to avoid the recursive nature of summation algorithms such

as Karr’s algorithm by viewing the summand as an element of a field

of multivariate rational functions over a ground field. We now set

up the general algebraic foundation for parallel summation and list

some related problems. Like in the situation of parallel integration,

these problems are in general far from being solved.

Let 𝐴 be a ring and 𝜎 : 𝐴 → 𝐴 be an automorphism of 𝐴. We

call the pair (𝐴, 𝜎) a difference ring and a difference filed if 𝐴 is a

field. Note that the set {𝑎 ∈ 𝐴 | 𝜎 (𝑎) = 𝑎} forms a subring of 𝐴

which is called the constant subring of (𝐴, 𝜎), denoted by 𝐶𝐴 . A

difference ring (𝐴∗, 𝜎∗) is called a difference extension of (𝐴, 𝜎) if
𝑆 ⊆ 𝐴∗

and 𝜎∗ |𝐴= 𝜎 . By abuse of notation, we will often write 𝜎

for the extended automorphism 𝜎∗ of 𝐴∗
.

Problem 1 (Indefinite Summation Problem). Let (𝐴∗, 𝜎) be a
specific difference extension of (𝐴, 𝜎). Given 𝑓 ∈ 𝐴, decide whether
there exists 𝑔 ∈ 𝐴∗ such that 𝑓 = 𝜎 (𝑔) −𝑔. If such a 𝑔 exists, 𝑓 is said
to be summable in 𝐴∗.

Both Abramov’s algorithm [1–3] and Paule’s algorithm [33]

solved the indefinite summation problem for rational functions.

The indefinite hypergeometric summation problem was solved

by Gosper’s algorithm in [21] and the more general P-recursive

case without denominators was solved by Abramov-van Hoeij’s

algorithm [4, 5]. As a discrete analogue of Risch’s algorithm for

elementary integration, Karr’s algorithm [26, 27] solves the indef-

inite summation problem in a so-called ΠΣ-extension of a given

difference field. Karr’s algorithm has been implemented and im-

proved by Schneider in [37, 40, 41] with applications in physics [42].

The ideas of Karr have also been extended to higher order equa-

tions [7, 24, 38, 39].

Karr’s structural theorem shows that the most interesting sum-

mation problem in ΠΣ-extensions is the in-field summation problem
where 𝑓 , 𝑔 are in the same field. This is quite different from the

situation in symbolic integration where computing the logarithmic

part is the most difficult step. In this paper, we will only focus on

the in-field summation problem.

Let 𝐶 be a field of characteristic zero and 𝐾 := 𝐶 (𝑥) be the field
of rational functions in 𝑥 over 𝐶 . We define the usual shift operator
𝜎 : 𝐾 → 𝐾 as a 𝐶-automorphism of 𝐾 such that 𝜎 (𝑥) = 𝑥 + 1. So

(𝐾, 𝜎) becomes a difference field and its constant subfield is 𝐶 . Let

𝑅 := 𝐾 [𝑡0, . . . , 𝑡𝑛−1] and 𝐹 := 𝐾 (𝑡0, . . . , 𝑡𝑛−1). The central problem
of parallel summation is as follows.

Problem 2. Given 𝑓 ∈ 𝐹 , decide whether there exists 𝑔 ∈ 𝐹 such
that 𝑓 = 𝜎 (𝑔) − 𝑔.

For a general 𝐶-automorphism 𝜎 of 𝐹 , the following example

shows that the difference field (𝐹, 𝜎) may contain new constants

that is not in 𝐶 .

Example 3. Let 𝐹 = 𝐶 (𝑥, 𝑡0, 𝑡1) with the 𝐶-automorphism 𝜎

satisfying 𝜎 (𝑥) = 𝑥 + 1, 𝜎 (𝑡0) = 𝑡1, and 𝜎 (𝑡1) = 𝑡0 + 𝑡1. Then
𝑝 = (𝑡2

1
− 𝑡2

0
− 𝑡0𝑡1)2 is a new constant in 𝐹 .

In general, deciding the existence of new constants is a very

hard problem. The following example shows that in general, the

denominator of 𝑔 may have factors that are not related to any of

the factors of the denominator of 𝑓 .

Example 4. Let 𝐹 = 𝐶 (𝑥, 𝑡0, 𝑡1) and 𝜎 is the 𝐶-automorphism
defined by 𝜎 (𝑥) = 𝑥 + 1, 𝜎 (𝑡0) = 2𝑡0 + 𝑥𝑡1 and 𝜎 (𝑡1) = 2𝑡1. Then

𝜎

(
𝑡0

𝑡1

)
− 𝑡0

𝑡1
=

2𝑡0 + 𝑥𝑡1
2𝑡1

− 𝑡0

𝑡1
=
𝑥

2

.

To make the problem more tractable, we will impose the follow-

ing hypothesis throughout the remaining part of this paper.

Hypothesis 5. The constant field of (𝐹, 𝜎) is the field 𝐶 and 𝜎 is
also a 𝐶-automorphism of 𝑅.

To solve Problem 2, one first needs to estimate the possible

irreducible polynomials in the denominator of 𝑔. To this end, we

now extend the notion of special polynomials in parallel integration

to the summation setting.

Definition 6. A polynomial 𝑃 ∈ 𝑅 is said to be special if there
exist 𝑖 ∈ Z \ {0} such that 𝑃 | 𝜎𝑖 (𝑃) and it is said to be normal if
gcd(𝑃, 𝜎𝑖 (𝑃)) = 1 for all 𝑖 ∈ Z \ {0}. A polynomial 𝑃 ∈ 𝑅 is said
to be factor-normal if all of its irreducible factors are normal. Two
polynomials 𝑃,𝑄 ∈ 𝑅 is said to be 𝜎-equivalent if there exist𝑚 ∈ Z
and 𝑢 ∈ 𝐾 such that 𝑃 = 𝑢 · 𝜎𝑚 (𝑄).

By the above definition, any nonzero element in𝐾 is both special

and normal and an irreducible polynomial in 𝑅 is either special or

normal. The product of special polynomials is also special. If two

normal polynomials are not 𝜎-equivalent, then their product is still

normal.

Concerning special and normal polynomials, there are two basic

and natural questions: firstly, how to decide a given irreducible

polynomial is special or normal? secondly, how to decide whether

two polynomials are 𝜎-equivalent or not? We will answer these

questions in next section for the difference field generated by P-

recursive sequences.

2.1 Local dispersions and denominator bounds
Abramov in [1] introduced the notion of dispersions for rational

summation that is a discrete analogue of the multiplicity. We define

a local version of Abramov’s dispersions in 𝑅 at an irreducible



normal polynomial that was first used in [10]. Let 𝑝,𝑄 ∈ 𝑅 with

𝑝 being an irreducible normal polynomial. If 𝜎𝑖𝑡 (𝑝) | 𝑄 for some

𝑖 ∈ Z, the local dispersion of𝑄 at 𝑝 , denoted by disp𝑝 (𝑄), is defined
as the maximal integer distance |𝑖 − 𝑗 | with 𝑖, 𝑗 ∈ Z satisfying

𝜎𝑖𝑡 (𝑝) | 𝑄 and 𝜎
𝑗
𝑡 (𝑝) | 𝑄 ; otherwise we define disp𝑝 (𝑄) = −∞.

Conventionally, we set disp𝑝 (0) = +∞. The (global) dispersion of

𝑄 , denoted by disp(𝑄), is defined as

max{disp𝑝 (𝑄) | 𝑝 is an irreducible normal polynomial in 𝑅}.

Note that disp(𝑄) = −∞ if 𝑄 ∈ 𝑅 \ {0} has no irreducible normal

factor. For a rational function 𝑓 = 𝑎/𝑏 ∈ 𝐹 with 𝑎, 𝑏 ∈ 𝑅 and

gcd(𝑎, 𝑏) = 1, we also define disp𝑝 (𝑓 ) = disp𝑝 (𝑏) and disp(𝑓 ) =

disp(𝑏). The set {𝜎𝑖 (𝑝) | 𝑖 ∈ Z} is called the 𝜎-orbit at 𝑝 , denoted

by [𝑝]𝜎 . Note that disp𝑝 (𝑄) = disp𝑞 (𝑄) if 𝑞 ∈ [𝑝]𝜎 . So we can

define the local dispersion and dispersion of a rational function at

a 𝜎-orbit.

The following lemma shows how the local dispersions and disper-

sions change under the action of the difference operator Δ, which
is defined by Δ(𝑓 ) = 𝜎 (𝑓 ) − 𝑓 for any 𝑓 ∈ 𝐹 .

Lemma 7. Let 𝑓 = 𝑎/𝑏 ∈ 𝐹 with 𝑎, 𝑏 ∈ 𝑅 and gcd(𝑎, 𝑏) = 1 and
let 𝑝 ∈ 𝑅 be an irreducible normal factor of 𝑏. Then disp𝑝 (Δ(𝑓 )) =
disp𝑝 (𝑓 ) + 1 and disp(Δ(𝑓 )) = disp(𝑓 ) + 1.

Proof. Let 𝑑 = disp𝑝 (𝑏). Without loss of generality, we may

assume that 𝑝 | 𝑏 but𝜎𝑖 (𝑝) ∤ 𝑏 for any 𝑖 < 0. Since gcd(𝑎, 𝑏) = 1 and

𝜎 is a𝐶-automorphism of 𝐾 [𝑡0, . . . , 𝑡𝑛−1], gcd(𝜎𝑖 (𝑎), 𝜎𝑖 (𝑏)) = 1 for

any 𝑖 ∈ Z. We now write

𝜎 (𝑓 ) − 𝑓 =
𝜎 (𝑎)𝑏 − 𝑎𝜎 (𝑏)

𝑏𝜎 (𝑏) =
𝐴

𝐵
,

where 𝐴, 𝐵 ∈ 𝐾 [𝑡0, . . . , 𝑡𝑛−1] and gcd(𝐴, 𝐵) = 1. Since 𝑝 | 𝑏 but 𝑝 ∤
𝑎𝜎 (𝑏), we have 𝑝 ∤ (𝜎 (𝑎)𝑏−𝑎𝜎 (𝑏)) and then 𝑝 ∤ 𝐴. By the definition
of local dispersions, 𝜎𝑑 (𝑝) | 𝑏 but 𝜎𝑑+1 (𝑝) ∤ 𝑏. Since gcd(𝑎, 𝑏) = 1,

we have 𝜎𝑑 (𝑝) ∤ 𝑎 and then 𝜎𝑑+1 (𝑝) ∤ 𝜎 (𝑎). Then 𝜎𝑑+1 (𝑝) ∤ 𝜎 (𝑎)𝑏,
which implies 𝜎𝑑+1 (𝑝) ∤ (𝜎 (𝑎)𝑏 − 𝑎𝜎 (𝑏)) and also 𝜎𝑑+1 (𝑝) ∤ 𝐴. So
𝑝 | 𝐵 and 𝜎𝑑+1 (𝑝) | 𝐵, which implies that disp𝑝 (𝐵) ≥ 𝑑 + 1. Since

𝐵 | 𝑏𝜎 (𝑏), we have disp𝑝 (𝐵) ≤ disp𝑝 (𝑏𝜎 (𝑏)) = 𝑑 + 1. Therefore,

disp𝑝 (𝐵) = 𝑑 + 1. Since the equality disp𝑝 (𝐵) = 𝑑 + 1 holds for all

irreducible normal factors, we have disp(Δ(𝑓 )) = disp(𝑓 ) + 1.

By the above lemma, we get that 𝑓 is not 𝜎-summable in 𝐹

if disp(𝑓 ) = 0. If we know how to detect the 𝜎-equivalence in

𝑅, then we can write a given polynomial 𝑃 ∈ 𝑅 as 𝑃 = 𝑃𝑠 · 𝑃𝑛 ,
where 𝑃𝑛 is monic, all irreducible factors of 𝑃𝑠 ∈ 𝑅 are special and

all irreducible factors of 𝑃𝑛 ∈ 𝑅 are normal. We call (𝑃𝑠 , 𝑃𝑛) the
splitting factorization of 𝑃 and 𝑃𝑛 the normal part of 𝑃 .

Theorem 8. Let 𝑓 ∈ 𝐹 and 𝑣𝑛 ∈ 𝑅 be the normal part of the
denominator of 𝑓 . If 𝑓 = 𝜎 (𝑔) − 𝑔 for some 𝑔 ∈ 𝐹 , then the normal
part of the denominator of 𝑔 divides the polynomial

gcd

(
𝑑∏
𝑖=0

𝜎𝑖 (𝑣𝑛),
𝑑∏
𝑖=0

𝜎−𝑖−1 (𝑣𝑛)
)
,

where 𝑑 := disp(𝑔) = disp(𝑓 ) − 1.

Proof. Write 𝑓 = 𝑢/𝑣 ∈ 𝐹 with 𝑢, 𝑣 ∈ 𝑅 and 𝑔𝑐𝑑 (𝑢, 𝑣) = 1.

Assume that the splitting factorization of 𝑣 is (𝑣𝑠 , 𝑣𝑛) ∈ 𝑅2
. If

𝑓 = 𝜎 (𝑔) − 𝑔 for some 𝑔 ∈ 𝐹 , we also write 𝑔 = 𝑝/𝑞 with 𝑝, 𝑞 ∈ 𝑅
and 𝑔𝑐𝑑 (𝑝, 𝑞) = 1 and let (𝑞𝑠 , 𝑞𝑛) be the splitting factorization of 𝑞.

By Lemma 7, we have 𝑑 := disp(𝑞𝑛) = disp(𝑣𝑛) − 1. We now show

𝑞𝑛 | gcd

(
𝑑∏
𝑖=0

𝜎𝑖 (𝑣𝑛),
𝑑∏
𝑖=0

𝜎−𝑖−1 (𝑣𝑛)
)
. (1)

We first show that 𝑞𝑛 | ∏𝑑
𝑖=0

𝜎𝑖 (𝑣𝑛). The equality 𝑓 = 𝜎 (𝑔) − 𝑔
implies that

𝑔 =
𝑣𝜎 (𝑔) − 𝑢

𝑣
(2)

Applying 𝜎 to both sides of the above equation yields

𝜎 (𝑔) = 𝜎 (𝑣)𝜎2 (𝑔) − 𝜎 (𝑢)
𝜎 (𝑣) .

Substituting 𝜎 (𝑔) in the equation (2) yields

𝑔 =
1

𝑣

(
𝑣 · 𝜎 (𝑣)𝜎

2 (𝑔) − 𝜎 (𝑢)
𝜎 (𝑣) − 𝑢

)
After 𝑑 repetitions of the above process, we get

𝑔 =
𝑎 · 𝜎𝑑+1 (𝑔) − 𝑏
𝑣𝜎 (𝑣) · · ·𝜎𝑑 (𝑣)

for some 𝑎, 𝑏 ∈ 𝑅. The denominator of the 𝑔 is 𝑞 = 𝑞𝑠𝑞𝑛 , while the

denominator of the right-hand side of the above equality is a divisor

of 𝑉 := 𝑣𝜎 (𝑣) · · ·𝜎𝑑 (𝑣)𝜎𝑑+1 (𝑞). Then 𝑞𝑛 | 𝑉 . Let (𝑉𝑠 ,𝑉𝑛) be the

splitting factorization of𝑉 . Then𝑉𝑛 = 𝑣𝑛𝜎 (𝑣𝑛) · · ·𝜎𝑑 (𝑣𝑛)𝜎𝑑+1 (𝑞𝑛)
and 𝑞𝑛 | 𝑉𝑛 . Since 𝑑𝑖𝑠𝑝 (𝑞𝑛) = 𝑑 , we have gcd(𝑞𝑛, 𝜎𝑑+1 (𝑞𝑛)) = 1.

Hence we have 𝑞𝑛 | 𝑣𝑛𝜎 (𝑣𝑛) · · ·𝜎𝑑 (𝑣𝑛). The proof of the divisibility
𝑞𝑛 | ∏𝑑

𝑖=0
𝜎−𝑖−1 (𝑣𝑛) is analogous. So the divisibility (1) holds.

Example 9. Let 𝐹 = 𝐶 (𝑥) (𝑡0, 𝑡1) with a 𝐶-automorphism defined
by 𝜎 (𝑥) = 𝑥 + 1, 𝜎 (𝑡0) = 𝑡1 and 𝜎 (𝑡1) = −6𝑡0 + 5𝑡1. Consider the
equation

𝑓 =
636𝑡3

0
+ 443𝑡2

0
𝑡1 − 1428𝑡0𝑡

2

1
+ 565𝑡3

1

2592(3𝑡0 − 2𝑡1)2 (𝑡0 − 𝑡1)2 (2𝑡0 − 𝑡1) (𝑡0 + 𝑡1)
= 𝜎 (𝑦) − 𝑦.

We now decide whether this equation has a solution in 𝐹 . Firstly, we
can detect that the irreducible factor 2𝑡0 − 𝑡1 is special and other irre-
ducible factors are normal. Then the normal part of the denominator
of 𝑓 is 𝐵 := (3𝑡0 − 2𝑡1)2 (𝑡0 − 𝑡1)2 (𝑡0 + 𝑡1) with dispersion 𝑑 = 2.
By Theorem 8, the normal part of the denominator of any solution 𝑔
divides the polynomial (𝑡1 + 𝑡0)3𝜎 (𝑡1 + 𝑡0)2. Then we can make an
ansatz for 𝑔 as

𝑔 =
𝑈

(𝑡1 + 𝑡0)3𝜎 (𝑡1 + 𝑡0)2 (2𝑡0 − 𝑡1)
,

where𝑈 ∈ 𝐶 (𝑥) [𝑡0, 𝑡1] satisfying the recurrence equation
(𝑡1 + 𝑡0)3𝜎 (𝑈 ) − 𝜎 (𝑡1 + 𝑡0)𝜎2 (𝑡1 + 𝑡0)2𝑈 = 𝑏,

where 𝑏 = (𝑡1 + 𝑡0)2𝜎 (𝑡1 + 𝑡0) (636𝑡3
0
+ 443𝑡2

0
𝑡1 − 1428𝑡0𝑡

2

1
+ 565𝑡3

1
).

We can bound the degree of𝑈 which is 3. Then we get𝑈 = 𝑡3
0
+ 4𝑡2

0
+

5𝑡0𝑡
2

1
+ 2𝑡3

1
by solving a linear difference system for rational solutions.

So we have the rational solution

𝑔 =
2𝑡1 + 𝑡0

36(𝑡1 − 2𝑡0) (𝑡0 + 𝑡1) (𝑡1 − 𝑡0)2
.

We will discuss how to estimate special factors in the denom-

inator of 𝑔 in next section for the difference fields generated by

P-recursive sequences.



2.2 Number of irreducible special polynomials
In Section 2.1, we have already outlined the procedure for comput-

ing the normal part of the denominator of 𝑔 satisfying 𝜎 (𝑔) −𝑔 = 𝑓 .

The challenge that remains is to handle the special part. As demon-

strated in Example 4, a peculiar situation arises where the denom-

inator of 𝑔 contains a special polynomial that does not already

appear in the denominator of 𝑓 . Hence, to determine the denomi-

nator of 𝑔, it becomes necessary to identify all irreducible special

polynomials. However, the computation of all special polynomials

remains an unresolved issue at present. In this subsection, we aim

to establish that there are at most 𝑛 irreducible special polynomi-

als that do not pairwise differ by elements of 𝐾∗
. This provides

a crucial insight into the limited diversity of irreducible special

polynomials. In Section 3.1, under certain assumptions, we will

unveil the structure of irreducible special polynomials. We begin

with the following lemma that is a direct consequence of Theorem

2.1.12 on page 114 of [30].

Lemma 10. Suppose that F is a 𝜎-field with algebraically closed
field 𝐶 of constants, and 𝑓 ∈ F satisfying that 𝜎ℓ (𝑓 ) = 𝑓 for some
ℓ > 0. Then 𝑓 ∈ 𝐶 .

Corollary 11. Suppose that 𝑝1, 𝑝2, . . . , 𝑝𝑚 are special polyno-
mials that are linearly independent over 𝐾 , 𝛼2, . . . , 𝛼𝑚 ∈ 𝐾 . Then
𝑝1 + 𝛼2𝑝2 + · · · + 𝛼𝑚𝑝𝑚 is a special polynomial if and only if 𝛼2 =

· · · = 𝛼𝑚 = 0.

Proof. It suffices to show the necessary part. Suppose that 𝑝1 +
𝛼2𝑝2 + · · · + 𝛼𝑚𝑝𝑚 is a special polynomial. Then there is a positive

integer ℓ and 𝛾, 𝛽1, . . . , 𝛽𝑚 ∈ 𝐾 such that 𝜎ℓ (𝑝𝑖 ) = 𝛽𝑖𝑝𝑖 and
𝜎ℓ (𝑝1 + 𝛼2𝑝2 + · · · + 𝛼𝑚𝑝𝑚) = 𝛾 (𝑝1 + 𝛼2𝑝2 + · · · + 𝛼𝑚𝑝𝑚) .

A straightforward calculation reveals that 𝛽1 = 𝛾 , and 𝜎ℓ (𝛼𝑖 )𝛽𝑖 =
𝛽1𝛼𝑖 for all 2 ≤ 𝑖 ≤ 𝑚. This implies that 𝜎ℓ (𝛼𝑖𝑝𝑖 ) = 𝛽1𝛼𝑖𝑝𝑖 and

consequently, 𝜎ℓ (𝛼𝑖𝑝𝑖/𝑝1) = 𝛼𝑖𝑝𝑖/𝑝1, for all 2 ≤ 𝑖 ≤ 𝑚. According

to Lemma 10, 𝛼𝑖𝑝𝑖/𝑝1 ∈ 𝐶 . For each 2 ≤ 𝑖 ≤ 𝑚, as 𝑝𝑖 and 𝑝1 are

linearly independent over 𝐾 , it follows that 𝛼𝑖 = 0.

Proposition 12. Suppose that 𝑝1, . . . , 𝑝𝑚 are irreducible special
polynomials that are not pairwise shift equivalent. Denote by ℓ𝑖 the
smallest positive integer such that 𝑝𝑖 | 𝜎ℓ𝑖 (𝑝𝑖 ). Then the 𝜎 𝑗 (𝑝𝑖 ), 𝑖 =
1, . . . ,𝑚, 𝑗 = 0, . . . , ℓ𝑖 − 1 are algebraically independent over 𝐾 .

Proof. Set 𝑁 = lcm(ℓ1, . . . , ℓ𝑚). Then 𝜎𝑁 (𝜎 𝑗 (𝑝𝑖 )) = 𝛼𝑖, 𝑗𝜎 𝑗 (𝑝𝑖 )
for some 𝛼𝑖, 𝑗 ∈ 𝐾 . Suppose on the contrary that the 𝜎 𝑗 (𝑝𝑖 ), 𝑖 =
1, . . . ,𝑚, 𝑗 = 0, . . . , ℓ𝑖 − 1 are algebraically dependent over 𝐾 . Due to

the difference analogue of Kolchin-Ostrowski theorem (see [22, 32]),

there are integers 𝑑𝑖, 𝑗 , 𝑖 = 1, . . . ,𝑚, 𝑗 = 0, . . . , ℓ𝑖 − 1, not all zero, and

𝛽 ∈ 𝐾∗
such that

𝑚∏
𝑖=1

ℓ𝑖−1∏
𝑗=0

𝛼
𝑑𝑖,𝑗
𝑖, 𝑗

=
𝜎𝑁 (𝛽)
𝛽

.

Since 𝜎𝑁 (∏𝑖, 𝑗 𝜎
𝑗 (𝑝𝑖 )𝑑𝑖,𝑗 ) =

∏
𝑖, 𝑗 𝛼

𝑑𝑖,𝑗
𝑖, 𝑗

∏
𝑖, 𝑗 𝜎

𝑗 (𝑝𝑖 )𝑑𝑖,𝑗 , we have that

𝜎𝑁

(∏
𝑖, 𝑗 𝜎

𝑗 (𝑝𝑖 )𝑑𝑖,𝑗
𝛽

)
=

∏
𝑖, 𝑗 𝜎

𝑗 (𝑝𝑖 )𝑑𝑖,𝑗
𝛽

.

Due to Lemma 10,

∏
𝑖, 𝑗 𝜎

𝑗 (𝑝𝑖 )𝑑𝑖,𝑗 = 𝑐𝛽 for some 𝑐 ∈ 𝐶 . Denote

𝑆1 = {(𝑖, 𝑗) | 𝑑𝑖, 𝑗 > 0} and 𝑆2 = {(𝑖, 𝑗) | 𝑑𝑖, 𝑗 < 0}. Since the 𝑑𝑖, 𝑗 are

not all zero and 𝑡0, . . . , 𝑡𝑛−1 are algebraically independent over 𝐾 ,

neither 𝑆1 nor 𝑆2 is empty. This leads to∏
(𝑖, 𝑗 ) ∈𝑆1

𝜎 𝑗 (𝑝𝑖 )𝑑𝑖,𝑗 = 𝑐𝛽
∏

(𝑖, 𝑗 ) ∈𝑆2

𝜎 𝑗 (𝑝𝑖 )−𝑑𝑖,𝑗 .

Choose (𝑖1, 𝑗1) ∈ 𝑆1. Then 𝜎
𝑗1 (𝑝𝑖1 ) divides

∏
(𝑖, 𝑗 ) ∈𝑆2

𝜎 𝑗 (𝑝𝑖 )−𝑑𝑖,𝑗
and thus there exists (𝑖2, 𝑗2) ∈ 𝑆2 such that 𝜎

𝑗1 (𝑝𝑖1 ) divides 𝜎 𝑗2 (𝑝𝑖2 ).
As both 𝜎 𝑗1 (𝑝𝑖1 ) and 𝜎 𝑗2 (𝑝𝑖2 ) are irreducible, 𝜎 𝑗1 (𝑝𝑖1 ) = 𝛾𝜎 𝑗2 (𝑝𝑖2 )
for some 𝛾 ∈ 𝐾 . If 𝑖1 = 𝑖2 then 0 ≤ 𝑗1 ≠ 𝑗2 ≤ ℓ𝑖1 − 1. Without loss of

generality, assume 𝑗2 > 𝑗1. Then 𝜎
𝑗2− 𝑗1 (𝑝𝑖1 ) = 𝑝𝑖1/𝜎− 𝑗1 (𝛾), which

contradicts the minimality of ℓ𝑖1 . If 𝑖1 ≠ 𝑖2 then 𝑝𝑖1 and 𝑝𝑖2 are shift

equivalent, contradicting the initial assumption.

Since tr.deg(𝐹/𝐾) = 𝑛, we have the following corollary.

Corollary 13. Suppose that 𝑝1, . . . , 𝑝𝑚 are irreducible special
polynomials that are not pairwise shift equivalent. Then

∑𝑚
𝑖=1

ℓ𝑖 ≤ 𝑛,
where ℓ𝑖 is the smallest positive integer such that 𝑝𝑖 | 𝜎ℓ𝑖 (𝑝𝑖 ).

3 THE P-RECURSIVE CASE
P-recursive sequences, introduced by Stanley [45], satisfy linear

recurrence equations with polynomial coefficients. The generating

function of a P-recursive sequence is a D-finite function, which

satisfies a linear differential equations with polynomial coefficients.

This class of sequences has been extensively studied in combina-

torics [43, 48] and symbolic computation [28, 29] together with

its generating functions. In this section, we will focus on parallel

summation in difference fields generated by P-recursive sequences.

Let 𝐹 be the field 𝐶 (𝑥) (𝑡0, . . . , 𝑡𝑛−1) with a 𝐶-automorphism 𝜎

satisfying that 𝜎 (𝑥) = 𝑥 + 1, 𝜎 (𝑡0) = 𝑡1, . . . , 𝜎 (𝑡𝑛−2) = 𝑡𝑛−1, and

𝜎 (𝑡𝑛−1) = 𝑎0𝑡0 + · · · + 𝑎𝑛−1𝑡𝑛−1,

where 𝑎0, . . . , 𝑎𝑛−1 ∈ 𝐶 (𝑥) and 𝑎0 ≠ 0. So 𝜎 is a 𝐶-automorphism

of the ring 𝑅 = 𝐶 (𝑥) [𝑡0, . . . , 𝑡𝑛−1]. We still assume in this section

that the constant field of (𝐹, 𝜎) is the field 𝐶 . In order to study

the indefinite summation problem in 𝐹 , we first address two basic

questions on special and normal polynomials. In Section 3.1, we

prove some structural properties on special polynomials under

certain assumptions. In Section 3.2, we will answer the question of

deciding whether two irreducible polynomials in 𝑅 are 𝜎-equivalent

or not.

3.1 Degrees of irreducible special polynomials
In the P-recursive case, by Lemma 14 below, computing all special

polynomials of degree𝑚 is equivalent to computing all hypergeo-

metric solutions of the𝑚th symmetric power of the system

𝜎 (𝑌 ) = 𝐴𝑌 (3)

or 𝜎𝑠 (𝑌 ) = 𝐴(𝑠 )𝑌 for some 𝑠 > 1, where

𝐴 =

©­­­­­­«

0 1

0 1

. . .
. . .

0 1

𝑎0 𝑎1 𝑎2 . . . 𝑎𝑛−1

ª®®®®®®¬
and𝐴(𝑠 ) = 𝜎

𝑠−1 (𝐴) . . . 𝜎 (𝐴)𝐴. Algorithms for computing all hyper-

geometric solutions of a given linear difference equation are known,



for example, refer to [34]. Corollary 13 establishes the existence of

a degree bound for all irreducible special polynomials. However,

by the absence of a known degree bound, the computation of all

irreducible special polynomials remains an unresolved challenge.

In this subsection, we aim to prove that when

∑𝑚
𝑖=1

ℓ𝑖 = 𝑛 with

ℓ𝑖 as defined in Corollary 13, all irreducible special polynomials

are linear in 𝑡0, 𝑡1, . . . , 𝑡𝑛−1. Consequently, in this specific case, the

degree of all irreducible special polynomials is exactly equal to 1

and thus we can compute all irreducible special polynomials.

Lemma 14. All special polynomials are homogeneous.

Proof. Suppose that 𝑝 is a special polynomial and is not ho-

mogeneous. Write 𝑝 =
∑𝑚
𝑖=0

𝑝𝑖 where 𝑝𝑖 is the 𝑖-th homogeneous

part of 𝑝 and 𝑝𝑚 ≠ 0. Assume that 𝜎ℓ (𝑝) = 𝛼𝑝 for some nonzero

𝛼 ∈ 𝐶 (𝑥). Then 𝜎ℓ (𝑝) = ∑𝑚
𝑖=0

𝜎ℓ (𝑝𝑖 ) = 𝛼𝑝 =
∑𝑚
𝑖=0

𝛼𝑝𝑖 . Note that

𝜎ℓ (𝑝𝑖 ) is also homogeneous of degree 𝑖 . We have that 𝜎ℓ (𝑝𝑖 ) = 𝛼𝑝𝑖
for all 0 ≤ 𝑖 ≤ 𝑚. Since 𝑝 is not homogeneous, there is an 𝑖0 such

that 𝑝𝑖0 ≠ 0. Hence 𝜎ℓ (𝑝𝑖0/𝑝𝑚) = 𝑝𝑖0/𝑝𝑚 . According to Lemma 10,

𝑝𝑖0/𝑝𝑚 ∈ 𝐶 , which contradicts the fact that the numerator and

denominator of 𝑝𝑖0/𝑝𝑚 have different degrees.

We start with the𝐶-finite case. In this case, we will demonstrate

that the degree of all irreducible special polynomials is always equal

to 1, without requiring the assumption that

∑𝑚
𝑖=1

ℓ𝑖 = 𝑛.

Proposition 15. Suppose that 𝐴 ∈ GL𝑛 (𝐶). Then all irreducible
special polynomials are linear in 𝑡0, 𝑡1, . . . , 𝑡𝑛−1.

Proof. Let 𝐵 ∈ GL𝑛 (𝐶) such that 𝐵𝐴𝐵−1 = diag(𝐽1, 𝐽2, . . . , 𝐽ℓ ),
where 𝐽𝑖 is a Jordan block of order 𝑛𝑖 . We claim that 𝑛𝑖 = 1 for all

1 ≤ 𝑖 ≤ ℓ . Without loss of generality, assume that 𝑛1 > 1 and 𝛼1

is the eigenvalue of 𝐽1. Set 𝑇 = (𝑡0, . . . , 𝑡𝑛−1)𝑡 = 𝐵(𝑡0, . . . , 𝑡𝑛−1)𝑡 .
Then 𝜎 (𝑇 ) = 𝐵𝐴𝐵−1𝑇 . Therefore 𝜎 (𝑡𝑛1−1) = 𝛼1𝑡𝑛1−1 + 𝑡𝑛1

and

𝜎 (𝑡𝑛1
) = 𝛼1𝑡𝑛1

. From these, it follows that 𝜎 ( 𝑡𝑛1
−1

𝑡𝑛
1

) = 𝑡𝑛
1
−1

𝑡𝑛
1

+ 1

𝛼1

.

Consequently,

𝜎

(
𝑡𝑛1−1

𝑡𝑛1

− 𝑥

𝛼1

)
=
𝑡𝑛1−1

𝑡𝑛1

− 𝑥

𝛼1

.

In other words, 𝑡𝑛1−1/𝑡𝑛1
− 𝑥/𝛼1 ∈ 𝐶 , leading to a contradiction.

This proves our claim. Therefore 𝐵𝐴𝐵−1 = diag(𝛼1, . . . , 𝛼𝑛), where
𝛼𝑖 ∈ 𝐶 . Finally, suppose that 𝑝 is an irreducible special polynomial.

Note that 𝑝 can be expressed as a polynomial in 𝑡0, 𝑡1, . . . , 𝑡𝑛−1.

Corollary 11 implies that 𝑝 is a monomial in 𝑡0, 𝑡1, . . . , 𝑡𝑛−1. Hence

𝑝 = 𝛽𝑡𝑖 for some 0 ≤ 𝑖 ≤ 𝑛 − 1 and 𝛽 ∈ 𝐾 , and so it is linear in

𝑡0, 𝑡1, . . . , 𝑡𝑛−1.

Remark 16. In the proof of Proposition 15, the special polynomials
𝑡0, . . . , 𝑡𝑛−1 are not pairwise shift equivalent and then the condition∑𝑚
𝑖=1

ℓ𝑖 = 𝑛 is automatically satisfied. In fact, suppose 𝜎 (𝑡𝑖1 ) = 𝛽𝑡𝑖2
for some 0 ≤ 𝑖1 ≠ 𝑖2 ≤ 𝑛 − 1 and 𝛽 ∈ 𝐾 . Since 𝜎 (𝑡𝑖1 ) = 𝛼𝑡𝑖1 for
some 𝛼 ∈ 𝐾 , it follows that 𝑡1, 𝑡2 are linearly dependent over 𝐾 , which
contradicts the fact that 𝑡0, . . . , 𝑡𝑛−1 are algebraically independent
over 𝐾 .

Before proceeding to the general case, let’s recall some fundamen-

tal results from difference Galois theory. For detailed information,

readers can refer to Chapter 1 of [46]. Let R be the Picard-Vessiot

ring for 𝜎 (𝑌 ) = 𝐴𝑌 over 𝐾 , where 𝐴 is given as in (3). In R, there
exist idempotents 𝑒0, 𝑒1, . . . , 𝑒𝑠−1 such that

R = R0 ⊕ R1 ⊕ · · · ⊕ R𝑠−1,

where R𝑖 = 𝑒𝑖R and R𝑖 is a domain. Moreover, R𝑖 serves as the

Picard-Vessiot ring for 𝜎𝑠 (𝑌 ) = 𝐴(𝑠 )𝑌 over 𝐾 with

𝐴(𝑠 ) = 𝜎
𝑠−1 (𝐴) . . . 𝜎 (𝐴)𝐴.

Let𝐺 be the Galois group of 𝜎 (𝑌 ) = 𝐴𝑌 over 𝐾 and𝐻 be the Galois

group of 𝜎𝑠 (𝑌 ) = 𝐴(𝑠 )𝑌 over 𝐾 . By Corollary 1.17 on page 13 of

[46], [𝐺 : 𝐻 ] = 𝑠 and consequently, 𝐻 contains 𝐺◦
, the identity

component of 𝐺 . On the other hand, due to Proposition 1.20, R𝑖 is

a trivial 𝐻 -torsor which implies that 𝐻 is connected since R𝑖 is a

domain. Hence 𝐻 = 𝐺◦
.

Lemma 17. Suppose that 𝑝1, . . . , 𝑝𝑚 are special polynomials. Then
there exists a fundamental matrixZ ∈ GL𝑛 (R) of 𝜎 (𝑌 ) = 𝐴𝑌 such
that 𝑝𝑖 (Z𝑗 ) is invertible in R for all 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, whereZ𝑗

denotes the 𝑗 th column ofZ.

Proof. Let 𝑁 be a positive integer such that 𝑝𝑖 | 𝜎𝑁 (𝑝𝑖 ) for
all 1 ≤ 𝑖 ≤ 𝑚 and let 𝑞 = (∏𝑚

𝑖=1
𝑝𝑖 )𝜎 (

∏𝑚
𝑖=1

𝑝𝑖 ) · · ·𝜎𝑁−1 (∏𝑚
𝑖=1

𝑝𝑖 ).
Then 𝜎 (𝑞) = 𝛼𝑞 for some 𝛼 ∈ 𝐾 . We first show the lemma for 𝑞.

Let Z ∈ GL𝑛 (R) be a fundamental matrix of 𝜎 (𝑌 ) = 𝐴𝑌 . We

claim that there exists an 𝑀 ∈ GL𝑛 (𝐶) such that 𝑞((Z𝑀) 𝑗 ) ≠

0. Let u = (𝑢1, . . . , 𝑢𝑛)𝑡 be a vector with indeterminate entries.

SinceZ is invertible, as a polynomial in R[u], 𝑞(Zu) ≠ 0. Write

𝑞(Zu) = ∑𝑑
𝑗=1

𝑓𝑗 (u)m𝑗 , where 𝑓𝑗 (u) ∈ 𝐶 [u] and m1, . . . ,m𝑑 ∈ R
are linearly independent over 𝐶 . As 𝑞(Zu) ≠ 0, at least one of

𝑓1 (u), . . . , 𝑓𝑑 (u) is not zero, say 𝑓𝑗1 (u) ≠ 0. Set𝑈 to be the Zariski

open subset of 𝐶𝑛 consisting of all a in 𝐶𝑛 such that 𝑓𝑗1 (a) ≠ 0.

Then𝑈 ×· · ·×𝑈 is a non-empty Zariski open subset of𝐶𝑛×𝑛 , where
the direct product takes 𝑛 times. Let𝑀 ∈ 𝑈 × · · · ×𝑈 be such that

det(𝑀) ≠ 0. Such𝑀 exists because 𝑈 × · · · ×𝑈 is Zariski dense in

𝐶𝑛×𝑛 . Then for each column c of𝑀 , it follows that 𝑓𝑗1 (c) ≠ 0, and

thus 𝑞(Zc) ≠ 0. Since 𝑀 is invertible, Z𝑀 is also a fundamental

matrix of 𝜎 (𝑌 ) = 𝐴𝑌 . This proves our claim.

Let c be a column of𝑀 . Then

𝜎 (𝑞(Zc)) = 𝑞𝜎 (𝐴Zc) = 𝜎 (𝑞) (Zc) = 𝛼𝑞(Zc)
where 𝑞𝜎 denotes the polynomial obtained by applying 𝜎 to the

coefficients of 𝑞. Hence, 𝑞(Zc) generates a nonzero 𝜎-ideal in R.
Since R is 𝜎-simple, this ideal must be equal to R and thus 𝑞(Zc) is
invertible inR. Finally, for each 1 ≤ 𝑖 ≤ 𝑚, since𝑞(Zc) = 𝑝𝑖 (Zc)ℎ𝑖
for some ℎ𝑖 ∈ R, 𝑝𝑖 (Zc) is invertible in R.

Lemma 18. Suppose that there exist irreducible special polyno-
mials 𝑝1, . . . , 𝑝𝑚 that are not pairwise shift equivalent, satisfying
that

∑𝑚
𝑖=1

ℓ𝑖 = 𝑛, where ℓ𝑖 is the smallest positive integer such that
𝑝𝑖 | 𝜎ℓ𝑖 (𝑝𝑖 ). Then dim(𝐺) = 𝑛.

Proof. It suffices to show that dim(𝐺◦) = 𝑛. Set
𝑞ℓ0+ℓ1+···+ℓ𝑖+𝑗 = 𝜎

𝑗−1 (𝑝𝑖+1)
where 0 ≤ 𝑖 ≤ 𝑚 − 1, 1 ≤ 𝑗 ≤ ℓ𝑖 , and ℓ0 = 0. By Lemma 17,

there exists a fundamental matrix Z ∈ GL𝑛 (R) of 𝜎 (𝑌 ) = 𝐴𝑌

such that 𝑞𝑖 (Z𝑗 ) is invertible in R for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, where

Z𝑗 denotes the 𝑗th column ofZ. Consider R0, the Picard-Vessiot

ring for 𝜎𝑠 (𝑌 ) = 𝐴(𝑠 )𝑌 over 𝐾 . Let F be the field of fractions



of R0. Since 𝐺
◦
is the Galois group of 𝜎𝑠 (𝑌 ) = 𝐴(𝑠 )𝑌 over 𝐾 ,

dim(𝐺◦) = tr.deg(F /𝐾). Note that 𝑒0Z is a fundamental matrix

of 𝜎𝑠 (𝑌 ) = 𝐴(𝑠 )𝑌 and 𝑒0𝑞𝑖 (Z𝑗 ) = 𝑞𝑖 (𝑒0Z𝑗 ) is invertible in R0. Set

𝑁 = lcm(ℓ1, . . . , ℓ𝑚). Then 𝑞𝑖 | 𝜎𝑠𝑁 (𝑞𝑖 ) for all 1 ≤ 𝑖 ≤ 𝑛. Suppose

that 𝜎𝑠𝑁 (𝑞𝑖 ) = 𝛼𝑖𝑞𝑖 with 𝛼𝑖 ∈ 𝐾 . Then for each 1 ≤ 𝑖 ≤ 𝑛, it holds
that 𝜎𝑠𝑁 (𝑞𝑖 (𝑒0Z𝑗 )) = 𝛼𝑖𝑞𝑖 (𝑒0Z𝑗 ) for all 1 ≤ 𝑗 ≤ 𝑛.

We claim that for each 1 ≤ 𝑗 ≤ 𝑛, 𝑞1 (𝑒0Z𝑗 ), . . . , 𝑞𝑛 (𝑒0Z𝑗 ) are
algebraically independent over 𝐾 . Assume on the contrary that

𝑞1 (𝑒0Z𝑗 ), . . . , 𝑞𝑛 (𝑒0Z𝑗 ) are algebraically dependent over 𝐾 . Using

an argument similar to that in the proof of Proposition 12, we obtain

integers 𝑑𝑖 , not all zero, and a nonzero 𝛽 ∈ 𝐾 such that

𝜎𝑠𝑁

(∏
𝑖 𝑞

𝑑𝑖
𝑖

𝛽

)
=

∏
𝑖 𝑞

𝑑𝑖
𝑖

𝛽
.

Due to Lemma 10,

∏
𝑖 𝑞

𝑑𝑖
𝑖

= 𝑐𝛽 for some 𝑐 ∈ 𝐶 . In other words,

𝑞1, . . . , 𝑞𝑛 are algebraically dependent over 𝐾 . This contradicts the

conclusion of Proposition 12. The claim is established.

Now, for 1 ≤ 𝑗1 ≠ 𝑗2 ≤ 𝑛, we have that
𝜎𝑠𝑁 (𝑞𝑖 (𝑒0Z𝑗1 )/𝑞𝑖 (𝑒0Z𝑗2 )) = 𝑞𝑖 (𝑒0Z𝑗1 )/𝑞𝑖 (𝑒0Z𝑗2 ) .

By Lemma 10 (replacing 𝜎 with 𝜎𝑠 ), 𝑞𝑖 (𝑒0Z𝑗1 ) = 𝑐𝑖, 𝑗1, 𝑗2𝑞𝑖 (𝑒0Z𝑗2 )
for all 1 ≤ 𝑖 ≤ 𝑛, where 𝑐𝑖, 𝑗1, 𝑗2 ∈ 𝐶 . Denote by ˜F the subfield of

F generated by all 𝑞𝑖 (𝑒0Z𝑗 ) over 𝐾 . Then the previous discussion

implies that tr.deg( ˜F/𝐾) = 𝑛. Note that for each 1 ≤ 𝑗 ≤ 𝑛,

every entry of 𝑒0Z𝑗 is algebraic over 𝐾 (𝑞1 (𝑒0Z𝑗 ), . . . , 𝑞𝑛 (𝑒0Z𝑗 ))
(and thus algebraic over

˜F ), because 𝑞1 (𝑒0Z𝑗 ), . . . , 𝑞𝑛 (𝑒0Z𝑗 ) are
algebraically independent over 𝐾 and they are polynomial in the

entries of 𝑒0Z𝑗 . Hence F is a finite algebraic extension of
˜F , as F =

𝐾 (𝑒0Z). So tr.deg(F /𝐾) = 𝑛 and then dim(𝐺◦) = 𝑛. Consequently,
dim(𝐺) = 𝑛.

Theorem 19. Under the same assumption as in Lemma 18, all
irreducible special polynomials are linear in 𝑡0, 𝑡1, . . . , 𝑡𝑛−1.

Proof. Let 𝑞𝑖 , 𝛼𝑖 be as in the proof of Lemma 18. We first show

that 𝐺◦
is a torus. Due to Lemma 18, dim(𝐺◦) = 𝑛. Hence the rank

of 𝑋 (𝐺◦), the group of characters of 𝐺◦
(which is a free abelian

group), is at most 𝑛. As 𝜎𝑠𝑁 (𝑞𝑖 (𝑒0Z1)) = 𝛼𝑖𝑞𝑖 (𝑒0Z1), for each
𝑔 ∈ 𝐺◦

, 𝜎𝑠𝑁 (𝑔(𝑞𝑖 (𝑒0Z1))) = 𝛼𝑖𝑔(𝑞𝑖 (𝑒0Z1)). Hence 𝑔(𝑞𝑖 (𝑒0Z1)) =
𝜒𝑖 (𝑔)𝑔(𝑞𝑖 (𝑒0Z1)), where 𝜒𝑖 (𝑔) ∈ 𝐶 . In other words, 𝑞𝑖 (𝑒0Z1) in-
duces a character 𝜒𝑖 ∈ 𝑋 (𝐺◦). Suppose that there are integers 𝑑𝑖 ,
not all zero, such that

∏
𝑖 𝜒

𝑑𝑖
𝑖

= id, where id is the unitary of𝑋 (𝐺◦).
Then for all 𝑔 ∈ 𝐺◦

,

𝑔

(∏
𝑖

𝑞𝑖 (𝑒0Z1)𝑑𝑖
)
=

∏
𝑖

𝜒
𝑑𝑖
𝑖
(𝑔)

∏
𝑖

𝑞𝑖 (𝑒0Z1)𝑑𝑖 =
∏
𝑖

𝑞𝑖 (𝑒0Z1)𝑑𝑖 .

TheGalois correspondence (see, for example, Lemma 1.28 on page 20

of [46]) implies that

∏
𝑖 𝑞𝑖 (𝑒0Z1)𝑑𝑖 ∈ 𝐾 , which contradicts the fact

that 𝑞1 (𝑒0Z1), . . . , 𝑞𝑛 (𝑒0Z1) are algebraically independent over 𝐾 .

Therefore the rank of 𝑋 (𝐺◦) is exactly equal to 𝑛. Let 𝜒1, . . . , 𝜒𝑛 be

a base of 𝑋 (𝐺◦), as a free abelian group. Consider the morphism

𝜙 : 𝐺◦ −→ GL1 (𝐶)𝑛

𝑔 ↦−→ (𝜒1 (𝑔), . . . , 𝜒𝑛 (𝑔)).

Then 𝜙 is surjective with finite kernel because dim(𝐺◦) = 𝑛. More-

over, due to Lemma B.20 of [18], ker(𝜙) is generated as an algebraic

group by all unipotent elements of 𝐺◦
. Note that if ℎ ∈ GL𝑛 (𝐶) is

unipotent then ℎ is of finite order if and only if ℎ = 𝐼 , the identity

matrix. So ker(𝜙) = {𝐼 } and 𝜙 is an isomorphism. This proves that

𝐺◦
is a torus.

By Theorem 2.1 of [24], there exists a 𝑇 ∈ GL𝑛 (𝐾) such that

𝜎𝑠 (𝑇 )𝐴(𝑠 )𝑇
−1 = diag(𝑏1, . . . , 𝑏𝑛),

where 𝑏𝑖 ∈ 𝐾 . Set (𝑡0, . . . , 𝑡𝑛−1)𝑡 = 𝑇 (𝑡0, . . . , 𝑡𝑛−1)𝑡 . Then 𝜎𝑠 (𝑡𝑖 ) =
𝑏𝑖𝑡𝑖 for all 0 ≤ 𝑖 ≤ 𝑛 − 1. In other words, 𝑡0, . . . , 𝑡𝑛−1 are special

polynomials. Finally, using an argument similar to the proof of

Proposition 15, it follows that every irreducible special polynomial

is linear in 𝑡0, 𝑡1, . . . , 𝑡𝑛−1.

3.2 𝜎-Equivalence Problem
We now present a method for deciding whether two irreducible

polynomials 𝑝, 𝑞 ∈ 𝑅 = 𝐾 [𝑡0, . . . , 𝑡𝑟−1] are 𝜎-equivalent or not.
If one of 𝑝 and 𝑞 is special, say 𝑝 , then there exists a minimal

positive integer𝑚 (not greater than 𝑛 by Corollalry 13) such that

𝑝 | 𝜎𝑚 (𝑝). To decide whether 𝑝 and 𝑞 are 𝜎-equivalent, it suffices

to check whether 𝑞 is associate over 𝐾 to one of elements in the set

{𝑝, 𝜎 (𝑝), . . . , 𝜎𝑚−1 (𝑝)}. It remains to consider the case in which

both 𝑝 and 𝑞 are normal.

We now assume that 𝑝, 𝑞 ∈ 𝑅 are irreducible and normal in 𝑅.

We want to decide whether there exist 𝑖 ∈ Z and 𝑢 ∈ 𝐾 \ {0} such
that 𝜎𝑖 (𝑝) = 𝑢𝑞. Observe first that there can be at most one such 𝑖 .

For, if 𝑖, 𝑖′ and 𝑢,𝑢′ are such that 𝜎𝑖 (𝑝) = 𝑢𝑞 and 𝜎𝑖′ (𝑝) = 𝑢′𝑞, then
𝜎𝑖 (𝑝)/𝜎𝑖′ (𝑝) = 𝑢/𝑢′, so 𝑝 | 𝜎𝑖′−𝑖 (𝑝), and since 𝑝 is not special, we

must have 𝑖 = 𝑖′. Observe also that for a given candidate 𝑖 ∈ Z, it is
easy to check whether there exists a 𝑢 with 𝜎𝑖 (𝑝) = 𝑢𝑞. Therefore,
it suffices to determine a finite list of candidates for 𝑖 .

Let 𝐿,𝑀 ∈ 𝐾 [𝑆] be the (unique) monic minimal order annihilat-

ing operators of 𝑝 and𝑞, respectively. Let 𝑠 be their order. Note that 𝑝

and 𝑞 cannot be shift equivalent if the orders of 𝐿 and𝑀 are distinct.

Write 𝐿 = 𝑆𝑠 + ℓ𝑠−1𝑆
𝑠−1 + · · · + ℓ0 and𝑀 = 𝑆𝑠 +𝑚𝑠−1𝑆

𝑠−1 + · · · +𝑚0.

By the minimality of the order of 𝐿 and𝑀 , we have ℓ0,𝑚0 ≠ 0.

For every 𝑖 ∈ Z, the monic minimal order annihilating operator

of 𝜎𝑖 (𝑝) is

𝐿 (𝑖 ) := 𝑆𝑠 + 𝜎𝑖 (ℓ𝑠−1)𝑆𝑠−1 + · · · + 𝜎𝑖 (ℓ0),

and for every 𝑢 ∈ 𝐾 \ {0}, the monic minimal order annihilating

operator of
1

𝑢𝑞 is

1

𝜎𝑠 (𝑢)𝑀𝑢 = 𝑆𝑠 +𝑚𝑠−1

𝜎𝑠−1 (𝑢)
𝜎𝑠 (𝑢) 𝑆𝑠−1 + · · · +𝑚0

𝑢

𝜎𝑠 (𝑢) .

A necessary condition for a pair (𝑖, 𝑢) to be a solution to the shift

equivalence problem is that 𝐿 (𝑖 ) = 1

𝜎𝑠 (𝑢 )𝑀𝑢. Therefore, for every
such pair we must have

𝜎𝑖 (ℓ𝑘 )
𝑚𝑘

=
𝜎𝑘 (𝑢)
𝜎𝑠 (𝑢)

simultaneously for all 𝑘 ∈ {0, . . . , 𝑠}.
Observe that 𝐿 must have at least three terms. If it had only

two terms, we would have 𝐿 = 𝑆𝑠 + ℓ0. This means 𝜎𝑠 (𝑝) = −ℓ0𝑝 ,
and this is a contradiction to 𝑝 not being special. We can therefore

assume that 𝐿 has at least three terms. We may further assume that

the coefficient of 𝑆𝑘 in 𝐿 is nonzero if and only if the coefficient of



𝑆𝑘 in 𝑀 is nonzero, because if this is not the case, then the shift

equivalence problem has no solution.

Lemma 20. Under these circumstances, we have

𝜎𝑖
( ℓ𝑘/𝜎𝑠 (ℓ𝑘 )
𝜎𝑘 (ℓ0)/𝜎𝑠 (ℓ0)

)
=

𝑚𝑘/𝜎𝑠 (𝑚𝑘 )
𝜎𝑘 (𝑚0)/𝜎𝑠 (𝑚0)

(4)

for every 𝑘 ∈ {1, . . . , 𝑠 − 1} such that ℓ𝑘 ≠ 0.

Proof. From

(𝑎) 𝜎𝑖 (ℓ0)
𝑚0

=
𝑢

𝜎𝑠 (𝑢) and (𝑏) 𝜎𝑖 (ℓ𝑘 )
𝑚𝑘

=
𝜎𝑘 (𝑢)
𝜎𝑠 (𝑢)

we obtain

(𝑐) 𝜎𝑖 (ℓ0)
𝑚0

𝑚𝑘

𝜎𝑖 (ℓ𝑘 )
=

𝑢

𝜎𝑘 (𝑢)
Apply 𝜎𝑘 to (𝑎) and 𝜎𝑟 to (𝑐) to obtain

(𝑎′) 𝜎𝑖 (𝜎𝑘 (ℓ0))
𝜎𝑘 (𝑚0)

=
𝜎𝑘 (𝑢)
𝜎𝑠+𝑘 (𝑢)

and

(𝑐′) 𝜎𝑖 (𝜎𝑠 (ℓ0))
𝜎𝑠 (𝑚0)

𝜎𝑠 (𝑚𝑘 )
𝜎𝑖 (𝜎𝑠 (ℓ𝑘 ))

=
𝜎𝑠 (𝑢)
𝜎𝑠+𝑘 (𝑢)

.

Dividing (𝑎′) by (𝑐′) gives

𝜎𝑖 (𝜎𝑘 (ℓ0))𝜎𝑠 (𝑚0)𝜎𝑖 (𝜎𝑠 (ℓ𝑘 ))
𝜎𝑘 (𝑚0)𝜎𝑖 (𝜎𝑠 (ℓ0))𝜎𝑠 (𝑚𝑘 )

=
𝜎𝑘 (𝑢)
𝜎𝑠 (𝑢) .

Finally, divide (𝑏) by this equation to obtain

𝜎𝑘 (𝑚0)𝜎𝑖 (𝜎𝑠 (ℓ0))𝜎𝑠 (𝑚𝑘 )𝜎𝑖 (ℓ𝑘 )
𝜎𝑖 (𝜎𝑘 (ℓ0))𝜎𝑠 (𝑚0)𝜎𝑖 (𝜎𝑠 (ℓ𝑘 ))𝑚𝑘

= 1.

The claim follows from here.

Unless both sides of Equation (4) are constant, we get at most

one candidate for 𝑖 and are done. It remains to consider the case

when both sides are constant for every 𝑘 with ℓ𝑘 ≠ 0 (and𝑚𝑘 ≠ 0).

In this case, the constant can only be 1, because ℓ0, ℓ𝑘 ,𝑚0,𝑚𝑘 are

rational functions and 𝜎 does not change leading terms.

If both sides of (4) are equal to 1 then

𝜎𝑠 (𝑚0)𝑀
1

𝑚0

=

𝑠∑︁
𝑘=0

𝑚𝑘

𝜎𝑘 (𝑚0)/𝜎𝑠 (𝑚0)
𝑆𝑘 =

𝑠∑︁
𝑘=0

𝜎𝑠 (𝑚𝑘 )𝑆𝑘 = 𝑀 (𝑠 ) .

Therefore, if 𝑖 ∈ Z and 𝑢 ∈ 𝐾 are such that 𝐿 (𝑖 ) = 1

𝜎𝑠 (𝑢 )𝑀𝑢, then

we also have 𝐿 (𝑖+𝑠 ) = 1

𝜎2𝑠 (𝑢 )𝑀
(𝑠 )𝜎𝑠 (𝑢) = 1

𝜎𝑠 (𝜎𝑠 (𝑢 )𝑚0 )𝑀𝜎
𝑠 (𝑢)𝑚0.

This means that in terms of operators, the shift equivalence

problem may have more than one solution in the situation under

consideration. In the former cases, where there was at most one 𝑖

with 𝐿 (𝑖 ) = 1

𝜎𝑠 (𝑢 )𝑀𝑢, this 𝑖 is then the only candidate for which

we can possibly have 𝜎𝑖 (𝑝) = 𝑢𝑞. In the present situation, where

there are infinitely many 𝑖’s that solve the problem on the level of

operators, it remains to determine which of them (if any) solves the

original problem in terms of 𝑝 and 𝑞.

Lemma 21. If 𝜎𝑠 (𝑚0)𝑀 = 𝑀 (𝑠 )𝑚0, then there is an operator
𝑇 ∈ 𝐶 [𝑆] with constant coefficients such that 𝑀 is a right factor
of the symmetric product 𝑇 ⊗ (𝑆𝑠 −𝑚0).

Proof. The condition 𝜎𝑠 (𝑚0)𝑀 = 𝑀 (𝑠 )𝑚0 means that for any

solution 𝑞 of𝑀 , also
1

𝑚0

𝜎𝑠 (𝑞) is a solution of𝑀 . But the solutions

of 𝑀 form a 𝐶-vector space of dimension at most 𝑠 , so for every

solution 𝑞 of𝑀 , the elements

𝑞,
1

𝑚0

𝜎𝑠 (𝑞), 1

𝑚0𝜎
𝑠 (𝑚0)

𝜎2𝑠 (𝑞), . . . ,
(𝑠−1∏
𝑖=0

1

𝜎𝑠𝑖 (𝑚0)

)
𝜎𝑠

2

(𝑞)

are linearly dependent over 𝐶 .

Therefore, every solution of𝑀 is also a solution of an operator

of the form

𝑆𝑠
2

+ 𝑐𝑠 (𝑠−1)𝜎
𝑠 (𝑠−1) (𝑚0)𝑆𝑠 (𝑠−1) + · · ·

· · · + 𝑐1

(𝑠−1∏
𝑖=1

𝜎𝑠𝑖 (𝑚0)
)
𝑆𝑠 + 𝑐0

(𝑠−1∏
𝑖=0

𝜎𝑠𝑖 (𝑚0)
)

for certain constants 𝑐0, 𝑐𝑠 , . . . , 𝑐𝑠 (𝑠−1) .
This operator can be factored as a symmetric product. Up to

(irrelevant) left-multiplication by an element of 𝐾 , it is equal to

(𝑆𝑠
2

+ 𝑐𝑠 (𝑠−1)𝑆
𝑠 (𝑠−1) + · · · + 𝑐1𝑆

𝑠 + 𝑐0) ⊗ (𝑆𝑠 −𝑚0).
This completes the proof.

This means that every solution of 𝑀 , in particular 𝑞, can be

interpreted as a product of a C-finite and an 𝑠-hypergeometric

quantity. (We do not claim that these factors are elements of 𝑅.)

We can reason analogously for 𝐿 and find that every solution

of 𝐿, in particular 𝑝 , can be interpreted as a product of a C-finite

and an 𝑠-hypergeometric quantity, with the 𝑠-hypergeometric part

annihilated by 𝑆𝑠 − ℓ0.
If the 𝑠-hypergeometric factors are not also C-finite, then their

comparison leads to atmost one candidate 𝑖 ∈ Z such that𝜎𝑖 (𝑝)/𝑞 ∈
𝐾 . In this comparison, we must take into account that in the fac-

torization of 𝑝 and 𝑞 into a C-finite and a hypergeometric part,

exponential terms 𝜆𝑥 and polynomials in 𝑥 can be freely moved

from one factor to the other.

For the comparison, we use the Gosper-Petkovšek form [35] of

ℓ0 and𝑚0:

ℓ0 = 𝜆
𝜎 (𝑎)
𝑎

𝑏

𝑐
, 𝑚0 = ˜𝜆

𝜎 (𝑎)
𝑎

˜𝑏

𝑐
.

We ignore 𝜆, ˜𝜆, 𝑎, 𝑎, as they correspond to the exponential and poly-

nomial part, respectively, and check if there is an 𝑖 ∈ Z such that

𝜎𝑖 (𝑏/𝑐) = ˜𝑏/𝑐 . If so, then this 𝑖 is the only candidate for which we

may have 𝜎𝑖 (𝑝)/𝑞 ∈ 𝐾 .
It remains to consider the case when 𝑝 and 𝑞 both are C-finite. By

Theorem 4.1 in [44], there exist pairwise distinct 𝜆1, . . . , 𝜆𝑡 ∈ 𝐶 , pair-
wise distinct 𝜇1, . . . , 𝜇𝑡 ′ ∈ 𝐶 and polynomials𝑎1, . . . , 𝑎𝑡 , 𝑏1, . . . , 𝑏𝑡 ′ ∈
𝐶 [𝑥] such that

𝑝 = 𝑎1 (𝑛)𝜆𝑛1 + · · · + 𝑎𝑡 (𝑛)𝜆𝑛𝑡
𝑞 = 𝑏1 (𝑛)𝜇𝑛1 + · · ·𝑏𝑡 ′ (𝑛)𝜇𝑛𝑡 ′ ,

The requirement 𝜎𝑖 (𝑝) = 𝑢𝑞 translates into

𝜎𝑖 (𝑎1)𝜆𝑖+𝑛1
+ · · · + 𝜎 (𝑎𝑠 )𝜆𝑖+𝑛𝑠 = 𝑢𝑏1𝜇

𝑛
1
+ · · · + 𝑢𝑏𝑡 𝜇𝑛𝑡 .

There is no solution unless {𝜆1, . . . , 𝜆𝑡 } = {𝜇1, . . . , 𝜇𝑡 ′ }, so we may

assume that 𝑡 = 𝑡 ′ and 𝜆𝑘 = 𝜇𝑘 for all 1 ≤ 𝑘 ≤ 𝑡 . Then we need

𝜆𝑖
𝑘
𝜎𝑖 (𝑎𝑘 ) = 𝑢𝑏𝑘



for all 𝑘 . From any two such equations, say the 𝑘th and the ℓth, we

get the constraint

( 𝜆𝑘
𝜆ℓ

)𝑖𝜎𝑖 (𝑎𝑘
𝑎ℓ

) = 𝑏𝑘

𝑏ℓ
If 𝑎𝑘/𝑎ℓ is not a constant or 𝜆𝑘/𝜆ℓ is not a root of unity, then there

is at most one solution 𝑖 . If 𝑎𝑘/𝑎ℓ is a constant and 𝜆𝑘/𝜆ℓ is a root of
unity for every choice of 𝑘 and ℓ , then 𝑝 can be written as a product

of 𝑎1 and 𝜆
𝑥
1
and a𝐶-linear combination of powers of roots of unity.

This implies that 𝑝/𝑎1 is a special polynomial, which conflicts with

the assumption that 𝑝 is normal.

In conclusion, we have proven the correctness of the following

algorithm.

Algorithm 22. INPUT: 𝑝, 𝑞 ∈ 𝑅 = 𝐶 (𝑥) [𝑡0, . . . , 𝑡𝑟−1] irreducible
and normal
OUTPUT: 𝑖 ∈ Z such that either 𝜎𝑖 (𝑝)/𝑞 ∈ 𝐶 (𝑥) or 𝑝 and 𝑞 are not
shift-equivalent.
1 Compute monic minimal annihilating operators 𝐿,𝑀 ∈ 𝐶 (𝑥) [𝑆]

of 𝑝 and 𝑞.
2 If there is a 𝑘 such that the coefficient of 𝑆𝑘 is zero in one of the

two operators but nonzero in the other, return 0.
3 Let 𝑠 be the order of 𝐿 (and𝑀).
4 For every 𝑘 ∈ {1, . . . , 𝑠 − 1} with ℓ𝑘 ≠ 0, do:

5 If at least one of the two rational functions 𝑎 :=
ℓ𝑘/𝜎𝑠 (ℓ𝑘 )

𝜎𝑘 (ℓ0 )/𝜎𝑠 (ℓ0 )
𝑏 :=

𝑚𝑘/𝜎𝑠 (𝑚𝑘 )
𝜎𝑘 (𝑚0 )/𝜎𝑠 (𝑚0 )

is not in 𝐶

6 Return 𝑖 ∈ Z such that 𝜎𝑖 (𝑎) = 𝑏, or 0 if no such 𝑖 exists

7 Compute the Gosper-Petkovšek form 𝜆
𝜎 (𝑎)
𝑎

𝑏
𝑐 of ℓ0 and the Gosper-

Petkovšek form ˜𝜆
𝜎 (𝑎̃)
𝑎̃

˜𝑏
𝑐
of𝑚0.

8 If 𝑏/𝑐 ≠ 1 or ˜𝑏/𝑐 ≠ 1 then
9 Return 𝑖 ∈ Z such that 𝜎𝑖 (𝑏/𝑐) = ˜𝑏/𝑐 , or 0 if no such 𝑖 exists
10 Compute the constants 𝜆1, . . . , 𝜆𝑠 ∈ 𝐶 , polynomials 𝑎1, . . . , 𝑎𝑠 ,

𝑏1, . . . , 𝑏𝑠 ∈ 𝐶 [𝑥], as above.
11 For 𝑘 = 1, . . . , 𝑠 , do:
12 For ℓ = 1, . . . , 𝑘 − 1, do:
13 If 𝑎𝑘/𝑎ℓ is not a constant or 𝜆𝑘/𝜆ℓ is not a root of unity then

14 Return 𝑖 ∈ Z such that ( 𝜆𝑘
𝜆ℓ
)𝑖𝜎𝑖 ( 𝑎𝑘𝑎ℓ ) =

𝑏𝑘
𝑏ℓ

, or 0 if no such 𝑖
exists

4 THE C-FINITE CASE
The problem of indefinite summation in the C-finite case has been

investigated in [16, 25, 47] under specific assumptions. Let 𝐴 be

defined as in (3) and assume that 𝐴 ∈ GL𝑛 (𝐶). In [25], the authors

introduce a method for computing rational solutions of the equa-

tion 𝑢𝜎 (𝑦) − 𝑣𝑦 = 𝑤 , where 𝑢, 𝑣,𝑤 ∈ 𝑅, under the assumption that

𝑛 = 2 and𝐴 has two eigenvalues 𝜆1, 𝜆2 such that 𝜆1/𝜆2 is not a root

of unity. However, their method is not complete as they are unable

to bound the multiplicities of irreducible special polynomials ap-

pearing in the denominator of solutions. In [16], assuming that𝐴 is

a diagonalizable matrix, the authors characterize all new constants

in 𝐹 and present an algorithm for computing one rational solution

of the equation 𝑐𝜎 (𝑦) − 𝑦 = 𝑓 , where 𝑐 ∈ 𝐶∗
and 𝑓 ∈ 𝐹 . According

to the proof of Proposition 15, if 𝐹 contains no new constant, then

𝐴 will always be diagonalizable, and thus the C-finite case under

our assumption is reduced to the case considered in [16].

Acknowledgement. The authors thank Michael Singer for many

discussions about summation in finite terms.
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