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Chapter 4

Sister Celine’s Method

4.1 Introduction

The subject of computerized proofs of identities
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The basic strategy:

1

Given a sum S(n) = ) , f(n, k) construct a linear recurrence
with polynomial coefficients for it, like

po(M)S(M) +p1(M)S(n+1)+ - +pr(n)Sn+71) =0

Check whether the conjectured closed form satisfies the
recurrence.

Check whether the conjectured identity is true for the first few
values of n.

Conclude that the identity is true for all n.
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Examples:

n+7

e polynomials and rational functions such as n° or i3

e exponentials such as (—1)™ or 555™
e the factorial function n!

e products and quotients of hg terms, e.g. %(—1)%1!

e if F(n) is hg then so is F(an + b) for every fixed a,b € N,

e (2n)! (3217).
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Def. A function F(n) is called a hypergeometric term if there is a
rational function u(n) such that F(n + 1)/F(n) = u(n) for all n.

Important Facts:

e If u has no roots or poles in Z, then F is uniquely determined
by r and F(0).

n—1
e We have F(n) = Hu(k)
k=0

e It is easy to check whether a given hg term satisfies a given
linear recurrence with polynomial coefficients.
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Goal: prove summation identities ) , f(n,k) = F(n) where the
right hand side is hypergeometric.

Need: an algorithm that finds a recurrence for the sum.
What kinds of sums do we want to consider?
How should the summand f(n, k) be specified as input?

Note: no algorithm can ever take an “arbitrary function” as input.
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Def. A function f(n, k) is called a hypergeometric term if there
are rational functions u(n, k) and v(n, k) such that

F(n+1,k) Fn,k+1)
Fin k) u(n,k) and Fn k) v(n,k) for all n,
Examples:

nZk—7k+5n+1

e polynomials and rational functions such as n +k or “-55=20

e exponentials such as 2™ or 2%
n
o ()
e products and quotients of hypergeometric terms

e if f(n,k) is hypergeometric, then so is
flan+ Bk +v,on + ek + () for any «, 3,0, € € Z and any
constants v, C.
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Def. A function f(n, k) is called a hypergeometric term if there
are rational functions u(n, k) and v(n, k) such that

F(n+1,k) F(n,k+1)

— Y7 k _— = k) for all n, k.
Fin k) u(n,k) and Fn k) v(n,k) for all n,

Note:

e If u and v have has or roots or poles in Z?2, then f is uniquely
determined by u,v and (0, 0).

e Typically, w and v do have roots or poles. In this case, manual
inspection may be required to check the results of a “formal”
computation.

e We must have u(n,k + 1)v(n, k) = u(n,k)v(n + 1, k).
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Task:
e Given: a hypergeometric term f(n, k)
e Find: a recurrence for the sum ), f(n, k).

Idea: find a recurrence for the summand f(n, k) that can be
translated into a recurrence for the sum.
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10



2n \?
) 1k
Example: f(n,k) = (—1) <n+k)

(n+12n+ 1)(4n+ 7)f(n, k)
+4(n+ )2+ D@+ 7)f(n, k+ 1) + (@4n +5)(dn? £ 100 +5)f(n+ 1,k + 1)
+o6(mn+12n+1)@4n + 7)f(n, +2]74(4n+5)(6nz+15n+8)f(11+1, +2)

(

)
+AM+ D20+ D@+ 7)f(n, k+3) 4+ (An+5)(4n? +10n +5)f(n + 1,k + 3)
+ (n+12n+1)dn + 7)f(n, k+4)

+ (M 4+2)2n+3)@n +3)f(n+2,k+2)=0. >

10



2n \?
) 1k
Example: f(n,k) = (—1) <n+k)

(m+1)2n+1)dn + 7)f(n, k)

+4(n+1)2n+ D@+ 7)f(n, k+ 1) 4+ (4n +5)(dn? + 100 +5)f(n+ 1,k + 1)

+oe(mn+12n+1)@4n+7)f(n, +2]74(4n+5)(6nz+15n+8)f(n+1, +2)
f(n,

)
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16(n + 1)(2n + 1)(4n + 7)S(n)

—2(4n +5)(8n% +20n +11)S(n + 1)
+M+2)2n+3)4n+3)S(n+2)=0
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whose coefficients may involve n BUT NOT
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Have: two recurrence equations
f(n + 1, ) = LL(TL, )f(TL, ) f(TL, + ]) = v(n, )f(ﬂ, )

whose coefficients may involve n and

Want: a recurrence equation (possibly of higher orders ,s)

aoo(fn, k) +arolmfn+1,0)  +-o+apo(n)f(n+7,k)
+ag, 1 (M)f(n,k+1) +ag(W)F+T,k+1)+- - +ap 1 (W)f(n+r1,k+1)

+ag s(n)f(n, k+s) +ays(M)f(n+1,k+s)+--+ars(n)f(n+rk+s)=0

whose coefficients may involve n BUT NOT

Such a recurrence can be found with linear algebra.
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For example, take r =1 and s = 2.

ag,o(n)f(mn, k) +ajo(n)f(n+1,k)
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f(n,k+2) fin+1,k+2)
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For example, take r =1 and s = 2.

ap,o(m)

+ao(n) f(n, k)

02 f(n, k)

L0

f(n,k+1)

f(n,k+2)

f(n+1,k)

+ajo(n) i)

+ann) f(n, k)

+ai(n) f(n, k)

fn41,k+1)

fin+1,k+2)
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R I (TR
f(n,k+2) fin+1,k+2)
R T I K (TN

L0
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For example, take r =1 and s = 2.

ap,o(m)
+ a1 (n)v(n, k)
02 f(n, k)
20

f(n,k+2)

+ ajo(nju(n, k)

+ann) f(n, k)

+aj(n) 1)
) \

fin+1,k+1)

fin+1,k+2)
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For example, take r =1 and s = 2.

ag,o(mn) + ajo(nju(n, k)

+ a1 (n)v(n, k) +ap(mu(n, k+1)

+ ap 2 (M)v(n, K)v(n, k+ 1) + aj2(n)v(n, K)v(n, k+ Du(n, k+1)
20

The left hand side is an explicit rational function in n and k whose
numerator depends linearly on the unknown coefficients a;;(n).
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For example, take r =1 and s = 2.

aoo(m) + aro(nju(n, k)

+ a1 (n)v(n, k) +a(mjuln, k+1)

+ ao2(M)v(m, K)v(n, k+ 1) + ara(n)v(mn, Kv(n, k+ Duln, k4+1)
20

The left hand side is an explicit rational function in n and k whose
numerator depends linearly on the unknown coefficients a;;(n).

Equate coefficients with respect to k to zero and solve the
resulting linear system.
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Example: f(n,k) = <

n
k
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Example: f(n,k) = <T]l>
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Example: f(n,k) = < >

ao,o +Cl1,on+1 —
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Example: f(n,k) = <T]l>

2
<(a0,0 —ap)k
— (nagp —2nap +najp —nay; —ap; +ajp —ayk

—(n+1)(nag +nay g+ app+ arp+an; )>

/((k+1)(k—n—1))éo.
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Example: f(n,k) = <T]l>

2
(ag,0 —ap)k

— (nagp —2nap +najp —nay; —ap; +ajp —ayk
—(n+ ])(Tl(loJ +na +app+ajp+ Cl]y])

=0.
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Example: f(n,k) = <2>

2
(ag,0 —ao,1)

— (nagp —2nag1 +nayjp—mnay; —ae +aje—a)
—(n+ 1)(nao,1 +mnap +app+ajp+ Cl]y])

=0.
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Exmnpm:fhuk)::<n>.

—n—1

k

—n(n+1)
2n+1
—1

-n—1
-n—1
0

—(n+1)?2
n+1
0

aop,0
Qo1

)

aro

)

an
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Example: f(n,k) = <n>

k
Qaop,o0 —1
aop,1 —1
aro < < 0 >

ar 1
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Example: f(n,k) = <T]l>

—f(n,k) —f(n,k+1)+f(n+1,k+1)=0
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Sister Celine’s Method

INPUT: a hypergeometric term f(n, k), specified by two rational
functions u(n, k), v(n, k).

OUTPUT: a linear recurrence with polynomial coefficients for the
sum S(n):= ) | f(n,k).

1 choose 1,s € N
use linear algebra to search for a k-free recurrence of f(n, k) of
order r w.r.t. n and order s w.r.t. k.

3 if there is one, translate it to a recurrence for S(n) and return it.
otherwise, increase r and s and try again.

14
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Fact. Every hypergeometric term f(n,k) can be written in the
form
M
q(n, k)" I T (amn + bk + cm)io
m=1
for some rational function q, some constants ¢,, ¢y, and some
integers am, b, €m.
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Fact. Every hypergeometric term f(n,k) can be written in the
form

M
k m
q(n, K)o [ [ (amn + bk + cm)!®
m=1
for some rational function q, some constants ¢,, ¢y, and some
integers am, b, €m.

Example:

(2) — k! =k
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Fact. Every hypergeometric term f(n,k) can be written in the
form

M
a(m, K)o [ [ (amn + bk + cp)lem
m=1
for some rational function q, some constants ¢,, ¢y, and some

integers am, b, €m.

Def. A hypergeometric term is called proper if it can be written as
above, but with g being a polynomial.
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Fact. Every hypergeometric term f(n,k) can be written in the
form

M
a(m, K)o [ [ (amn + bk + cp)lem
m=1
for some rational function q, some constants ¢,, ¢y, and some

integers am, b, €m.

Def. A hypergeometric term is called proper if it can be written as
above, but with g being a polynomial.

Theorem. Every proper hypergeometric term satisfies a k-free re-
currence of some orders 1, s.

16



Questions:
e Does every f(n, k) have a k-free recurrence?

e Does every k-free recurrence translate into a nontrivial
recurrence for S(n)?
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Questions:
e Does every f(n, k) have a k-free recurrence? Almost.

e Does every k-free recurrence translate into a nontrivial
recurrence for S(n)?
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Example. For f(n,k) = <2> we also have the k-free recurrence

fn,k) —f(n+1,k+ 1)
—f(n,k+2)+f(n+1,k+2)=0.
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Example. For f(n,k) = <2> we also have the k-free recurrence

fin,k) —f(n+1,k+ 1)
—f(n,k+2)+f(n+1,k+2)=0.

For the sum S(n) = Z <2) it implies
k

0=0.

Oups!
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Let's try a bit harder.

fn,k) — fnk+2)— fn+1,k+1)+ fn+1,k+2)=0.
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+1)+ f(n+1,

+2)=0.
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+ 1)+ kf(n+1,

+2)=0.
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Let's try a bit harder.

f(n, k) —kf(n,k4+2) — kf(n+1,
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+ 1)+ kf(n+1,
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Let's try a bit harder.

f(n, k) —kf(n,k4+2) — kf(n+1,
— (k4+Df(nyk4+ 1)+ (k+ 1)f(n,
—2f(nyk+2) +2f(n, k+2) =0.

+ 1)+ kf(n+1,
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Let's try a bit harder.

f(n, k) —kf(n,k4+2) — kf(n+1,
— (k4+Df(nyk4+ 1)+ (k+ 1)f(n,
—2f(n, k+2) + 2f(n, k + 2)

+ 1)+ kf(n+1,
+1)

—f(n+1,k+2)+f(n+1,k+2)=0.

+2)
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Let's try a bit harder.

fn, k) — (k+Df(n, k+1)

+ (k4+Df(n, k+1) — (k+ 2)f(n, k+ 2)
—kf(n+ 1 k4+1) + (k+T)f(n+1,k+2)
+2f(n, k+2) —f(n+1,k+2)=0

19



Let's try a bit harder.

[f(n, k) — (k4 D, k 4 1)
+ (k+Df(n,k+1) — (k+2)f(n, k+2)
—kf(n+ T, k+1)+ (k+Df(n+1,k+2)

P2k 4+2) —f(n4 1,k +2) =0
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Let's try a bit harder.

[f(n, k) — (k4 D, k 4 1)
[+ (c+ D,k + 1) = (k + 2)f(n, k +2)]
—kfn+Tk+ 1)+ (k+1D)f(n+T1,k+2)

P2k 4+2) —f(n4 1,k +2) =0

19



Let's try a bit harder.

[f(n, k) = (k+ D[, k4 1)
[+ (c+ D,k + 1) = (k + 2)f(n, k +2)]
=+ Lk D+ (k+ Df(n+ 1,k +2)|

+2f(n,k+2)—f(n+1,k+2)=0
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[f(n, k) — (k4 D, k 4 1)

[+ (c+ D,k + 1) = (k + 2)f(n, k +2)]
=+ Lk D+ (k+ Df(n+ 1,k +2)|
L2,k 4+2) —f(n4+1,k+2) =0 ‘Z
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Let's try a bit harder.

+0
Y
+2S(n)

—S(n+1)

=0
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Let's try a bit harder.
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Theorem (Wegschaider’'s Lemma). This works always.
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+25(n) —S(n+1) =0

Theorem (Wegschaider’'s Lemma). This works always.
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Write recurrences in terms of operators.

Note:
Ay =S,—1
Syx = (x+1)Sy
XAy = Ayx — 1

> Ac-f(n,k) =0
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Write your k-free recurrence in the form

(P(n,$0) + A.Q(1, A, 1)) - £, k) = 0.
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Write your k-free recurrence in the form
(P(n,S:) + ALQ(1, A, S)) - f(n, k) = 0.

Then P(1,S,,) - S(n) =0.

We are in trouble iff P is the zero operator.

—Q(TL,A asn) +A Q(TL,A ,Sn) -f(TL, ):O
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Write your k-free recurrence in the form
(P(n,S1) + ALQ(1, A, S0))
Then P(1,S,,) - S(n) =0.
We are in trouble iff P is the zero operator.
—Q(n, A, S1) +ALKQ (1, AL, Sy)
=P(1n,$.) +A.Q(n, A, S,)

-f(n, k) =0.

-f(n, k) =0.
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Write your k-free recurrence in the form
(P(n,S1) + ALQ(1, A, S0))

Then P(1,S,,) - S(n) =0.
We are in trouble iff P is the zero operator.
—Q(n, A, S1) +ALKQ (1, AL, Sy)
=P(1n,$.) +A.Q(n, A, S,)

Iterate if necessary.

-f(n, k) =0.

-f(n, k) =0.
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Write your k-free recurrence in the form
(P(n,Sn) +A.Q(n,A ,Sn)) -f(n, k) =0.
Then P(1,S,,) - S(n) =0.
We are in trouble iff P is the zero operator.
—Q(n, A, S1) +ALKQ(, AL, Sy - f(ny k) =0.
=P(1n,$.) +A.Q(n, A, S,)

Iterate if necessary.

After at most deg,, Q repetitions, the result is nonzero.
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e Does every f(n, k) have a k-free recurrence? Almost.

e Does every k-free recurrence translate into a nontrivial
recurrence for S(n)?
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Questions:
e Does every f(n, k) have a k-free recurrence? Almost.

e Does every k-free recurrence translate into a nontrivial
recurrence for S(n)? Yes.
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Summary.

Sister Celine’'s method applies to hypergeometric terms
f(n, k).

The main step is the construction of a k-free recurrence

for f(n, k).

We make an ansatz, reduce it to a rational function, equate
the numerator to zero, and solve a linear system.

For proper hypergeometric terms, the search will succeed if
the orders of the recurrence are chosen sufficiently large.
Every k-free recurrence for f(n, k) gives rise to a linear
recurrence for the sum S(n) =, f(n, k).

Such a recurrence can be used to prove a conjectural closed
form expression for S(n).
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