
Apparent Singularities of D-Finite Systems

Shaoshi Chena,b, Manuel Kauersc, Ziming Lia,b, Yi Zhangd,e

aKLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
100190 Beijing, China

bSchool of Mathematical Sciences, University of Chinese Academy of Sciences,
100049 Beijing, China

cInstitute for Algebra, Johannes Kepler University Linz, Austria
dRICAM, Austrian Academy of Sciences, Austria

eDepartment of Mathematical Sciences, The University of Texas at Dallas, USA

Abstract

We generalize the notions of ordinary points and singularities from linear ordinary differential
equations to D-finite systems. Ordinary points and apparent singularities of a D-finite system
are characterized in terms of its formal power series solutions. We also show that apparent
singularities can be removed like in the univariate case by adding suitable additional solutions
to the system at hand. Several algorithms are presented for removing and detecting apparent
singularities. In addition, an algorithm is given for computing formal power series solutions of
a D-finite system at apparent singularities.
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1. Introduction

Linear ordinary differential equations allow easy access to the singularities of their
solutions: every point α which is a singularity of some solution f of a differential equation
must be a zero of the coefficient of the highest order derivative appearing in the equation,
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or a singularity of one of the other coefficients. For example, x−1 is a solution of the
equation xf ′(x) + f(x) = 0, and the singularity at 0 is reflected by the root of the
polynomial x in front of the term f ′(x) in the equation. Unfortunately, the converse is
not true: there may be roots of the leading coefficient which do not indicate solutions
that are singular there. For example, all the solutions of the equation xf ′(x)−5f(x) = 0
are constant multiples of x5, and none of these functions is singular at 0.

For a differential equation p0(x)f(x) + · · ·+ pr(x)f (r)(x) = 0 with polynomial coeffi-
cients p0, . . . , pr and pr 6= 0, the roots of pr are called the singularities of the equation.
Those roots α of pr such that the equation has no solution that is singular at α are
called apparent. In other words, a root α of pr is apparent if the differential equation
admits r linearly independent formal power series solutions in x − α. Deciding whether
a singularity is apparent is therefore the same as checking whether the equation admits
a fundamental system of formal power series solutions at this point. This can be done
by inspecting the so-called indicial polynomial of the equation at α: if there exists a
power series solution of the form (x−α)` + c`+1(x−α)`+1 + · · · , then ` is a root of this
polynomial.

When some singularity α of an ODE is apparent, then it is always possible to construct
a second ODE whose solution space contains all the solutions of the first ODE, and which
does not have α as a singularity. This process is called desingularization. The idea can
be easily explained as follows. The key observation is that a point α is not a singularity
if and only if the indicial polynomial at α is equal to n(n − 1) · · · (n − r + 1) and the
ODE admits r linearly independent formal power series solutions in x−α. As the indicial
polynomial at an apparent singularity has only nonnegative integer roots, we can bring
it into the required form by adding a finite number of new factors. Adding a factor n− s
to the indicial polynomial amounts to adding a solution of the form (x−α)s + · · · to the
solution space, and this is an easy thing to do using well-known arithmetic of differential
operators. See (Abramov, et al, 2006; Barkatou and Maddah, 2015; Chen, et al, 2016;
Ince, 1926; Jaroschek, 2013) for an expanded version of this argument and (Abramov,
et al, 2006; Abramov and van Hoeij, 1999; Barkatou and Jaroschek, 2018) for analogous
algorithms for recurrence equations.

The purpose of the present paper is to generalize the two facts sketched above to
the multivariate setting. Instead of a linear ODE, we consider a special class of systems
of linear PDEs known as D-finite systems. For such systems, we define the notion of a
singularity in terms of the polynomials appearing in them (Definition 3.1). We show in
Theorem 3.7 that a point is a singularity of the system unless it admits a basis of formal
power series solutions in which the starting terms are as small as possible with respect
to some term order. Then a singularity is apparent if the system admits a full basis of
power series solutions, the starting terms of which are not as small as possible. We then
prove in Theorem 4.7 that apparent singularities can be removed like in the univariate
case by adding suitable additional solutions to the system at hand. The operators in the
resulting system will be contained in the Weyl closure of the original ideal, but unlike Tsai
(2000) we cannot prove that they form a basis of the Weyl closure. Based on Theorems 3.7
and 4.7, we show how to remove a given apparent singularity (Algorithms 5.11 and 5.21),
and how to detect whether a given point is an apparent singularity (Algorithm 5.14). At
last, we present an algorithm for computing formal power series solutions of a D-finite
system at apparent singularities. Part of materials in this paper was presented in the
PhD thesis of the fourth author (Zhang, 2017).
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2. Preliminaries

In this section, we recall some notions and results concerning linear partial differential
operators, Gröbner bases, formal power series, solution spaces and Wronskians for D-
finite systems. We also specify notation to be used in the rest of this paper.

2.1. Rings of differential operators

Throughout the paper, N stands for the set of non-negative integers and Z+ for the
set of positive integers. For a finite set S, its cardinality is denoted by |S|. For a vec-
tor (v1, . . . , vn), its transpose is denoted by (v1, . . . , vn)t. We assume that K is a field of
characteristic zero. For instance, K is the field of complex numbers. Moreover, 0 denotes
the zero vector of a finite-dimensional vector space.

Let K[x] = K[x1, . . . , xn] be the ring of usual commutative polynomials over K. The
quotient field of K[x] is denoted by K(x). The ring of differential operators with rational
function coefficients is denoted by K(x)[∂1, . . . , ∂n], in which addition is coefficient-wise
and multiplication is defined by associativity via the commutation rules

(i) ∂i∂j = ∂j∂i;

(ii) ∂if = f∂i + ∂f
∂xi

for each f ∈ K(x),

where ∂f
∂xi

is the usual derivative of f with respect to xi, 1 ≤ i, j ≤ n. This ring is an
Ore algebra (Chyzak and Salvy, 1998) and denoted by K(x)[∂] for brevity.

Another ring is K[x][∂] := K[x1, . . . , xn][∂1, . . . , ∂n], which is a subring of K(x)[∂].
We call it the ring of differential operators with polynomial coefficients or the Weyl
algebra (Saito et al, 1999, Section 1.1).

A left ideal I in K(x)[∂] is said to be D-finite if the quotient K(x)[∂]/I is a finite-
dimensional vector space over K(x). The dimension of K(x)[∂]/I as a vector space
over K(x) is called the rank of I and denoted by rank(I). For a subset S of K(x)[∂], the
left ideal generated by S is denoted by K(x)[∂]S. For instance, let

I = Q(x1, x2)[∂1, ∂2] {∂1 − 1, ∂2 − 1}.

Then I is D-finite because the quotient Q(x1, x2)[∂1, ∂2]/I is a vector space of dimension
one over Q(x1, x2). Thus, rank(I) = 1.

2.2. Gröbner bases

Gröbner bases in K(x)[∂] are well known (Chyzak and Salvy, 1998, Section 1.5)
and implementations for them are available for example in the Maple package Mgfun

by Chyzak (2008) and in the Mathematica package HolonomicFunctions.m by Koutschan
(2010). We briefly summarize some facts about Gröbner bases in K(x)[∂].

We denote by T(∂) the commutative monoid generated by ∂1, . . . , ∂n. An element
of T(∂) is called a term. For a vector u = (u1, . . . , un) ∈ Nn, the symbol ∂u stands
for the term ∂u1

1 · · · ∂un
n , and u is called its exponent. The order of ∂u is defined to

be |u| := u1 + · · ·+un. For a nonzero operator P ∈ K(x)[∂], the order of P is defined to
be the highest order of the terms that appear in P effectively.

Let ≺ be a monomial ordering on Nn (Cox, et al, 2015, Definition 1, page 55). Since
there is a one-to-one correspondence between terms in T(∂) and elements in Nn, the
ordering ≺ on Nn induces an ordering on T(∂) with ∂u ≺ ∂v if and only if u ≺ v.
For brevity, we fix an ordering ≺ on Nn in the rest of this paper, and use the graded
lexicographic order with ∂1 ≺ · · · ≺ ∂n in examples, unless otherwise stated.
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For a nonzero element P ∈ K(x)[∂], the head term of P , denoted by HT(P ), is the
highest term appearing in P . The coefficient of HT(P ) is called the head coefficient of P
and is denoted by HC(P ). For a subset S of K(x)[∂], we denote by HT(S) and HC(S)
the sets of head terms and head coefficients of nonzero elements in S, respectively. For
a left ideal I ⊂ K(x)[∂], a term is said to be parametric if it does not belong to HT(I).
The set of exponents of all parametric terms of I is referred to as the set of parametric
exponents of I and denoted by PE(I). If I is D-finite, then its rank is equal to |PE(I)|.

Given a Gröbner basis G of I, an exponent u belongs to PE(I) if and only if ∂u is
not divisible by any term in HT(G). We say that G is reduced if HT(g) does not divide
any term appearing in g′ for all g, g′ ∈ G with g 6= g′.

Let P ∈ K[x][∂] be in the form P = a0∂
u0 + a1∂

u1 + · · ·+ am∂
um , where a0, . . . , am

are nonzero elements of K[x] and u0, . . . , um are distinct. We say that P is primitive
if gcd(a0, a1, . . . , am) = 1. A Gröbner basis G in K(x)[∂] is said to be primitive if it is
reduced and its elements are primitive in K[x][∂]. Every nontrivial left ideal in K(x)[∂]
has a primitive Gröbner basis.

Remark 2.1. Assume that G and G′ are two primitive Gröbner bases of a left ideal.
Then HT(G) = HT(G′), because both G and G′ are reduced. For g ∈ G and g′ ∈ G′ with
the same head term, g and g′ are linearly dependent over K, because they are primitive.

2.3. Formal power series

Let K[[x]] be the ring of formal power series in x1, . . . , xn. For an operator P ∈ K[x][∂]
and a series f ∈ K[[x]], the usual partial derivatives ∂

∂x1
, . . . , ∂

∂xn
induce a natural action

of P on f , which is denoted by P (f). In particular,

PQ(f) = P (Q(f)) (1)

with Q ∈ K[x][∂]. For u = (u1, . . . , un) ∈ Nn, the product (u1!) · · · (un!) is denoted by u!,
and xu1

1 · · ·xun
n by xu. A formal power series can always be written in the form

f =
∑
u∈Nn

cu
u!

xu,

where cu ∈ K. Such a form is convenient for differentiation.
Taking the constant term c0 of a formal power series f gives rise to a ring homomor-

phism, which is denoted by φ. A direct calculation yields

φ (∂u(f)) = cu, (2)

which allows us to determine whether a formal power series is zero by differentiating and
taking constant terms, as stated in the next lemma.

Lemma 2.2. Let f ∈ K[[x]]. Then f = 0 if and only if φ (∂u(f)) = 0 for all u ∈ Nn.

The fixed ordering ≺ on Nn also induces an ordering on the monoid T(x) generated
by x1, . . . , xn in the following manner: xu ≺ xv if and only if u ≺ v. The induced ordering
enables us to characterize ordinary points of a D-finite ideal by formal power series.

A nonzero element f ∈ K[[x]] can be written as

f =
cu
u!

xu + higher monomials with respect to ≺,

where cu is a nonzero element of K. We call u the initial exponent of f .
For brevity, we refer to formal power series as power series in the sequel.
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2.4. Solutions and Wronskians

We recall some basic facts about solutions of linear partial differential polynomials
in (Kolchin, 1973, Chapter IV, Section 5). The first proposition is a special case of
Proposition 2 in (Kolchin, 1973, page 152).

Proposition 2.3. For a left ideal I ⊂ K(x)[∂] with rank d, there exists a differential
field E containing K[[x]] such that the set of solutions of I in E is a d-dimensional vector
space over CE, where CE stands for the subfield of constants in E.

Such differential fields can also be constructed by a Picard-Vessiot approach given in
(van der Put and Singer, 2003, Appendix D) or (Bronstein, et al, 2005). In the rest of
this paper, we assume that E is a differential field as described in the above proposition.
For a D-finite ideal I, the solution space of I in E is denoted by solE(I).

The next proposition is a differential analog of the Nullstellensatz for D-finite ideals.
It is an easy consequence of Corollary 1 in (Kolchin, 1973, page 152).

Proposition 2.4. Let V ⊂ E be a d-dimensional linear subspace over CE. Then there
exists a unique left ideal I ⊂ E[∂] of rank d such that V = solE(I). Furthermore, an
operator P belongs to I if and only if P annihilates every element of V .

Linear dependence over the constants can be determined by Wronskian-like deter-
minants (Kolchin, 1973, Chapter II, Theorem 1), which implies that a finite number
of elements in K[[x]] are linearly independent over K if and only if they are linearly
independent over any field of constants that contains K.

Wronskian-like determinants are expressed by elements of T(∂) via wedge notation in
(Li, et al, 2002). For v1,v2, . . . ,v` ∈ Nn and ` ∈ Z+, the exterior product

∂v1 ∧ ∂v2 ∧ · · · ∧ ∂v`

is defined as a CE-multilinear function from E` to E that maps (z1, . . . , z`) ∈ E` to:∣∣∣∣∣∣∣∣∣∣∣∣

∂v1(z1) ∂v1(z2) · · · ∂v1(z`)

∂v2(z1) ∂v2(z2) · · · ∂v2(z`)
...

...
. . .

...

∂v`(z1) ∂v`(z2) · · · ∂v`(z`)

∣∣∣∣∣∣∣∣∣∣∣∣
.

It follows from Theorem 1 in (Kolchin, 1973, Chapter II) that z1, . . . , z` are linearly
independent over CE if there exist v1, . . . ,v` ∈ Nn such that

(∂v1 ∧ · · · ∧ ∂v`)(z1, . . . , z`) 6= 0.

Lemma 2.5. Let f1, . . . f` ∈ K[[x]] be nonzero power series with initial exponents u1,
. . . , u`. If u1, . . . ,u` are mutually distinct, then (∂u1 ∧ · · · ∧∂u`)(f1, . . . , f`) is invertible
in K[[x]]. In particular, f1, . . . , f` are linearly independent over K.

Proof. Let g(x) = (∂u1 ∧ · · · ∧ ∂u`)(f1, . . . , f`). Without loss of generality, we assume
that u1 ≺ · · · ≺ u`. It follows from (2) that g(0) is an upper triangular determinant
whose diagonal consists of the respective coefficients of xu1 , . . . ,xu` in f1, . . . , f`. So g(0)
is a nonzero element of K. Accordingly, g(x) is invertible in K[[x]]. 2
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The following proposition is Lemma 4 by Li, et al (2002) in slightly different notation.

Proposition 2.6. Let I be a D-finite ideal in K(x)[∂] and PE(I) = {u1, . . . ,ud}. Let

wI = ∂u1 ∧ · · · ∧ ∂ud .

Assume that z1, . . . , zd ∈ solE(I).
(i) The elements z1, . . . , zd are linearly independent over CE if and only if wI(z1, . . . , zd)

is nonzero.
(ii) Let G be a reduced Gröbner basis of I, and ∂v be the head term of an element g

of G. Assume further that z1, . . . , zd are linearly independent over CE. Set z to
be (z1, . . . , zd) and

(wI ∧ ∂v)(z, ·) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂u1(z1) ∂u1(z2) · · · ∂u1(zd) ∂u1

∂u2(z1) ∂u2(z2) · · · ∂u2(zd) ∂u2

...
...

...
...

∂ud(z1) ∂ud(z2) · · · ∂ud(zd) ∂ud

∂v(z1) ∂v(z2) · · · ∂v(zd) ∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

in which the elements of T(∂) are placed on the right-hand side of a product. Then

wI(z)−1 (wI ∧ ∂v(z, ·)) = HC(g)−1g.

The above two results will be used to reconstruct a Gröbner basis from its solutions.

3. Ordinary points and singularities

The goal of this section is to define ordinary points and singularities of a D-finite ideal
by primitive Gröbner bases, and to characterize ordinary points in terms of power series.

3.1. Ordinary points and singularities

Our definitions of ordinary points and singularities are motivated by the studies of
the singular locus of a differential system in (Saito et al, 1999, page 36).

Definition 3.1. Let I be a D-finite ideal of K(x)[∂], and let G be a primitive Gröbner
basis of I. A point α ∈ Kn

is called an ordinary point of I with respect to ≺ if none
of the elements in HC(G) vanishes at α. Otherwise, it is called a singularity of I with
respect to ≺.

The above definition is independent of the choices of primitive Gröbner bases by
Remark 2.1, and it is compatible with that by Abramov, et al (2006) and Chen, et al
(2016) in the univariate case. For brevity, the phrase “with respect to ≺” will be omitted
when we speak about ordinary points and singularities, unless we examine them with
respect to different orderings.

Example 3.2. Let the D-finite ideal I be generated by G = {∂2 − ∂1, ∂21 + 1}, which is
a primitive Gröbner basis. Since HC(G) = {1}, the ideal I has no singularity.
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Example 3.3. Let the D-finite ideal I be generated by the primitive Gröbner basis

G = {x1∂21 − (x1x2 − 1)∂1 − x2, x2∂2 − x1∂1}

in Q(x1, x2)[∂1, ∂2]. Then HC(G) = {x1, x2}. So the singularities of I are the points

in {(a, b) ∈ Q2 | a = 0 or b = 0}. In particular, the origin is a singularity.

The next example illustrates that an ordinary point with respect to a term order may
be a singularity with respect to another one. Such singularities are shown to be apparent
(see Definition 4.1 and Remark 4.4).

Example 3.4. Let G1 = ∂1 +x2∂2−x2− 1, G2 = ∂22 − 2∂2 + 1 be two linear differential
operators in K(x1, x2)[∂1, ∂2], and I = K(x1, x2)[∂1, ∂2]{G1, G2}.

Assume that ≺ is the graded lexicographic order with ∂2 ≺ ∂1. Then G1 and G2 form
a primitive Gröbner basis of I with HC({G1, G2}) = {1}. Thus, every point in K2 is
an ordinary point with respect to ≺. On the other hand, assume that ≺ is the graded
lexicographic order with ∂1 ≺ ∂2. Then {G1, G2} is also a primitive Gröbner basis of I
with respect to ≺. But HC({G1, G2}) = {x2, 1}. So all points on the line x2 = 0 are
singularities of I with respect to ≺.

3.2. Characterization of ordinary points

From now on, we focus on power series solutions of a D-finite ideal around the origin,
as a point in Kn can always be translated to the origin, and we may assume that K
is algebraically closed when necessary. The next proposition is a linear version of the
Cauchy-Kawalevskii theorem, which is also mentioned in (Saito et al, 1999, Theorem
1.4.19). The proof below is based on (Wu, 1989, Section 11).

Proposition 3.5. Let I be a left ideal of K(x)[∂], and G ⊂ K[x][∂] be a Gröbner basis
of I. If none of the elements in HC(G) vanishes at the origin, then I has a power series
solution in K[[x]] with initial exponent u for each u ∈ PE(I).

Proof. For v ∈ Nn, let Nv be the normal form of ∂v with respect to G. Then

Nv =
∑

u∈PE(I)

au,v(x)∂u, (3)

with au,v ∈ K(x). Since any element of HC(G) does not vanish at the origin, nor does
the denominator of au,v(x). It follows that each au,v can be viewed as elements in K[[x]].

We associate to each tuple u ∈ PE(I) an arbitrary constant cu ∈ K. For a non-
parametric exponent v, set

cv =
∑

u∈PE(I)

au,v(0)cu. (4)

Note that cv is well-defined, since there are only finitely many au,v’s unequal to zero
in (3). Furthermore, let f be the power series

∑
v∈Nn(cv/v!)xv. We are going to show

that f is a solution of I. Assume G = {G1, . . . , Gk}. By (1) and Lemma 2.2, it suffices
to show the claim that, for all w ∈ Nn and i ∈ {1, . . . , k},

φ (∂wGi(f)) = 0, (5)

where φ is the ring homomorphism from K[[x]] to K that takes constant terms, as de-
scribed in Section 2.3.
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Set `i = HC(Gi) and ∂vi = HT(Gi) for all i with 1 ≤ i ≤ k. Note that `i(x)−1 ∈ K[[x]]
because `i(0) 6= 0. Moreover, assume that v1 ≺ · · · ≺ vk.

We proceed by Noetherian induction on S = {HT(∂wGi) |w ∈ Nn, i ∈ {1, . . . , k}}
according to the fixed term ordering. Our starting point is to prove φ(G1(f)) = 0,
since ∂v1 is the minimal element of S.

Note that ∂v1 = `1(x)−1G1 +Nv1
. By (3), ∂v1 = `1(x)−1G1 +

∑
u∈PE(I) au,v1

(x)∂u.
Applying this equality to f and then applying φ to the result, we get

cv1
= `1(0)−1φ(G1(f)) +

∑
u∈PE(I)

au,v1
(0)cu

by (2). Thus, `1(0)−1φ(G1(f)) = 0 by (4). So φ(G1(f)) = 0. The claim (5) holds for v1.
Let w ∈ Nn and let i ∈ {1, . . . , k}. Assume that, for all v ∈ Nn and j ∈ {1, . . . , k},

φ (∂vGj(f)) = 0 (6)

whenever HT(∂vGj) ≺ HT(∂wGi). Reducing ∂w+vi modulo G, we have

∂w+vi = `i(x)−1∂wGi +

 ∑
HT(∂vGj)≺HT(∂wGi)

pv,j(x)∂vGj

+Nw+vi ,

where pv,j(x) ∈ K[[x]]. This is because every term in ∂w+vi − (`i(x))−1(∂wGi) is lower
than ∂w+vi and because none of `1, . . . , `k vanishes at the origin. Letting the above
equality act on f , and then applying φ to the result, we see that φ

(
∂w+vi(f)

)
equals

`i(0)−1φ(∂wGi(f)) +
∑

HT(∂vGj)≺HT(∂wGi)

pv,j(0)φ(∂vGj(f)) + φ (Nw+vi
(f)) .

Then the induction hypothesis (6) implies that

φ
(
∂w+vi(f)

)
= `i(0)−1φ(∂wGi(f)) + φ (Nw+vi

(f)) .

It follows from (3) that

φ
(
∂w+vi(f)

)
= `i(0)−1φ(∂wGi(f)) +

∑
u∈PE(I)

au,w+vi
(0)φ (∂u(f)) ,

which, together with (2), implies that

cw+vi
= `i(0)−1φ(∂wGi(f)) +

∑
u∈PE(I)

au,w+vi
(0)cu.

Therefore, `i(0)−1φ(∂wGi(f)) is equal to zero by (4). So is φ(∂wGi(f)). Consequently,
the claim given in (5) holds.

For each w ∈ PE(I), let fw =
∑

v∈Nn (cv/v!)xv be the power series defined by (4)
with cw = 1 and cu = 0 for all u ∈ PE(I) \ {w}. Then fw is a solution of I by (5).

It remains to show that w is the initial exponent of fw. Let v ∈ Nn. By the definition
of normal forms, au,v(x) in (3) is equal to zero whenever u � v. It follows that au,v(0)
in (4) is equal to zero whenever u � v. Assume now that v ≺ w. Then the above
discussion and (4) imply

cv =
∑

u∈PE(I),u�v

au,v(0)cu,
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which is zero in fw, because all the cu’s in fw are set to be zero whenever u ≺ w. So w
is the initial exponents of fw according to the induced ordering. 2

Note that the left ideal I in the above proposition is not necessarily D-finite. We prove
its converse under two additional assumptions.

Proposition 3.6. Let I be a D-finite ideal of K(x)[∂], PE(I) = {u1, . . . ,ur}, and G
be a primitive Gröbner basis of I. If, for every j with 1 ≤ j ≤ r, there exists a power
series fj ∈ K[[x]] with initial exponent uj such that fj ∈ solE(I), then any element
of HC(G) does not vanish at the origin.

Proof. Let wI = ∂u1 ∧ · · · ∧ ∂ur and f = (f1, . . . , fr). Then wI(f) is invertible in K[[x]]
by Lemma 2.5. Let G = {G1, . . . , Gk}. For all i with 1 ≤ i ≤ k, let

Gi = `i∂
vi +

r∑
j=1

`ij∂
uj ,

where ∂vi = HT(Gi), `i = HC(Gi) and `ij ∈ K[x]. Moreover, let Fi = (wI ∧ ∂vi)(f , ·).
By Proposition 2.6, (1/`i)Gi = wI(f)−1Fi, which, together with (1/`i)Gi ∈ K(x)[∂]

and wI(f)−1Fi ∈ K[[x]][∂], implies that `ij/`i ∈ K(x) ∩ K[[x]]. Set `ij/`i = pij/qij ,
where pij and qij belong to K[x] with gcd(pij , qij) = 1. Then qij does not vanish at the
origin by Theorem 1 in (Gessel, 1981). Since Gi is primitive, each `i is a factor of the
product of qi1, . . . , qir. Hence, it does not vanish at the origin either. 2

We are ready to characterize ordinary points in terms of power series.

Theorem 3.7. Let I be a D-finite ideal of K(x)[∂]. Then the origin is an ordinary point
of I if and only if I has a power series solution with initial exponent u for each u ∈ PE(I).

Proof. Let G be a primitive Gröbner basis of I. If the origin is an ordinary point of I,
then any element of HC(G) does not vanish at the origin. By Proposition 3.5, I has a
power series solution in K[[x]] with initial exponent u for each u ∈ PE(G). The converse
is immediate from Proposition 3.6. 2

The next corollary and example indicate that it appears an optimal choice to define
the notion of ordinary points via primitive Gröbner bases.

Corollary 3.8. Let I be a D-finite ideal of K(x)[∂], and G ⊂ K[x][∂] be a Gröbner
basis of I. If any element of HC(G) does not vanish at the origin, then the origin is an
ordinary point of I.

Proof. By Proposition 3.5, I has a power series solution with initial exponent u for
each u ∈ PE(I). By Theorem 3.7, the origin is an ordinary point of I. 2

Example 3.9. Let G1 = x2∂2 + ∂1 and G2 = ∂1 in Q(x1, x2)[∂1, ∂2]. Let I be the left
ideal generated by G1 and G2. Then {G1, G2} is a Gröbner basis of I, which is not
reduced. Although HC(G1) vanishes at the origin, the origin is an ordinary point of I
because I has a primitive Gröbner basis {∂1, ∂2}.

Theorem 3.7 can also be stated in terms of solution spaces.
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Corollary 3.10. Let I be a D-finite ideal of K(x)[∂] with PE(I) = {u1, . . . ,ud}. Then
the origin is an ordinary point of I if and only if there exist f1, . . . , fd ∈ K[[x]] with
respective initial exponents u1, . . . , ud such that f1, . . . , fd form a CE-basis of solE(I).

Proof. Note that d is the dimension of solE(I) over CE by Proposition 2.3. The corollary
is immediate from Theorem 3.7 and Lemma 2.5. 2

4. Apparent singularities

The goal of this section is to define the notion apparent singularities in the D-finite
case, and to characterize them by intersections of D-finite ideals.

Definition 4.1. Let I be a D-finite ideal of K(x)[∂] and d = rank(I). Assume that the
origin is a singularity of I. We call the origin an apparent singularity of I if I has d
linearly independent power series solutions in K[[x]].

The above definition is compatible with the univariate case in (Abramov, et al, 2006,
Definition 5).

Example 4.2. Let the left ideal I be generated by the primitive Gröbner basis

G = {x2∂2 + ∂1 − x2 − 1, ∂21 − ∂1}

in K(x1, x2)[∂1, ∂2]. Then rank(I) = 2 and HC(G) = {x2, 1}. So the origin is a sin-
gularity of I. As I has two K-linearly independent power series solutions exp(x1 + x2)
and x2 exp(x2), the origin is an apparent singularity.

Example 4.3. The solution space of the primitive Gröbner basis

G = {x22∂2 − x21∂1 + x1 − x2, ∂21}

is generated by {x1+x2, x1x2}. In this case, HC(G) = {x22, 1}. So the origin is an apparent
singularity of K(x1, x2)[∂1, ∂2]G.

Remark 4.4. Let I be a D-finite ideal of K(x)[∂]. Assume that the origin is an ordi-
nary point with respect to the preselected ordering. Then solE(I) has a basis contained
in K[[x]]. Hence, the origin is an apparent singularity of I if it is a singularity of I with
respect to another ordering by Definition 4.1.

For a subset S of K(x)[∂], we denote by IE0(S) the set of initial exponents of nonzero
elements in solE(S) ∩ K[[x]] and call it the set of initial exponents of S at the origin.
Then |IE0(S)| is the dimension of solE(S)∩K[[x]] by Lemma 2.5. For a D-finite ideal I, the
origin is an ordinary point if and only if IE0(I) = PE(I) by Theorem 3.7. It is an apparent
singularity if and only if IE0(I) 6= PE(I) but |IE0(I)| = |PE(I)| by Definition 4.1.

Before characterizing apparent singularities, we prove two technical lemmas.

Lemma 4.5. Let I and J be two D-finite ideals in K(x)[∂]. Then
(i) rank(I ∩ J) + rank(I + J) = rank(I) + rank(J).
(ii) dim solE(I ∩ J) + dim solE(I + J) = dim solE(I) + dim solE(J).

(iii) solE(I ∩ J) = solE(I) + solE(J).
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Proof. By Proposition 10 in (Bourbaki, 1998, page 207), we have an exact sequence

0→ K(x)[∂]/(I ∩ J)→ K(x)[∂]/I ⊕K(x)[∂]/J → K(x)[∂]/(I + J)→ 0

of K-linear spaces. The first assertion holds. The second one follows from the first and
Proposition 2.3. It is evident that solE(I) + solE(J) ⊂ solE(I ∩ J). On the other hand,

dim(solE(I) + solE(J)) = dim(solE(I)) + dim(solE(J))− dim(solE(I) ∩ solE(J)).

= dim(solE(I)) + dim(solE(J))− dim(solE(I + J))

(since solE(I) ∩ solE(J) = solE(I + J))

= dim(solE(I ∩ J)) (by the second assertion).

Hence, solE(I ∩ J) = solE(I) + solE(J). The last assertion holds. 2

Our characterization of apparent singularities is based on the fact that there are at
most finitely many terms lower than a given term. So the fixed monomial ordering ≺ is
assumed to be graded from now on.

As a matter of notation, we define Nn
m = {u ∈ Nn | |u| ≤ m} for m ∈ N. The next

lemma illustrates a connection between parametric exponents and initial ones.

Lemma 4.6. Let J be a D-finite ideal of K(x)[∂]. Assume that solE(J) has a basis
in K[[x]] and IE0(J) = Nn

m for some m ∈ N. Then PE(J) = Nn
m. Consequently, the origin

is an ordinary point of J .

Proof. Let G be a Gröbner basis of J and J̄ be the left ideal generated by J in E[∂].
Then G is also a Gröbner basis of J̄ by Buchberger’s algorithm. It follows that PE(J̄) is
equal to PE(J). So it suffices to prove PE(J̄) = Nn

m.
Assume that f1, . . . f` ∈ K[[x]] form a basis of solE(J) and their initial exponents are

distinct. Then ` = |Nn
m|. Let f = (f1, . . . , f`) and wJ =

∧
u∈IE0(J)

∂u. Then wJ(f) is a

nonzero element in K[[x]] by Lemma 2.5.
For every v ∈ Nn \ Nn

m, we let Fv = (wJ ∧ ∂v)(f , ·), which belongs to K[[x]][∂].
Then HT(Fv) = ∂v because wJ(f) is nonzero and the ordering ≺ is graded. Further-
more, Fv vanishes on solE(J) because (wJ ∧ ∂v)(f , fi) = 0 for all i with 1 ≤ i ≤ `. It
follows from Proposition 2.4 that Fv belongs to J̄ . Therefore, ∂v is not a parametric term
of J̄ . Accordingly, PE(J̄) ⊂ Nn

m. Hence, PE(J̄) = Nn
m because |PE(J̄)| = ` and ` = |Nn

m|.
The origin is an ordinary point by Corollary 3.10. 2

We are ready to characterize apparent singularities.

Theorem 4.7. Let I be a D-finite ideal of K(x)[∂]. Assume that the origin is a singularity
of I. Then the origin is an apparent singularity of I if and only if it is an ordinary point
of some D-finite ideal contained in I.

Proof. Assume that the origin is an apparent singularity of I. Let m = maxu∈IE0(I) |u|.
For every v = (v1, . . . , vn) ∈ Nn, we denote by Iv the left ideal generated by x1∂1 − v1,
. . . , xn∂n − vn in K(x)[∂]. Then solE(Iv) is spanned by xv.

Let J =
⋂

v∈Nn
m\IE0(I)

Iv. By construction, the two left ideals I and J have no nonzero

solution in common, which, together with Lemma 4.5 (iii), implies that

solE(I ∩ J) = solE(I)⊕ solE(J).
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In particular, the dimension of solE(I ∩ J) is equal to |Nn
m|, because solE(I) and solE(J)

have respective dimensions |IE0(I)| and |Nn
m| − |IE0(I)|. So IE0(I ∩ J) = Nn

m. Then the
origin is an ordinary point of I ∩ J by Lemma 4.6.

Conversely, assume that J ⊂ I is a D-finite ideal such that the origin is an ordinary
point of J . Then solE(I) ⊂ solE(J).

Assume that {f1, . . . , f`} ⊂ K[[x]] is a basis of solE(J). Since solE(I) is contained
in solE(J), every element of solE(I) is a linear combination of f1, . . . , f` over CE. There-
fore, solE(I) is contained in CE[[x]]. It remains to show that solE(I) has a basis in K[[x]].

Let G ⊂ K[x][∂] be a finite basis of I, and f = z1f1 + · · ·+ z`f`, where z1, . . . , z` ∈ CE
are to be determined. Then f ∈ solE(I) if and only if P (f) = 0 for all P ∈ G, which is
equivalent to

z1P (f1) + · · ·+ z`P (f`) = 0 for all P ∈ G.
By comparing the coefficients of xw (w ∈ Nn) in both sides of the above equations, we
derive a linear system Az = 0̃, where A is a matrix with infinitely many rows but `
columns, z = (z1, . . . , z`)

t, and 0̃ is a column vector consisting of infinitely many zeros.
Let ker(A) be the solution space of Az = 0̃ contained in C`

E. Then

solE(I) =
{
c1f1 + · · ·+ c`f` | (c1, . . . , c`)t ∈ ker(A)

}
. (7)

Let f = (f1, . . . , f`) and c1, . . . , cm ∈ ker(A). The CE-linear independence of f1, . . . , f`
implies that fc1, . . . , fcm are CE-linearly independent if and only if c1, . . . , cm are CE-
linearly independent. In particular, dimCE ker(A) = dimCE solE(I), which is denoted by d.
Then rank(A) is equal to `− d. Since I ⊂ K(x)[∂] and f1, . . . , f` ∈ K[[x]], the matrix A
is over K. It follows that ker(A) ∩ K` contains d linearly independent vectors over CE.
By (7), those vectors give rise to a basis of solE(I), which is contained in K[[x]]. The
origin is an apparent singularity of I by Definition 4.1. 2

Assume that the origin is an apparent singularity of I. By desingularizing the origin,
we mean computing a D-finite ideal J ⊂ I such that the origin is an ordinary point of J .

Definition 4.8. Let I be a D-finite ideal of K(x)[∂] and S be a finite subset of Nn. Then
the left ideal

I ∩

 ⋂
(v1,...,vn)∈S

K(x)[∂]{x1∂1 − v1, . . . , xn∂n − vn}


is called the sub-ideal of I with respect to S.

It is clear that the sub-ideal of a D-finite ideal with respect to any finite subset of Nn

is again D-finite. The next corollary helps us to desingularize an apparent singularity. Its
proof is immediate from the first paragraph in the proof of the above theorem.

Corollary 4.9. Let I be a D-finite ideal of K(x)[∂]. Assume that the origin is an apparent
singularity of I. Set m = maxu∈IE0(I) |u|. Then the origin is an ordinary point of the
sub-ideal of I with respect to (Nn

m \ IE0(I)).

5. Desingularization and applications

We are going to apply Corollary 4.9 to desingularize an apparent singularity.
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5.1. Indicial ideals

We extend the notion of indicial polynomials for linear ordinary differential operators
to the D-finite case.

For an element a in a ring and a positive integer m, the m-th falling factorial of a is
defined as (a)m = a(a−1) · · · (a−m+1). Let δi = xi∂i be the Euler operator with respect
to xi, i = 1, . . . , n. The commutation rules in K(x)[∂] imply that, for all i, j ∈ {1, . . . , n},

δiδj = δjδi and δixi = xi(δi + 1).

For u = (u1, . . . , un) ∈ Nn, the symbol δu stands for the product δu1
1 · · · δun

n . We recall
the following well-known facts on Euler operators.

Proposition 5.1. (i) xmi ∂
m
i = (δi)

m for each m ∈ Z+ and i ∈ {1, . . . , n}.
(ii) p(δ)(xu) = p(u)xu for each p ∈ K[x] and xu ∈ T(x).

Set K[y] = K[y1, . . . , yn] to be the ring of usual commutative polynomials with inde-
terminates y1, . . . , yn.

Definition 5.2. Let a nonzero operator P ∈ K[x][∂] be of order m. Write

xmP =
∑
v∈S

xv

 ∑
|u|≤m

cu,vδ
u

 , (8)

where m = (m, . . . ,m) ∈ Nn, S is a finite subset of Nn and cu,v ∈ K. Let xv0 be the
minimal term among {xv | v ∈ S} such that

∑
|u|≤m cu,v0δ

u is nonzero. We call∑
|u|≤m

cu,v0
yu ∈ K[y]

the indicial polynomial of P , and denote it by ind(P ). We further define ind(0) := 0.

By Proposition 5.1 (i), we may always write xmP in the form (8). The above definition
is compatible with the univariate case in (Jaroschek, 2013; Saito et al, 1999), and was
already used in the multivariate setting by Aroca and Cano (2001, Definition 11).

Proposition 5.3. Let P be a nonzero element of K[x][∂] and f a power series solution
of P with initial exponent w. Then w is a zero of ind(P ).

Proof. Assume that P is of order m and in the form (8). Moreover, let v0 be the same
as in Definition 5.2. By Proposition 5.1 (ii), we have

(xmP ) (f) =
[∑

v∈S xv
(∑

|u|≤m cu,vδ
u
)]

(xw + higher monomials in x)

= xv0

(∑
|u|≤m cu,v0

δu
)

(xw) + higher monomials in x

=
(∑

|u|≤m cu,v0
wu
)

xv0+w + higher monomials in x

= 0.

Thus,
∑
|u|≤m cu,v0

wu = 0, that is, ind(P )(w) = 0. 2
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Example 5.4. Consider the D-finite ideal I generated by

G1 = x1x2∂2 − x1x2∂1 + x2 − x1 and G2 = x21∂
2
1 − 2x1∂1 + x21 + 2

in Q(x1, x2)[∂1, ∂2]. Recall that we assume a term order with ∂2 � ∂1 and x2 � x1. A
straightforward calculation yields that ind(G1) = y2 − 1 and ind(G2) = (y1 − 1)(y1 − 2).
Note that I has two solutions x1x2 sin(x1 + x2) and x1x2 cos(x1 + x2). Their respective
initial exponents are (2, 1) and (1, 1), which are common zeros of ind(G1) and ind(G2).

Definition 5.5. Let I be a left ideal of K(x)[∂]. We call

{ind(P ) | P ∈ I ∩K[x][∂]}

the indicial ideal of I, and denote it by ind(I).

Theorem 5.6. Let I be a left ideal in K(x)[∂]. Then ind(I) is an ideal in K[y]. More-
over, I is zero-dimensional if it is D-finite.

Proof. For a, b ∈ ind(I), there exist P,Q ∈ I such that a = ind(P ) and b = ind(Q).
Let p and q be the respective orders of P and Q. Set p = (p, . . . , p) and q = (q, . . . , q).
Expressing xpP and xqQ as polynomials in x with coefficients in K[δ] placed on the
right-hand side of the powers of x, we find s, t ∈ Nn such that

xpP = xs
(∑

|u|≤p cu,sδ
u
)

+ higher terms,

xqQ = xt
(∑

|v|≤q cv,tδ
v
)

+ higher terms.

Thus, a =
∑
|u|≤p cu,sy

u and b =
∑
|v|≤q cv,ty

v. Let L = xt(xpP ) + xs(xqQ), which
belongs to I. Then

L = xs+t

∑
|u|≤p

cu,sδ
u +

∑
|u|≤q

cv,tδ
v

+ higher terms.

Let m be the order of L and m = (m, . . . ,m). Then

xmL = xs+t+m

∑
|u|≤p

cu,sδ
u +

∑
|v|≤q

cv,tδ
v

+ higher terms.

Thus, a+ b is either zero or equal to ind(L). Consequently, a+ b ∈ ind(I).
Next, we prove that ra ∈ ind(I) for all r ∈ K[y]. Since r is a sum of monomials in y1,

. . . , yn, it suffices to prove that ra ∈ ind(I) for each monomial r. Assume that r = yw,
where w = (w1, . . . , wn). Let s in the expression of xpP be (s1, . . . , sn). Furthermore,
let H = (

∏n
i=1(δi − si)wi) xpP . Then H belongs to I. The commutation rules for the δi’s

yield (δi − k)xki = xki δi for all i ∈ {1, . . . , n} and k ∈ N. Therefore,

H = (
∏n

i=1(δi − si)wi) xs
(∑

|u|≤p cu,sδ
u
)

+ higher terms

= (
∏n

i=1(δi − si)wixsii )
(∑

|u|≤p cu,sδ
u
)

+ higher terms

= (
∏n

i=1 x
si
i δ

wi
i )
(∑

|u|≤p cu,sδ
u
)

+ higher terms

= xs
(
δw
∑
|u|≤p cu,sδ

u
)

+ higher terms.

14



Let m̃ be the order of H and m̃ = (m̃, . . . , m̃). Then

xm̃H = xs+m̃

δw ∑
|u|≤p

cu,sδ
u

+ higher terms.

Thus, ra = ind(H), which belongs to ind(I). Consequently, ind(I) is an ideal in K[y].

Assume further that I is D-finite. Then there exists a nonzero operator H of some

order m such that H ∈ I ∩K[x][∂1]. By Proposition 5.1 (i), we have

(xm1 · · ·xmn )H = (x2 · · ·xn)mxm1 (h0 + h1∂1 + · · ·+ hm∂
m
1 )

= (x2 · · ·xn)m
(
h0x

m
1 + h1x

m−1
1 δ

1
1 + · · ·+ hmδ

m
1

)
,

where h0, . . . , hm ∈ K[x]. Thus, ind(H) ∈ K[y1] \ {0}. In the same vein, ind(I) ∩K[yi] is

nontrivial for all i with 2 ≤ i ≤ n. By Theorem 6 in (Cox, et al, 2015, page 251), ind(I)

is zero-dimensional. 2

The last paragraph of the proof of the above theorem enables us to construct a non-

trivial zero-dimensional ideal contained in ind(I) when I is D-finite. However, this does

not necessarily give access to a basis of ind(I).

Definition 5.7. Let I be a D-finite ideal in K(x)[∂]. Assume thatM is a zero-dimensional

ideal contained in ind(I). The set of nonnegative integer solutions of M is called a set of

initial exponent candidates for I.

By Proposition 5.3, the set of initial exponents of power series solutions of I must

be contained in a set of initial exponent candidates for I. Such a candidate set can be

obtained by computing nonnegative integer solutions of some zero-dimensional algebraic

system over K.

Example 5.8. Consider the D-finite ideal I from Example 5.4. Then ind(G1) = y2 − 1

and ind(G2) = (y1−1)(y1−2). A set of initial exponent candidates for I is {(2, 1), (1, 1)}.
Actually, (2, 1) and (1, 1) are the initial exponents of the solutions x1x2 sin(x1 + x2)

and x1x2 cos(x1 + x2), respectively.

The following example indicates that initial candidates for I do not necessarily give

rise to power series solutions of I.

Example 5.9. Consider the D-finite ideal I generated by the Gröbner basis

G1 = x1x2∂2 + (−x21 + 2x1x2)∂1 − 2x2,

G2 = (x31 − x21x2)∂21 + 2x1x2∂1 − 2x2

in Q(x1, x2)[∂1, ∂2]. A direct calculation yields ind(G1) = y2−y1 and ind(G2) = (y1−1)y1.

Thus, a set of initial exponent candidates for I is S = {(0, 0), (1, 1)}. Actually, solE(I)

is spanned by {x1/(x1 − x2), x1x2}. In this case, (1, 1) is the initial exponent of x1x2.

However, (0, 0) is not the initial exponent of any power series solution of I.
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5.2. Desingularization

Applying Corollary 4.9 amounts to determining a basis of the intersection of several
D-finite ideals. The next proposition is implicitly used in brief descriptions on how to
compute the sum of two ∂-finite objects in (Chyzak and Salvy, 1998, Section 2.2.1). We
prove it formally for completeness.

Proposition 5.10. Let I and J be two left ideals of K(x)[∂], and K(x)[∂][t] be the ring
of polynomials over K(x)[∂] with the commutation rule Pt = tP for all P ∈ K(x)[∂].
Let H be the left ideal generated by tI+(1−t)J in K(x)[∂][t]. Then I∩J = H∩K(x)[∂].

Proof. There are two ways to prove the proposition. Observe that 0, 1 and t belong
to the center of K(x)[∂][t]. So the two substitutions given by t 7→ 0 and t 7→ 1 induce
two ring homomorphisms from K(x)[∂][t] to K(x)[∂], respectively. We can then proceed
by imitating the proof in of Theorem 11 in (Cox, et al, 2015, page 187). Below is a
self-contained proof.

From P = tP + (1− t)P , we see that P ∈ H ∩K(x)[∂] for all P ∈ I ∩ J . Conversely,
assume P ∈ H ∩ K(x)[∂]. Then there exist Q ∈ K(x)[∂][t]I and R ∈ K(x)[∂][t]J such
that P = tQ+ (1− t)R by the commutation rule for t. The same rule enables us to write

P = t

(
m∑
i=0

qit
i

)
+ (1− t)

(
m∑
i=0

rit
i

)
for some m ∈ N, qi ∈ I and ri ∈ J for all i with 0 ≤ i ≤ m. Therefore,

P = r0 +

(
m∑
i=1

(qi−1 − ri−1 + ri)t
i

)
+ (qm − rm)tm+1.

Since P is free of t, we have P = r0. It suffices to prove r0 ∈ I ∩ J . Since r0 ∈ J , it
remains to prove r0 ∈ I. From the above equality, we see that

rm = qm, rm−1 − rm = qm−1, . . . , r1 − r2 = q1, r0 − r1 = q0.

It follows that r0 = qm + · · ·+ q0, which belongs to I. 2

The above result allows us to determine the basis of the intersection of two left ideals by
contraction, which can be handled by noncommutative elimination via Gröbner bases. For
two D-finite ideals, one may avoid computing Gröbner bases naively by a noncommutative
version of the FGLM algorithm. Please see (Chyzak and Salvy, 1998, Section 2.2.2)
and (Koutschan, 2010, Section 2.3) for more details.

Next, we present two algorithms: one is for removing an apparent singularity, and the
other is for detecting whether a singularity is apparent. In what follows, by “given a
D-finite ideal I”, we mean that a finite basis of I is given.

Algorithm 5.11. Given a D-finite ideal I with the origin being an apparent singularity,
compute a primitive Gröbner basis M ⊂ I such that the origin is an ordinary point of
the D-finite ideal K(x)[∂]M .

(1) Compute the rank d of I.
(2) Compute a set of initial exponent candidates S for I by the algorithm that is

implicit in Theorem 5.6.
(3) For each B ⊂ S with |B| = d,
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(3.1) set m := maxu∈B |u|;
(3.2) compute a primitive Gröbner basis MB of the sub-ideal of I with respect

to (Nn
m \B).

(3.3) if the origin is an ordinary point of K(x)[∂]MB , then return MB .

We have that IE0(I) ⊂ S by Proposition 5.3, and |IE0(I)| = d by Definition 4.1.
So one of the B’s in loop (3) is equal to IE0(I). By Corollary 4.9, the above algorithm
terminates within loop (3). However, it may not return the smallest possible M in the
sense that K(x)[∂]M ⊂ I is a D-finite ideal of the smallest rank such that the origin is
an ordinary point.

Example 5.12. Consider the D-finite ideal I in Example 4.2. Note that the solution
space of I is spanned by exp(x1 + x2) and x2 exp(x2) whose initial exponents are (0, 0)
and (0, 1), respectively. The origin is an apparent singularity of I. Let B = {(0, 0), (0, 1)}.
Then

(
N2

1 \B
)

= {(1, 0)}. Compute a primitive Gröbner basis M of the sub-ideal of I
with respect to {(1, 0)}. We find that HC(M) = {1−x1−x1x2}. The origin is an ordinary
point of K(x)[∂]M .

Example 5.13. Consider the D-finite ideal I in Example 4.3. Note that the solution
space of I is spanned by {x1 + x2, x1x2}. The origin is an apparent singularity of I. By
the two generators of I given in Example 4.3, ind(I) contains a zero-dimensional ideal
generated by y1 − 1 and y2(y2 − 1). So a candidate set B of indicial exponents is equal
to {(1, 0), (1, 1)}. We find that M = {∂31 , ∂21∂2, ∂1∂22 , ∂32} is a primitive Gröbner basis of
the sub-ideal of I with respect to {(1, 0), (1, 1)}. The origin is an ordinary point of the
sub-ideal K(x)[∂]M .

The next algorithm is a direct application of Algorithm 5.11.

Algorithm 5.14. Given a D-finite ideal I with the origin being a singularity, determine
whether the origin is an apparent one, and return a primitive Gröbner basis M ⊂ I such
that the origin is an ordinary point of the D-finite ideal K(x)[∂]M when it is apparent.

(1) Compute the rank d of I.
(2) Compute a set of initial exponent candidates S for I by the algorithm that is

implicit in Theorem 5.6.
(3) If |S| < d, then return “the origin is not an apparent singularity”.
(4) For each B ⊂ S with |B| = d,

(4.1) set m := maxu∈B |u|;
(4.2) compute a primitive Gröbner basis MB of the sub-ideal of I with respect

to (Nn
m \B).

(4.3) if the origin is an ordinary point, then return MB .
(5) Return “the origin is not an apparent singularity”.

The above algorithm clearly terminates. The solution space of I cannot be spanned
by power series if the candidate set S has less than d elements. So the origin is not an
apparent singularity in this case. The rest is correct by Algorithm 5.11.

Example 5.15. Consider the left ideal I from Example 5.9. The ideal is of rank two.
The origin is a singularity of I. Moreover, ind(G1) = y2 − y1 and ind(G2) = (y1 − 1)y1,
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where G1 and G2 are given in Example 5.9. Thus, S = {(0, 0), (1, 1)} is a set of initial

exponent candidates for I.

Since the rank of I is equal to two, S is the only subset B in step 2 of the above

algorithm, and
(
N2

2 \B
)

= {(1, 0), (0, 1), (2, 0), (0, 2)}. Computing a primitive Gröbner

basis M of the sub-ideal of I with respect to {(1, 0), (0, 1), (2, 0), (0, 2)}, we find that

HC(M) =
{
x1(x1 − x2)3,−(x1 − x2)3

}
.

The origin is a singularity of the D-finite ideal generated by M . So it is not an apparent

singularity of I. Actually, solE(I) is spanned by x1/(x1 − x2) and x1x2.

Example 5.16. Let I = Q(x1, x2)[∂1, ∂2]G, where G consists of

G1 = (x1 − x2)∂21 − x1x2∂2 + x1x2∂1 + (x1 − x2),

G2 = (x1 − x2)∂1∂2 − (1 + x1x2)∂2 + (1 + x1x2)∂1 + (x1 − x2),

and

G3 = (x1 − x2)∂22 − x1x2∂2 + x1x2∂1 + (x1 − x2).

Then rank(I) = 3 and the origin is a singularity of I.

From the three indicial polynomials ind(G1) = (y1 − 1)y1, ind(G2) = y2(y1 − 1) and

ind(G3) = (y2 − 1)y2, we see that S = {(0, 0), (1, 0), (1, 1)} is a set of initial exponent

candidates for I. Let B = S. Then
(
N2

2 \B
)

= {(0, 1), (2, 0), (0, 2)}. A primitive Gröbner

basis M of the sub-ideal of I with respect to {(0, 1), (2, 0), (0, 2)} asserts that the origin is

an ordinary point of the sub-ideal. By Theorem 4.7, the origin is an apparent singularity

of I. Actually, solE(I) is spanned by {sin(x1 + x2), cos(x1 + x2), x1x2}.

Remark 5.17. Given a D-finite ideal I, we can determine whether solE(I) is spanned by

power series in K[[x]] by Algorithm 5.14. This is because solE(I) is spanned by power series

in K[[x]] if and only if the origin is either an ordinary point or an apparent singularity

of I by Theorems 3.7 and 4.7.

5.3. A heuristic method for desingularization

For a nonzero operator L ∈ K[x1][∂1] with apparent singularities, the randomized

algorithm by Chen, et al (2016) computes a desingularized operator for L by taking

the least common left multiple of L with a random operator of appropriate order with

constant coefficients. This algorithm has been proved to obtain a correct desingularized

operator for L with probability one, and is more efficient than deterministic algorithms.

We now extend this randomized technique to the case of several variables. To this end,

we need two lemmas about determinants.

Lemma 5.18. Let U = (ui,j) be a (k+d)×d matrix of full rank over K, and Y = (Yi,m)

be a (k + d)× k matrix whose entries are distinct indeterminates. Then

det(U, Y ) =
∑

(i1,...,ik)∈S

αi1,...,ikYi1,1 · · ·Yik,k,

where S is a nonempty subset of Nk
k+d, and every coefficient αi1,...,ik is nonzero.
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Proof. Since U is of full rank, it contains a d×d nonzero minor. Without loss of generality,
we assume that the minor consists of the first d rows and the first d columns in U .
Setting Yi,m = 0 for all i, j with 1 ≤ i ≤ d and 1 ≤ m ≤ k, we map det(U, Y ) to∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1,1 · · · u1,d 0 · · · 0
...

. . .
...

...
. . .

...

ud,1 · · · ud,d 0 · · · 0

ud+1,1 · · · ud+1,d Yd+1,1 · · · Yd+1,k

...
. . .

...
...

. . .
...

ud+k,1 · · · ud+k,d Yd+k,1 · · · Yd+k,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which is nonzero. So det(U, Y ) is also nonzero. Collecting the like terms of det(U, Y ), we
prove the lemma. 2

Lemma 5.19. Let U be the same matrix as given in Lemma 5.18, and let Z1, . . . , Zk

be mutually disjoint sets of indeterminates. Let Z1,m, . . . , Zd+k,m be distinct monomials
in the indeterminates belonging to Zm, m = 1, . . . , k. Denote by Z the (k + d) × k
matrix (Zi,m). Then det(U,Z) is a nonzero polynomial in K[Z1 ∪ · · · ∪ Zn].

Proof. By Lemma 5.18, we have

det(U,Z) =
∑

(i1,...,ik)∈S

αi1,...,ikZi1,1 · · ·Zik,k,

where S is a nonempty subset of Nk
k+d and every αi1,...,ik is nonzero. For two distinct

elements (i1, . . . , ik), (j1, . . . , jk) ∈ S, the two terms Zi1,1 · · · Zik,k and Zj1,1 · · · Zjk,k

are also distinct by the definition of Zi,j ’s. Hence, there are no like terms to be collected
in the right-hand side of the above equality. 2

Theorem 5.20. Let I ⊂ K(x)[∂] be a D-finite ideal of rank d. Assume that the origin
is an apparent singularity of I, and that f1, . . . , fd are power series solutions of I with
distinct initial exponents u1, . . . , ud, respectively. Set ` = |Nn

m|,

m = max
1≤i≤d

|ui| and Nn
m \ IE0(I) = {ud+1, . . . ,u`}.

For each j ∈ {1, . . . , `− d}, let fd+j be the power series expansion of

exp (z1,jx1 + · · ·+ zn,jxn)

around the origin, where z1,j , . . . , zn,j are distinct constant indeterminates. Furthermore,
let A = (ai,j) be the `× ` matrix, where ai,j is equal to the constant term of ∂ui(fj) for
all i, j ∈ {1, . . . , `}. Then

(i) det(A) is a nonzero polynomial in K[z1,1, . . . , zn,1, . . . , z1,`−d, . . . , zn,`−d].
(ii) Let ci,j be an element of K for all i with 1 ≤ i ≤ n and j with 1 ≤ j ≤ ` − d.

If det(A) does not vanish at (c1,1, . . . , cn,1, . . . , c1,`−d, . . . , cn,`−d), then the origin

is an ordinary point of I ∩
(⋂`−d

j=1 K(x)[∂] {∂1 − c1,j , . . . , ∂n − cn,j}
)
.
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Proof. (i) Without loss of generality, we order the initial exponents u1, . . . ,ud increas-
ingly with respect to ≺. Then the submatrix consisting of the first d rows and first
d columns in A is in an upper triangular form whose elements in the diagonal are
all nonzero by (9). Thus, the first d columns of A are linearly independent over K.
Let zj = (z1,j , . . . , zn,j) for all j with 1 ≤ j ≤ ` − d. Then the (d + j)th column of A
consists of zu1

j , . . . , zu`
j , which are distinct monomials in zj . Thus, det(A) is nonzero by

Lemma 5.19.
(ii) Two ring homomorphisms are needed for the proof of the second assertion.
Let R = K[z1,1, . . . , zn,1, . . . , z1,`−d, . . . , zn,`−d]. We define φ to be the homomorphism

from R[[x]] to R that takes the constant term of a power series in x, which extends the
homomorphism from K[[x]] to K defined in Section 2.3. By (2),

∀w ∈ Nn with w ≺ v, φ (∂w(f)) = 0 and φ (∂v(f)) 6= 0 (9)

for every nonzero power series f ∈ R[[x]] with initial exponent v.
Let ψ : R → K be the substitution that maps zij to cij for every i ∈ {1, . . . , n}

and j ∈ {1, . . . , `−d}. Then ψ is a ring homomorphism. We extend ψ to a homomorphism
from R to R[[x]] by the rule ψ(xi) = xi. i = 1, . . . , n. The extended homomorphism is
also denoted by ψ.

Since the determinant of A does not vanish at (c1,1, . . . , cn,1, . . . , c1,`−d, . . . , cn,`−d),
the determinant of ψ(A) is nonzero. Let gj = ψ(fj) for j = 1, . . . , ` and let B = (bij)
be the ` × ` matrix with bij = ∂uigj for all i, j ∈ {1, . . . , `}. Then φ(bij) = ψ(aij) for
all i, j ∈ {1, . . . , `}, because φ ◦ψ = ψ ◦φ and ψ ◦ ∂k = ∂k ◦ψ for all k with 1 ≤ k ≤ n. It
follows that φ(B) = ψ(A). Thus, det(φ(B)) is nonzero, and so is det(B). Accordingly, g1,
. . . , g` are linearly independent over K by Lemma 2.5.

Set Ij = K(x)[∂] {∂1 − c1,j , . . . , ∂n − cn,j} for all j in {1, . . . , ` − d}. Then g1, . . . , gd
form a basis of solE(I), because gi = fi, i = 1, . . . , d, and gd+j spans solE(Ij), because gd+j

corresponds to the power series expansion of exp (c1,jx1 + · · ·+ cn,jxn) at the origin for
all j ∈ {1, . . . , `−d}. It follows from Lemma 4.5 (iii) that g1, . . . , g` form a basis of solE(J),
where J = I ∩ I1 ∩ · · · ∩ I`−d.

To prove that the origin is an ordinary point of J , it suffices to find a basis of solE(J)
in K[[x]] whose initial exponents are exactly the elements of Nn

m by Lemma 4.6. Since
the power series g1, . . . , g` are linearly independent over K, there exists an `×` invertible
matrix C over K such that (h1, . . . , h`) = (g1, . . . , g`)C, in which h1, . . . , h` have distinct
initial exponents. Set H = BC. Then H is the `× ` matrix whose element at the ith row
and jth column is equal to ∂uihj . Moreover, φ(H) is of full rank because φ(H) is equal
to φ(B)C. Suppose that there exists hj ∈ {h1, . . . , h`} such that its initial exponent v
does not belong to Nn

m. Then v is higher than any element of Nn
m, because ≺ is graded.

In other words, ui ≺ v for all i with 1 ≤ i ≤ `. It follows from (9) that the jth column
of φ(H) is a zero vector, a contradiction. Therefore, the initial exponents of h1, . . . , h`
are exactly the elements of Nn

m. 2

Algorithm 5.21. Given a D-finite ideal I with the origin being an apparent singularity,
compute a primitive Gröbner basis M such that M ⊂ I and the origin is an ordinary
point of the D-finite ideal K(x)[∂]M , or return “fail”.

(1) Set d := rank(I).
(2) Compute a set of initial exponent candidates S for I by the algorithm that is

implicit in Theorem 5.6.
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(3) For each B ⊂ S with |B| = d,

(3.1) set m := maxu∈B |u| and ` := |Nn
m|;

(3.2) choose a point c = (c1,1, . . . , cn,1, . . . , c1,`−d, . . . , cn,`−d) ∈ Kn(`−d);

(3.3) compute the primitive Gröbner basis MB of the D-finite ideal

I ∩

`−d⋂
j=1

K(x)[∂]{∂1 − c1,j , . . . , ∂n − cn,j}

 ;

(3.4) if the origin is an ordinary point, then return MB .

(4) return “fail”.

The above algorithm clearly terminates. IfB in step 3 coincides with IE0(G) and det(A)

given in Theorem 5.20 does not vanish at c, then the origin is an ordinary point of the

D-finite ideal K(x)[∂]MB by Theorem 5.20. So it does not return “fail” unless c lies

on the variety defined by det(A) = 0. In this sense, the above algorithm succeeds out-

side of a variety which is not the full space. A feature of the above algorithm is that

it is more efficient to compute a Gröbner basis of the intersection of several left ideals,

most of which are generated by first-order operators with constant coefficients. Another

advantage is that this algorithm is likely to remove all apparent singularities, not just

the origin, because almost all choices of ci,j will also work for apparent singularities at

almost any other point. On the other hand, it is not convenient to apply Theorem 5.20

to determine whether the origin is an apparent singularity, because the above algorithm

will always return “fail” if the origin is a singularity but not an apparent one.

Example 5.22. Consider the left ideal from Example 4.2. Then n = 2, rank(I) = 2

and the origin is an apparent singularity. A set of initial exponent candidates for I

is S = {(0, 0), (0, 1)}. Set B = S and ` = |N2
1| = 3. Choose c = (19, 23) ∈ Kn(`−d) = K2.

Let MB be the primitive Gröbner basis of the left ideal I ∩ K(x)[∂]{∂1 − 19, ∂2 − 23}.
We find that HC(MB) = {9 + 11x2}. It follows from Definition 3.1 that K(x)[∂]MB ⊂ I
for which the origin is an ordinary point.

5.4. Truncating power series solutions at apparent singularities

When the origin is an apparent singularity of a D-finite ideal, the solution space of

the ideal has a basis of power series. We show how to truncate such a basis by the proof

of Theorem 4.7. To this end, we introduce some new notation.

For a nonzero element P ∈ K(x)[∂] with HT(P ) = ∂p, we call p the exponent of P .

Let f =
∑

u∈Nn(cu/u!)xu ∈ K[[x]]. For each m ∈ Nn, set

[f ]m =
∑
u�m

cu
u!

xu ∈ K[x],

which is called the truncation of f at m. The next lemma enables us to truncate the

application of an operator to a power series.

Lemma 5.23. Let P ∈ K[x][∂] with exponent p. Then [P (f)]m = [P ([f ]m+p)]m for

all f ∈ K[[x]] and m ∈ Nn,
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Proof. For v ∈ Nn, let Hv denote the ideal generated by all powers xu with u � v
in K[[x]]. Then P (g) ∈ Hm for all g ∈ Hm+p by a direct calculation. Since f = [f ]m+p+g
for some g ∈ Hm+p, we have P (f) = P ([f ]m+p) + P (g). Truncating both sides of the
above equality yields the lemma. 2

Recall some notation and results given in the proof of Theorem 4.7. Let I be a D-finite
ideal of rank d and G ⊂ K[x][∂] be a finite basis of I. Moreover, let G contain k elements.
Assume that the origin is an apparent singularity of I. We desingularize the origin to
obtain another D-finite ideal J contained in I. Assume that ` = rank(J) and that M is a
Gröbner basis of J . With the help of M and formula (4), we can compute any truncations
of a basis f1, . . . , f` of solE(J).

For z1, . . . , z` ∈ K, we have that z1f1 + · · ·+ z`f` ∈ solE(I) if and only if

z1P (f1) + · · ·+ z`P (f`) = 0 for all P ∈ G. (10)

The above equations result in a matrix A with infinitely many rows and ` columns over K
such that the equations hold if and only if Az = 0̃, where z = (z1, . . . , z`)

t. Moreover,
the rank of A is equal to `− d.

To compute a truncation of power series solutions, we need some submatrices of A.
For every u ∈ Nn, let Bu be the k× ` matrix obtained by equating the coefficients of xu

in both sides of (10). By Lemma 5.23, the matrix Bu can be obtained from the equations

z1P ([f1]u+p) + · · ·+ z`P ([f`]u+p) = 0 for all P ∈ G, (11)

where p is the exponent of P . For v ∈ Nn, we denote by Av the matrix obtained by
stacking submatrices Bu for all u with u � v. Since rank(A) = ` − d, there exists a
vector w ∈ Nn such that Aw is of rank `− d. We can find a basis c1, . . . , cd of the right
kernel of Aw. Then g1 = (f1, . . . , f`)c1, . . . , gd = (f1, . . . , f`)cd form a basis of solE(I)
according to the proof of Theorem 4.7. It follows that

[g1]m = ([f1]m, . . . , [f`]m) c1, . . . , [gd]m = ([f1]m, . . . , [f`]m) cd.

This idea is encoded in the following algorithm.

Algorithm 5.24. Given m ∈ Nn and a left ideal I of rank d with the origin being
an apparent singularity, compute polynomials g1, . . . , gd ∈ K[x] such that there exist
K-linearly independent power series solutions h1, . . . , hd of I with the property

g1 = [h1]m, . . . , gd = [hd]m.

(1) By Algorithm 5.11, compute a primitive Gröbner basis M such that the origin is
an ordinary point of K(x)[∂]M . And set ` to be the rank of K(x)[∂]M .

(2) Compute [f1]m, . . . , [f`]m by M according to (4), where f1, . . . , f` stand for a basis
of solE(M).

(3) Construct a matrix Aw of rank `− d by (11) incrementally with respect to ≺.
(4) Find a basis c1, . . . , cd of the right kernel of Aw.
(5) Return ([f1]m, . . . , [f`]m) c1, . . . , ([f1]m, . . . , [f`]m) cd.

Note that the algorithm avoids the (possibly expensive) computation of the Weyl
closure I ∩K[x][∂], which might lead to an alternative method for computing the power
series solutions of I.
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Example 5.25. Consider the D-finite ideal I generated by G1 = x2∂2 + ∂1 − x2 − 1
and G2 = ∂21 − ∂1. Then rank(I) = 2 and the origin is an apparent singularity of I. We
compute a power series basis of solE(I) truncated at m = (0, 2). Recall that the term
order is graded lexicographic with x1 ≺ x2.

(1) Let M be the primitive Gröbner basis of the left ideal J , where J is the intersection
of I ∩K(x)[∂]{x1∂1− 1, ∂2}. The origin is an ordinary point of J and rank(J) = 3.

(2) By formula (4), we obtain a power series basis of solE(J) truncated at m, which con-
sists of p1 = [exp(x1 + x2)− x1 − x2 exp(x2)]m , p2 = x1 and p3 = [x2 exp(x2)]m .

(3) A straightforward calculation yields

A0 =

1 −1 0

0 0 0

 ,

which is of rank one. A basis of its right kernel is {(1, 1, 0)t, (0, 0, 1)t}. It follows
that a power series basis of solE(I) truncated at m is

{[exp(x1 + x2)− x2 exp(x2)]m , [x2 exp(x2)]m} .
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