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Recall:

• A left ideal I ⊆ C(x, y)[Dx, Dy] is called D-finite if

dimC(x,y)C(x, y)[Dx, Dy]/I < ∞.

• A function f(x, y) is called D-finite if its annihilator

ann f(x, y) =
{
L ∈ C(x, y)[Dx, Dy] : L · f = 0

}
is D-finite.

• The notion extends naturally to more variables, and to shifts
and other kinds of operators besides derivations.
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Recall:

• A left ideal I ⊆ C[x, y][Dx, Dy] is called holonomic if

I ∩ C[U] ̸= ∅

for every U ⊆ {x, y,Dx, Dy} with |U| > 2.

• A function f(x, y) is called holonomic if its annihilator is
holonomic.

• The notion extends naturally to more variables, and to shifts
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Recall:

• If f and g are D-finite/holonomic, then so are f+ g and f · g.

• These are examples of closure properties.

• They are based on linear algebra.

Next goal:

• Additional closure properties based on creative telescoping.
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Recall:

P(

x

n, Sn

Dx

)︸ ︷︷ ︸
telescoper (nonzero!)

− ∆k

Dy

Q(

x

n,

y

k,∆k

Dy

, Sn

Dx

)︸ ︷︷ ︸
certificate

Theorem. If I ⊆ C[x, y][∂x, ∂y] is holonomic, then there exist

• P ∈ C[x][∂x] \ {0}

• Q ∈ C[x, y][∂x, ∂y]

such that
P − ∂yQ ∈ I.

Given a basis of I, such P and Q can be computed.
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Example:

∫∞
0

cos(xy) exp(−y2/2)︸ ︷︷ ︸
=:f(x,y)

dy

∑
k

∑
i

k

(
n

i

)(
i

k

)
︸ ︷︷ ︸

=:f(n,k)
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=:f(n,k)

• Consider I = ⟨yDy − xDx + y2, D2
x + y2⟩ ⊆ C(x, y)[Dx, Dy].

• This ideal I annihilates f(x, y).

• For P = Dx + x; Q = −x−1(Dy + y) we have P −DyQ ∈ I.

Therefore:

P ·
∫∞
0

f(x, y)dy =

[
Q · f(x, y)

]∞
y=0

= 0.

P is an annihilating operator for the definite integral.
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Def. A sum/integral over a holonomic function f is said to have
natural boundaries if there is a telescoper/certificate pair (P,Q)
such that Q · f evaluates to zero at the boundaries of the
summation/integration range.

Example: regardless of Q, we have
[
Q ·

(
n
k

)]∞
k=−∞ = 0.

Theorem. The class of holonomic functions is closed under
definite summation/integration with natural boundaries.

What about non-natural boundaries?
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Example:
n∑

k=0

(
2n

k

)

We have the following creative telescoping relation:

(Sn − 4) ·
(
2n

k

)
= ∆k

k(2k− 6n− 5)

(k− 2n− 1)(k− 2n− 2)

(
2n

k

)
k(2k− 6n− 5)

2(2n+ 1)(n+ 1)

(
2n+ 2

k

)
Summing this equation over k = 0, . . . , n gives
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(n+ 2)S(n+ 2) − (8n+ 10)S(n+ 1) + (16n+ 8)S(n) = 0.
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In general, a sum/integral with non-natural boundaries leads to an
inhomogeneous recurrence or differential equation, where the right
hand side involves evaluations of the summand/integrand.

P · F = [Q · f]Ω

If the right hand side is annihilated by L, then LP annihilates F.

Question: Does evaluation preserve holonomy?

Answer: yes!
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Theorem. If I ⊆ C[x, y][∂x, ∂y] is holonomic, then there exist

• P ∈ C[x][∂x] \ {0}

• Q ∈ C[x, y][∂x, ∂y]

such that
P − ∂y

y

Q ∈ I.

Given a basis of I, such P and Q can be computed.

Corollary. If f(x, y) is holonomic, then so is f(x, 0).
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Example: f(n, k) = # Dyck paths of width n ending at height k.
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Example: f(n, k) = # Dyck paths of width n ending at height k.

• The annihilating ideal of f(n, k) contains the operator

(n+ 4)(n+ 2)S2n − 4(n+ 2)(n+ 1) − k(k+ 2)S2n.

• Therefore,

(n+ 4)(n+ 2)f(n+ 2, k) − 4(n+ 2)(n+ 1)f(n, k)

= k(k+ 2)f(n+ 2, k).

• Setting k = 0 gives

(n+ 4)(n+ 2)f(n+ 2, 0) − 4(n+ 2)(n+ 1)f(n, 0) = 0.
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Closure under evaluation enables non-natural boundaries.

Theorem. Let

• f(x1, . . . , xp, y1, . . . , yq) be holonomic,

• S ⊆ Rp+q be a semi-algebraic set,

• S(x1, . . . , xp) ⊆ Rq denote the section of S at (x1, . . . , xq),

• F(x1, . . . , xp) :=

∫
y∈S(x)

f(x, y)dy.

Then F(x1, . . . , xp) is holonomic.

Example: F(x) =

∫
y1

2+y2
2≤x2

f(x, y1, y2)dy1 dy2 x

y

S

S(x)

8



Closure under evaluation enables non-natural boundaries.

Theorem. Let

• f(x1, . . . , xp, y1, . . . , yq) be holonomic,

• S ⊆ Rp+q be a semi-algebraic set,

• S(x1, . . . , xp) ⊆ Rq denote the section of S at (x1, . . . , xq),

• F(x1, . . . , xp) :=

∫
y∈S(x)

f(x, y)dy.

Then F(x1, . . . , xp) is holonomic.

Example: F(x) =

∫
y1

2+y2
2≤x2

f(x, y1, y2)dy1 dy2 x

y

S

S(x)

8



Closure under evaluation enables non-natural boundaries.

Theorem. Let

• f(x1, . . . , xp, y1, . . . , yq) be holonomic,

• S ⊆ Rp+q be a semi-algebraic set,

• S(x1, . . . , xp) ⊆ Rq denote the section of S at (x1, . . . , xq),

• F(x1, . . . , xp) :=

∫
y∈S(x)

f(x, y)dy.

Then F(x1, . . . , xp) is holonomic.

Example: F(x) =

∫
y1

2+y2
2≤x2

f(x, y1, y2)dy1 dy2 x

y

S

S(x)

8



Closure under evaluation enables non-natural boundaries.

Theorem. Let

• f(x1, . . . , xp, y1, . . . , yq) be holonomic,

• S ⊆ Rp+q be a semi-algebraic set,

• S(x1, . . . , xp) ⊆ Rq denote the section of S at (x1, . . . , xq),

• F(x1, . . . , xp) :=

∫
y∈S(x)

f(x, y)dy.

Then F(x1, . . . , xp) is holonomic.

Example: F(x) =

∫
y1

2+y2
2≤x2

f(x, y1, y2)dy1 dy2 x

y

S

S(x)

8



Closure under evaluation enables non-natural boundaries.

Theorem. Let

• f(x1, . . . , xp, y1, . . . , yq) be holonomic,

• S ⊆ Rp+q be a semi-algebraic set,

• S(x1, . . . , xp) ⊆ Rq denote the section of S at (x1, . . . , xq),

• F(x1, . . . , xp) :=

∫
y∈S(x)

f(x, y)dy.

Then F(x1, . . . , xp) is holonomic.

Example: F(x) =

∫
y1

2+y2
2≤x2

f(x, y1, y2)dy1 dy2

x

y

S

S(x)

8



Closure under evaluation enables non-natural boundaries.

Theorem. Let

• f(x1, . . . , xp, y1, . . . , yq) be holonomic,

• S ⊆ Rp+q be a semi-algebraic set,

• S(x1, . . . , xp) ⊆ Rq denote the section of S at (x1, . . . , xq),

• F(x1, . . . , xp) :=

∫
y∈S(x)

f(x, y)dy.

Then F(x1, . . . , xp) is holonomic.

Example: F(x) =

∫
y1

2+y2
2≤x2

f(x, y1, y2)dy1 dy2

x

y

S

S(x)

8



Closure under evaluation enables non-natural boundaries.

Theorem. Let

• f(x1, . . . , xp, y1, . . . , yq) be holonomic,

• S ⊆ Rp+q be a semi-algebraic set,

• S(x1, . . . , xp) ⊆ Rq denote the section of S at (x1, . . . , xq),

• F(x1, . . . , xp) :=

∫
y∈S(x)

f(x, y)dy.

Then F(x1, . . . , xp) is holonomic.

Example: F(x) =

∫
y1

2+y2
2≤x2

f(x, y1, y2)dy1 dy2

x

y

S

S(x)

8



Closure under evaluation enables non-natural boundaries.

Theorem. Let

• f(x1, . . . , xp, y1, . . . , yq) be holonomic,

• S ⊆ Rp+q be a semi-algebraic set,

• S(x1, . . . , xp) ⊆ Rq denote the section of S at (x1, . . . , xq),

• F(x1, . . . , xp) :=

∫
y∈S(x)

f(x, y)dy.

Then F(x1, . . . , xp) is holonomic.

Example: F(x) =

∫
y1

2+y2
2≤x2

f(x, y1, y2)dy1 dy2 x

y

S

S(x)

8



Closure under evaluation enables non-natural boundaries.

Theorem. Let

• f(x1, . . . , xp, y1, . . . , yq) be holonomic,

• S ⊆ Rp+q be a semi-algebraic set,

• S(x1, . . . , xp) ⊆ Rq denote the section of S at (x1, . . . , xq),

• F(x1, . . . , xp) :=

∫
y∈S(x)

f(x, y)dy.

Then F(x1, . . . , xp) is holonomic.

Example: F(x) =

∫
y1

2+y2
2≤x2

f(x, y1, y2)dy1 dy2 x

y

S

S(x)

8



Closure under evaluation enables non-natural boundaries.

Theorem. Let

• f(x1, . . . , xp, y1, . . . , yq) be holonomic,

• S ⊆ Rp+q be a semi-algebraic set,

• S(x1, . . . , xp) ⊆ Rq denote the section of S at (x1, . . . , xq),

• F(x1, . . . , xp) :=

∫
y∈S(x)

f(x, y)dy.

Then F(x1, . . . , xp) is holonomic.

Example: F(x) =

∫
y1

2+y2
2≤x2

f(x, y1, y2)dy1 dy2

x

y

S

S(x)

8



There is an analogous result for definite summation.

Theorem. Let

• f(n1, . . . , np, k1, . . . , kq) be holonomic,

• S ⊆ Rp+q be a rational polygonal set,

• S(n1, . . . , np) ⊆ Rq be the section of S at (n1, . . . , np),

• F(n1, . . . , np) :=
∑

k∈S(n)

f(n, k).

Then F(n1, . . . , np) is holonomic.

Example: F(n1, n2) =

5n1+3n2∑
k1=n1−n2

7n1+3n2−k1∑
k2=0

f(n1, n2, k1, k2)
n

k

S

S(n)

9
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Holonomy D-finiteness

elegant theory
trouble with
existence and
singularities

expensive
computations efficient algorithms

Can we combine the best of both worlds?
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Fact. In the differential case, there is not much difference between
holonomy and D-finiteness.

More precisely:

• If I ⊆ C(x, y)[Dx, Dy] is D-finite, then

I ∩ C[x, y][Dx, Dy]

is holonomic.

• If J ⊆ C[x, y][Dx, Dy] is holonomic, then

⟨J⟩ ⊆ C(x, y)[Dx, Dy]

is D-finite.

In particular, telescoper/certificate pairs exist in D-finite ideals.
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For formal infinite series, there is no trouble with singularities.

Def. Let f(x, y) :=
∑
n,k∈Z

an,kx
nyk. Then

resy f(x, y) :=
∑
n∈Z

an,−1x
n

is called the residue of f(x, y) (w.r.t. y).

Note: resyDyg(x, y) = 0 for every series g(x, y).

Therefore,

(P −DyQ) · f = 0 =⇒ P · resy f = 0

In particular, the residue of a D-finite series is D-finite.

Really?

n

k
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What is the meaning of P · f if

• P ∈ C(x, y)[Dx, Dy] and

• f is a bilateral infinite series?

Where do these series live?

• They clearly form a C[x, y][Dx, Dy]-module.

• But not a ring.

Want:

• Interpretations of rational functions as infinite series

• A way to multiply them
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Example: f(x) =
∑
n∈Z

xn

f(x)2 =

(∑
n∈Z

xn
)(∑

k∈Z
xk
)

=
∑
n∈Z

∑
k∈Z

xn+k =
∑
n∈Z

(∑
k∈Z

1

)
︸ ︷︷ ︸

Oups!

xn

Recall: The field C((x)) of formal Laurent series consists of all
series having a minimal exponent.

f(x) =

∞∑
n=n0

anx
n

With this restriction, multiplication is well defined.

We can apply a similar restriction in the case of several variables.
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For a fixed hyperplane H ⊆ R2, let C((x, y)) be the set of all series
whose support is restricted to some offset of some proper rational
subcone of H.

Fact. This is a field.

Def. It is called the field of bivariate formal Laurent series (w.r.t. H).

Feature: C((x, y)) is a C(x, y)[Dx, Dy]-module.

We can reasonably talk about elements of C((x, y)) being D-finite.

Now really: Residues of D-finite formal Laurent series are D-finite.
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Example: f(x, y) =
1

xy3 + y+ 1
.

(6+ 2(27x+ 1)Dx + x(27x+ 4)D2
x)·f = Dy · rat(x, y)

(6+ 2(27x+ 1)Dx + x(27x+ 4)D2
x)· resy f = 0

Exercise: In general, the residue of a multivariate rational function
depends on how we expand it into a multivariate Laurent series,
i.e., on the choice of the halfplane H. How does creative
telescoping know which H we have in mind?
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Why should we care about computing residues?

18



Let f(x, y) =
∑
n,k

an,kx
nyk.

and g(x, y) =
∑
n,k

bn,kx
nyk.
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Note:
diag f(x, y) = resy y

−1f(y, x/y)

In particular, taking diagonals preserves D-finiteness.
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Example:

diag
1

1− (x+ y)
= resy

1

y

1

1− (x/y+ y)

f(x, y) =

diag[y0]
1

1− (x/y+ y)
[y−1]

1

y

1

1− (x/y+ y)

1

1− (x+ y)
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Holonomy D-finiteness

elegant theory
trouble with
existence and
singularities

expensive
computations efficient algorithms

Can we combine the best of both worlds?

Yes, for formal series in the differential case.

What about summation?
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Example: f(n, k) =
1

n2 + k2

Facts:

• f is hypergeometric but not proper hypergeometric.

• f is D-finite but not holonomic.

• There is no telescoper/certificate pair for f.

Not every D-finite sequence has a telscoper/certificate pair.
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Example: f(n, k) =

(
n

k

)2

(
(n+ 1)Sn − 2(2n+ 1) − ∆k

k2(2k− 3n− 3)

(n− 1− k)2

)
· f(n, k) = 0

Who has the courage to sum this equation for k = 0, . . . , n?

Singularities in the certificate must be inspected by hand.

This is bad news for friends of reduction-based algorithms.

But there is good news, too.
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Idea: Reduce definite summation to residue extraction.
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Idea: Reduce definite summation to residue extraction.

Using these and similar formulas, translate a given expression into a
multivariate rational generating function.

During this translation, make sums indefinite by introducing new
variables.

In the end, identify variables as needed.
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Simple example:
n

nm

∑
k=0

(
n

k

)

= 2n

Expressions that can be handled this way are called binomial sums.

Theorem: Binomial sums are D-finite.

Note: There is no trouble with singularities.
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Summary.

• Every holonomic ideal contains a telescoper/certificate pair.

• Therefore, holonomy is preserved under evaluation and
definite summation and integration.

• Integration ranges can be any semialgebraic sets, summation
ranges can be any rational polygons.

• D-finiteness is preserved under residue, diagonal, Hadamard
product, and positive part.

• In the shift case, D-finite ideals may not contain
telescoper/certificate pairs.

• Nevertheless, at least binomial sums are always D-finite.
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