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Abstract

Trager’s Hermite reduction solves the integration problem for algebraic

functions via integral bases. A generalization of this algorithm to D-finite

functions has so far been limited to the Fuchsian case. In the present

paper, we remove this restriction and propose a reduction algorithm based

on integral bases that is applicable to arbitrary D-finite functions.

1 Introduction

Let R be a certain class of functions in one variable x with the derivation Dx.
For example, R can be the field of rational functions or algebraic funtions. In
the context of symbolic integration, the integrability problem consists in deciding
whether a given element f ∈ R is of the form f = Dx(g) for some g ∈ R. If such
a g exists, we say that f is integrable in R. A relaxed form of the integrability
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problem is the decomposition problem, which consists in constructing for a given
f ∈ R elements g, r ∈ R such that f = Dx(g) + r and r is minimal in a certain
sense. Ideally the “certain sense” should be such that r = 0 whenever f is
integrable. If f ∈ R depends on a second variable t, one can also consider the
creative telescoping problem: given an element f ∈ R, the task is to construct
c0, . . . , cr ∈ R, not all zero, such that ci is free of x for all i ∈ {0, . . . , r} and

crD
r
t (f) + · · ·+ c0f = Dx(g) for some g ∈ R.

The operator L = crD
r
t + · · ·+ c0, if it exists, is called a telescoper for f , and g

is called a certificate for L.
Zeilberger first showed the existence of telescopers for D-finite functions [22].

Almkvist and Zeilberger [4] solved the integrability problem and the creative
telscoping problem for hyperexponential functions. Using the adjoint Ore al-
gebra, Abramov and van Hoeij [2] solved the integrability problem for D-finite
functions. Chyzak [12] extended the method of creative telescoping from hyper-
exponential functions to general D-finite functions. During the past ten years,
a reduction-based telescoping approach has become popular, which can find a
telescoper without computing the corresponding certificate. This improves the
efficiency of telescoping algorithms because certificates tend to have much larger
size than telescopers and sometimes are not needed. This approach was first
formulated for rational funtions [5] and then extended to hyperexponential func-
tions [6], algebraic functions [10], Fuchsian D-finite functions [11], and D-finite
functions [21, 7]. The reduction-based telescoping algorithms for algebraic func-
tions and for Fuchsian D-finite functions employ the notion of integral bases,
while the known reduction-based telescoping algorithms applicable to arbitrary
D-finite functions work differently.

The notion of integrality proposed by Kauers and Koutschan [17] for Fuch-
sian D-finite functions has recently been generalized by Aldossari [3] to arbitrary
D-finite functions, so that the question arises whether there is also a reduction-
based telescoping algorithm for arbitrary D-finite functions based on integral
bases. The purpose of the present paper is to answer this question affirmatively.
This paper is based on the results of Chapter 6 of the second author’s Ph.D.
thesis [13].

First we recall integral bases for D-finite functions [17, 3] in Section 2. Then
we extend Hermite reduction for the Fuchsian case to the non-Fuchsian case in
Section 3, which reduces the pole orders of D-finite functions at finite places.
Instead of using polynomial reduction [6, 10, 11, 8] to reduce the pole order at
infinity, we present a Hermite reduction at infinity. Combining Hermite reduc-
tion at finite places and at infinity, we are able to determine the integrability of
D-finite functions in Section 4 and present a reduction-based telescoping algo-
rithm for D-finite functions in Section 5.
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2 Integral Bases

Below we recall the value functions and integral bases for arbitrary linear differ-
ential operators [17, 14, 15, 3]. Let C be a field of characteristic zero and C̄ be
the algebraic closure of C. Let C(x)[D] be an Ore algebra, where D is the differ-
entiation with respect to x and satisfies the commutation rule Dx = xD+1. For
an operator L = ℓ0 + ℓ1D+ · · ·+ ℓnD

n ∈ C(x)[D] with ℓn 6= 0, we consider the
left C(x)[D]-module A = C(x)[D]/〈L〉, where 〈L〉 = C(x)[D]L. The elements
of A are called D-finite functions. When there is no ambiguity, an equivalence
class P + 〈L〉 in A is also denoted by P . Every element of A can be uniquely
represented by P = b0 + b1D + · · ·+ bn−1D

n−1 with bi ∈ C(x).
For each α ∈ C̄, an operator L of order n admits n linearly independent

solutions of the form

(x− α)µ exp(p((x − α)−1/s)))b((x − α)1/s, log(x − α)) (1)

for some s ∈ N, µ ∈ C̄, p ∈ C̄[x] and b ∈ C̄[[x]][y]. Such objects are called
generalized series solutions at α, see [16, 18]. For α = ∞, the operator L admits
n linearly independent solutions of the form

x−µ exp(p(x1/s))b(x−1/s, log(x−1)) (2)

for some s ∈ N, µ ∈ C̄, p ∈ C̄[x] and b ∈ C̄[[x]][y]. For each α ∈ C̄ ∪
{∞}, let Solα(L) be the set of all finite C̄-linear combination of generalized
series solutions of L at α. Then Solα(L) is a C̄-vector space of dimension n.
Throughout the paper, we assume that for each α ∈ C̄ ∪ {∞}, all series of
Solα(L) have p ∈ C[x], µ ∈ C and b ∈ C[[x]][y] (this can always be achieved by
a suitable choice of C). If all series of Solα(L) have p = 0 and s = 1, then L is
called Fuchsian at α. The operator L is simply called Fuchsian if it is Fuchsian
at all α ∈ C̄ ∪ {∞}. In this case, the elements of A are called Fuchsian D-finite
functions.

For simplicity, we assume throughout that C is a subfield of C. Given two
complex numbers a, b ∈ C, we say a ≥ b if and only if Re(a) ≥ Re(b). For
each α ∈ C̄ ∪ {∞}, let z = x − α (or z = 1

x if α = ∞). The valuation να(t)

of a term t := zr exp(p(z−1/s)) log(z)ℓ is the real part of the local exponent r.
The valuation να(f) of a nonzero generalized series f at α is the minimum of
the valuations of all the terms appearing in f (with nonzero coefficients). The
valuation of 0 is defined as ∞. A generalized series f at α is called integral if
να(f) ≥ 0. A non-integral series f is said to have a pole at the reference point
and its pole order at α is defined as −να(f). Note that in this terminology, it
may happen that να(f

′) < να(f)− 1. For example, f = exp(x−2) is integral at
0, while the valuation of f ′ = −2x−3 exp(x−2) at 0 is −3, not −1. The valuation
of a series only depends on its local exponent and not on its exponential part.
This valuation is the same as in [3, Definition 5.4].

For each α ∈ C̄ ∪ {∞}, an operator P = b0 + b1D + · · · + bn−1D
n−1 in

A = C(x)[D]/〈L〉 acts on a generalized series f ∈ Solα(L) via

P · f = b0f + b1f
′ + · · ·+ bn−1f

(n−1),
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where ′ is the derivation with respect to x. Let f1, . . . , fn be a basis of Solα(L)
as in the form of (1) (or (2) if α = ∞). The value function valα : A→ R∪ {∞}
is defined as

valα(P ) :=
n

min
i=1

να(P · fi). (3)

Then valα(P ) is the minimum valuation of all series P · f at α, where f runs
through all series solutions in Solα(L). So this definition of value functions is
independent of the choice of the basis of Solα(L). An element P ∈ A is called
(locally) integral at α ∈ C̄ ∪ {∞} if valα(P ) ≥ 0. If P is not locally integral
at α, then P is said to have a pole at α and its pole order at α is defined as
− valα(P ). An element P ∈ A is called (globally) integral if valα(P ) ≥ 0 for all
α ∈ C̄, i.e., P is locally integral at all finite places. When L is Fuchsian, this
notion of integrality falls back to the Fuchsian case discussed in [11, 17].

The set of all globally integral elements f ∈ A = C(x)[D]/〈L〉 forms a C[x]-
module. A basis of this module is called a (global) integral basis forA. Such bases
exist and the algorithm for computing integral bases in the Fuchsian case [17]
applies to the setting of the non-Fuchsian case literally. More properties can be
found in [3].

For a fixed α ∈ C̄, the valuation να of a nonzero rational function f ∈ C(x)
is an integer m ∈ Z such that f = (x − α)mp/q with p, q ∈ C[x], gcd(p, q) = 1
and (x−α) ∤ pq. By convention, set να(0) = ∞. The valuation ν∞ of a rational
function f = p/q ∈ C(x) is degx(q) − degx(p). For each α ∈ C̄ ∪ {∞}, the
valuation να of a rational function is the same as the valuation of its Laurent
series expansion at α. The set C(x)α = {f ∈ C(x) | να(f) ≥ 0} forms a subring
of C(x). The set of all elements f ∈ A that are locally integral at some fixed
α ∈ C̄ ∪ {∞} forms a C(x)α-module. A basis of this module is called a local
integral basis at α of A. Such a basis can also be computed [17, 3].

An integral basis {ω1, . . . , ωn} is always a C(x)-vector space basis of A. A
key feature of integral bases is that they make poles explicit. Writing an element
f ∈ A as a combination f =

∑n
i=1 fiωi for some fi ∈ C(x), we have that f has a

pole at α ∈ C̄ if and only if at least one of the fi has a pole there. Furthermore,
⌊valα(f)⌋ is a lower bound for the valuations of all the fi’s at α.

Lemma 1. Let {ω1, . . . , ωn} be a local integral basis of A at some fixed α ∈
C̄ ∪ {∞}. Let f ∈ A and f1, . . . , fn ∈ C(x) be such that f =

∑n
i=1 fiωi. Then

1. f is integral at α if and only if for each i ∈ {1, . . . , n}, fiωi is integral at
α.

2. ⌊valα(f)⌋ = minni=1 να(fi).

Proof. (1): The direction “⇐” is obvious. To show “⇒”, suppose that f is
integral at α. Then there exist f̃1, . . . , f̃n ∈ C(x)α such that f =

∑n
i=1 f̃iωi.

Thus
∑n

i=1(f̃i − fi)ωi = 0, and then f̃i = fi for all i, because {ω1, . . . , ωn} is a
C(x)-vector space of A. As elements of C(x)α, the fi’s are integral at α. Hence
the fiωi’s are integral at α.
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(2): Let τ := minni=1 να(fi). We have to show that τ is an integer such that

τ ≤ valα(f) < τ + 1.

Let z ∈ C̄(x) with να(z) = 1. Since z−τfiωi is integral at α, we have z−τf
is integral at α. Thus valα(z

−τf) = valα(f) − τ ≥ 0, which implies τ ≤
valα(f). On the other hand, suppose valα(f) ≥ τ +1. Then z−(τ+1)f is integral
at α. However, z−(τ+1)f does not belong to the C(x)α-module generated by
{ω1, . . . , ωn} because there is i ∈ {1, . . . , n} such that τ = να(fi) and then
z−(τ+1)fi /∈ C(x)α. This contradicts the fact that {ω1, . . . , ωn} is a local integral
basis at α.

Let W = (ω1, . . . , ωn) be a vector space basis of A over C(x). For f ∈ A,
denote its derivativeD ·f by f ′. Let e ∈ C[x] be andM = (mi,j)

n
i,j=1 ∈ C[x]n×n

be such that eW ′ = MW and gcd(e,m1,1,m1,2, . . . ,mn,n) = 1. If W is an
integral basis and L is Fuchsian at all finite places, then e must be squarefree,
see [11, Lemma 3]. If W is a local integral basis at infinity and L is Fuchsian
at infinity, then degx(mi,j) < degx(e) for all i, j, see [11, Lemma 4]. However,
these two facts are no longer true in the non-Fuchsian case, as the following
examples show:

Example 2. The operator L = x3D2 + (3x2 + 2)D ∈ C(x)[D] has only one
singular point 0 in C, which is an irregular singular point. Infinity is a regular
singular point. So L is Fuchsian at all points in C ∪ {∞} except 0 and this
implies that L is a non-Fuchsian operator. At the point 0, there are two linearly
independent solutions y1(x) = 1 and y2(x) = exp(x−2) in Sol0(L). An integral
basis for A = C(x)[D]/〈L〉 is given by ω1 = 1 and ω2 = x3D, which is also a
local integral basis at infinity. Then

(

ω′

1

ω′

2

)

=
1

e

(

0 1
0 −2

)(

ω1

ω2

)

with e = x3. In this example, e is not squarefree.

Example 3. Let L = xD2 − (3x3 + 2)D ∈ C(x)[D]. Infinity is an irregular
singular point. So L is not Fuchsian at infinity. There are two linearly inde-
pendent solutions y1(x) = 1 and y2(x) = exp(x3) in Sol∞(L). A local integral
basis at infinity of A = C(x)[D]/〈L〉 is given by ω1 = 1 and ω2 = x−2D. Then

(

ω′

1

ω′

2

)

=

(

0 x2

0 3x2

)(

ω1

ω2

)

.

In this example, e = 1 and the condition degx(mi,j) < degx(e) fails.

A C(x)-vector space basis {ω1, . . . , ωn} of A = C(x)[D]/〈L〉 is called normal
at α ∈ C̄ ∪ {∞} if there exist r1, . . . , rn ∈ C(x) such that {r1ω1, . . . , rnωn} is
a local integral basis at α. Given an integral basis and a local integral basis at
infinity, Trager [20] presented an algorithm for computing an integral basis that
is normal at infinity in the algebraic function field. The same procedure also
applies in the present situation, see [3, Algorithm 5.20].
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3 Hermite Reduction

Hermite reduction, first introduced by Ostrogradsky in 1845 [19], is a classi-
cal symbolic integration technique that reduces rational functions to integrands
with only simple poles. Hermite reduction was extended by Trager [20] from
the field of rational functions to that of algebraic functions via integral bases.
Trager’s Hermite reduction solved the integration problem for algebraic func-
tions. This work was extended to the case of Fuchsian D-finite functions [11].
We shall further extend Hermite reduction to general D-finite functions, includ-
ing the non-Fuchsian case. To reduce the pole order at infinity, we develop a
Hermite reduction at infinity for D-finite functions, which plays the same role as
polynomial reduction [6, 10, 11, 8]. In this section, Hermite reduction at finite
places and at infinity are formulated in the same framework. More precisely,
we shall use a local integral basis at α ∈ C̄ ∪ {∞} to reduce the pole orders of
D-finite functions at α.

For convenience, we introduce some notations for the valuations of a matrix
with rational coefficients. For each α ∈ C̄ ∪ {∞}, the valuation of a matrix
T ∈ C(x)n×n at α, denoted by να(T ), is defined as the minimal valuation
at α of all entries in this matrix. The degree of T ∈ C(x)n×n, denoted by
degx(T ), is defined as −ν∞(T ). In particular, the degree of a rational function
f = p/q ∈ C(x) is degx(p)− degx(q).

3.1 The Local Case

Let L ∈ C(x)[D] be of order n and let A = C(x)[D]/〈L〉. For an arbitrary but
fixed point α ∈ C̄ ∪ {∞}, let W = (ω1, . . . , ωn) be a local integral basis at α
of A and then there exists a matrix T ∈ C(x)n×n such that W ′ = TW . We
write z = x−α (or z = 1

x if α = ∞). Let λ = −να(T ) be the pole order of T at
α. Then λ ∈ Z and there exists a matrix M = (mi,j)

n
i,j=1 ∈ C̄(x)n×n

α such that

W ′ =
1

zλ
MW and να(M) = 0,

where M = zλT . Let f = 1
zd

∑n
i=1 aiωi ∈ A with d > 1 (or d ≥ 0 if α = ∞)

and a1, . . . , an ∈ C̄(x)α. In order to reduce the pole order d of f at α, we seek
b1, . . . , bn, c1, . . . , cn ∈ C̄(x)α such that

1

zd

n
∑

i=1

aiωi =

(

1

zd+µ

n
∑

i=1

biωi

)

′

+
1

zd−1

n
∑

i=1

ciωi, (4)

where µ ∈ Z is an integer such that να(z
′) = να(z) + µ. In this setting, µ = −1

if α ∈ C̄ (because (x − α)′ = 1); µ = 1 if α = ∞ (because ( 1x)
′ = − 1

x2 ). Also
z′ = −µzµ+1.
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After differentiating both sides of (4) and multiplying by zd, we get

n
∑

i=1

aiωi =

n
∑

i=1

(

b′i
zµ
ωi + biz

d
( ωi

zd+µ

)

′

+ cizωi

)

(5)

=

n
∑

i=1





b′i
zµ
ωi +

bi
zλ+µ

n
∑

j=1

mi,jωj + µ(d+ µ)biωi + cizωi



 , (6)

where µ(d + µ) = zd(z−(d+µ))′. Note that bi is integral at α. Then b′iz
−µ ∈

zC̄(x)α because να(b
′

iz
−µ) ≥ 1. For example, if α ∈ C̄, then (1 + (x − α) +

· · · )′(x− α) = (x − α) + · · · ; if α = ∞, then (1 + 1
x + · · · )′x = − 1

x + · · · . So if
−(λ+ µ) > 0, i.e., λ < −µ, then Equation (6) can be reduced modulo z:

n
∑

i=1

aiωi ≡
n
∑

i=1

µ(d+ µ)biωi mod z. (7)

It follows that bi ≡ µ(d + µ)−1ai mod z is the unique solution of (7) in
C̄(x)α/〈z〉. If λ ≥ −µ, then multiplying (5) by zλ+µ and reducing this equation
modulo zλ+µ+1 yields

n
∑

i=1

zλ+µaiωi ≡
n
∑

i=1

biz
d+λ+µ

( ωi

zd+µ

)

′

mod zλ+µ+1. (8)

Let ψi := zd+λ+µ
(

ωi

zd+µ

)

′

for i = 1, . . . , n. To perform Hermite reduction, we

have to show that (8) always has a solution (b1, . . . , bn) in
(

C̄(x)α/〈zλ+µ+1〉
)n

.
In the Fuchsian case, Chen et al. [11] proved that λ = 1. When α ∈ C̄,

they showed that {ψ1, . . . , ψn} forms a local integral basis at α and hence (8)
has a solution and that solution is unique. When α = ∞, instead of solving
the modular system (8), they introduced the polynomial reduction to reduce
the degree in x. We shall show that {ψ1, . . . , ψn} still forms a local integral
basis at infinity. Then the polynomial reduction can be formulated as Hermite
reduction at infinity, as suspected by one of the anonymous referees of [11].

In the non-Fuchsian case, it may happen that λ > 1, see Examples 2 (for
α = 0) and 3 (for α = ∞). Another difference is that {ψ1, . . . , ψn} may not be a
local integral basis at α anymore, see the following Example 4. Fortunately, the
linear system (8) still has a unique solution in

(

C̄(x)α/〈zλ+µ+1〉
)n

as we shall
prove in this section. There are two steps. First we show that {ψ1, . . . , ψn} is
linearly independent over C̄(x) and then we find a rational solution (b1, . . . , bn)
whose entries admit nonnegative valuation at α. So the bi’s belong to C̄(x)α.
Taking bi modulo zλ+µ+1 gives a unique solution of (8). Once we know that (8)
has a solution, equating the coefficients of the ωi’s on both sides, we can find
its solution b = (b1, . . . , bn) by solving the following linear system of congruence
equations:

(zλ+µa1, . . . , z
λ+µan) ≡ b(M + µ(d+ µ)zλ+µIn) mod zλ+µ+1, (9)

where In is the identity matrix in C[x]n×n.

7



Example 4. Continue Example 2. For α = 0 and λ = 3, let ψi = xd+2(x1−dωi)
′

for i = 1, 2. A direct calculation yields that
(

ψ1

ψ2

)

=

(

−(d− 1)x2 1
0 −(d− 1)x2 − 2

)(

ω1

ω2

)

. (10)

In this example, ψ1, ψ2 are integral elements but do not form a local integral
basis at 0, because 1

x2 (2ψ1 + ψ2) = −2(d− 1)ω1 − (d− 1)ω2 is integral at 0. In
fact, if d > 1, then {ψ1,

1
x2 (2ψ1 + ψ2)} is a local integral basis at 0. Now (9)

becomes

(a1x
2, a2x

2) ≡ (b1, b2)

(

−(d− 1)x2 1
0 −(d− 1)x2 − 2

)

mod x3.

When d > 1, even though the coefficient matrix is not invertible over C̄(x)0/〈x3〉,
this equation still has a unique solution







b1 ≡ −(d− 1)−1a1 mod x3,

b2 ≡ 1

4

(

(d− 1)x2 − 2
) (

a2x
2 + (d− 1)−1a1

)

mod x3.

Let Oα denote the set of all elements in C̄(x)[D]/〈L〉 that are locally integral
at α ∈ C̄ ∪ {∞}. Even though {ψ1, . . . , ψn} may not be a local integral basis
at α, it is not so far away. In Example 4, we have C̄(x)0ψ1 + C̄(x)0ψ2 ⊆ O0 ⊆
1
x2 (C̄(x)0ψ1 + C̄(x)0ψ2). In general, if we represent a locally integral element
at α as a linear combination of {ψ1, . . . , ψn} with coefficients in C̄(x), the pole
orders at α of these coefficients are at most λ+ µ.

Proposition 5. Let α ∈ C̄ ∪ {∞} and W = {ω1, . . . , ωn} be a local integral
basis at α of A. Let z = x − α (or z = x−1 if α = ∞) and µ ∈ Z be such that
να(z

′) = να(z) + µ. Let λ ∈ Z and M ∈ C̄(x)n×n
α be such that zλW ′ = MW

and να(M) = 0. For some integer d > 1 (or d ≥ 0 if α = ∞), we define
ψi := zd+λ+µ(z−d−µωi)

′. If λ ≥ −µ, then
n
∑

i=1

C̄(x)αψi ⊆ Oα ⊆ 1

zλ+µ

n
∑

i=1

C̄(x)αψi.

In particular, when λ = −µ, we have
∑n

i=1 C̄(x)αψi = Oα. In this case,
{ψ1, . . . , ψn} forms a local integral basis at α.

Proof. We prove this proposition using the same technique as in [10, Lemma 10].
To show

∑n
i=1 C̄(x)αψi ⊆ Oα, we only need to show that for every i = 1, . . . , n,

the element ψi is integral at α. After differentiating, we get ψi = zλω′

i + µ(d+
µ)zλ+µωi. Since zλW ′ = MW and να(M) = 0, it follows that zλω′

i is integral
at α. Then ψi is integral at α because λ+ µ ≥ 0.

Next we shall prove Oα ⊆ 1
zλ+µ

∑n
i=1 C̄(x)αψi. Suppose to the contrary that

there exists an element f ∈ Oα \ 1
zλ+µ

∑n
i=1 C̄(x)αψi. Furthermore, we can find

such an element f of the form

f =
1

zλ+µ+1

n
∑

i=1

ciψi with ci ∈ C̄(x)α and να(ci) = 0 for some i.

8



Let g = z−µ−1
∑n

i=1 c
′

iωi, which is integral. Then also their sum

f + g = zd−1
n
∑

i=1

(

ci
(

z−d−µωi

)

′

+ c′iz
−d−µωi

)

= zd−1
n
∑

i=1

(

ciz
−d−µωi

)

′

= zd−1
(

z−d−µh
)′

must be integral, where h =
∑n

i=1 ciωi. Since {ω1, . . . , ωn} is an integral basis
at α, by Lemma 1 we have 0 ≤ valα(h) < 1. There exists a generalized series
solution yi ∈ Solα(L) such that h·yi involves a term T = zr exp(p(z−1/s)) log(z)ℓ

with 0 ≤ r < 1, s, ℓ ∈ N and p ∈ C̄[x]. For this fixed series yi, let T be the
dominant term of h · yi, i.e., among all terms with minimal r the one with the
largest exponent ℓ. Let k = degx(p) and c = lcx(p) be the degree and the
leading coefficient of p in x respectively. Then

(

zd−1Dz−d−µ
)

· T
= µ(d− r + µ)zr−1 exp(p(z−1/s)) log(z)ℓ

+ µck
s zr−

k
s
−1 exp(p(z−1/s)) log(z)ℓ + · · ·

− µℓzr−1 exp(p(z−1/s)) log(z)ℓ−1, (11)

where “· · · ” denotes some terms of valuation higher than r − k
s − 1.

If k = 0, then

µ(d− r + µ)zr−1 exp(p(z−1/s)) log(z)ℓ

is the dominant term of
(

zd−1Dz−d−µ
)

· (h · yi); here we use the assumption
that d > 1 (resp. d ≥ 0 if α = ∞), because for d = 1 (resp. d = −1) and r = 0
the coefficient (d− r + µ) is zero.

If k > 0, then
µck

s
zr−

k
s
−1 exp(p(z−1/s)) log(z)ℓ

is the dominant term of
(

zd−1Dz−d+µ
)

· (h · yi).
The above calculation reveals that zd−1

(

z−d−µh
)

′

= f + g is not integral
at α, which contradicts our assumption on the integrality of f . Hence Oα ⊆

1
zλ+µ

∑n
i=1 C̄(x)αψi.

Theorem 6. Use the same notations as in Proposition 5. Let d > 1 (or d ≥ 0
if α = ∞). If λ ≥ −µ, then for any a1, . . . , an ∈ C̄(x)α, the linear system

n
∑

i=1

zλ+µaiωi =

n
∑

i=1

biψi (12)

has a unique solution (b1, . . . , bn) in
(

C̄(x)α/〈zλ+µ+1〉
)n
.

9



Proof. By Proposition 5, the C̄(x)α-module generated by
{

1

zλ+µ
ψ1, . . . ,

1

zλ+µ
ψn

}

contains a submodule Oα of rank n. So {ψ1, . . . , ψn} is linearly independent over
C̄(x). Then there exist unique t1, . . . , tn ∈ C̄(x) such that

∑n
i=1 z

λ+µaiωi =
∑n

i=1 tiψi.
To find a solution bi, we have to show that ti ∈ C̄(x)α for all i = 1, . . . , n.

If so, bi ≡ ti mod zλ+µ+1 is the unique solution of (12). Since ai ∈ C̄(x)α and
the ωi’s are integral at α, the element

n
∑

i=1

aiωi =
1

zλ+µ

n
∑

i=1

tiψi

is integral at α. By Proposition 5,

1

zλ+µ

n
∑

i=1

tiψi ∈ Oα ⊆ 1

zλ+µ

n
∑

i=1

C̄(x)αψi.

Then
∑n

i=1 tiψi ∈
∑n

i=1 C̄(x)αψi. Since {ψ1, . . . , ψn} are linearly independent
over C̄(x), we have ti ∈ C̄(x)α for all i. Thus ti ∈ C̄(x)α as claimed.

According to Theorem 6, we can perform one step of Hermite reduction for
D-finite functions as described in the beginning of this section. The element bi
in C̄(x)α/〈zλ+µ+1〉 is of the form

bi = bi,0 + bi,1z + · · ·+ bi,λ+µz
λ+µ with bi,j ∈ C̄.

So in Equation (4), for α ∈ C̄, if d > max{1, λ}, then we can guarantee that
the coefficients of 1

zd+µ

∑n
i=1 biωi are proper rational functions. For α = ∞, if

d ≥ max{0, λ}, then the coefficients of 1
zd+µ

∑n
i=1 biωi are polynomials.

Example 7. Continue Examples 2 and 4. A local integral basis at α = 0 is
given by ω1 = 1 and ω2 = x3D. Then λ = 3. Consider the D-finite function

f =
(−2x2 − x4)ω1 + (−2 + 3x2 − 3x4)ω2

x4

and use Hermite reduction at 0 to reduce the power of x in its denominator. So
we start with z = x, µ = −1, d = 4, a1 = −2x2 − x4 and a2 = −2 + 3x2 − 3x4.
From (9), we get

(a1x
2, a2x

2) ≡ (b1, b2)

(

−3x2 1
0 −3x2 − 2

)

mod x3.

By Theorem 6, we know that this equation has a unique solution. Indeed, we
find a solution b1 = 2

3x
2, b2 = 4

3x
2. Then one step of the Hermite reduction at

0 simplifies f to

f =

(

2ω1 + 4ω2

3x

)

′

+
(−4− 3x2)ω1 + (13− 9x2)ω2

3x2
.
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Example 8. Let L = xD2 − (3x3 + 2)D ∈ C(x)[D] be the same operator as
in Example 3. A local integral basis at α = ∞ of A = C(x)[D]/〈L〉 is given by
ω1 = 1 and ω2 = x−2D. Then

(

ω′

1

ω′

2

)

= xλ
(

0 1
0 3

)(

ω1

ω2

)

with λ = 2. Consider the D-finite function

f = 4x3 +
1

x
D = 4x3ω1 + xω2 = x3

(

4ω1 +
1

x2
ω2

)

and use Hermite reduction at infinity to reduce its degree in x. So we start with
z = 1

x , µ = 1, d = 3, a1 = 4 and a2 = 1
x2 . From (9), we get

(a1x
−3, a2x

−3) ≡ (b1, b2)

(

4x−3 1
0 4x−3 + 3

)

mod x−4

This coefficient matrix is not invertible over C(x)∞/〈x−4〉. However, by Theo-
rem 6, we know this equation has a unique solution. Indeed, we find a solution
b1 = 1, b2 = 4

9x3 − 1
3 . Then one step of the Hermite reduction at infinity

simplifies f to

f =

(

x4ω1 +

(

4

9
x− 1

3
x4
)

ω2

)

′

+

(

x− 4

9

)

ω2.

For a rational function g ∈ C(x) and any point α ∈ C̄, if να(g) 6= 0, we have
να(g

′) = να(g)− 1. So the pole order of a rational function increases by exactly
one under each derivation. In the D-finite case, the pole order increases by at
least one. A lower bound of its pole order under each derivation is given in [3,
Lemma 5.7].

Lemma 9. Let g ∈ A. For any α ∈ C̄ ∪ {∞}, if valα(g) 6= 0, then valα(g
′) ≤

valα(g) + µ, where µ = −1 if α ∈ C̄ and µ = 1 if α = ∞.

Proof. Let yi be a generalized series solution in Solα(L) such that valα(g) =
να(g ·yi). Let z = x−α (or z = 1/x if α = ∞). Let T = zr exp(p(z−1/s)) log(z)ℓ

with r 6= 0, s, ℓ ∈ N, p ∈ C̄[x] be the dominant term of f · yi, i.e., among all
terms with minimal r the one with the largest exponent ℓ. Let k = degx(p) and
c = lcx(p). Then

D · T = −rµzr+µ exp(p(z−1/s)) log(z)ℓ

+
µck

s
zr−

k
s
+µ exp(p(z−1/s)) log(z)ℓ + · · ·

− ℓµzr+µ exp(p(z−1/s)) log(z)ℓ−1. (13)

Note that r− k
s +µ ≤ r+ µ and r 6= 0 (by the assumption valα(g) 6= 0). So the

valuation of the term D · T in g′ · yi is less than or equal to r+µ, which implies
that valα(g

′) ≤ valα(g) + µ.

11



Let W = {ω1, . . . , ωn} be a local integral basis at infinity. Let λ ∈ Z
and M ∈ C(x)n×n be such that W ′ = xλMW and ν∞(M) = 0. Then λ =
−ν∞(xλM) = degx(x

λM). By repeating the reduction at infinity, we can reduce
the degree in x as far as possible and decompose f ∈ A as

f = g′ + h with h =
n
∑

i=1

hiωi (14)

where g ∈ A, hi ∈ C(x) with degx(hi) < max{0, λ} for all i and the coefficients
of g are polynomials. The following lemma derives an upper bound for the
degree of any hypothetical integral of h in A.

Lemma 10. Let h ∈ A be as in (14). If h is integrable in A, then h =
(
∑n

i=1 biωi)
′ with bi ∈ C(x) and degx(bi) ≤ max{0, λ} for all i ∈ {1, . . . , n}.

Proof. Suppose h is integrable in A. Then there exists H =
∑n

i=1 biωi ∈ A
with bi ∈ C(x) such that h = H ′. By (14), we know the coefficients of h satisfy
degx(hi) < max{0, λ}, which implies ν∞(hi) > min{0,−λ}. Since {ω1, . . . , ωn}
is a local integral basis at infinity, it follows from Lemma 1 that val∞(h) >
min{0,−λ}.

We want to show that degx(bi) ≤ max{0, λ} for all i, which means ν∞(bi) ≥
min{0,−λ} for all i. Suppose to the contrary that τ := minni=1{να(bi)} <
min{0,−λ}. Since {ω1, . . . , ωn} is a local integral basis at infinity, by Lemma 1
we get val∞(H) < τ+1 ≤ min{0,−λ}. So H has a pole at infinity. By Lemma 9
we have

val∞(h) ≤ val∞(H) + 1 ≤ min{0,−λ}.
This leads to a contradiction. So degx(bi) ≤ max{0, λ} for all i.

3.2 The Global Case

To avoid algebraic extensions of the base field, Hermite reduction can be per-
formed simultaneously at all roots of some squarefree polynomial.

Let W = {ω1, . . . , ωn} be an integral basis of A = C(x)[D]/〈L〉. Let
e ∈ C[x] and M = (mi,j)

n
i,j=1 ∈ C[x]n×n be such that eW ′ = MW and

gcd(e,m1,1,m1,2, . . . ,mn,n) = 1. Let v be a nontrivial squarefree polynomial
and λ ∈ N be an integer such that vλ | e and gcd( e

vλ , v) = 1. Let f =
1

uvd

∑n
i=1 aiωi ∈ A with u, a1, . . . , an ∈ C[x] such that d > 1 and gcd(u, v) =

gcd(v, v′) = gcd(v, a1, . . . , an) = 1. Upon differentiating, the ωi’s may introduce
denominators, namely the factors of e. Without loss of generality, we assume
e | uvd. Suppose d > max{1, λ}. In order to execute one step of the Hermite
reduction to reduce the multiplicity d, we seek b1, . . . , bn, c1, . . . , cn in C[x] such
that

∑n
i=1 aiωi

uvd
=

(∑n
i=1 biωi

vd−1

)′

+

∑n
i=1 ciωi

uvd−1
. (15)
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If λ = 0, then gcd(e, v) = 1. Multiplying (15) by uvd and reducing this equation
modulo v yield

n
∑

i=1

aiωi ≡ −(d− 1)

n
∑

i=1

biuv
′ωi mod v. (16)

Since gcd(u, v) = gcd(v, v′) = 1, we get bi ≡ −(d− 1)−1(uv′)−1ai mod v is the
unique solution of (16) in C[x]/〈v〉. If λ ≥ 1, multiplying (15) by uvd+λ−1 and
reducing this equation modulo vλ−1 yield

n
∑

i=1

vλ−1aiωi ≡
n
∑

i=1

biuv
d+λ−1

( ωi

vd−1

)

′

mod vλ. (17)

One can adapt the argument in the local case to show that (17) always has
a unqiue solution (b1, . . . , bn) in

(

C[x]/〈vλ〉
)n

. Let ψi := vd+λ−1(v1−dωi)
′ for

i = 1, . . . , n. As an analog of Proposition 5, for each root α ∈ C̄ of v, we have

n
∑

i=1

C̄(x)αψi ⊆ Oα ⊆ 1

vλ−1

n
∑

i=1

C̄(x)αψi. (18)

Thus the linear system
∑n

i=1 v
λ−1aiωi =

∑n
i=1 ubiψi has a unique solution

(b1, . . . , bn) in
(

C[x]/〈vλ〉
)n

. Equating the coefficients of the ωi’s on both sides
of (17), the vector b = (b1, . . . , bn) can be found by solving the following linear
system of congruence equations:

(vλ−1a1, . . . , v
λ−1an) ≡ b(uvλe−1M − (d− 1)uvλ−1v′In) mod vλ, (19)

where In is the identity matrix in C[x]n×n.
By repeated application of the above Hermite reduction step, we can reduce

the pole orders at finite places as far as possible, i.e., we can decompose any
f ∈ A as

f = g̃′ + h with h =

n
∑

i=1

hiωi

de
, (20)

where g̃ ∈ A, h1, . . . , hn, d ∈ C[x], d is squarefree, gcd(d, e) = 1 and the coeffi-
cients of g̃ are proper rational functions.

Lemma 11. Let h ∈ A be as in (20). If h is integrable in A, then h =
(∑n

i=1
qiωi

u

)

′

, where q1, . . . , qn, u ∈ C[x] and u | gcd(e, e′). Furthermore, we

have d ∈ C.

Proof. Suppose h is integrable in A. Then there exists H =
∑n

i=1 biωi ∈ A with
bi ∈ C(x) such that h = H ′.

If α ∈ C̄ is not a root of e, then bi has no pole at α for all i. Otherwise,
suppose bi has a pole at α for some i ∈ {1, . . . , n}. Then H has a pole at α,
because {ω1, . . . , ωn} is an integral basis. But then by Lemma 9, h would have
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a pole of order greater than 1, which is impossible because gcd(d, e) = 1 and d
is squarefree. Therefore bi is integral at α for all i and hence d is a constant.

If α ∈ C̄ is a root of e, then bi has a pole at α of order at most να(e) −
1. Otherwise, suppose τ := minn

i=1{να(bi)} ≤ −να(e) ≤ −1. By Lemma 1,
valα(H) < τ + 1 ≤ 0. Then H has a pole at α. So by Lemma 9, we have
valα(h) ≤ valα(H) − 1. Thus valα(h) < −να(e). But from h =

∑n
i=1

hiωi

de , we
see valα(h) ≥ −να(e) because gcd(d, e) = 1. This leads to a contradiction.

Note that να(gcd(e, e
′)) = να(e)− 1 if α is a root of e and να(gcd(e, e

′)) = 0
if α is not a root of e. So u is a common multiple of the denominators of the
bi’s.

Example 12. Let L = x3D2 + (3x2 + 2)D ∈ C(x)[D] be the same differential
operator as in Examples 2 and 4. Since e = x3, we have u = gcd(e, e′) = x2.
We could find a Hermite remainder such that the denominator of its integral is
u, for example,

f =
2ω1 + ω2

2x3
=

(−2ω1 − ω2

4x2

)

′

.

4 Additive Decompositions

Now we combine the Hermite reduction at finite places and at infinity to decom-
pose a D-finite function f as f = g′ + h such that f is integrable if and only if
the remainder h is zero. To achieve this goal, first we confine all remainders into
a finite-dimensional vector space and then find all possible integrable functions
in this vector space. This procedure is similar to the hyperexponential case [6],
the algebraic case [10], the Fuchsian case [11] and the D-finite case [21, 7]. It
provides an alternative method for solving the accurate integration problem for
D-finite functions [2].

Since there may not exist a basis of A = C(x)[D]/〈L〉 that is a local integral
basis at all α ∈ C̄ ∪ {∞}, we need two bases to perform Hermite reduction at
finite places and at infinity, respectively. LetW = (ω1, . . . , ωn) ∈ An be an inte-
gral basis of A that is normal at infinity. There exists T = diag

(

xτ1 , . . . , xτn
)

∈
C(x)n×n with τi ∈ Z such that V := TW is a local integral basis at infinity.
Let e, a ∈ C[x] and M,B ∈ C[x]n×n be such that eW ′ = MW and aV ′ = BV .

Since the derivative of V is V ′ = (TW )′ =

(

T ′ + 1
eTM

)

T−1V, we may assume

that a = xλe for some λ ∈ N. For any integers µ, δ ∈ Z with µ ≤ δ, define a
subspace of Laurent polynomials in C[x, x−1] as follows:

C[x]µ,δ :=







δ
∑

i=µ

aix
i

∣

∣

∣

∣

∣

∣

ai ∈ C







.

Theorem 13. Let W,V ∈ An be as described above. Then any element f ∈ A
can be decomposed into

f = g′ +
1

d
RW +

1

xλe
QV, (21)
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where g ∈ A, d ∈ C[x] is squarefree and gcd(d, e) = 1, R ∈ C[x]n, Q ∈
C[x]nµ,δ with degx(R) < degx(d), µ = min{−τ1, . . . ,−τn, 0} and δ = max{λ +
degx(e), degx(B)} − 1. Moreover, f is integrable in A if and only if R = 0 and

1

xλe
QV ∈ U ′ with U =

{

1

u
cV

∣

∣

∣

∣

c ∈ C[x]nµ′,δ′

}

,

where u = gcd(e, e′), µ′ = min{−τ1, . . . ,−τn, ν0(u)} and

δ′ = max{degx(u), degx(B)− λ− degx(e) + degx(u)}.

Proof. Let h ∈ A be a Hermite remainder as in (20). By the extended Euclidean
algorithm, we compute ri, si ∈ C[x] such that hi = rie + sid and degx(ri) <
degx(d). Then h decomposes as

h =

n
∑

i=1

hi
de
ωi =

n
∑

i=1

ri
d
ωi +

n
∑

i=1

si
e
ωi. (22)

Writing h in vector form, by (20) we decompose f ∈ A as

f = g̃′ +
1

d
RW +

1

e
SW, (23)

where g̃ ∈ A, R = (r1, . . . , rn) ∈ C[x]n, S = (s1, . . . , sn) ∈ C[x]n. In the next
step, we shall reduce the degree of S and confine S to a finite-dimensional vector
space over C that is independent of f . We rewrite the last summand in (23)
with respect to the new basis V :

1

e
SW =

1

xλe
S̃V, (24)

where S̃ = xλST−1 ∈ xµC[x]n with µ = min{−τ1, . . . ,−τn, 0}. Since V is a
local integral basis at infinity, using Hermite reduction at infinity in Section 3.1,
we obtain from (14) that

1

e
SW = (S1V )′ +

1

xλe
S2V, (25)

where S1 ∈ C[x]n and S2 ∈ xµC[x]n satisfies

degx
(

S2

xλe

)

≤ max
{

0, degx
(

B
xλe

)}

− 1.

This implies that degx(S2) ≤ max{λ + degx(e), degx(B)} − 1 = δ. Thus S2 ∈
C[x]nµ,δ and we finally obtain the decomposition (21) by setting g = g̃ + S1V
and Q = S2.

For the last assertion, assume that f is integrable (the other direction of the
equivalence holds trivially). Then Lemma 11 implies that d ∈ C, and therefore
R must be zero because degx(R) < degx(d). Hence the last summand in (21)
and the left hand side of (25) are also integrable. We want to find its integral
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by estimating the valuation of this integral at all points in C ∪ {∞}. Since W
is a global integral basis, using Lemma 11 again, we know

1

e
SW =

(

1

u
bW

)

′

,

where b ∈ C[x]n and u = gcd(e, e′). Then

1

xλe
QV =

1

e
SW − (S1V )′ =

((

bT−1

u
− S1

)

V

)′

=

(

1

u
cV

)

′

,

where c = bT−1−uS1 ∈ C[x, x−1]n. Now we only need to estimate the valuation
of c at the remaining two points 0 and ∞. By the expression of c, we get

ν0(c) ≥ min{ν0(bT−1), ν0(uS1)} ≥ min{−τ1, . . . ,−τn, ν0(u)} = µ′.

On the other hand, since V is a local integral basis at infinity, it follows from
Lemma 10 that degx

(

c
u

)

≤ max
{

0, degx
(

B
xλe

)}

. Therefore

degx(c) ≤ max{degx(u), degx(B) − λ− degx(e) + degx(u)} = δ′.

Finally we have c ∈ C[x]nµ′,δ′ .

The remaining step is to reduce all integrable D-finite functions to zero.
Note that in Theorem 13, U is a C-vector space of dimension n(δ′−µ′+1) with
a basis

{

xjvi
u

∣

∣

∣

∣

i = 1, . . . , n; j = µ′, . . . , δ′
}

, (26)

where V = (v1, . . . , vn). Let K =
{

1
xλe

bV
∣

∣ b ∈ C[x]nµ,δ

}

. Differentiating all

elements in the basis of U and using Gauss elimination, we can find a basis
of U ′ and decompose K = (U ′ ∩ K) ⊕ NV as a direct sum of two subspaces,
where NV is a complement of U ′∩K in K. This means f in (21) can be further
decomposed as

f = g̃′ +
1

d
RW +

1

xλe
Q2V, (27)

where g̃ = g + g1 with g′1 ∈ U ′ ∩K and Q2 ∈ C[x]nµ,δ such that f is integrable
in A if and only if R = Q2 = 0. This decomposition (21) is called an additive
decomposition of f with respect to x. When L is a Fuchsian operator, the
additive decomposition of f was obtained in [11, Theorem 23].

In practice, we may choose a fixed complement of K ∩ U ′ in K. To do this,
we define a term over position order on the set

{

xjvi
∣

∣ i = 1, . . . , n; j ∈ Z
}

such that xj1vi1 > xj2vi2 if and only if j1 > j2 or j1 = j2 and i1 < i2. Let lt(·)
denote the leading term of an element in A = C(x)[D]/〈L〉. For example, if
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p = 3x2(v1 + v2) + 10xv1 ∈ A, then lt(p) = x2v1. Then a standard complement
of K ∩ U ′ in K is a C-vector subspace of K generated by

{h ∈ K | h 6= lt(g) for all g ∈ K ∩ U ′}.
From now on, let NV denote the standard complement of K ∩ U ′ in K. This
definition of NV is essentially the same as in [11], because there is a bijection
from a D-finite function to its coefficients of the vi’s.

Note that Q2 belongs to a C-vector space C[x]nµ,δ of dimension

n(δ − µ+ 1) = max{λ+ degx(e), degx(B)}+max{τ, 0}, (28)

where τ = max{τ1, . . . , τn}. If L is Fuchsian, by [11, Lemma 4], we know
degx(B) < λ + degx(e). So Q2 belongs to a C-vector space of dimension at
most n(max{τ, 0}+ λ+ degx(e)). This is a refinement of [11, Proposition 22].

Example 14. Let L = xD2 − (3x3 + 2)D ∈ C(x)[D] be the same operator
as in Example 3. Then W = (ω1, ω2) = (1, x−2D) = V . So e = 1, λ = 0 and

M = B =
(

0 x2

0 3x2

)

. After performing Hermite reduction at infinity in Example 8,
we get

f =
(

x4ω1 +
(

4
9x− 1

3x
4
)

ω2

)′

+
(

x− 4
9

)

ω2. (29)

Then µ = 0, δ = 1, u = 1, µ′ = 0, δ′ = 2. A basis of U is

{ω1, ω2, xω1, xω2, x
2ω1, x

2ω2},
and hence U ′ is generated by

{x2ω2, 3x
2ω2, ω1 + x3ω2, (1 + 3x3)ω2, 2xω1 + x4ω2, (2x+ 3x4)ω2}.

So a basis of K ∩ U ′ is

{3ω1 − ω2, 6xω1 − 2xω2} .
The leading terms of all elements in K∩U ′ are ω1 or xω1. Since lt((x− 4

9 )ω2) =
xω2 is different from all these terms, by Theorem 13 we know f is not integrable
in A = C(x)[D]/〈L〉 and (29) is an additive decomposition of f with respect to
x.

Example 15. Let L = x3D2 + (3x2 + 2)D ∈ C(x)[D] be the same operator
as in Example 2. Then W = (ω1, ω2) = (1, x3D) = V . So e = x3, λ = 0 and
M = B =

(

0 1
0−2

)

. Combining Hermite reduction at all finite places in Example 7
and Hermite reduction at infinity, we get

f =
((

2
3x − x

)

ω1 +
(

4
3x − 3x

)

ω2

)

′ − 4
3x2ω1 − 2

3x2ω2.

Then µ = 0, δ = 2, u = x2, µ′ = 0, δ′ = 2. A basis of U is
{

ω1

x2 ,
ω2

x2 ,
ω1

x ,
ω2

x , ω1, ω2

}

.

A basis of K ∩ U ′ is
{

− 2
x2ω1 − 1

x2ω2,
1
x3ω2, − 2

x3ω2

}

.

Therefore f is integrable:

f =
((

2
3x − x+ 4

3x

)

ω1 +
(

4
3x − 3x+ 2

3x

)

ω2

)

′

.
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5 Applications

LetK(x)[∂t, Dx] with K = C(t) be an Ore algebra, in whichDx is the differenti-
ation with respect to x and ∂t is either the differentiation with respect to t or the
shift t 7→ t+1. Let I be a left ideal of K(x)[∂t, Dx] generated by L and ∂t − ut
with L, ut ∈ K(x)[Dx]. The quotient A = K(x)[∂t, Dx]/I is a finite-dimensional
vector space over K(x) and a basis is given by {1, Dx, . . . , D

n−1
x }, where n is

the order of L. Every element f in A can be uniquely written as Pf +I for some
Pf ∈ K(x)[Dx]. The map sending f to Pf +〈L〉 gives an isomorphism from A to
K(x)[Dx]/〈L〉 as a K(x)[Dx]-module. Using this isomorphism, for any f ∈ A,
we can apply our additive decomposition to test whether f is integrable (in x).
If f ∈ A is not integrable, one can ask to find a nonzero operator T ∈ C(t)[∂t]
(free of x) such that T (f) is integrable. Such an operator T if it exists is called
a telescoper for f . Applying the additive decomposition with respect to x in
Section 4 to ∂it · f ∈ A yields that

∂it · f = g′i + hi

where gi, hi ∈ A, and ∂it · f is integrable in A if and only if hi = 0. If there exist
c0, c1, . . . , cr ∈ K such that

∑r
i=0 cihi = 0, then T =

∑r
i=0 ci∂

i
t is a telescoper

for f (because ∂t and Dx commute). Such a telescoper if it exists is of minimal
order. This approach is the method of reduction-based telescoping and was
developed for various classes of functions [5, 6, 9, 10, 11, 7, 21]. If ∂t = Dt

is the differentiation with respect to t, then telescopers always exist [22]. We
implemented our algorithm in Maple. More examples and our code are available
in [1]. Similar to the Fuchsian case [11, Lemma 24], for any i ∈ N, the derivative
Di

t · f has an additive decomposition (27) of the form

Di
t · f = g′i + hi with hi =

1

d
RiW +

1

xλe
QiV (30)

where gi ∈ A, d ∈ K[x], Ri ∈ K[x]n, Qi ∈ K[x, x−1]n, with degx(Ri) <
degx(d) and Qi ∈ NV . Then by (28) we obtain an upper bound for the order
of telescopers, which is a generalization of [11, Corollary 25].

Corollary 16. Every f ∈ A has a telescoper of order at most n degx(d) +
dimx(NV ), which is bounded by

n(degx(d) + max{τ, 0}+max{λ+ degx(e), degx(B)}).

Example 17. Let H =
√
t− 2x exp(t2x) be a hyperexponential function. This

function is annihilated by

L = Dx − 2t2x− t3 + 1

2x− t
and Dt −

8tx2 − 4t2x− 1

2(2x− t)
.

An integral basis of A = K(x)[Dx]/〈L〉 with K = C(t) is ω = 1 and a local
integral basis at infinity is v = x−1ω. As the integrand H corresponds to 1 ∈ A,
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its representation in the bases is f = ω = xv. The additive decomposition of f
is

f =

((

x

t2
− 1

2t2

)

v

)

′

− (t3 + 1)x− t

2t4x(2x− t)
v.

Next we consider the derivative Dt · f which has an additive decomposition

Dt · f =

((

2x2

t
− 3x

t3
− 3t3 − 6

4t5

)

v

)′

− 3(t3 − 2)((t3 + 1)x− t)

4t5x(2x− t)
v.

Now we see the reminders of f and Dt · f are linearly dependent over C(t),
which gives rise to a telescoper 2tDt − 3(t3 − 2). This telescoper was obtained
in [6, Example 21] with a different reduction approach.

Example 18. Let Fn(x) = xnJn(x) where Jn denotes the Bessel function of
the first kind. Then Fn(x) is annihilated by

L = D2
x + (1− 2n)Dx + x and P = Sn + xDx − 2n,

where Sn is the shift operator with respect to n. An integral basis of A =
K(x)[Dx]/〈L〉 with K = C(n) is W = (ω1, ω2) = (1, Dx) and a local integral
basis at infinity is V = (v1, v2) = (ω1, x

−1ω2). As before, Fn(x) is represented
by f = 1 ∈ A. The additive decompositions of f and Sn · f = −xDx + 2n ∈ A
are as follows:

f = (v2)
′ +

(2n− 1)x− 1

x
v2,

Sn · f = (−xv1 − (2n+ 1)v2)
′ +

(2n+ 1)((2n− 1)x− 1)

x
v2.

Now we can find a telescoper Sn − 2n− 1. This was obtained by the algorithm
in [7].

Acknowledgement. We thank Shayea Aldossari for sharing his Maple package
integral bases.
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des Sciences de Saint-Pétersbourg, 4:145–167, 286–300, 1845.

[20] Barry M. Trager. Integration of Algebraic Functions. 1984. PhD thesis.

[21] Joris van der Hoeven. Constructing reductions for creative telescoping:
the general differentially finite case. Applicable Algebra in Engineering,
Communication and Computing, 32(5):575–602, nov 2021.

[22] Doron Zeilberger. A holonomic systems approach to special functions iden-
tities. Journal of Computational and Applied Mathematics, 32:321–368,
1990.

21


	1 Introduction
	2 Integral Bases
	3 Hermite Reduction
	3.1 The Local Case
	3.2 The Global Case

	4 Additive Decompositions
	5 Applications

