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ABSTRACT
Trager’s Hermite reduction solves the integration problem for alge-

braic functions via integral bases. A generalization of this algorithm

to D-finite functions has so far been limited to the Fuchsian case. In

the present paper, we remove this restriction and propose a reduc-

tion algorithm based on integral bases that is applicable to arbitrary

D-finite functions.
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1 INTRODUCTION
Let 𝑅 be a certain class of functions in one variable 𝑥 with the

derivation 𝐷𝑥 . For example, 𝑅 can be the field of rational functions

or algebraic functions. In the context of symbolic integration, the

integrability problem consists in deciding whether a given element

𝑓 ∈ 𝑅 is of the form 𝑓 = 𝐷𝑥 (𝑔) for some 𝑔 ∈ 𝑅. If such a 𝑔 exists, we

say that 𝑓 is integrable in 𝑅. A relaxed form of the integrability prob-

lem is the decomposition problem, which consists in constructing

for a given 𝑓 ∈ 𝑅 elements 𝑔, 𝑟 ∈ 𝑅 such that 𝑓 = 𝐷𝑥 (𝑔) + 𝑟 and 𝑟 is
minimal in a certain sense. Ideally the “certain sense” should be such

that 𝑟 = 0 whenever 𝑓 is integrable. If 𝑓 ∈ 𝑅 depends on a second

variable 𝑡 , one can also consider the creative telescoping problem:

given an element 𝑓 ∈ 𝑅, the task is to construct 𝑐0, . . . , 𝑐𝑟 ∈ 𝑅, not
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all zero, such that 𝑐𝑖 is free of 𝑥 for all 𝑖 ∈ {0, . . . , 𝑟 } and

𝑐𝑟𝐷
𝑟
𝑡 (𝑓 ) + · · · + 𝑐0 𝑓 = 𝐷𝑥 (𝑔) for some 𝑔 ∈ 𝑅.

The operator 𝐿 = 𝑐𝑟𝐷
𝑟
𝑡 + · · · + 𝑐0, if it exists, is called a telescoper

for 𝑓 , and 𝑔 is called a certificate for 𝐿.
Zeilberger first showed the existence of telescopers for D-finite

functions [22]. Almkvist and Zeilberger [4] solved the integrability

problem and the creative telscoping problem for hyperexponen-

tial functions. Using the adjoint Ore algebra, Abramov and van

Hoeij [2] solved the accurate integration problem for D-finite func-

tions. Chyzak [12] extended the method of creative telescoping

from hyperexponential functions to general D-finite functions. Dur-

ing the past ten years, a reduction-based telescoping approach has

become popular, which can find a telescoper without computing the

corresponding certificate. This approach was first formulated for

rational functions [5] and later extended to hyperexponential func-

tions [6], algebraic functions [10], Fuchsian D-finite functions [11]

and D-finite functions [7, 21]. The reduction-based telescoping al-

gorithms for algebraic functions and for Fuchsian D-finite functions

employ the notion of integral bases, while the known reduction-

based telescoping algorithms applicable to arbitrary D-finite func-

tions work differently.

The notion of integrality proposed by Kauers and Koutschan [17]

for Fuchsian D-finite functions has recently been generalized by

Aldossari [3] to arbitrary D-finite functions, so that the question

arises whether there is also a reduction-based telescoping algorithm

for arbitrary D-finite functions based on integral bases. The purpose

of the present paper is to answer this question affirmatively. This

paper is based on the results of Chapter 6 of the second author’s

Ph.D. thesis [13].

2 INTEGRAL BASES
Below we recall the value functions and integral bases for arbi-

trary linear differential operators [3, 14, 15, 17]. Let 𝐶 be a field

of characteristic zero and 𝐶 be the algebraic closure of 𝐶 . Let

𝐶 (𝑥) [𝐷] be an Ore algebra, where 𝐷 is the differentiation with

respect to 𝑥 and satisfies the commutation rule 𝐷𝑥 = 𝑥𝐷 + 1. For

an operator 𝐿 = ℓ0 + ℓ1𝐷 + · · · + ℓ𝑛𝐷𝑛 ∈ 𝐶 (𝑥) [𝐷] with ℓ𝑛 ≠ 0,

we consider the left 𝐶 (𝑥) [𝐷]-module 𝐴 = 𝐶 (𝑥) [𝐷]/⟨𝐿⟩, where
⟨𝐿⟩ = 𝐶 (𝑥) [𝐷]𝐿. We call the elements of𝐴 “functions”, even though

they are not functions in the usual sense. This is fair because 𝐴

is isomorphic to a 𝐶 (𝑥) [𝐷]-module containing actual functions.

When there is no ambiguity, an equivalence class 𝑓 + ⟨𝐿⟩ in 𝐴 is

also denoted by 𝑓 . Every element of 𝐴 can be uniquely represented

by 𝑓 = 𝑓0 + 𝑓1𝐷 + · · · + 𝑓𝑛−1𝐷
𝑛−1

with 𝑓𝑖 ∈ 𝐶 (𝑥).
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For each 𝛼 ∈ 𝐶 , an operator 𝐿 of order 𝑛 admits 𝑛 linearly

independent solutions of the form

(𝑥 − 𝛼)𝜇 exp(𝑝 ((𝑥 − 𝛼)−1/𝑠 ))𝑏 ((𝑥 − 𝛼)1/𝑠 , log(𝑥 − 𝛼)) (1)

for some 𝑠 ∈ N, 𝜇 ∈ 𝐶 , 𝑝 ∈ 𝐶 [𝑥] and 𝑏 ∈ 𝐶 [[𝑥]] [𝑦]. Such objects

are called generalized series solutions at 𝛼 , see [16, 18]. For 𝛼 = ∞,

the operator 𝐿 admits 𝑛 linearly independent solutions of the form

𝑥−𝜇 exp(𝑝 (𝑥1/𝑠 ))𝑏 (𝑥−1/𝑠 , log(𝑥−1)) (2)

for some 𝑠 ∈ N, 𝜇 ∈ 𝐶 , 𝑝 ∈ 𝐶 [𝑥] and 𝑏 ∈ 𝐶 [[𝑥]] [𝑦]. For each
𝛼 ∈ 𝐶∪{∞}, let Sol𝛼 (𝐿) be the set of all finite𝐶-linear combinations

of generalized series solutions of 𝐿 at 𝛼 . It is called the solution space
of 𝐿. Then Sol𝛼 (𝐿) is a 𝐶-vector space of dimension 𝑛. Throughout

the paper, we assume that for each 𝛼 ∈ 𝐶 ∪ {∞}, all series of
Sol𝛼 (𝐿) have 𝑝 ∈ 𝐶 [𝑥], 𝜇 ∈ 𝐶 and 𝑏 ∈ 𝐶 [[𝑥]] [𝑦] (this can always

be achieved by a suitable choice of 𝐶). If all series of Sol𝛼 (𝐿) have
𝑝 = 0 and 𝑠 = 1, then 𝐿 is called Fuchsian at 𝛼 . The operator 𝐿 is

simply called Fuchsian if it is Fuchsian at all 𝛼 ∈ 𝐶 ∪ {∞}.
For simplicity, we assume throughout that 𝐶 is a subfield of C.

If this is not the case, define the valuation as in [17]. Given two

complex numbers 𝑎, 𝑏 ∈ C, we say 𝑎 ≥ 𝑏 if and only if Re(𝑎) ≥
Re(𝑏). For each 𝛼 ∈ 𝐶 ∪ {∞}, let 𝑧 = 𝑥 − 𝛼 (or 𝑧 = 1

𝑥 if 𝛼 = ∞).

The valuation 𝜈𝛼 (𝑡) of a term 𝑡 := 𝑧𝑟 exp(𝑝 (𝑧−1/𝑠 )) log(𝑧)ℓ is the
real part of the local exponent 𝑟 . The valuation 𝜈𝛼 (𝑦) of a nonzero
generalized series 𝑦 at 𝛼 is the minimum of the valuations of all

the terms appearing in 𝑦 (with nonzero coefficients). The valuation
of 0 is defined as ∞. A generalized series 𝑦 at 𝛼 is called integral
if 𝜈𝛼 (𝑦) ≥ 0. Note that in this terminology, it may happen that

𝜈𝛼 (𝑦′) < 𝜈𝛼 (𝑦) − 1. For example, 𝑓 = exp(𝑥−2) is integral at 0,

while the valuation of 𝑦′ = −2𝑥−3
exp(𝑥−2) at 0 is −3, not −1. The

valuation of a series only depends on its local exponent and not on

its exponential part. An intuition of defining the valuation in such

a way is that this valuation is affected by differentiation, while the

exponential part keeps unchanged. This valuation is the same as

in [3, Definition 5.4].

An operator 𝑃 = 𝑝0 + 𝑝1𝐷 + · · · + 𝑝𝑛−1𝐷
𝑛−1

in 𝐶 (𝑥) [𝐷] acts on
a generalized series 𝑦 via

𝑃 · 𝑦 = 𝑝0𝑦 + 𝑝1𝑦
′ + · · · + 𝑝𝑛−1𝑦

(𝑛−1) ,

where
′
is the derivation with respect to 𝑥 . Let 𝑦1, . . . , 𝑦𝑛 be a basis

of Sol𝛼 (𝐿) in the form of (1) (or (2) if 𝛼 = ∞). This is a special basis.

The value function val𝛼 : 𝐴 → R ∪ {∞} is defined as

val𝛼 (𝑓 ) :=
𝑛

min

𝑖=1

𝜈𝛼 (𝑃𝑓 · 𝑦𝑖 ),

where 𝑓 = 𝑃𝑓 + ⟨𝐿⟩. Then val𝛼 (𝑓 ) is the minimum valuation of

all series 𝑃𝑓 · 𝑦 at 𝛼 , where 𝑦 runs through all series solutions in

Sol𝛼 (𝐿). An element 𝑓 ∈ 𝐴 is called (locally) integral at 𝛼 ∈ 𝐶∪{∞}
if val𝛼 (𝑓 ) ≥ 0. An element 𝑓 ∈ 𝐴 is called (globally) integral if
val𝛼 (𝑓 ) ≥ 0 for all 𝛼 ∈ 𝐶 , i.e., 𝑓 is locally integral at all finite places.
Although we drop 𝐿 from the notation of operators in𝐴, everything

depends on 𝐿. When 𝐿 is Fuchsian, this notion of integrality falls

back to the Fuchsian case discussed in [11, 17].

The set of all globally integral elements 𝑓 ∈ 𝐴 = 𝐶 (𝑥) [𝐷]/⟨𝐿⟩
forms a 𝐶 [𝑥]-module. A basis of this module is called a (global) in-
tegral basis for𝐴. Such bases exist and the algorithm for computing

integral bases in the Fuchsian case [17] applies to the setting of the

non-Fuchsian case literally. More properties can be found in [3].

For a fixed 𝛼 ∈ 𝐶 , the valuation 𝜈𝛼 of a nonzero rational function

𝑓 ∈ 𝐶 (𝑥) is an integer 𝑚 ∈ Z such that 𝑓 = (𝑥 − 𝛼)𝑚𝑝/𝑞 with

𝑝, 𝑞 ∈ 𝐶 [𝑥], gcd(𝑝, 𝑞) = 1 and (𝑥 − 𝛼) ∤ 𝑝𝑞. By convention, set

𝜈𝛼 (0) = ∞. The valuation 𝜈∞ of a rational function 𝑓 = 𝑝/𝑞 ∈ 𝐶 (𝑥)
is deg𝑥 (𝑞) − deg𝑥 (𝑝). For each 𝛼 ∈ 𝐶 ∪ {∞}, the valuation 𝜈𝛼 of a

rational function is the same as the valuation of its Laurent series

expansion at 𝛼 . The set 𝐶 (𝑥)𝛼 = {𝑓 ∈ 𝐶 (𝑥) | 𝜈𝛼 (𝑓 ) ≥ 0} forms

a subring of 𝐶 (𝑥). The set of all elements 𝑓 ∈ 𝐴 that are locally

integral at some fixed 𝛼 ∈ 𝐶 ∪ {∞} forms a 𝐶 (𝑥)𝛼 -module. A basis

of this module is called a local integral basis at 𝛼 of 𝐴. Such a basis

can also be computed [3, 17]. We write O𝛼 for the set of all elements

in 𝐶 (𝑥) [𝐷]/⟨𝐿⟩ that are locally integral at 𝛼 ∈ 𝐶 ∪ {∞}.
For a rational function 𝑔 ∈ 𝐶 (𝑥) and any 𝛼 ∈ 𝐶 , if 𝜈𝛼 (𝑔) ≠ 0,

we have 𝜈𝛼 (𝑔′) = 𝜈𝛼 (𝑔) − 1. So the valuation of a rational function

decreases by exactly one under each derivation. In the D-finite

case, the valuation decreases by at least one. A lower bound of its

valuation under each derivation is given in [3, Lemma 5.7].

Lemma 1. Let 𝑔 ∈ 𝐴. For any 𝛼 ∈ 𝐶 ∪ {∞}, if val𝛼 (𝑔) ≠ 0, then
val𝛼 (𝑔′) ≤ val𝛼 (𝑔) + 𝜇, where 𝜇 = −1 if 𝛼 ∈ 𝐶 and 𝜇 = 1 if 𝛼 = ∞.

Proof. Let 𝑦𝑖 be a generalized series solution in Sol𝛼 (𝐿) such
that val𝛼 (𝑔) = 𝜈𝛼 (𝑔 · 𝑦𝑖 ). Let 𝑧 = 𝑥 − 𝛼 (or 𝑧 = 1/𝑥 if 𝛼 = ∞). Let

𝑇 = 𝑧𝑟 exp(𝑝 (𝑧−1/𝑠 )) log(𝑧)ℓ with 𝑟 ≠ 0, 𝑠, ℓ ∈ N, 𝑝 ∈ 𝐶 [𝑥] be the
dominant term of 𝑔 · 𝑦𝑖 , i.e., among all terms with minimal 𝑟 the

one with the largest exponent ℓ . Let 𝑘 = deg𝑥 (𝑝) and 𝑐 = lc𝑥 (𝑝).
Then

𝐷 ·𝑇 = −𝑟 𝜇𝑧𝑟+𝜇 exp(𝑝 (𝑧−1/𝑠 )) log(𝑧)ℓ

+ 𝜇𝑐𝑘

𝑠
𝑧𝑟−

𝑘
𝑠
+𝜇

exp(𝑝 (𝑧−1/𝑠 )) log(𝑧)ℓ + · · ·

− ℓ𝜇𝑧𝑟+𝜇 exp(𝑝 (𝑧−1/𝑠 )) log(𝑧)ℓ−1 .

where “· · · ” denotes some terms of valuation higher than 𝑟 − 𝑘
𝑠 − 1.

Note that 𝑟− 𝑘
𝑠 +𝜇 ≤ 𝑟+𝜇 and 𝑟 ≠ 0 (by the assumption val𝛼 (𝑔) ≠ 0).

So the valuation of the term 𝐷 ·𝑇 in 𝑔′ · 𝑦𝑖 is less than or equal to

𝑟 + 𝜇, which implies that val𝛼 (𝑔′) ≤ val𝛼 (𝑔) + 𝜇.

An integral basis {𝜔1, . . . , 𝜔𝑛} is always a vector space basis

of 𝐴. Writing an element 𝑓 ∈ 𝐴 as a combination 𝑓 =
∑𝑛
𝑖=1

𝑓𝑖𝜔𝑖 for

some 𝑓𝑖 ∈ 𝐶 (𝑥), we obtain that 𝑓 has a negative valuation at 𝛼 ∈ 𝐶
if and only if at least one of the 𝑓𝑖 has a pole there. Furthermore,

⌊val𝛼 (𝑓 )⌋ is a lower bound for the valuations of all the 𝑓𝑖 ’s at 𝛼 .

Lemma 2. Let {𝜔1, . . . , 𝜔𝑛} be a local integral basis of 𝐴 at some
fixed 𝛼 ∈ 𝐶 ∪ {∞}. Let 𝑓 ∈ 𝐴 and 𝑓1, . . . , 𝑓𝑛 ∈ 𝐶 (𝑥) be such that
𝑓 =

∑𝑛
𝑖=1

𝑓𝑖𝜔𝑖 . Then
(1) 𝑓 is integral at 𝛼 if and only if for each 𝑖 ∈ {1, . . . , 𝑛}, 𝑓𝑖𝜔𝑖 is

integral at 𝛼 .
(2) ⌊val𝛼 (𝑓 )⌋ = min

𝑛
𝑖=1

𝜈𝛼 (𝑓𝑖 ).

Proof. (1): The direction “⇐” is obvious. To show “⇒”, suppose

that 𝑓 is integral at 𝛼 . Then there exist
˜𝑓1, . . . , ˜𝑓𝑛 ∈ 𝐶 (𝑥)𝛼 such that

𝑓 =
∑𝑛
𝑖=1

˜𝑓𝑖𝜔𝑖 . Thus
∑𝑛
𝑖=1

( ˜𝑓𝑖 − 𝑓𝑖 )𝜔𝑖 = 0, and then
˜𝑓𝑖 = 𝑓𝑖 for

all 𝑖 , because {𝜔1, . . . , 𝜔𝑛} is a 𝐶 (𝑥)-vector space basis of 𝐴. Since
˜𝑓𝑖 = 𝑓𝑖 ∈ 𝐶 (𝑥)𝛼 , it follows that the 𝑓𝑖𝜔𝑖 ’s are integral at 𝛼 .
(2): Let 𝜏 := min

𝑛
𝑖=1

𝜈𝛼 (𝑓𝑖 ). We have to show that 𝜏 ∈ Z is an

integer such that

𝜏 ≤ val𝛼 (𝑓 ) < 𝜏 + 1.



Let 𝑧 ∈ 𝐶 (𝑥) with 𝜈𝛼 (𝑧) = 1. Since 𝑧−𝜏 𝑓𝑖𝜔𝑖 is integral at 𝛼 , we have
𝑧−𝜏 𝑓 is integral at 𝛼 . Thus val𝛼 (𝑧−𝜏 𝑓 ) = val𝛼 (𝑓 ) − 𝜏 ≥ 0, which

implies 𝜏 ≤ val𝛼 (𝑓 ). On the other hand, if val𝛼 (𝑓 ) ≥ 𝜏 + 1, then

𝑧−(𝜏+1) 𝑓 is integral at 𝛼 . But 𝑧−(𝜏+1) 𝑓 does not belong to the𝐶 (𝑥)𝛼 -
module generated by {𝜔1, . . . , 𝜔𝑛} because there is 𝑖 ∈ {1, . . . , 𝑛}
such that 𝜏 = 𝜈𝛼 (𝑓𝑖 ) and 𝑧−(𝜏+1) 𝑓𝑖 ∉ 𝐶 (𝑥)𝛼 . This contradicts the
fact that {𝜔1, . . . , 𝜔𝑛} is a local integral basis at 𝛼 .

Let𝑊 = (𝜔1, . . . , 𝜔𝑛) be a vector space basis of𝐴 over𝐶 (𝑥). For
𝑓 ∈ 𝐴, denote its derivative 𝐷𝑓 by 𝑓 ′. Let 𝑒 ∈ 𝐶 [𝑥] be a polynomial

and 𝑀 = (𝑚𝑖, 𝑗 )𝑛𝑖,𝑗=1
∈ 𝐶 [𝑥]𝑛×𝑛 be a matrix such that 𝑒𝑊 ′ = 𝑀𝑊

and gcd(𝑒,𝑚1,1,𝑚1,2, . . . ,𝑚𝑛,𝑛) = 1. If𝑊 is an integral basis and 𝐿

is Fuchsian at all finite places, then 𝑒 must be squarefree, see [11,

Lemma 3]. If𝑊 is a local integral basis at infinity and 𝐿 is Fuchsian

at infinity, then deg𝑥 (𝑚𝑖, 𝑗 ) < deg𝑥 (𝑒) for all 𝑖, 𝑗 , see [11, Lemma

4]. However, these two facts are no longer true in the non-Fuchsian

case, as the following examples show:

Example 3. The operator 𝐿 = 𝑥3𝐷2 + (3𝑥2 + 2)𝐷 ∈ C(𝑥) [𝐷]
has only one singular point 0 in C, which is an irregular singular
point. At the point 0, there are two linearly independent solutions
𝑦1 (𝑥) = 1 and 𝑦2 (𝑥) = exp(𝑥−2) in Sol0 (𝐿). An integral basis for
𝐴 = C(𝑥) [𝐷]/⟨𝐿⟩ is given by 𝜔1 = 1 and 𝜔2 = 𝑥3𝐷 , which is also a
local integral basis at infinity. Then(

𝜔 ′
1

𝜔 ′
2

)
=

1

𝑒

(
0 1

0 −2

) (
𝜔1

𝜔2

)
with 𝑒 = 𝑥3. In this example, 𝑒 is not squarefree.

Example 4. Let 𝐿 = 𝑥𝐷2 − (3𝑥3 + 2)𝐷 ∈ C(𝑥) [𝐷]. Infinity is an
irregular singular point. There are two linearly independent solutions
𝑦1 (𝑥) = 1 and 𝑦2 (𝑥) = exp(𝑥3) in Sol∞ (𝐿). A local integral basis
at infinity of 𝐴 = C(𝑥) [𝐷]/⟨𝐿⟩ is given by 𝜔1 = 1 and 𝜔2 = 𝑥−2𝐷 .
Then (

𝜔 ′
1

𝜔 ′
2

)
=

(
0 𝑥2

0 3𝑥2

) (
𝜔1

𝜔2

)
.

In this example, 𝑒 = 1 and the condition deg𝑥 (𝑚𝑖, 𝑗 ) < deg𝑥 (𝑒) fails.

A 𝐶 (𝑥)-vector space basis {𝜔1, . . . , 𝜔𝑛} of 𝐴 = 𝐶 (𝑥) [𝐷]/⟨𝐿⟩ is
called normal at 𝛼 ∈ 𝐶 ∪ {∞} if there exist 𝑟1, . . . , 𝑟𝑛 ∈ 𝐶 (𝑥) such
that {𝑟1𝜔1, . . . , 𝑟𝑛𝜔𝑛} is a local integral basis at 𝛼 . Given an integral

basis and a local integral basis at infinity, Trager [20] presented an

algorithm for computing an integral basis that is normal at infinity

in the algebraic function field. The same procedure also applies in

the present situation, see [3, Algorithm 5.20].

3 HERMITE REDUCTION
Hermite reduction, first introduced by Ostrogradsky in 1845 [19],

is a classical symbolic integration technique that reduces rational

functions to integrands with only simple poles. Hermite reduction

was extended by Trager [20] from the field of rational functions

to that of algebraic functions via integral bases. Trager’s Hermite

reduction solved the integration problem for algebraic functions.

This work was extended to the case of Fuchsian D-finite func-

tions [11]. We shall further extend Hermite reduction to general

D-finite functions, including the non-Fuchsian case. To increase

the valuation at infinity, we develop a Hermite reduction at infinity

for D-finite functions, which plays the same role as polynomial

reduction [6, 8, 10, 11]. This approach was suggested by one of the

anonymous referees of [11]. In this section, Hermite reduction at

finite places and at infinity are formulated in the same framework.

More precisely, we shall use a local integral basis at 𝛼 ∈ 𝐶 ∪ {∞}
to increase the valuation of D-finite functions at 𝛼 .

For convenience, we introduce some notation for the valuations

of a matrix with rational coefficients. For each 𝛼 ∈ 𝐶 ∪ {∞}, the
valuation of a matrix𝑇 ∈ 𝐶 (𝑥)𝑛×𝑛 at 𝛼 , denoted by 𝜈𝛼 (𝑇 ), is defined
as the minimal valuation at 𝛼 of all entries in this matrix. The

degree of 𝑇 ∈ 𝐶 (𝑥)𝑛×𝑛 , denoted by deg𝑥 (𝑇 ), is defined as −𝜈∞ (𝑇 ).
In particular, the degree of a rational function 𝑓 = 𝑝/𝑞 ∈ 𝐶 (𝑥) is
deg𝑥 (𝑝) − deg𝑥 (𝑞).

3.1 The Local Case
Let 𝐿 ∈ 𝐶 (𝑥) [𝐷] be of order 𝑛 and let 𝐴 = 𝐶 (𝑥) [𝐷]/⟨𝐿⟩. For an
arbitrary but fixed point 𝛼 ∈ 𝐶 ∪ {∞}, let𝑊 = (𝜔1, . . . , 𝜔𝑛) be
a local integral basis at 𝛼 of 𝐴. Then there exists a matrix 𝑇 ∈
𝐶 (𝑥)𝑛×𝑛 such that𝑊 ′ = 𝑇𝑊 . We write 𝑧 = 𝑥 − 𝛼 (or 𝑧 = 1

𝑥 if

𝛼 = ∞). Let 𝜆 = −𝜈𝛼 (𝑇 ). Then 𝜆 ∈ Z and there exists a matrix

𝑀 = (𝑚𝑖, 𝑗 )𝑛𝑖,𝑗=1
∈ 𝐶 (𝑥)𝑛×𝑛𝛼 such that

𝑊 ′ =
1

𝑧𝜆
𝑀𝑊 and 𝜈𝛼 (𝑀) = 0,

where 𝑀 = 𝑧𝜆𝑇 . Let 𝑓 = 1

𝑧𝑘

∑𝑛
𝑖=1

𝑎𝑖𝜔𝑖 ∈ 𝐴 with 𝑘 > 1 (or 𝑘 ≥ 0 if

𝛼 = ∞) and 𝑎1, . . . , 𝑎𝑛 ∈ 𝐶 (𝑥)𝛼 . In order to reduce the multiplicity 𝑘

of the denominator of 𝑓 at 𝛼 , we seek 𝑏1, . . . , 𝑏𝑛, 𝑐1, . . . , 𝑐𝑛 ∈ 𝐶 (𝑥)𝛼
such that

1

𝑧𝑘

𝑛∑︁
𝑖=1

𝑎𝑖𝜔𝑖 =

(
1

𝑧𝑘+𝜇

𝑛∑︁
𝑖=1

𝑏𝑖𝜔𝑖

) ′
+ 1

𝑧𝑘−1

𝑛∑︁
𝑖=1

𝑐𝑖𝜔𝑖 , (3)

where 𝜇 ∈ Z is an integer such that 𝜈𝛼 (𝑧′) = 𝜈𝛼 (𝑧) + 𝜇. In this

setting, 𝜇 = −1 if 𝛼 ∈ 𝐶 (because (𝑥 − 𝛼)′ = 1); 𝜇 = 1 if 𝛼 = ∞
(because ( 1

𝑥 )
′ = − 1

𝑥2
). Also 𝑧′ = −𝜇𝑧𝜇+1

.

After expanding the derivative in (3) and multiplying by 𝑧𝑘 , we

get

𝑛∑︁
𝑖=1

𝑎𝑖𝜔𝑖 =

𝑛∑︁
𝑖=1

(
𝑏 ′
𝑖

𝑧𝜇
𝜔𝑖 + 𝑏𝑖𝑧𝑘

(
𝜔𝑖

𝑧𝑘+𝜇

) ′
+ 𝑐𝑖𝑧𝜔𝑖

)
(4)

=

𝑛∑︁
𝑖=1

©«
𝑏 ′
𝑖

𝑧𝜇
𝜔𝑖 +

𝑏𝑖

𝑧𝜆+𝜇

𝑛∑︁
𝑗=1

𝑚𝑖, 𝑗𝜔 𝑗 + 𝜇 (𝑘 + 𝜇)𝑏𝑖𝜔𝑖 + 𝑐𝑖𝑧𝜔𝑖
ª®¬ , (5)

where 𝜇 (𝑘 + 𝜇) = 𝑧𝑘 (𝑧−(𝑘+𝜇) )′. Note that 𝑏𝑖 is integral at 𝛼 . Then
𝑏 ′
𝑖
𝑧−𝜇 ∈ 𝑧𝐶 (𝑥)𝛼 because 𝜈𝛼 (𝑏 ′𝑖𝑧

−𝜇 ) ≥ 1. For example, if 𝛼 ∈ 𝐶 ,

then (1 + (𝑥 − 𝛼) + · · · )′(𝑥 − 𝛼) = (𝑥 − 𝛼) + · · · ; if 𝛼 = ∞, then

(1 + 1

𝑥 + · · · )′𝑥 = − 1

𝑥 + · · · . So if −(𝜆 + 𝜇) > 0, i.e., 𝜆 < −𝜇, then
Equation (5) can be reduced modulo 𝑧:

𝑛∑︁
𝑖=1

𝑎𝑖𝜔𝑖 ≡
𝑛∑︁
𝑖=1

𝜇 (𝑘 + 𝜇)𝑏𝑖𝜔𝑖 mod 𝑧, (6)

Since {𝜔1, . . . , 𝜔𝑛} is a 𝐶 (𝑥)-vector space basis of 𝐴, it follows

that 𝑏𝑖 ≡ 𝜇−1 (𝑘 + 𝜇)−1𝑎𝑖 mod 𝑧 is the unique solution of (6) in

𝐶 (𝑥)𝛼/⟨𝑧⟩. If 𝜆 ≥ −𝜇, then multiplying (4) by 𝑧𝜆+𝜇 and reducing

this equation modulo 𝑧𝜆+𝜇+1
yields

𝑛∑︁
𝑖=1

𝑧𝜆+𝜇𝑎𝑖𝜔𝑖 ≡
𝑛∑︁
𝑖=1

𝑏𝑖𝑧
𝑘+𝜆+𝜇

(
𝜔𝑖

𝑧𝑘+𝜇

) ′
mod 𝑧𝜆+𝜇+1 . (7)



Let 𝜓𝑖 := 𝑧𝑘+𝜆+𝜇
(

𝜔𝑖

𝑧𝑘+𝜇

) ′
for 𝑖 = 1, . . . , 𝑛. To perform Hermite re-

duction, we have to show that Equation (7) always has a solution

(𝑏1, . . . , 𝑏𝑛) in (𝐶 (𝑥)𝛼/⟨𝑧𝜆+𝜇+1⟩)𝑛 .
In the Fuchsian case, Chen et al. [11] proved that 𝜆 = 1. When

𝛼 ∈ 𝐶 , they showed that {𝜓1, . . . ,𝜓𝑛} forms a local integral basis

at 𝛼 and hence (7) has a solution. When 𝛼 = ∞, instead of solving

the modular system (7), they introduced the polynomial reduction

to reduce the degree in 𝑥 . We shall show that {𝜓1, . . . ,𝜓𝑛} still

forms a local integral basis at infinity and provide an alternative

method of reducing the degree.

In the non-Fuchsian case, it may happen that 𝜆 > 1, see Exam-

ples 3 (for 𝛼 = 0) and 4 (for 𝛼 = ∞). Another difference is that

{𝜓1, . . . ,𝜓𝑛} may not be a local integral basis at 𝛼 anymore, see

the following Example 5. Fortunately, the linear system (7) still has

a solution in (𝐶 (𝑥)𝛼/⟨𝑧𝜆+𝜇+1⟩)𝑛 as we shall prove in this section.

There are two steps. First we show that {𝜓1, . . . ,𝜓𝑛} is linearly inde-
pendent over𝐶 (𝑥) and then we find a rational solution (𝑏1, . . . , 𝑏𝑛)
whose entries admit nonnegative valuation at 𝛼 . So the 𝑏𝑖 ’s belong

to𝐶 (𝑥)𝛼 . Taking 𝑏𝑖 modulo 𝑧𝜆+𝜇+1
gives a solution of (7). Once we

know that (7) has a solution, equating the coefficients of the 𝜔𝑖 ’s

on both sides and expanding the derivative as (5), we can find its

solution 𝑏 = (𝑏1, . . . , 𝑏𝑛) by solving, e.g. with Gaussian elimination,

the following linear system of congruence equations:

(𝑧𝜆+𝜇𝑎1, . . . , 𝑧
𝜆+𝜇𝑎𝑛) ≡ 𝑏 (𝑀 + 𝜇 (𝑘 + 𝜇)𝑧𝜆+𝜇 𝐼𝑛) mod 𝑧𝜆+𝜇+1, (8)

where 𝐼𝑛 is the identity matrix in 𝐶 [𝑥]𝑛×𝑛 .

Example 5. We continue Example 3. For 𝛼 = 0 and 𝜆 = 3, let
𝜓𝑖 = 𝑥

𝑘+2 (𝑥1−𝑘𝜔𝑖 )′ for 𝑖 = 1, 2. A direct calculation yields that(
𝜓1

𝜓2

)
=

(
−(𝑘 − 1)𝑥2

1

0 −(𝑘 − 1)𝑥2 − 2

) (
𝜔1

𝜔2

)
.

In this example,𝜓1,𝜓2 are integral elements but do not form a local
integral basis at 0, because 1

𝑥2
(2𝜓1 +𝜓2) = −2(𝑘 − 1)𝜔1 − (𝑘 − 1)𝜔2

is integral at 0. In fact, if 𝑘 > 1, then {𝜓1,
1

𝑥2
(2𝜓1 +𝜓2)} is a local

integral basis at 0. Now (8) becomes

(𝑎1𝑥
2, 𝑎2𝑥

2) ≡ (𝑏1, 𝑏2)
(
−(𝑘 − 1)𝑥2

1

0 −(𝑘 − 1)𝑥2 − 2

)
mod 𝑥3 .

When 𝑘 > 1, even though the coefficient matrix is not invertible over
𝐶 (𝑥)0/⟨𝑥3⟩, this equation still has a solution

𝑏1 ≡ −(𝑘 − 1)−1𝑎1 mod 𝑥3,

𝑏2 ≡ 1

4

(
(𝑘 − 1)𝑥2 − 2

) (
𝑎2𝑥

2 + (𝑘 − 1)−1𝑎1

)
mod 𝑥3 .

Even though {𝜓1, . . . ,𝜓𝑛} may not be a local integral basis at 𝛼 ,

it is not so far away. In Example 5, we have 𝐶 (𝑥)0𝜓1 +𝐶 (𝑥)0𝜓2 ⊆
O0 ⊆ 1

𝑥2
(𝐶 (𝑥)0𝜓1 +𝐶 (𝑥)0𝜓2). In general, if we represent a locally

integral element at 𝛼 as a linear combination of {𝜓1, . . . ,𝜓𝑛} with
coefficients in 𝐶 (𝑥), the pole orders at 𝛼 of these coefficients are at

most 𝜆 + 𝜇.

Proposition 6. Let 𝛼 ∈ 𝐶 ∪ {∞} and𝑊 = {𝜔1, . . . , 𝜔𝑛} be a
local integral basis at 𝛼 of 𝐴. Let 𝑧 = 𝑥 − 𝛼 (or 𝑧 = 𝑥−1 if 𝛼 = ∞) and
𝜇 ∈ Z be such that 𝜈𝛼 (𝑧′) = 𝜈𝛼 (𝑧) + 𝜇. Let 𝜆 ∈ Z and𝑀 ∈ 𝐶 (𝑥)𝑛×𝑛𝛼

be such that 𝑧𝜆𝑊 ′ = 𝑀𝑊 and 𝜈𝛼 (𝑀) = 0. For some integer 𝑘 > 1 (or

𝑘 ≥ 0 if 𝛼 = ∞), we define𝜓𝑖 := 𝑧𝑘+𝜆+𝜇 (𝑧−𝑘−𝜇𝜔𝑖 )′. If 𝜆 ≥ −𝜇, then
𝑛∑︁
𝑖=1

𝐶 (𝑥)𝛼𝜓𝑖 ⊆ O𝛼 ⊆ 1

𝑧𝜆+𝜇

𝑛∑︁
𝑖=1

𝐶 (𝑥)𝛼𝜓𝑖 .

In particular, when 𝜆 = −𝜇, we have∑𝑛
𝑖=1

𝐶 (𝑥)𝛼𝜓𝑖 = O𝛼 . In this case,
{𝜓1, . . . ,𝜓𝑛} forms a local integral basis at 𝛼 .

Proof. We prove this proposition using the same technique as

in [10, Lemma 10]. To show

∑𝑛
𝑖=1

𝐶 (𝑥)𝛼𝜓𝑖 ⊆ O𝛼 , we only need to

show that for every 𝑖 = 1, . . . , 𝑛, the element𝜓𝑖 is integral at 𝛼 . After

expanding, we get𝜓𝑖 = 𝑧
𝜆𝜔 ′

𝑖
+ 𝜇 (𝑑 + 𝜇)𝑧𝜆+𝜇𝜔𝑖 . Since 𝑧𝜆𝑊 ′ = 𝑀𝑊

and 𝜈𝛼 (𝑀) = 0, it follows that 𝑧𝜆𝜔 ′
𝑖
is integral at 𝛼 . Then 𝜓𝑖 is

integral at 𝛼 because 𝜆 + 𝜇 ≥ 0.

Next we shall prove O𝛼 ⊆ 1

𝑧𝜆+𝜇
∑𝑛
𝑖=1

𝐶 (𝑥)𝛼𝜓𝑖 . Suppose to the

contrary that there exists an element 𝑓 ∈ O𝛼 \ 1

𝑧𝜆+𝜇
∑𝑛
𝑖=1

𝐶 (𝑥)𝛼𝜓𝑖 .
Furthermore, we can find such an element 𝑓 of the form

𝑓 =
1

𝑧𝜆+𝜇+1

𝑛∑︁
𝑖=1

𝑐𝑖𝜓𝑖 with 𝑐𝑖 ∈ 𝐶 (𝑥)𝛼 and 𝜈𝛼 (𝑐𝑖 ) = 0 for some 𝑖 .

(Taking 𝑓 = 0, we shall prove that the𝜓𝑖 ’s are linearly independent.)

Let 𝑔 = 𝑧−𝜇−1
∑𝑛
𝑖=1

𝑐 ′
𝑖
𝜔𝑖 , which is integral for the same reason as

between (5) and (6). Then also their sum

𝑓 + 𝑔 = 𝑧𝑘−1

𝑛∑︁
𝑖=1

(
𝑐𝑖

(
𝑧−𝑘−𝜇𝜔𝑖

) ′ + 𝑐 ′𝑖𝑧−𝑘−𝜇𝜔𝑖 )
= 𝑧𝑘−1

𝑛∑︁
𝑖=1

(
𝑐𝑖𝑧

−𝑘−𝜇𝜔𝑖
) ′
= 𝑧𝑘−1

(
𝑧−𝑘−𝜇ℎ

) ′
must be integral, where ℎ =

∑𝑛
𝑖=1

𝑐𝑖𝜔𝑖 .

Since {𝜔1, . . . , 𝜔𝑛} is an integral basis at 𝛼 , by Lemma 2 we have

0 ≤ val𝛼 (ℎ) < 1. Note that

val𝛼 (𝑧−𝑘−𝜇ℎ) = −𝑘 − 𝜇 + val𝛼 (ℎ) ≤ −1 + val𝛼 (ℎ) < 0;

here we use the assumption that 𝑘 > 1 (resp. 𝑘 ≥ 0 if 𝛼 =

∞), because 𝑘 = 1 (resp. 𝑘 = −1) and val𝛼 (ℎ) = 0 imply that

val𝛼 (𝑧−𝑘−𝜇ℎ) = 0. Since val𝛼 (𝑧−𝑘−𝜇ℎ) ≠ 0, by Lemma 1 we get

val𝛼 (𝑧𝑘−1 (𝑧−𝑘−𝜇ℎ)′) ≤ 𝑘−1−𝑘−𝜇+val𝛼 (ℎ)+𝜇 = val𝛼 (ℎ)−1 < 0.

So 𝑧𝑘−1 (𝑧−𝑘−𝜇ℎ)′ = 𝑓 + 𝑔 is not integral at 𝛼 , which contradicts

the integrality of 𝑓 . Hence O𝛼 ⊆ 1

𝑧𝜆+𝜇
∑𝑛
𝑖=1

𝐶 (𝑥)𝛼𝜓𝑖 .

Theorem 7. Using the same notation as in Proposition 6, let 𝑘 > 1

(or 𝑘 ≥ 0 if 𝛼 = ∞). If 𝜆 ≥ −𝜇, then for any 𝑎1, . . . , 𝑎𝑛 ∈ 𝐶 (𝑥)𝛼 , the
linear system

𝑛∑︁
𝑖=1

𝑧𝜆+𝜇𝑎𝑖𝜔𝑖 =
𝑛∑︁
𝑖=1

𝑏𝑖𝜓𝑖 (9)

has a solution (𝑏1, . . . , 𝑏𝑛) in (𝐶 (𝑥)𝛼/⟨𝑧𝜆+𝜇+1⟩)𝑛 .

Proof. By Proposition 6, the 𝐶 (𝑥)𝛼 -module generated by{
1

𝑧𝜆+𝜇
𝜓1, . . . ,

1

𝑧𝜆+𝜇
𝜓𝑛

}
contains a submodule O𝛼 of rank 𝑛. So {𝜓1, . . . ,𝜓𝑛} is linearly

independent over𝐶 (𝑥). Then there exist 𝑡1, . . . , 𝑡𝑛 ∈ 𝐶 (𝑥) such that∑𝑛
𝑖=1

𝑧𝜆+𝜇𝑎𝑖𝜔𝑖 =
∑𝑛
𝑖=1

𝑡𝑖𝜓𝑖 .



To find a solution 𝑏𝑖 , we have to show that 𝑡𝑖 ∈ 𝐶 (𝑥)𝛼 for all

𝑖 = 1, . . . , 𝑛. If so, 𝑏𝑖 ≡ 𝑡𝑖 mod 𝑧𝜆+𝜇+1
is a solution of (9). Since

𝑎𝑖 ∈ 𝐶 (𝑥)𝛼 and the 𝜔𝑖 ’s are integral at 𝛼 , the element

𝑛∑︁
𝑖=1

𝑎𝑖𝜔𝑖 =
1

𝑧𝜆+𝜇

𝑛∑︁
𝑖=1

𝑡𝑖𝜓𝑖

is integral at 𝛼 . By Proposition 6,

1

𝑧𝜆+𝜇

𝑛∑︁
𝑖=1

𝑡𝑖𝜓𝑖 ∈ O𝛼 ⊆ 1

𝑧𝜆+𝜇

𝑛∑︁
𝑖=1

𝐶 (𝑥)𝛼𝜓𝑖 .

Then

∑𝑛
𝑖=1

𝑡𝑖𝜓𝑖 ∈
∑𝑛
𝑖=1

𝐶 (𝑥)𝛼𝜓𝑖 . Since {𝜓1, . . . ,𝜓𝑛} is linearly inde-

pendent over 𝐶 (𝑥), we have 𝑡𝑖 ∈ 𝐶 (𝑥)𝛼 for all 𝑖 . Thus 𝑡𝑖 ∈ 𝐶 (𝑥)𝛼
as claimed.

According to Theorem 7, we can perform one step of Hermite

reduction for D-finite functions as described in the beginning of

this section. The element 𝑏𝑖 in 𝐶 (𝑥)𝛼/⟨𝑧𝜆+𝜇+1⟩ is of the form

𝑏𝑖 = 𝑏𝑖,0 + 𝑏𝑖,1𝑧 + · · · + 𝑏𝑖,𝜆+𝜇𝑧𝜆+𝜇 with 𝑏𝑖, 𝑗 ∈ 𝐶.

So in Equation (3), for 𝛼 ∈ 𝐶 , if 𝑘 > max{1, 𝜆}, then the coefficients

of
1

𝑧𝑘+𝜇
∑𝑛
𝑖=1

𝑏𝑖𝜔𝑖 are proper rational functions. For 𝛼 = ∞, if 𝑘 ≥
max{0, 𝜆}, then the coefficients of

1

𝑧𝑘+𝜇
∑𝑛
𝑖=1

𝑏𝑖𝜔𝑖 are polynomials.

Example 8. We continue Examples 3 and 5. A local integral basis
at 𝛼 = 0 is given by 𝜔1 = 1 and 𝜔2 = 𝑥3𝐷 . Then 𝜆 = 3. Consider the
D-finite function

𝑓 =
(−2𝑥2 − 𝑥4)𝜔1 + (−2 + 3𝑥2 − 3𝑥4)𝜔2

𝑥4

and use Hermite reduction at 0 to reduce the power of 𝑥 in its denom-
inator. So we start with 𝑧 = 𝑥 , 𝜇 = −1, 𝑘 = 4, 𝑎1 = −2𝑥2 − 𝑥4 and
𝑎2 = −2 + 3𝑥2 − 3𝑥4. From (8), we get

(𝑎1𝑥
2, 𝑎2𝑥

2) ≡ (𝑏1, 𝑏2)
(
−3𝑥2

1

0 −3𝑥2 − 2

)
mod 𝑥3 .

By Theorem 7, we know that this equation has a solution. Indeed, we
find a solution 𝑏1 = 2

3
𝑥2, 𝑏2 = 4

3
𝑥2. Then one step of the Hermite

reduction at 0 simplifies 𝑓 to

𝑓 =

(
2𝜔1 + 4𝜔2

3𝑥

) ′
+ (−4 − 3𝑥2)𝜔1 + (13 − 9𝑥2)𝜔2

3𝑥2
.

Example 9. Let 𝐿 = 𝑥𝐷2 − (3𝑥3 + 2)𝐷 ∈ C(𝑥) [𝐷] be as in
Example 4. A local integral basis at 𝛼 = ∞ of 𝐴 = C(𝑥) [𝐷]/⟨𝐿⟩ is
given by 𝜔1 = 1 and 𝜔2 = 𝑥−2𝐷 . Then(

𝜔 ′
1

𝜔 ′
2

)
= 𝑥𝜆

(
0 1

0 3

) (
𝜔1

𝜔2

)
with 𝜆 = 2. Consider the D-finite function

𝑓 = 4𝑥3 + 1

𝑥
𝐷 = 4𝑥3𝜔1 + 𝑥𝜔2 = 𝑥3

(
4𝜔1 +

1

𝑥2
𝜔2

)
and use Hermite reduction at infinity to reduce its degree in 𝑥 . So we
start with 𝑧 = 1

𝑥 , 𝜇 = 1, 𝑘 = 3, 𝑎1 = 4 and 𝑎2 = 1

𝑥2
. From (8), we get

(𝑎1𝑥
−3, 𝑎2𝑥

−3) ≡ (𝑏1, 𝑏2)
(
4𝑥−3

1

0 4𝑥−3 + 3

)
mod 𝑥−4

This coefficient matrix is not invertible over 𝐶 (𝑥)∞/⟨𝑥−4⟩. However,
by Theorem 7, we know this equation has a solution. Indeed, we find a

solution 𝑏1 = 1, 𝑏2 = 4

9𝑥3
− 1

3
. Then one step of the Hermite reduction

at infinity simplifies 𝑓 to

𝑓 =

(
𝑥4𝜔1 +

(
4

9

𝑥 − 1

3

𝑥4

)
𝜔2

) ′
+

(
𝑥 − 4

9

)
𝜔2 .

Let𝑊 = {𝜔1, . . . , 𝜔𝑛} be a local integral basis at infinity. Let

𝜆 ∈ Z and𝑀 ∈ 𝐶 (𝑥)𝑛×𝑛 be such that𝑊 ′ = 𝑥𝜆𝑀𝑊 and 𝜈∞ (𝑀) = 0.

Then 𝜆 = −𝜈∞ (𝑥𝜆𝑀) = deg𝑥 (𝑥𝜆𝑀). By repeating the reduction

at infinity, we can reduce the degree in 𝑥 as far as possible and

decompose 𝑓 ∈ 𝐴 as

𝑓 = 𝑔′ + ℎ with ℎ =

𝑛∑︁
𝑖=1

ℎ𝑖𝜔𝑖 (10)

where 𝑔 ∈ 𝐴, ℎ𝑖 ∈ 𝐶 (𝑥) with deg𝑥 (ℎ𝑖 ) < max{0, 𝜆} for all 𝑖 and the
coefficients of 𝑔 are polynomials. The following lemma gives an

upper bound for the degree of any hypothetical integral of ℎ in 𝐴.

Lemma 10. Let ℎ ∈ 𝐴 be as in (10). If ℎ is integrable in 𝐴, then
ℎ = (∑𝑛

𝑖=1
𝑏𝑖𝜔𝑖 )′ with 𝑏𝑖 ∈ 𝐶 (𝑥) and deg𝑥 (𝑏𝑖 ) ≤ max{0, 𝜆} for all

𝑖 ∈ {1, . . . , 𝑛}.

Proof. Suppose ℎ is integrable in 𝐴. Then there exists 𝐻 =∑𝑛
𝑖=1

𝑏𝑖𝜔𝑖 ∈ 𝐴 with 𝑏𝑖 ∈ 𝐶 (𝑥) such that ℎ = 𝐻 ′
. By (10), we know

the coefficients of ℎ satisfy deg𝑥 (ℎ𝑖 ) < max{0, 𝜆}, which implies

𝜈∞ (ℎ𝑖 ) > min{0,−𝜆}. Since the 𝜔𝑖 ’s are integral at infinity, it fol-
lows that val∞ (ℎ) ≥ min

𝑛
𝑖=1

{𝑣∞ (ℎ𝑖 ) + val∞ (𝜔𝑖 )} > min{0,−𝜆}.
We want to show that deg𝑥 (𝑏𝑖 ) ≤ max{0, 𝜆} for all 𝑖 , which

means 𝜈∞ (𝑏𝑖 ) ≥ min{0,−𝜆} for all 𝑖 . Suppose to the contrary that

𝜏 := min
𝑛
𝑖=1

{𝜈∞ (𝑏𝑖 )} < min{0,−𝜆}. Since {𝜔1, . . . , 𝜔𝑛} is a local

integral basis at infinity, by Lemma 2 we get val∞ (𝐻 ) < 𝜏 + 1 ≤
min{0,−𝜆}. So val∞ (𝐻 ) ≠ 0. By Lemma 1 we have

val∞ (ℎ) ≤ val∞ (𝐻 ) + 1 ≤ min{0,−𝜆}.
This leads to a contradiction. So deg𝑥 (𝑏𝑖 ) ≤ max{0, 𝜆} for all 𝑖 .

3.2 The Global Case
To avoid algebraic extensions of the base field, Hermite reduction

can be performed simultaneously at all roots of some squarefree

polynomial, which may take advantage of the squarefree decompo-

sition over the base field. Let𝑊 = {𝜔1, . . . , 𝜔𝑛} be an integral basis

of 𝐴 = 𝐶 (𝑥) [𝐷]/⟨𝐿⟩. Let 𝑒 ∈ 𝐶 [𝑥] and 𝑀 = (𝑚𝑖, 𝑗 )𝑛𝑖,𝑗=1
∈ 𝐶 [𝑥]𝑛×𝑛

be such that 𝑒𝑊 ′ = 𝑀𝑊 and gcd(𝑒,𝑚1,1,𝑚1,2, . . . ,𝑚𝑛,𝑛) = 1. Let 𝑣

be a nontrivial squarefree polynomial and 𝜆 ∈ N be an integer such

that 𝑣𝜆 | 𝑒 and gcd( 𝑒
𝑣𝜆
, 𝑣) = 1. Let 𝑓 = 1

𝑢𝑣𝑘

∑𝑛
𝑖=1

𝑎𝑖𝜔𝑖 ∈ 𝐴 with

𝑢, 𝑎1, . . . , 𝑎𝑛 ∈ 𝐶 [𝑥] such that 𝑘 > 1 and gcd(𝑢, 𝑣) = gcd(𝑣, 𝑣 ′) =

gcd(𝑣, 𝑎1, . . . , 𝑎𝑛) = 1. Upon differentiating, the 𝜔𝑖 ’s may introduce

denominators, namely the factors of 𝑒 . Without loss of generality,

we assume 𝑒 | 𝑢𝑣𝑘 . Suppose 𝑘 > max{1, 𝜆}. In order to execute one

step of the Hermite reduction to reduce the multiplicity 𝑘 , we seek

𝑏1, . . . , 𝑏𝑛, 𝑐1, . . . , 𝑐𝑛 in 𝐶 [𝑥] such that∑𝑛
𝑖=1

𝑎𝑖𝜔𝑖

𝑢𝑣𝑘
=

(∑𝑛
𝑖=1

𝑏𝑖𝜔𝑖

𝑣𝑘−1

) ′
+

∑𝑛
𝑖=1

𝑐𝑖𝜔𝑖

𝑢𝑣𝑘−1

. (11)

If 𝜆 = 0, then gcd(𝑒, 𝑣) = 1. Multiplying (11) by 𝑢𝑣𝑑 and reducing

this equation modulo 𝑣 yield

𝑛∑︁
𝑖=1

𝑎𝑖𝜔𝑖 ≡ −(𝑘 − 1)
𝑛∑︁
𝑖=1

𝑏𝑖𝑢𝑣
′𝜔𝑖 mod 𝑣 . (12)



Note that gcd(𝑢, 𝑣) = gcd(𝑣, 𝑣 ′) = 1. So 𝑏𝑖 ≡ −(𝑘 − 1)−1 (𝑢𝑣 ′)−1𝑎𝑖
mod 𝑣 is the unique solution of (12) in𝐶 [𝑥]/⟨𝑣⟩. If 𝜆 ≥ 1, multiply-

ing (11) by 𝑢𝑣𝑘+𝜆−1
and reducing this equation modulo 𝑣𝜆 yield

𝑛∑︁
𝑖=1

𝑣𝜆−1𝑎𝑖𝜔𝑖 ≡
𝑛∑︁
𝑖=1

𝑏𝑖𝑢𝑣
𝑘+𝜆−1

(
𝜔𝑖

𝑣𝑘−1

) ′
mod 𝑣𝜆 . (13)

One can adapt the argument in the local case to show that (13) has

a solution (𝑏1, . . . , 𝑏𝑛) in (𝐶 [𝑥]/⟨𝑣𝜆⟩)𝑛 . Let𝜓𝑖 := 𝑣𝑘+𝜆−1 (𝑣1−𝑘𝜔𝑖 )′
for 𝑖 = 1, . . . , 𝑛. As an analog of Proposition 6, for each root 𝛼 ∈ 𝐶
of 𝑣 , we have

𝑛∑︁
𝑖=1

𝐶 (𝑥)𝛼𝜓𝑖 ⊆ O𝛼 ⊆ 1

𝑣𝜆−1

𝑛∑︁
𝑖=1

𝐶 (𝑥)𝛼𝜓𝑖 .

Thus the linear system

∑𝑛
𝑖=1

𝑣𝜆−1𝑎𝑖𝜔𝑖 =
∑𝑛
𝑖=1

𝑢𝑏𝑖𝜓𝑖 has a solution

(𝑏1, . . . , 𝑏𝑛) in (𝐶 [𝑥]/⟨𝑣𝜆⟩)𝑛 . Equating the coefficients of the 𝜔𝑖 ’s

on both sides of (13), the vector 𝑏 = (𝑏1, . . . , 𝑏𝑛) can be found by

solving the following linear system of congruence equations:

(𝑣𝜆−1𝑎1, . . . , 𝑣
𝜆−1𝑎𝑛) ≡ 𝑏 (𝑢𝑣𝜆𝑒−1𝑀 − (𝑘 − 1)𝑢𝑣𝜆−1𝑣 ′𝐼𝑛) mod 𝑣𝜆,

where 𝐼𝑛 is the identity matrix in 𝐶 [𝑥]𝑛×𝑛 .
By repeated application of the above Hermite reduction step, we

can increase the valuations at finite places as far as possible, i.e.,

we can decompose any 𝑓 ∈ 𝐴 as

𝑓 = 𝑔′ + ℎ with ℎ =

𝑛∑︁
𝑖=1

ℎ𝑖𝜔𝑖

𝑑𝑒
, (14)

where 𝑔 ∈ 𝐴, ℎ1, . . . , ℎ𝑛, 𝑑 ∈ 𝐶 [𝑥], 𝑑 is squarefree, gcd(𝑑, 𝑒) = 1 and

the coefficients of 𝑔 are proper rational functions.

Lemma 11. Let ℎ ∈ 𝐴 be as in (14). If ℎ is integrable in 𝐴, then

ℎ =

(∑𝑛
𝑖=1

𝑞𝑖𝜔𝑖

𝑢

) ′
, where 𝑞1, . . . , 𝑞𝑛, 𝑢 ∈ 𝐶 [𝑥] and 𝑢 | gcd(𝑒, 𝑒 ′).

Furthermore, we have 𝑑 ∈ 𝐶 .

Proof. Suppose ℎ is integrable in 𝐴. Then there exists 𝐻 =∑𝑛
𝑖=1

𝑏𝑖𝜔𝑖 ∈ 𝐴 with 𝑏𝑖 ∈ 𝐶 (𝑥) such that ℎ = 𝐻 ′
.

If 𝛼 ∈ 𝐶 is not a root of 𝑒 , then 𝑏𝑖 has no pole at 𝛼 for all 𝑖 .

Otherwise, suppose 𝑏𝑖 has a pole at 𝛼 for some 𝑖 ∈ {1, . . . , 𝑛}. Then
𝐻 has a negative valuation at 𝛼 , because {𝜔1, . . . , 𝜔𝑛} is an integral

basis. But then by Lemma 1, ℎ would have a valuation less than

−1, which is impossible because gcd(𝑑, 𝑒) = 1 and 𝑑 is squarefree.

Therefore 𝑏𝑖 is integral at 𝛼 for all 𝑖 and hence 𝑑 is a constant.

If 𝛼 ∈ 𝐶 is a root of 𝑒 , then 𝑏𝑖 has a pole at 𝛼 of order at most

𝜈𝛼 (𝑒) −1. Otherwise, suppose 𝜏 := min
𝑛
𝑖=1

{𝜈𝛼 (𝑏𝑖 )} ≤ −𝜈𝛼 (𝑒) ≤ −1.

By Lemma 2, val𝛼 (𝐻 ) < 𝜏 + 1 ≤ 0. Then val𝛼 (𝐻 ) ≠ 0. By Lemma 1,

we have val𝛼 (ℎ) ≤ val𝛼 (𝐻 ) − 1. Thus val𝛼 (ℎ) < −𝜈𝛼 (𝑒). But from
ℎ =

∑𝑛
𝑖=1

ℎ𝑖𝜔𝑖

𝑑𝑒
, we see val𝛼 (ℎ) ≥ −𝜈𝛼 (𝑒) because gcd(𝑑, 𝑒) = 1.

This leads to a contradiction.

Note that 𝜈𝛼 (gcd(𝑒, 𝑒 ′)) = 𝜈𝛼 (𝑒) − 1 if 𝛼 is a root of 𝑒 and

𝜈𝛼 (gcd(𝑒, 𝑒 ′)) = 0 if 𝛼 is not a root of 𝑒 . So gcd(𝑒, 𝑒 ′) is a com-

mon multiple of the denominators of the 𝑏𝑖 ’s.

4 ADDITIVE DECOMPOSITIONS
Now we combine the Hermite reduction at finite places and at

infinity to decompose a D-finite function 𝑓 as 𝑓 = 𝑔′ + ℎ such that

𝑓 is integrable if and only if the remainder ℎ is zero. To achieve

this goal, first we confine all remainders into a finite-dimensional

vector space. Then we find all possible integrable functions in this

vector space. This procedure is similar to the hyperexponential

case [6], the algebraic case [10], the Fuchsian case [11] and the

D-finite case [7, 21]. It provides an alternative method for solving

the accurate integration problem for D-finite functions [2].

Since there may not exist a basis of 𝐴 = 𝐶 (𝑥) [𝐷]/⟨𝐿⟩ that is a
local integral basis at all 𝛼 ∈ 𝐶∪{∞}, we need two bases to perform
Hermite reduction at finite places and at infinity, respectively. Let

𝑊 = (𝜔1, . . . , 𝜔𝑛) ∈ 𝐴𝑛 be an integral basis of 𝐴 that is normal at

infinity. There exists 𝑇 = diag

(
𝑥𝜏1 , . . . , 𝑥𝜏𝑛

)
∈ 𝐶 (𝑥)𝑛×𝑛 with 𝜏𝑖 ∈ Z

such that𝑉 := 𝑇𝑊 is a local integral basis at infinity. (Theoretically,

we can also start with𝑊 being a local integral basis at𝐶 \{𝛼}∪{∞}
that is normal at 𝛼 .) Let 𝑒, 𝑎 ∈ 𝐶 [𝑥] and 𝑀, 𝐵 ∈ 𝐶 [𝑥]𝑛×𝑛 be such

that 𝑒𝑊 ′ = 𝑀𝑊 and 𝑎𝑉 ′ = 𝐵𝑉 . Since the derivative of 𝑉 is 𝑉 ′ =
(𝑇𝑊 )′ = (𝑇 ′ + 1

𝑒𝑇𝑀)𝑇−1𝑉 , we may assume that 𝑎 = 𝑥𝜆𝑒 for some

𝜆 ∈ N. For 𝜇, 𝛿 ∈ Z with 𝜇 ≤ 𝛿 , we define a subspace of Laurent

polynomials in 𝐶 [𝑥, 𝑥−1] as 𝐶 [𝑥]𝜇,𝛿 := {∑𝛿
𝑖=𝜇 𝑎𝑖𝑥

𝑖 | 𝑎𝑖 ∈ 𝐶}.

Theorem 12. Let𝑊,𝑉 ∈ 𝐴𝑛 be as described above. Then any
element 𝑓 ∈ 𝐴 can be decomposed into

𝑓 = 𝑔′ + 1

𝑑
𝑅𝑊 + 1

𝑥𝜆𝑒
𝑄𝑉 , (15)

where 𝑔 ∈ 𝐴, 𝑑 ∈ 𝐶 [𝑥] is squarefree and gcd(𝑑, 𝑒) = 1, 𝑅 ∈ 𝐶 [𝑥]𝑛 ,
𝑄 ∈ 𝐶 [𝑥]𝑛

𝜇,𝛿
with deg𝑥 (𝑅) < deg𝑥 (𝑑), 𝜇 = min{−𝜏1, . . . ,−𝜏𝑛, 0}

and 𝛿 = max{𝜆 + deg𝑥 (𝑒), deg𝑥 (𝐵)} − 1. Moreover, 𝑓 is integrable in
𝐴 if and only if 𝑅 = 0 and

1

𝑥𝜆𝑒
𝑄𝑉 ∈ 𝑈 ′ with 𝑈 =

{
1

𝑢
𝑐𝑉

���� 𝑐 ∈ 𝐶 [𝑥]𝑛𝜇′,𝛿′} ,
where 𝑢 = gcd(𝑒, 𝑒 ′), 𝜇 ′ = min{−𝜏1, . . . ,−𝜏𝑛, 𝜈0 (𝑢)} and

𝛿 ′ = max{deg𝑥 (𝑢), deg𝑥 (𝐵) − 𝜆 − deg𝑥 (𝑒) + deg𝑥 (𝑢)}.

Proof. Let ℎ ∈ 𝐴 be a Hermite remainder as in (14). By the

extended Euclidean algorithm, we compute 𝑟𝑖 , 𝑠𝑖 ∈ 𝐶 [𝑥] such that

ℎ𝑖 = 𝑟𝑖𝑒 + 𝑠𝑖𝑑 and deg𝑥 (𝑟𝑖 ) < deg𝑥 (𝑑). Then ℎ decomposes as

ℎ =

𝑛∑︁
𝑖=1

ℎ𝑖

𝑑𝑒
𝜔𝑖 =

𝑛∑︁
𝑖=1

𝑟𝑖

𝑑
𝜔𝑖 +

𝑛∑︁
𝑖=1

𝑠𝑖

𝑒
𝜔𝑖 .

Writing ℎ in vector form, by (14) we decompose 𝑓 ∈ 𝐴 as

𝑓 = 𝑔′ + 1

𝑑
𝑅𝑊 + 1

𝑒
𝑆𝑊 , (16)

where 𝑔 ∈ 𝐴, 𝑅 = (𝑟1, . . . , 𝑟𝑛) ∈ 𝐶 [𝑥]𝑛 , 𝑆 = (𝑠1, . . . , 𝑠𝑛) ∈ 𝐶 [𝑥]𝑛 . In
the next step, we shall reduce the degree of 𝑆 and confine 𝑆 to a

finite-dimensional vector space over𝐶 that is independent of 𝑓 . We

rewrite the last summand in (16) with respect to the basis 𝑉 :

1

𝑒
𝑆𝑊 =

1

𝑥𝜆𝑒
𝑆𝑉 ,

where 𝑆 = 𝑥𝜆𝑆𝑇−1 ∈ 𝑥𝜇𝐶 [𝑥]𝑛 with 𝜇 = min{−𝜏1, . . . ,−𝜏𝑛, 0}. Since
𝑉 is a local integral basis at infinity, using Hermite reduction at

infinity in Section 3.1, we obtain from (10) that

1

𝑒
𝑆𝑊 = (𝑆1𝑉 )′ +

1

𝑥𝜆𝑒
𝑆2𝑉 , (17)

where 𝑆1 ∈ 𝐶 [𝑥]𝑛 and 𝑆2 ∈ 𝑥𝜇𝐶 [𝑥]𝑛 satisfies

deg𝑥

(
𝑆2

𝑥𝜆𝑒

)
≤ max

{
0, deg𝑥

(
𝐵

𝑥𝜆𝑒

)}
− 1.



This implies that deg𝑥 (𝑆2) ≤ max{𝜆 + deg𝑥 (𝑒), deg𝑥 (𝐵)} − 1 = 𝛿 .

Thus 𝑆2 ∈ 𝐶 [𝑥]𝑛
𝜇,𝛿

and we finally obtain the decomposition (15) by

setting 𝑔 = 𝑔 + 𝑆1𝑉 and 𝑄 = 𝑆2.

For the last assertion, assume that 𝑓 is integrable (the other direc-

tion of the equivalence holds trivially). Then Lemma 11 implies that

𝑑 ∈ 𝐶 , and therefore 𝑅 must be zero because deg𝑥 (𝑅) < deg𝑥 (𝑑).
Hence the last summand in (15) and the left hand side of (17) are

also integrable. We want to find its integral by estimating the valu-

ation of this integral at all points in 𝐶 ∪ {∞}. Since𝑊 is a global

integral basis, using Lemma 11 again, we know

1

𝑒
𝑆𝑊 =

(
1

𝑢
𝑏𝑊

) ′
,

where 𝑏 ∈ 𝐶 [𝑥]𝑛 and 𝑢 = gcd(𝑒, 𝑒 ′). Then

1

𝑥𝜆𝑒
𝑄𝑉 =

1

𝑒
𝑆𝑊 − (𝑆1𝑉 )′ =

((
𝑏𝑇−1

𝑢
− 𝑆1

)
𝑉

) ′
=

(
1

𝑢
𝑐𝑉

) ′
,

where 𝑐 = 𝑏𝑇−1 −𝑢𝑆1 ∈ 𝐶 [𝑥, 𝑥−1]𝑛 . Now we only need to estimate

the valuation of 𝑐 at the remaining two points 0 and ∞. By the

expression of 𝑐 , we get

𝜈0 (𝑐) ≥ min{𝜈0 (𝑏𝑇−1), 𝜈0 (𝑢𝑆1)} ≥ min{−𝜏1, . . . ,−𝜏𝑛, 𝜈0 (𝑢)} = 𝜇 ′.
On the other hand, since 𝑉 is a local integral basis at infinity, it

follows from Lemma 10 that deg𝑥

(
𝑐
𝑢

)
≤ max

{
0, deg𝑥

(
𝐵

𝑥𝜆𝑒

)}
. Thus

deg𝑥 (𝑐) ≤ max{deg𝑥 (𝑢), deg𝑥 (𝐵) − 𝜆 − deg𝑥 (𝑒) + deg𝑥 (𝑢)} = 𝛿 ′.
Finally we have 𝑐 ∈ 𝐶 [𝑥]𝑛

𝜇′,𝛿′
.

The remaining step is to reduce all integrable D-finite functions

to zero. Note that in Theorem 12,𝑈 is a𝐶-vector space of dimension

𝑛(𝛿 ′ − 𝜇 ′ + 1) with a basis{
𝑥 𝑗𝑣𝑖

𝑢

���� 𝑖 = 1, . . . , 𝑛; 𝑗 = 𝜇 ′, . . . , 𝛿 ′
}
,

where 𝑉 = (𝑣1, . . . , 𝑣𝑛). Let 𝐾 =

{
1

𝑥𝜆𝑒
𝑏𝑉

��� 𝑏 ∈ 𝐶 [𝑥]𝑛
𝜇,𝛿

}
. Differenti-

ating all elements in the basis of𝑈 and using Gaussian elimination,

we can find a basis of 𝑈 ′
and decompose 𝐾 = (𝑈 ′ ∩ 𝐾) ⊕ 𝑁𝑉 as a

direct sum of two subspaces, where 𝑁𝑉 is a complement of 𝑈 ′ ∩ 𝐾
in 𝐾 . This means 𝑓 in (15) can be further decomposed as

𝑓 = 𝑔′ + 1

𝑑
𝑅𝑊 + 1

𝑥𝜆𝑒
𝑄2𝑉 , (18)

where 𝑔 = 𝑔 + 𝑔1 with 𝑔′
1
∈ 𝑈 ′ ∩𝐾 and 𝑄2 ∈ 𝐶 [𝑥]𝑛

𝜇,𝛿
such that 𝑓 is

integrable in 𝐴 if and only if 𝑅 = 𝑄2 = 0. This decomposition (18)

is called an additive decomposition of 𝑓 .

In practice, we may choose a fixed complement of 𝐾 ∩𝑈 ′
in 𝐾 .

To do this, we define a term over position order on the set{
𝑥 𝑗𝑣𝑖

�� 𝑖 = 1, . . . , 𝑛; 𝑗 ∈ Z
}

such that 𝑥 𝑗1𝑣𝑖1 > 𝑥 𝑗2𝑣𝑖2 if and only if 𝑗1 > 𝑗2 or 𝑗1 = 𝑗2 and 𝑖1 < 𝑖2.

For a nonzero element 𝑝 =
∑𝑛
𝑖=1

𝑝𝑖𝑣𝑖 ∈ 𝐴 with 𝑝𝑖 ∈ 𝐶 [𝑥, 𝑥−1],
let supp(𝑝) denote all terms appearing in 𝑝 and lt(𝑝) denote the
leading term of 𝑝 . For example, if 𝑝 = 3𝑥2 (𝑣1 + 𝑣2) + 10𝑥𝑣1 ∈ 𝐴,
then supp(𝑝) = {𝑥2𝑣1, 𝑥

2𝑣2, 𝑥𝑣1} and lt(𝑝) = 𝑥2𝑣1. Then a standard
complement of 𝐾 ∩𝑈 ′

in 𝐾 is a 𝐶-vector space defined by

{ℎ ∈ 𝐾 | lt(𝑥𝜆𝑒𝑔) ∉ supp(𝑥𝜆𝑒ℎ) for all 𝑔 ∈ 𝐾 ∩𝑈 ′}.

From now on, let 𝑁𝑉 denote the standard complement of 𝐾 ∩𝑈 ′

in 𝐾 . This definition of 𝑁𝑉 is essentially the same as in [11] under

the correspondence
1

𝑥𝜆𝑒
𝑏𝑉 ↦→ 𝑏.

Note that 𝑄2 belongs to a 𝐶-vector space 𝐶 [𝑥]𝑛
𝜇,𝛿

of dimension

𝑛(𝛿 − 𝜇 + 1) = max{𝜆 + deg𝑥 (𝑒), deg𝑥 (𝐵)} + max{𝜏, 0}, (19)

where 𝜏 = max{𝜏1, . . . , 𝜏𝑛}. If 𝐿 is Fuchsian, by [11, Lemma 4], we

know deg𝑥 (𝐵) < 𝜆 + deg𝑥 (𝑒). So𝑄2 belongs to a𝐶-vector space of

dimension at most 𝑛(max{𝜏, 0} + 𝜆 + deg𝑥 (𝑒)). This is a refinement

of [11, Proposition 22].

A pseudo code of the algorithm described in this section is given

in the appendix.

Example 13. Let 𝐿 = 𝑥𝐷2 − (3𝑥3 + 2)𝐷 ∈ C(𝑥) [𝐷] be the same
operator as in Example 4. Then𝑊 = (𝜔1, 𝜔2) = (1, 𝑥−2𝐷) = 𝑉 .
So 𝑒 = 1, 𝜆 = 0 and 𝑀 = 𝐵 =

(
0 𝑥2

0 3𝑥2

)
. After performing Hermite

reduction at infinity in Example 9, we get

𝑓 =

(
𝑥4𝜔1 +

(
4

9
𝑥 − 1

3
𝑥4

)
𝜔2

) ′
+

(
𝑥 − 4

9

)
𝜔2 . (20)

Then 𝜇 = 0, 𝛿 = 1, 𝑢 = 1, 𝜇 ′ = 0, 𝛿 ′ = 2. A basis of𝑈 is

{𝜔1, 𝜔2, 𝑥𝜔1, 𝑥𝜔2, 𝑥
2𝜔1, 𝑥

2𝜔2},
and hence𝑈 ′ is generated by

{𝑥2𝜔2, 3𝑥2𝜔2, 𝜔1+𝑥3𝜔2, (1+3𝑥3)𝜔2, 2𝑥𝜔1+𝑥4𝜔2, (2𝑥 +3𝑥4)𝜔2}.
So a basis of 𝐾 ∩𝑈 ′ is {3𝜔1 − 𝜔2, 6𝑥𝜔1 − 2𝑥𝜔2} . The leading terms
of all elements in 𝐾 ∩𝑈 ′ are 𝜔1 or 𝑥𝜔1. Since lt((𝑥 − 4

9
)𝜔2) = 𝑥𝜔2

is different from all these terms, by Theorem 12 we know 𝑓 is not
integrable in𝐴 = C(𝑥) [𝐷]/⟨𝐿⟩ and (20) is an additive decomposition
of 𝑓 with respect to 𝑥 .

Example 14. Let 𝐿 = 𝑥3𝐷2 + (3𝑥2 + 2)𝐷 ∈ C(𝑥) [𝐷] be as in
Example 3. Then𝑊 = (𝜔1, 𝜔2) = (1, 𝑥3𝐷) = 𝑉 . So 𝑒 = 𝑥3, 𝜆 = 0 and
𝑀 = 𝐵 =

(
0 1

0−2

)
. Combining Hermite reduction at all finite places in

Example 8 and Hermite reduction at infinity, we get

𝑓 =

((
2

3𝑥 − 𝑥
)
𝜔1 +

(
4

3𝑥 − 3𝑥

)
𝜔2

) ′
− 4

3𝑥2
𝜔1 − 2

3𝑥2
𝜔2 .

Then 𝜇 = 0, 𝛿 = 2, 𝑢 = 𝑥2, 𝜇 ′ = 0, 𝛿 ′ = 2. A basis of𝑈 is{
𝜔1

𝑥2
,
𝜔2

𝑥2
,
𝜔1

𝑥 ,
𝜔2

𝑥 , 𝜔1, 𝜔2

}
.

A basis of 𝐾 ∩𝑈 ′ is {− 2

𝑥2
𝜔1 − 1

𝑥2
𝜔2,

1

𝑥3
𝜔2, − 2

𝑥3
𝜔2}. Therefore 𝑓 is

integrable: 𝑓 =

((
2

3𝑥 − 𝑥 + 4

3𝑥

)
𝜔1 +

(
4

3𝑥 − 3𝑥 + 2

3𝑥

)
𝜔2

) ′
.

5 APPLICATIONS
Let 𝐾 (𝑥) [𝜕𝑡 , 𝐷𝑥 ] with 𝐾 = 𝐶 (𝑡) be an Ore algebra in which 𝐷𝑥 is

the differentiation with respect to 𝑥 and 𝜕𝑡 is either the differentia-

tion with respect to 𝑡 or the shift 𝑡 ↦→ 𝑡 + 1. Let 𝐼 be a left ideal of

𝐾 (𝑥) [𝜕𝑡 , 𝐷𝑥 ] such that 𝐴 = 𝐾 (𝑥) [𝜕𝑡 , 𝐷𝑥 ]/𝐼 is a 𝐾 (𝑥)-vector space
of dimension 𝑛. Let 𝛾 ∈ 𝐴 be a cyclic vector with respect to 𝐷𝑥 .

This means that {𝛾, 𝐷𝑥𝛾, . . . , 𝐷
𝑛−1

𝑥 𝛾} is a basis of𝐴 over𝐾 (𝑥). Then
𝛾 is annihilated by 𝐿 and 𝜕𝑡 − 𝑢𝑡 for some 𝐿,𝑢𝑡 ∈ 𝐾 (𝑥) [𝐷𝑥 ]. Ev-
ery element 𝑓 in 𝐴 can be uniquely written as 𝑃𝑓 𝛾 + 𝐼 for some

𝑃𝑓 ∈ 𝐾 (𝑥) [𝐷𝑥 ]. The map sending 𝑓 to 𝑃𝑓 + ⟨𝐿⟩ gives an isomor-

phism from 𝐴 to 𝐾 (𝑥) [𝐷𝑥 ]/⟨𝐿⟩ as 𝐾 (𝑥) [𝐷𝑥 ]-modules. Using this

isomorphism, for any 𝑓 ∈ 𝐴, we can apply our additive decomposi-

tion to test whether 𝑓 is integrable (in 𝑥 ). If 𝑓 ∈ 𝐴 is not integrable,



one can ask to find a nonzero operator 𝑇 ∈ 𝐶 (𝑡) [𝜕𝑡 ] (free of 𝑥)

such that 𝑇 𝑓 is integrable. Such an operator 𝑇 , if it exists, is called

a telescoper for 𝑓 . Applying the additive decomposition with re-

spect to 𝑥 in Section 4 to 𝜕𝑖𝑡 𝑓 ∈ 𝐴 yields that 𝜕𝑖𝑡 𝑓 = 𝑔′
𝑖
+ ℎ𝑖 , where

𝑔𝑖 , ℎ𝑖 ∈ 𝐴, and 𝜕𝑖𝑡 𝑓 is integrable in 𝐴 if and only if ℎ𝑖 = 0. If there

exist 𝑐0, 𝑐1, . . . , 𝑐𝑟 ∈ 𝐾 such that

∑𝑟
𝑖=0

𝑐𝑖ℎ𝑖 = 0, then𝑇 =
∑𝑟
𝑖=0

𝑐𝑖 𝜕
𝑖
𝑡 is

a telescoper for 𝑓 . This approach is the method of reduction-based

telescoping and was developed for various classes of functions [5–

7, 9–11, 21]. Similar to the Fuchsian case [11, Lemma 24], for any

𝑖 ∈ N, the derivative 𝐷𝑖
𝑡 𝑓 has an additive decomposition (18) of the

form

𝐷𝑖
𝑡 𝑓 = 𝑔′𝑖 + ℎ𝑖 with ℎ𝑖 =

1

𝑑
𝑅𝑖𝑊 + 1

𝑥𝜆𝑒
𝑄𝑖𝑉 (21)

where 𝑔𝑖 ∈ 𝐴, 𝑑 ∈ 𝐾 [𝑥], 𝑅𝑖 ∈ 𝐾 [𝑥]𝑛 , 𝑄𝑖 ∈ 𝐾 [𝑥, 𝑥−1]𝑛 , with
deg𝑥 (𝑅𝑖 ) < deg𝑥 (𝑑) and 𝑄𝑖 ∈ 𝑁𝑉 . Then by (19) we obtain an

upper bound for the order of telescopers, which is a generalization

of [11, Corollary 25].

Corollary 15. Every 𝑓 ∈ 𝐴 has a telescoper of order at most
𝑛 deg𝑥 (𝑑) + dim𝑥 (𝑁𝑉 ), which is bounded by

𝑛(deg𝑥 (𝑑) + max{𝜏, 0} + max{𝜆 + deg𝑥 (𝑒), deg𝑥 (𝐵)}).

Example 16. Let 𝐻 =
√
𝑡 − 2𝑥 exp(𝑡2𝑥), which is annihilated by

𝐿 = 𝐷𝑥 − 2𝑡2𝑥 − 𝑡3 + 1

2𝑥 − 𝑡 and 𝐷𝑡 −
8𝑡𝑥2 − 4𝑡2𝑥 − 1

2(2𝑥 − 𝑡) .

An integral basis of 𝐴 = 𝐾 (𝑥) [𝐷𝑥 ]/⟨𝐿⟩ with 𝐾 = C(𝑡) is 𝜔 = 1 and
a local integral basis at infinity is 𝑣 = 𝑥−1𝜔 . As the integrand 𝐻
corresponds to 1 ∈ 𝐴, its representation in the bases is 𝑓 = 𝜔 = 𝑥𝑣 .
The additive decomposition of 𝑓 is

𝑓 =

((
𝑥

𝑡2
− 1

2𝑡2

)
𝑣

) ′
− (𝑡3 + 1)𝑥 − 𝑡

2𝑡4𝑥 (2𝑥 − 𝑡)
𝑣 .

Next we consider the derivative 𝐷𝑡 𝑓 which has an additive decompo-
sition

𝐷𝑡 𝑓 =

((
2𝑥2

𝑡
− 3𝑥

𝑡3
− 3𝑡3 − 6

4𝑡5

)
𝑣

) ′
− 3(𝑡3 − 2) ((𝑡3 + 1)𝑥 − 𝑡)

4𝑡5𝑥 (2𝑥 − 𝑡)
𝑣 .

Now we see the reminders of 𝑓 and 𝐷𝑡 𝑓 are linearly dependent over
C(𝑡), which gives rise to a telescoper 2𝑡𝐷𝑡 − 3(𝑡3 − 2). This telescoper
was obtained in [6, Example 21] with a different reduction approach.

Example 17. Let 𝐹𝑛 (𝑥) = 𝑥𝑛 𝐽𝑛 (𝑥) where 𝐽𝑛 denotes the Bessel
function of the first kind. Then 𝐹𝑛 (𝑥) is annihilated by

𝐿 = 𝐷2

𝑥 + (1 − 2𝑛)𝐷𝑥 + 𝑥 and 𝑃 = 𝑆𝑛 + 𝑥𝐷𝑥 − 2𝑛,

where 𝑆𝑛 is the shift operator with respect to 𝑛. An integral basis of
𝐴 = 𝐾 (𝑥) [𝐷𝑥 ]/⟨𝐿⟩ with 𝐾 = C(𝑛) is𝑊 = (𝜔1, 𝜔2) = (1, 𝐷𝑥 ) and a
local integral basis at infinity is𝑉 = (𝑣1, 𝑣2) = (𝜔1, 𝑥

−1𝜔2). As before,
𝐹𝑛 (𝑥) is represented by 𝑓 = 1 ∈ 𝐴. The additive decompositions of 𝑓
and 𝑆𝑛 𝑓 = −𝑥𝐷𝑥 + 2𝑛 ∈ 𝐴 are as follows:

𝑓 = (𝑣2)′ +
(2𝑛 − 1)𝑥 − 1

𝑥
𝑣2,

𝑆𝑛 𝑓 = (−𝑥𝑣1 − (2𝑛 + 1)𝑣2)′ +
(2𝑛 + 1) ((2𝑛 − 1)𝑥 − 1)

𝑥
𝑣2 .

Now we can find a telescoper 𝑆𝑛 − 2𝑛 − 1. This was obtained by the
algorithm in [7].

6 CONCLUSION
In this paper, we present a reduction-based telescoping algorithm

for D-finite functions via integral bases. Now we compare our

algorithm with van der Hoeven’s algorithm [21] and Bostan et al.’s

algorithm [7]. A feature of the three methods is constructing local

reduction procedures that increase the valuation at various places.

Bostan et. al use the Lagrange identity and develop generalized

Hermite reduction. The adjoint of 𝐿 =
∑𝑛−1

𝑖=0
ℓ𝑖𝐷

𝑖
with ℓ𝑖 ∈ 𝐶 (𝑥)

is defined as 𝐿∗ =
∑𝑛−1

𝑖=0
(−𝐷)𝑖 ℓ𝑖 . Using the Lagrange identity,

the algorithm [7] reduces the integrability problem for 𝑓 ∈ 𝐴 =

𝐶 (𝑥) [𝐷]/⟨𝐿⟩ to that problem for another element with a rational

representative
˜𝑓 :

𝑓 = 𝑓0 + 𝑓1𝐷 + · · · + 𝑓𝑛−1𝐷
𝑛−1 + ⟨𝐿⟩

≡ 𝑓0 − 𝑓 ′1 + · · · + (−1)𝑛−1 𝑓
(𝑛−1)
𝑛−1

+ ⟨𝐿⟩ =:
˜𝑓 + ⟨𝐿⟩ mod 𝐷 (𝐴).

Then 𝑓 is integrable in 𝐴 if and only if
˜𝑓 ∈ 𝐿∗ (𝐶 (𝑥)). For 𝛼 ∈ 𝐶 ,

let
˜𝑓 = 𝑎

(𝑥−𝛼)𝑘 with 𝑎 ∈ 𝐶 (𝑥)𝛼 and 𝑘 > 1. The generalized Her-

mite reduction chooses 𝑔, as in the following table, to reduce the

multiplicity 𝑘 , where 𝜎𝛼 is an integer depending on 𝐿 and 𝛼 .

Van der Hoeven’s method performs a reduction by finding a

“good” basis (not an integral basis) at 𝛼 ∈ 𝐶 ∪ {∞}, which is a so-

called tail reduction (or a head reduction if at infinity). This method

is a matrix version of Hermite reduction. Let𝑊 be a 𝐶 (𝑥)-vector
space basis of 𝐴. Let ℎ = 𝑊

(𝑥−𝛼)𝑘 with 𝑘 being a parameter. Then

for every 𝑏 ∈ 𝐶𝑛 , (𝑏ℎ)′ = 𝑏ℎ′. Let 𝐻 ∈ 𝐶 (𝑥)𝑛×𝑛 be the coefficient

of ℎ′ with respect to𝑊 . We can view 𝐻 as a Laurent polynomial in

𝑥 with coefficients in 𝐶 (𝑘)𝑛×𝑛 . In this sense, a “good” basis𝑊 at 𝛼

means that the leading coefficient of 𝐻 is an invertible matrix over

𝐶 (𝑘). To reduce the multiplicity 𝑘 in 𝑓 = 𝑎𝑊
(𝑥−𝛼)𝑘 with 𝑎 ∈ 𝐶 (𝑥)𝑛𝛼 ,

the possible choice of 𝑔 with 𝜏𝛼 ∈ Z is given in the following table.

Method Tool Certificate

Bostan

et al.’s

Lagrange identity,

generalized H.R.

𝑔 = 𝐿∗
(

𝑏
(𝑥−𝛼)𝑘−𝜎𝛼

)
, 𝑏 ∈ 𝐶 (𝑥)𝛼

van der

Hoeven’s

“good” bases𝑊 ,

tail reduction

𝑔 = 𝑏𝑊
(𝑥−𝛼)𝑘−𝜏𝛼 , 𝑏 ∈ 𝐶𝑛

this

paper

integral bases𝑊 ,

Hermite reduction
𝑔 =

(∑𝑘−2

𝑖=0
𝑏𝑖 (𝑥−𝛼)𝑖 )𝑊

(𝑥−𝛼)𝑘−1
, 𝑏𝑖 ∈ 𝐶𝑛

The black circles in the following figure represent possible terms

𝑐𝑖𝑊

(𝑥−𝛼)𝑖 appearing in a reminder after local reductions, where𝑊

is a basis using in the reduction (take𝑊 = 1 if there is no basis).

For the other two methods, local reductions may fail at finitely

many𝑘 . In our local case, we can reduce the multiplicity𝑘 whenever

𝑘 > 1. In our global case, 𝑒 may introduce denominators. When

𝑘 > max{1, 𝜈𝛼 (𝑒)}, the corresponding 𝑔 is given in the above table.

An interesting observation is that using integral bases, possible

terms in a reminder may be more compact.

other methods

our method

𝑖1 2 3
. . . 𝜆

𝑖1 2 3
. . . . . . . . . 𝑚
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APPENDIX
The algorithm of Section 4 can be summarized as follows.

Algorithm. Input: 𝐿 ∈ 𝐶 (𝑥) [𝐷] and 𝑓 ∈ 𝐴 = 𝐶 (𝑥) [𝐷]/⟨𝐿⟩;
Output: a certificate 𝑔 ∈ 𝐴 and a reminder 𝑟 ∈ 𝐴 such that 𝑓 = 𝑔′ + 𝑟
is an additive decomposition in (18).
1 apply the algorithms in [3] to compute an integral basis𝑊 of𝐴 that

is normal at infinity and a local integral basis at infinity 𝑉 = 𝑇𝑊

with 𝑇 = diag(𝑥𝜏1 , . . . , 𝑥𝜏𝑛 ) and 𝜏𝑖 ∈ Z.
2 compute 𝑒 ∈ 𝐶 [𝑥], 𝜆 ∈ Z and𝑀, 𝐵 ∈ 𝐶 [𝑥]𝑛×𝑛 such that

𝑒𝑊 ′ = 𝑀𝑊 and 𝑥𝜆𝑒𝑉 ′ = 𝐵𝑉 .

3 apply Hermite reduction in Section 3.2 to decompose 𝑓 in the
form (14) and write 𝑓 as in (16): 𝑓 = 𝑔′ + 1

𝑑
𝑅𝑊 + 1

𝑒 𝑆𝑊 .

4 rewrite 1

𝑒 𝑆𝑊 = 1

𝑥𝜆𝑒
𝑆𝑉 ,

5 apply Hermite reduction at infinity in Section 3.1 to reduce the
degree of 𝑆 and obtain (17): 1

𝑒 𝑆𝑊 = (𝑆1𝑉 )′ + 1

𝑥𝜆𝑒
𝑆2𝑉 .

6 use Gaussian elimination to decompose 1

𝑥𝜆𝑒
𝑆2𝑉 = 𝑔′

1
+ 1

𝑥𝜆𝑒
𝑄2𝑉 ,

where 𝑔1 ∈ 𝐴 and 1

𝑥𝜆𝑒
𝑄2𝑉 ∈ 𝑁𝑉 .

7 return (𝑔 + 𝑆1𝑉 + 𝑔1,
1

𝑑
𝑅𝑊 + 1

𝑥𝜆𝑒
𝑄2𝑉 ).

An implementation of this algorithm in Maple and additional

examples are available in [1].
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