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Some points to remember:
e What is a telescoper?
e What is it good for?

e How can it be computed?



What did we not cover in this course?
e Liouvillean functions and TTZ expressions

e Reduction-based creative telescoping for D-finite functions
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Example: log(x + /1 —exp(x)).

In order to do integration, we do not really need functions.
We only need things that can be differentiated.

If K is a field, a function D: K — K is called a derivation if
D(a+b)=D(a)+ D(b) and D(ab)=D(a)b+ aD(b)

for all a,b € K.
The field K together with such a D is called a differential field.
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Idea: interpret complicated expressions as elements of a suitably
constructed differential field.

Fact: On a rational function field K = Q(t,t2,...,tq) a
derivation D is uniquely determined by D(t;) fori=1,...,d.

Example: On K = Q(t1, t2, t3,t4) we can define a derivation via

D(t;) =1 1 ~x
D(tz) =12 t) ~ exp(x)
—t
D) = 5 ts~ /1~ exp(x]
_ t
D(ty) = —25  t4~log(x+ /1 —exp(x))
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Def. A differential field K = C(ty,...,tq) is called liouvillean if
the differential subfield C(t,...,tq_1) is liouvillean and

e D(tg) € C(ty,...,ta—1) (“tq is a primitive”), or

e D(tg)/tq € C(ty,...,ta—1) (“tq is hyperexponential”),
and D(r)=0& re Cforall r e K.

The Risch algorithm solves the integration problem in such fields:
e Given a liouvillean field K and an element f € K

e Construct a liouvillean field E with K C E and an element
g € E such that D(g) = f, or prove that no such E exists.

Example: J =x — log(T1 + exp(x))

T+ exp(x)
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Risch’s algorithm reduces the given integration problem to an
integration problem in a smaller field, which is then solved
recursively.

Actually, for the recursion needs a parameterized version of the
integration problem:

e Given: f1,...,fr €K
e Find: ¢1,...,¢c € C and g € K such that

cafi+---+c.fr = D(g)

or prove that no such things exist.

Looks familiar?

We can also use this for evaluating definite integrals of liouvillean
functions.
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Liouvillean functions and TTZ expressions
There is also a summation analog of all this.
n X k 1
28— T
Example: Z #
K+SE L
k=1 ™ i=1 %2

A difference field is a field K together with an automorphism
o: K— K.
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Liouvillean functions and TTZ expressions

There is also a summation analog of all this.

n k k 1
5 2= ik
Example: W
k=1 ™ i=1 k2

A difference field is a field K together with an automorphism
o: K— K.

Example: On K = Q(ty,t2,...) we can define o via

o(t)) =t +1 t1~n
o(ty) =2t LA
o(t3) = (t1 + 1)t3 t3 ~n!

n
1
o(tg) =t4+ tg ~ — etc.
(ta) =4 — 4 ;k’
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e Given a TIZ field K and an element f € K
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£ U
Example:ZZ =Mn+1) ——n

k=1 i=1 k=1 k
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Liouvillean functions and TTZ expressions
Like Risch's algorithm, Karr's algorithm proceeds recursively.

For the recursion, it solves a parameterized version of the
summation problem.

Schneider uses it to do creative telescoping and lots of other things.
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Liouvillean functions and TTZ expressions

hypergeometric | liouvillean T
summation integration | summation

indefinite Gosper Risch Karr
definite (CT) Zeilberger Raab Schneider
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Reduction-based creative telescoping for D-finite functions

Recall:

e Celine-like algorithms are based on elimination (“k-free
recurrence” )

e Zeilberger-like algorithms are based on an indefinite
summation /integration algorithm

e Apagodu-Zeilberger-like algorithms are based on an ansatz for
telescoper and certificate and solving a linear system

e Reduction-based algorithms are based on extracting maximal
summable/integrable parts

15
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Reduction-based creative telescoping for D-finite functions

Example: Hermite reduction breaks a given f € C(x,y) into
f=D(g)+h

where h is minimal in a certain sense.
Similar decompositions are known for other kinds of functions.
e Algebraic functions
(Trager; Chen, Kauers, Koutschan)

e Hyperexponential functions
(Bostan, Chen, Chyzak, Li, Xin)
e Hypergeometric terms
(Abramov, Petkoviek; Chen, Huang, Li, Kauers)
e D-finite functions
(Bostan, Brochet, Chen, Du, van Hoeij, van der Hoeven,
Lairez, Kauers, Koutschan, Salvy, Wang)
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Example: Hermite reduction breaks a given f € C(x,y) into
f=D(g)+h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

Example:
5K — k2 —5k—2 /2K
— K2( k+1 3 (k+2) k

1

n2—6 (2n 5 - Zk
enfn+1)\ n 6 1Zk—H
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Example: Hermite reduction breaks a given f € C(x,y) into
f=D(g)+h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

Example:
et 45K - k2 -5k —2 /2K
— k2k+1 3 (k+2) k
. n’-6 “Z Zk
N 6n2(n+1) = 2(k+1)
%/_/

not summable
and “minimal”
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Example: Hermite reduction breaks a given f € C(x,y) into
f=D(g)+h

where h is minimal in a certain sense.

Similar decompositions are known for other kinds of functions.

We obtain reduction-based creative telescoping algorithms.

These techniques are still subject of ongoing research.
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What did we not cover in this course?
e Liouvillean functions and TTZ expressions

e Reduction-based creative telescoping for D-finite functions

What remains to be done in the future?
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scoping is the method of choice for obtaining information about definite sums
studied since the early 19905, and can now be considered as
1 technique in computer algebra. At the same time, it is still a subject of ongoing research.
This paper presents a selection of open problems in this context. The authors would be curious to hear

about any substantial progress on any of these problems.

Keywords Computer algebra, creative telescoping, differential algebra, linear operators, ore algebras,
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Predict singularities of telescopers without computing them.
Proper handling of singularities in certificates.

Existence of telescopers for differential /difference fields.
Stability problems.

Multivariate indefinite summation /integration.

Integration of D-algebraic functions.

The inverse problem of definite summation/integration.

Software that can handle problems out of reach of available code.
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