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Abstract Creative telescoping is the method of choice for obtaining information about definite sums

or integrals. It has been intensively studied since the early 1990s, and can now be considered as a

classical technique in computer algebra. At the same time, it is still subject of ongoing research. In

this paper, we present a selection of open problems in this context. We would be curious to hear about

any substantial progress on any of these problems.

Keywords Computer Algebra, Creative Telescoping, Differential Algebra, Linear Operators, Ore

Algebras, Symbolic Integration, Symbolic Summation.

1 Introduction

Summation and integration problems arise in all areas of mathematics, especially in discrete

mathematics, special functions, combinatorics, engineering, and physics. Nowadays, many of

these problems are solved using computer algebra. The number of applications of summation

and integration algorithms is so vast that it is pointless to even try to give a reasonably complete

overview. A collection of standard applications can be found in [64, 75]; as examples of more

recent and more sophisticated applications, see Schneider’s work on symbolic summation in

particle physics [92], the Dynamic Dictionary of Mathematical Functions [13], or the Koutschan-

Kauers-Zeilberger proof of the long-standing qTSPP conjecture [69]. These works could be

viewed as successful examples for mathematics mechanization proposed by Wen-tsün Wu [103].

The general task in symbolic summation is to compute for a given expression describing a

summand sequence f(n, k) an expression that describes the sum sequence F (n) =
∑n

k=0 f(n, k).

Depending on the type of expressions allowed for summand and/or sum, a solution may or may

not exist. The classical class of expressions considered in the theory of symbolic summation is
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the class of hypergeometric terms. A univariate sequence f(k) is called hypergeometric if the

shift quotient f(k+1)/f(k) can be simplified to a rational function in k. For example, f(k) = k!

is hypergeometric because f(k+1)/f(k) = k+1 is a polynomial. Another example is f(k) = 2k.

Gosper’s algorithm [50] solves the decision problem for hypergeometric summation: given a

hypergeometric term f(k) (i.e., given a rational function r(k) such that f(k+ 1)/f(k) = r(k)),

it computes a hypergeometric term F (k) such that F (k + 1) − F (k) = f(k + 1), or it certifies

that no such hypergeometric term exists. When F (k) is found, it implies the closed form

representation
∑n

k=0 f(k) = F (n + 1) − F (0). For example, Gosper’s algorithm can find the

formula
∑n

k=0 k k! = (n+ 1)!− 1.

Gosper’s algorithm only applies to so-called indefinite sums. These are sums in which the

upper summation bound is a variable that does not occur in the summand expression. All other

sums are called definite. For example,
∑n

k=0

(
m
k

)
is an indefinite sum (involving a parameter m),

while
∑n

k=0

(
n
k

)
is a definite sum. The distinction is important because there does exist a closed

form for the latter sum (it is equal to the nice expression 2n), but no closed form exist when m

and n are unrelated.

In order to process definite sums, we can use the technique of creative telescoping. Informal-

ly, creative telescoping solves the following problem: Given an expression f(n, k), it computes

polynomials c0(n), . . . , cr(n), not all zero, and an expression g(n, k), such that

c0(n)f(n, k) + · · ·+ cr(n)f(n+ r, k) = g(n, k + 1)− g(n, k).

When such a relation is available, we can sum it for k from 0 to n to obtain a relation of the

form

c0(n)F (n) + · · ·+ cr(n)F (n+ r) = G(n)

for the definite sum F (n) =
∑n

k=0 f(n, k) and some explicit expression G(n). From such an

equation, other algorithms can be used to find closed form representations for F (n) (or prove

that there are none), or information about its asymptotic behaviour for n→∞, or to compute

a large number of terms of the sequence efficiently.

The method of creative telescoping was propagated by Zeilberger in the early 1990s [77,

101, 102, 106] (although the word “creative telescoping” already appears in [96]). Zeilberger

also gave the first algorithm for creative telescoping applicable to hypergeometric terms. This

algorithm, now known as Zeilberger’s algorithm, is a clever modification of Gosper’s algorithm.

Zeilberger also formulated a vision for doing creative telescoping in the much more general

realm of holonomic functions [105]. Over the years, this led to the development of operator-

based techniques such as Chyzak’s algorithm [38, 39] as well as difference-field-based techniques

mainly developed by Schneider [88, 90, 91].

Ore algebras provide a setting in which the creative telescoping problem can be formulated in

great generality. To give an idea, let us consider the case where C is a field of characteristic zero,

K = C(n, k) is the field of rational functions in n and k with coefficients in C, and A = K[Sn, Sk]

is the polynomial ring in two variables Sn, Sk with coefficients in K. The multiplication on

A is defined in such a way that we have SnSk = SkSn and Snr(n, k) = r(n + 1, k)Sn and
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Skr(n, k) = r(n, k + 1)Sk for all r ∈ K. The elements of A can then be viewed as operators

that act on a space F of bivariate sequences. For any particular sequence f ∈ F , we may then

consider the left ideal ann(f) = {L ∈ A : L · f = 0} of all the operators in A which map f to

zero. Then the problem of creative telescoping is to find some operator P ∈ C(n)[Sn] \ {0} and

some operator Q ∈ A such that P − (Sk − 1)Q ∈ ann(f). In such a representation, P is called

a telescoper for f and Q is called a certificate for P .

There are some other flavors of the creative telescoping problem which are also of interest.

In particular, there is a differential version, which is useful for integration. In this case, we

consider the Ore algebra A = C(x, y)[Dx, Dy] consisting of all linear differential operators with

coefficients in C(x, y), acting on a space F of bivariate functions. Note that the multiplication

laws for differential operators are slightly different from the multiplication laws for recurrence

operators: here we have DxDy = DyDx and Dxa = aDx + d
dxa and Dya = aDy + d

dya for all

a ∈ C(x, y). For any particular function f ∈ F , let ann(f) = {L ∈ A : L · f = 0} again denote

the left ideal consisting of all the operators in A that map f to zero. The problem of creative

telescoping is then to find some operator P ∈ C(x)[Dx]\{0} and some operator Q ∈ A such that

P −DyQ ∈ ann(f). In the context of integration, such an operator can serve the same purpose

as a creative telescoping relation of the form discussed before in the context of summation: From

(P −DyQ) ·f = 0 follows 0 =
∫ 1

0
((P −DyQ) ·f)(x, y)dy = P ·

∫ 1

0
f(x, y)dy− [(Q ·f)(x, y)]1y=0, so

we have P · F (x) = G(x) for F (x) =
∫ 1

0
f(x, y)dy and some simple and explicit function G(x).

A lot of research has been done on algorithms for creative telescoping during the past

25 years. A reasonably complete and almost up-to-date overview of the state of the art is given

in Chyzak’s Habilitation thesis from 2014 [40]. The focus of this thesis is on the algorithmic

aspects and the theoretical foundations. In addition, there are many papers that implicitly or

explicitly make use of the theory by simplifying sums or integrals using computer programs

based on the method of creative telescoping. This underlines the importance of the method.

At the same time, despite the successful work on creative telescoping that has been done in the

past, there is still a number of open problems which do not yet have satisfactory answers. In the

present article, we offer a collection of such open problems. The choice is obviously biased by

our personal interests. However, we believe that significant progress on any of these problems

would be a valuable contribution to the advance of symbolic summation.

2 Reduction-Based Algorithms

Algorithms for creative telescoping can be distinguished according to their input class or

according to the algorithmic technique they are based on. The available algorithmic techniques

can be divided into four generations of creative telescoping algorithms. Algorithms from the

first generation use elimination theory for operator ideals [43, 47, 77, 93, 94, 100]. Zeilberger’s

algorithm from 1990 [104] and its generalizations [9, 39, 63, 91] form the second generation. The

third generation is based on an idea that was first formulated by Apagodu and Zeilberger [10, 74]

and has later been refined and generalized [27–29, 67]. Algorithms from the fourth and most

recent generation of creative telescoping algorithms are called reduction-based algorithms. They
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were first introduced by Bostan et al. [15] for integration of rational functions. The basic idea is

as follows. Consider a rational function f = p/q ∈ C(x, y). The task is to find c0, . . . , cr ∈ C(x)

such that there exists g ∈ C(x, y) with

c0f + c1Dxf + · · ·+ crD
r
xf = Dyg.

Consider the partial derivatives f,Dxf,D
2
xf, · · · ∈ C(x, y). Using Hermite reduction, we can

write each of them in the form Di
xf = Dygi +hi for some gi, hi ∈ C(x, y) where hi has a square

free denominator whose degree exceeds the degree of its numerator. The denominators of all

these hi divide the square free part of the denominator of f in C(x)[y], so the C(x)-subspace

of C(x, y) generated by h0, h1, . . . has finite dimension. If the dimension is r, then we can find

c0, . . . , cr ∈ C(x), not all zero, such that c0h0 + · · · + crhr = 0. For these c0, . . . , cr we then

have

c0f + c1Dxf + · · ·+ crD
r
x = Dy(g0 + g1 + · · ·+ gr) + 0,

as desired.

The approach is not limited to rational functions and has been generalized to hyperex-

ponential terms [16], hypergeometric terms (for the summation case) [26, 57] and algebraic

functions [30]. It has also been worked out for the mixed case when the integrand is a hyper-

geometric-hyperexponential term fn(x) [18], and it is being worked out by Du, Huang and

Li [44] the q-case. At this stage, the summation case for hypergeometric-hyperexponential

terms fn(x) is still open, so this shall be our first problem.

Problem 2.1 Develop a reduction based creative telescoping algorithm which for a given

hypergeometric-hyperexponential term fn(x) computes, if possible, rational functions c0, . . . , cr

in C(x), not all zero, such that there exists a hypergeometric-hyperexponential term gn(x) with

c0fn(x) + · · ·+ crD
r
xfn(x) = gn+1(x)− gn(x).

In the pure differential case, we could consider integrands from larger classes of functions.

The largest class considered so far was the class of algebraic functions [30]. It is based on

Trager’s Hermite reduction [21, 95]. The correctness of the method relies heavily on Chevalley’s

theorem [36], according to which any non-constant algebraic function must have a pole at some

place (possibly over infinity). Since there is no analogous theorem for general D-finite functions,

not even for solutions of Fuchsian equations, it is not clear how to generalize the reduction based

algorithm from algebraic functions to (Fuchsian) D-finite functions. This is our second problem.

Problem 2.2 Develop a reduction based creative telescoping algorithm which for a given

(Fuchsian) D-finite function f(x, y) computes, if possible, rational functions c0, . . . , cr ∈ C(x),

not all zero, such that there exists an operator Q ∈ C(x, y)[Dx, Dy] with (c0 + c1Dx + · · · +
crD

r
x) · f = DyQ · f .

3 Order-Degree Curves

When a function admits a telescoper, the telescoper is not uniquely determined. The set

of telescopers rather forms a left ideal in the operator algebra C(x)[Dx] (or in C(n)[Sn], re-
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spectively). Since the operator algebras C(x)[Dx] and C(n)[Sn] are left-Euclidean domains, it

follows that there is a unique monic telescoper of minimal possible order—called the minimal

telescoper—and that all the other telescopers are left-multiples of this telescoper.

For the purpose of estimating the computational cost of creative telescoping algorithms, it

is interesting to know bounds for the size of telescopers relative to characteristic parameters

of the input. Besides bounds on the order r of the telescopers, it is also of interest to bound

the sizes of its coefficients. After clearing denominators (from left), we can assume that the

telescoper lives in C[x][Dx] or C[n][Sn], and we can ask for its degree d with respect to x or n.

Unlike C(x)[Dx] and C(n)[Sn], the rings C[x][Dx] and C[n][Sn] are not left-principal. As

a consequence, we can in general not minimize the order r and the degree d simultaneously.

Instead, we must expect that telescopers of low order r have a high degree d and telescopers of

low degree d have high order r. To describe the general situation, we use a function c : R→ R
such that for each r ≥ rmin ∈ N there is a telescoper of order r and degree at most c(r). The

graph of the function c is called an order-degree curve for the summation/integration problem

at hand.

It turns out that order-degree curves can be derived from the Apagodu-Zeilberger algo-

rithm [74]. Apagodu and Zeilberger used their approach to derive bounds on the order of

the telescopers. Again, the idea is easily explained for the case of rational functions. Con-

sider f = p/q ∈ C(x, y) and suppose for simplicity that degy p < degy q. By induction,

it can be shown that Di
xf = pi/q

i+1 for some polynomial pi ∈ C(x)[y] of degree at most

degy pi ≤ degy p + i degy q. Therefore, for any choice r ∈ N and any choice c0, . . . , cr ∈ C(x),

we have that c0f + c1Dxf + · · · + crD
r
xf is a rational function with denominator qr+1 and

a numerator whose degree is bounded by degy p + r degy q. Now consider a rational function

g = u/qr with u = u0 +u1y+ · · ·+usy
s ∈ C(x)[y]. Then Dyg = v/qr+1 for some v ∈ C(x)[y] of

degree at most s+degy q. In order to get the desired equality c0f+c1Dxf+ · · ·+crDr
xf = Dyg,

we multiply both sides by qr+1 and equate coefficients with respect to y. This gives a linear

system over C(x) for the variables c0, . . . , cr, u0, . . . , us. These are (r + 1) + (s + 1) variables.

The number of equations is at most 1 + max(degy p + r degy q, s + degq), which simplifies to

1 + degy p+ r degy q if we choose s = degy p+ (r − 1) degy q. The number of variables exceeds

the number of equations if (r+ 1) + (degy p+ (r− 1) degy q + 1) > 1 + degy p+ r degy q, i.e., if

r > deg(q)− 1. It follows that for r ≥ deg(q) the linear system will have a nontrivial solution.

For this nontrivial solution, at least one of c0, . . . , cr, u0, . . . , us is nonzero. It is then not pos-

sible that c0, . . . , cr are all zero, because by our simplifying assumption g is a rational function

whose numerator as lower degree than its denominator, so Dyg can only be zero if g is zero,

and then also u0, . . . , us would all have to be zero. We have thus shown that the minimal order

telescoper for f has order at most deg(q).

The reasoning can be refined such as to also provide bounds for the degrees of the telescopers.

This has been done for hyperexponential terms in [28] and for hypergeometric terms in [27].

The resulting curves are simple hyperbolas. However, the degree bounds are not sharp. For

the hypergeometric case, also the bit size of the integer coefficients has been analyzed [65]. For

general D-finite functions, we know bounds for the order of the telescopers but an order-degree
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curve has not yet been worked out. Therefore:

Problem 3.1 Derive an order-degree-curve for general D-finite functions.

It would also be interesting to have bounds for the bit size not only for hypergeometric input

but also for other classes, for example for hyperexponential terms.

Problem 3.2 Derive bounds for the bit size of telescopers for hyperexponential terms.

Experiments show that the order-degree curves following from the analysis of Apagodu-

Zeilberger-like algorithms are not sharp. Better bounds could be obtained if we had a better

understanding of the singularities of telescopers. It was shown in [60] how the distinction

between removable and non-removable singularities of an operator L ∈ C[x][Dx] implies a

curve that very accurately describes the degrees of the elements of (C(x)[Dx]L) ∩ C[x][Dx].

Here, a singularity of L is defined as a root of the leading coefficient polynomial (the coefficient

of the highest derivative), and such a singularity is called removable if there exists an operator

Q ∈ C(x)[Dx] such that QL is in C[x][Dx] and does not have this singularity. The terminology

is analogous for recurrence operators, and the connection to order degree curves observed in

[60] also applies to this case.

Several algorithms are known for identifying the removable singularities of an operator [3,

8, 31]. Therefore, when a telescoper is known, we obtain a very accurate order-degree curve.

However, for the design of efficient creative telescoping algorithms it would be useful to have

order-degree curves that can be easily read off from the summand/integrand, rather than from

the telescoper. The question therefore is whether it is possible to predict the removable and

non-removable singularities of a telescoper directly from the summand/integrand. This leads

to the next problem.

Problem 3.3 (a) Find a way to determine the removable and non-removable singularities

of a telescoper for a given proper hypergeometric term f(n, k) = pcndk
∏m

i=1 Γ(αin+βik+γi)
ei

(p ∈ C[n, k], c, d ∈ C, αi, βi, ei ∈ N, γi ∈ C), using less computation time than needed for

computing a telescoper.

(b) The analogous question for hyperexponential terms f(x, y)= exp(a/b)
∏m

i=1 p
ci
i (a, b, pi ∈

C[x, y], ci ∈ C).

4 Differential and Difference Fields

In the area of differential algebra, a pair (K, d) is called a differential field if K is a field

and d : K → K is such that d(a + b) = d(a) + d(b) and d(ab) = d(a)b + ad(b) for all a, b ∈
K. For example, the field K = C(x) of rational functions forms a differential field together

with the usual derivation d
dx . More generally, appropriate differential fields can be used to

emulate the behaviour of expressions involving elementary functions under differentiation. The

corresponding differential fields are called liouvillean fields. They are used in Risch’s integration

algorithm [21, 22, 83, 84]. Analogously, a difference field is a pair (K, s) where K is a field and

s : K → K is such that s(a+ b) = s(a) + s(b) and s(ab) = s(a)s(b) for all a, b ∈ K, i.e., s is an

automorphism. Difference fields corresponding to liouvillean fields are called ΠΣ-fields. They
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emulate the behaviour of expressions involving nested sums and products under shift and are

used in Karr’s summation algorithm [61, 62].

The creative telescoping problem can be formulated for differential and difference fields.

In the differential case, let K be a field with two derivations dx, dy : K → K that commute

with each other, and consider the operator algebra A = K[∂x, ∂y] with the commutation rules

∂x∂y = ∂y∂x and ∂xa = a∂x + dx(a) and ∂ya = a∂y + dy(a) for all a ∈ K. Such an operator

algebra may act on some function space F . For a given f ∈ F we may then ask, like before,

whether there exists P,Q ∈ A such that (P − ∂yQ) · f = 0. Here, P must belong to Kx[∂x],

where Kx = {u ∈ K : dy(u) = 0} is the subfield of K consisting of all elements of K that are

constant with respect to y. The version for difference fields is analogous.

Schneider [88] was the first to observe that Karr’s summation algorithm can be used to solve

the creative telescoping problem in very much the same way as Gosper’s algorithm is exploited

in Zeilberger’s algorithm. He has been working on refinements, extensions, and generalizations

of summation technology based on difference field theory for many years and has obtained spec-

tacular results, see [91] and the references given there. Yet, some questions have not yet been

addressed. In particular, there is no general theory which clarifies under which circumstances

a telescoper exists (a question that is settled for the classical hypergeometric case by the work

of Abramov et al. [1, 2, 4, 5]), or to give a priori bounds on their order or on the cost for their

computation. Similar remarks apply in the differential case, for which Raab [80] has recent-

ly formulated a creative telescoping approach based on Risch’s algorithm, but no theoretical

results concerning existence or size of telescopers were given.

Problem 4.1 For the creative telescoping problem over liouvillean fields (in the differen-

tial case) or for ΠΣ-fields (in the shift case), derive a criterion for the existence of a telescoper.

For the cases where telescopers exist, derive bounds on their order.

In contrast to D-finite functions in the differential case, elementary functions may not have a

telescoper. One obstruction to the existence of a telescoper may be the fact that an elementary

function can only be elementary integrable if all its residues are constant (cf. Section 5.6 of [22]).

A telescoper must therefore at least map all the residues of the given function to constants.

This is only possible if the residues are D-finite, which may not be the case. For example, the

function f(x, y) = x
(ex−1)(1−y) cannot have a telescoper with respect to y, because its residue

at y = 1 is x
ex−1 , which is not D-finite.

For the shift case, Schneider has an algorithm [89] which computes for a given nested sum

expression an equivalent expression in which the nesting depth is as small as possible. This is

remarkable because the equivalent representation with minimal depth does usually not belong

to the same field in which the input sum is given. So far there is no analogous algorithm for

the differential case, although it would be interesting to have one. Therefore:

Problem 4.2 Design an algorithm which finds for a given expression of nested indefinite

integrals an equivalent expression for which the the nesting depth is as small as possible.

Our last problem in this section relates to the structure of the class of elementary functions.

As this class is not closed under integration, the set of elementary integrable elementary func-
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tions forms a proper subclass. This class in turn contains integrable as well as non-integrable

functions. It is clear that for every n ∈ N, there is an elementary function which is n times

elementary integrable but not n+1 times. An example is the nth derivative of ex
2

. On the other

hand, there are also elementary functions which can be integrated arbitrarily often without ever

leaving the class of elementary functions, for example polynomials. What other functions have

this property?

Problem 4.3 Determine the class of elementary functions with the property that for

every n ∈ N, their n-fold integral is again elementary.

Using repeated partial integration, we can show that a function f(x) belongs to this class

if and only if for every n ∈ N the function xnf(x) is elementary integrable. This implies that

all rational functions are arbitrarily often elementary integrable. Note that this is not obvious

because the integral of a rational function may involve logarithms of algebraic functions, and

such functions need not be elementary integrable.

5 The Multivariate Case

While most single sums appearing in practical applications are nowadays no challenge for

a computer algebra system, multiple sums may still be too hard. One natural reason is that

multiple sums tend to involve expressions in many variables, and such expressions can quickly

become too large to be handled efficiently. Another reason is that the algorithms we know for

single sums are better than those we know for multiple sums. For single sums, Zeilberger’s

algorithm supersedes elimination methods such as the so-called Sister Celine algorithm [47, 77,

99]. But while the algorithm of Sister Celine has been generalized to multisums [100, 101],

there is no multivariate Zeilberger algorithm yet. We do not even know a multivariate Gosper

algorithm.

Problem 5.1 Develop an algorithm which takes as input a multivariate hypergeometric

term h in m discrete variables k1, . . . , km, and decides whether there exist hypergeometric terms

g1, . . . , gm such that

h = ∆1(g1) + · · ·+ ∆m(gm).

Here, ∆i is the forward difference operator with respect to the variable ki, i.e.,

∆if(k1, . . . , km) = f(k1, . . . , ki + 1, . . . , km)− f(k1, . . . , ki, . . . , km).

A solution of this problem would be an important step towards the development of a

Zeilberger-like algorithm for multisums. Recently, Chen and Singer [32, 33] have given a neces-

sary and sufficient condition for the case when h is a rational function in two variables. Their

criterion was then turned into an algorithm by Hou and Wang [56]. In [25] these results were

used to derive some conditions on the existence of telescopers for trivariate rational functions.

Summability criteria for larger classes, such as the class of hypergeometric terms, may analo-

gously allow for the formulation of existence criteria for telescopers in the multivariate setting.

In the long run, we would hope that a multivariate Gosper algorithm serves as a starting point
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for the development of a reduction-based creative telescoping algorithm for the multivariate

setting.

The corresponding question for bivariate rational functions in the differential case has been

studied already by Picard [78, 79] many years ago. More recently, Griffiths and Dwork [45,

46, 51, 52] gave a method that works for any number of variables but requires some kind of

regularity of the denominator. An algorithm for creative telescoping based on these results was

given by Bostan et al. [19].

6 Binomial Sums

The principal application of creative telescoping is the construction of recurrence relations

satisfied by definite sums. As already indicated in the introduction, such a recurrence can be

obtained from a telescoper-certificate pair for the summand. However, some care is necessary

for this step. In order to be able to sum a relation

c0(n)f(n, k) + · · ·+ cr(n)f(n+ r, k) = g(n, k + 1)− g(n, k)

for k from 0 to n, we must assure that the right hand side involving the certificate g(n, k)

does not have any poles for the values k in this range. Unfortunately, such poles do appear

in examples, and although they usually cancel each other nicely, it is not easy to verify this

algorithmically. See [42] for a detailed case study in this context.

For indefinite hypergeometric single sums, Abramov and Petkovsek [7] discuss an alternative

to Gosper’s algorithm that handles special points properly. Ryabenko [87] gives an accurate

summation algorithm for definite sums over a particular class of hypergeometric terms. Also

Harrison [54] has recently discussed this issue from the perspective of formal reasoning. A

continuation of this work towards a rigorous summation algorithm would be worthwhile.

Problem 6.1 Develop an algorithm that correctly transforms a telescoper-certificate pair

for a hypergeometric term into a recurrence for the corresponding definite sum. In particular,

the algorithm should properly take care of any possible issues arising from poles in the certificate.

It appears that the situation is somewhat easier for summands with compact support. A

hypergeometric term f(n, k) is said to have compact support if for every n ∈ Z there are only

finitely many k ∈ Z such that f(n, k) is different from zero. In this case, the infinite sum∑∞
k=−∞ f(n, k) is in fact a terminating sum. For example, we have

∑n
k=0

(
n
k

)
=
∑∞

k=−∞
(
n
k

)
because

(
n
k

)
= 0 when k < 0 or k > n.

When the sum over k runs through all integers (and there are no issues with poles in the

certificate), the transformation of a telescoper-certificate pair to a recurrence for the definite

sum is particularly nice. One reason is that the operator
∑∞

k=−∞ commutes with the shift

operator Sn, and therefore, with the telescoper. A second reason is that the right hand side∑∞
k=−∞

(
g(n, k + 1)− g(n, k)

)
invariably collapses to zero (because when f(n, k) has compact

support, then so does g(n, k)). Therefore, in the case of compact support, the telescoper for

f(n, k) is precisely the recurrence for
∑

k f(n, k).
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Viewing hypergeometric terms as algebraic objects, it is somewhat unsatisfactory that the

concept of compact support is defined “analytically” in terms of the values of sequences as-

sociated to the terms. In view of a possible automation, a more algebraic explanation of the

phenomenon would be useful. A finite summation operator such as Σ :=
∑n

k=0 does not com-

mute with the shift Sn. However, if we introduce the evaluation operator En that acts on

bivariate terms by setting k to n, then we have the commutation rule ΣSn = SnΣ−EnSn. This

rule expresses the fact
∑n

k=0 f(n + 1, k) =
∑n+1

k=0 f(n + 1, k) − f(n + 1, n + 1). Now consider

a telescoper P = c0(n) + c1(n)Sn + · · · + cr(n)Sr
n with a corresponding certificate Q, so that

(P −∆kQ) · f(n, k) = 0. Applying Σ to this relation and using the commutation rules leads to

PΣ · f(n, k) =

((
c1(n)EnSn + · · ·+ cr(n)

r∑
i=1

Sr−i
n EnS

i
n

)
+ (EnSnQ− E0Q)

)
· f(n, k),

where E0 denotes an evaluation operator that sets k to 0. We see that the telescoper P translates

directly into an annihilating operator for the sum if and only if the right hand side is zero, i.e.,

if the operator on the right annihilates the summand. Note that it is irrelevant whether f(n, k)

has compact support.

For the differential case, Regensburger, Rosenkranz and collaborators have developed a

theory of operator algebras that include both derivations as well as integration operators. Their

principal motivation is to solve boundary value problems, see [53, 81, 82, 85, 86] and the

references given there for an overview of their results. Their algebras also contain evaluation

operators similar to the En introduced above. We would like to see an analogous theory for

operator algebras involving summation as well as shift operators.

Problem 6.2 Develop a theory of operator algebras including shift as well as summation

operators, analogous to the theory of Regensburger and Rosenkranz. In this theory, find an

algebraic explanation why the right hand side of a creative telescoping relation often vanishes

for binomial sums.

In a recent paper, Bostan et al. [20] approach the problems related to boundary conditions

and possible poles in the certificate from a different direction. Instead of applying creative

telescoping directly to the sum in question, they translate the summation problem into an

integration problem and apply creative telescoping to this problem. One advantage of this

approach is that for the resulting contour integrals there are no problems related to singularities,

because the path of integration can always be deformed such as to avoid all the singularities.

For this reason, it is not necessary to inspect the certificate, and it is possible to employ

efficient algorithms which only compute the telescoper. So far the approach does not apply to

all hypergeometric sums but only to a subclass. They call it the class of binomial sums and

they show for the case of one variable that a sequence is a binomial sum (in the sense of their

definition) if and only if it is the diagonal of a multivariate rational function. The diagonal

of a multivariate power series
∑∞

n1,...,nr=0 an1,...,nr
xn1
1 · · ·xnr

r is defined as the univariate series∑∞
n=0 an,n,...,nx

n. The definition of binomial sums also covers sums with several variables, but

no characterization of binomial sums in several variables is given in [20].
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Problem 6.3 Prove or disprove: A multivariate sequence (bk1,...,ks) in s discrete variables

is a binomial sum in the sense of [20] if and only if there exists a rational power series

∞∑
n1,...,nr=0

an1,...,nrx
n1
1 · · ·xnr

r

and i1, . . . , is ∈ N with i1 + · · ·+ is = r such that for all k1, . . . , ks we have

bk1,...,ks
= ak1,...,k1︸ ︷︷ ︸

i1

,k2,...,k2︸ ︷︷ ︸
i2

,...,ks,...,ks︸ ︷︷ ︸
is

An important open problem in the context of diagonals is Christol’s conjecture [37], which

says that every formal power series with integer coefficients and a positive radius of convergence

which is the solution of a linear differential equation with polynomial coefficients is the diagonal

of some rational power series. In this conjecture, no statement is made about the number of

variables of the rational power series. Bostan et al. [20] remark that we must at least allow for

three variables, and that no explicit example is known which requires more.

Because of its connection to diagonals, the class of binomial sums as introduced in [20] is not

as artificial as it seems at first glance. Nevertheless, also a natural restriction is a restriction.

It would be interesting to extend the applicability of the algorithm to a wider class.

Problem 6.4 Generalize the algorithm of [20] from binomial sums to arbitrary hyperge-

ometric sums.

7 Nonlinear Equations and Annihilators of Positive Dimension

In the theory of “holonomic systems” [105], summands and integrands are represented by

ideals of operators by which they are annihilated. Properties of the ideal are used to ensure

the existence of telescopers and the termination of algorithms. A condition that is typically

imposed is that the ideal has Hilbert dimension 0. In this case, the annihilated function is called

D-finite. Many functions of practical relevance happen to be D-finite, but it is natural to ask

to whether D-finiteness is really needed for creative telescoping to succeed. It turns out that

it is not. Already in the 1990s, Majewicz has given a variant of creative telescoping applicable

to Abel-type identities [72]. The key observation is that such identities exist because the sum

has more than one free variable, and this can compensate for the lack of relations preventing

the summand from being D-finite. A summation algorithm by Kauers [63] for sums involving

Stirling numbers and an algorithm by Chen and Sun [34] for sums involving Bernoulli numbers

are based on similar observations. In 2009, the phenomenon was formulated in more general

terms by Chyzak et al. [41]. They showed that telescopers can exist also when the annihilator

of the summand/integrand has positive dimension. More precisely, consider a function with n

free variables and k summation/integration variables, let I be the annihilator of the function

and let T be the ideal of telescopers (in the smaller operator algebra corresponding only to the

n free variables). Then they show that dimT ≤ dim I + (p − 1)n, where p ∈ N is a quantity

they call the “polynomial growth” of the ideal I. Not much is known about this quantity. It
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seems that we have p = 1 in most cases of practical interest, but we do not know whether it

is connected to more classic quantities defined for (operator) ideals, or even how to compute it

for a given ideal I.

Problem 7.1 Clarify the meaning of “polynomial growth” introduced in [41]. Can the

definition in [41] be replaced by another one, possibly not equivalent, which also satisfies the

bound on dim I stated above? Is there an efficient algorithm for computing the polynomial

growth of a given operator ideal?

For sums involving Stirling numbers, it would also be conceivable to have a creative tele-

scoping algorithm that exploits the special form of their generating function. For example,

for the Stirling numbers of the second kind,
∑∞

n,k=0 S(n, k)xn

n! y
k = exp(y(ex − 1)) is not D-

finite but still elementary, so generalized techniques as discussed in Section 4 might apply.

The function f(x, y) = exp(y(ex − 1)) is also an example of a function satisfying a system

of algebraic differential equations (ADE): we have fx(x, y) − yfy(x, y) − yf(x, y) = 0 and

f(x, y)fy,y(x, y) − fy(x, y)2 = 0. Other prominent examples of non-D-finite functions satis-

fying algebraic differential equations are the generating function for the partition numbers∏∞
n=0(1 − xn)−1 and the Weierstraß ℘-function. Solutions of ADEs also appear in combina-

torics, for example as generating functions of certain restricted lattice walks [14].

While there is a reasonably well developed elimination theory for systems of algebraic differ-

ential equations [35, 48, 49, 58, 73], no creative telescoping algorithm for this class of functions

is known.

Problem 7.2 Develop a creative telescoping algorithm applicable to functions satisfying

systems of ADEs.

For approaching this problem, it may become appropriate to adapt the specification of the

creative telescoping problem. In a context where quantities are defined by non-linear equations,

it may be too restrictive to require that the telescoper be a linear operator. On the other hand,

allowing non-linear operators as telescoper does not seem sensible either as long as the main

motivation for creative telescoping is to derive equations for definite integrals, because the

application of an integral operator does in general not commute with such an operator. It is a

part of the problem to determine a suitable adaption of the creative telescoping problem.

8 The Inverse Problem

Using creative telescoping, we can obtain a recurrence satisfied by a given definite sum.

The recurrence then serves as a basis for obtaining further information about the sum, such as

asymptotic estimates or closed from expressions. The classical application is to use Zeilberger’s

algorithm in combination with Petkovsek’s algorithm [76, 77] in order to decide whether a given

definite hypergeometric sum admits a hypergeometric term as a closed form. If the sum comes

from some application, there is a certain chance that such a representation exist. However, an

arbitrarily chosen sum is not likely to have a closed form. It is even less likely for an arbitrary

recurrence (which may or may not come from creative telescoping) to have a hypergeometric
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closed form. People have therefore designed algorithms for finding more general types of closed

form solutions of recurrence equations, for example d’Alembertian solutions [6, 77] or liouvillean

solutions [55, 97]. Even more generally, we could ask whether a given recurrence admits a

solution that can be expressed as a definite sum. In a way, this would be the inverse problem of

creative telescoping. Chen and Singer in [32] gave a characterization of possible linear operator

that can be minimal telescopers for bivariate rational functions. However, no algorithm is

known for solving this problem in the general case, but it would be very valuable for practical

applications.

Problem 8.1 Design an algorithm which takes as input a nonzero recurrence operator

P ∈ Q[n][Sn] and finds, if at all possible, a bivariate hypergeometric term f(n, k) which has P

as a telescoper.

The analogous problems for the differential case and the two mixed cases are interesting as

well.

In recent years there has been some activity by van Hoeij and collaborators concerning

solutions of recurrences or differential equations in terms of hypergeometric series [23, 24, 59,

70, 98]. In a way, these algorithms solve only special cases of the inverse problem for creative

telescoping, thus indicating perhaps that the general problem may be very difficult.

9 Computational Challenges

Creative telescoping is not only of theoretical interest but it is also a valuable tool in all

contexts where summation and integration problems arise that are beyond the scope of any

reasonable hand-calculation. For example, the proof of the qTSPP conjecture [69], which was

obtained using Koutschan’s Mathematica package [68], involves a creative telescoping problem

that leads to a certificate of 4Gb size. Such computations are clearly not feasible by hand,

and they are also challenging for computers. We shall therefore conclude this paper with two

explicit computational challenges which to our knowledge are not feasible by any software

currently available.

The first problem is quoted from [66] and concerns the computation of diagonals. Again, the

diagonal of a multivariate series
∑∞

n1,...,nd=0 an1,n2,...,nd
xn1
1 · · ·x

nd

d is defined as the univariate

series
∑∞

n=0 an,n,...,nx
n. The diagonal of a D-finite series is D-finite [71], and creative telescoping

can be used, at least in principle, to derive a recurrence for the diagonal terms an,n,...,n from a

given set of defining equations for the original multivariate series.

Problem 9.1 For d = 4, . . . , 12, prove recurrence equations for the diagonals of the

rational series 1
/(

1−
∑d

i=1
xi

1−xi

)
conjectured in [66].

For d = 1, 2, the problem is easy. For d = 3, it was solved in [17].

In 2002, Beck and Prixton made an effort to compute the Ehrhart polynomial of Birkhoff

polytopes [11], a quantity that is relevant in discrete geometry [12]. There is a Birkhoff poly-

nomial associated to every n ∈ N. They succeeded in computing the full Ehrhart polynomial

for all n ≥ 9, and the most significant coefficient for the case n = 10. As a computational
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challenge, we pose the computation of the full Ehrhart polynomial for n = 10, 11, 12. We take

advantage of Theorem 2 of [11], where these polynomials are expressed as integrals that are

amenable to creative telescoping.

Problem 9.2 For n = 10, 11, 12, compute the polynomial

Hn(t) =
1

(2πi)n

∫
|z1|=ε1

· · ·
∫
|zn|=εn

(z1 · · · zn)−t−1
( n∑

k=1

zt+n−1
k∏

j 6=k(zk − zj)

)n

dzn · · · dz1,

where 0 < ε1, . . . , εn < 1 are arbitrary.

This problem is similar to the previous one in so far as diagonals can be rephrased as

contour integrals. But it is different in that we ask for the polynomials Hn(t) rather than

for some differential equation satisfied by Hn(t). Following the standard approach, we would

first use creative telescoping to compute such a differential equation, then determine the space

of polynomial solutions of this equation, and then find the unique element of this space that

matches the initial terms of Hn(t). This element must be Hn(t) itself. In the present context,

this approach may not be feasible because the computation of the first coefficients of Hn(t)

is not much easier than the computation of the whole polynomial. So part of the question is

whether creative telescoping can help to compute the polynomials directly, without the detour

through a differential equation.
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[77] Marko Petkovšek, Herbert Wilf, and Doron Zeilberger. A = B. AK Peters, Ltd., 1997.

[78] Emile Picard. Sur les periodes des integrales doubles et sur une classe d’equations differentielles

lineaires. Annales scientifiques de l’E.N.S., 50:393–395, 1933.

[79] Emile Picard and Georges Simart. Theorie des fonctions algebriques de deux variables indepen-

dantes. Gauthier-Villars, 1906.

[80] Clemens Raab. Definite Integration in Differential Fields. PhD thesis, Johannes Kepler Univer-

sity, 2012.

[81] Georg Regensburger. Symbolic computation with integro-differential operators. In Proceedings

of ISSAC’16, pages 17–18, 2016.

[82] Georg Regensburger, Markus Rosenkranz, and Johannes Middeke. A skew polynomial approach

to integro-differential operators. In Proceedings of ISSAC’09, pages 287–294, 2009.

[83] Robert H. Risch. The problem of integration in finite terms. Transactions of the American

Mathematical Society, 139:167–189, 1969.

[84] Robert H. Risch. The solution of the problem of integration in finite terms. Bulletin of the

American Mathematical Society, 79:605–608, 1970.

[85] Markus Rosenkranz and Georg Regensburger. Integro-differential polynomials and operators. In

Proceedings of ISSAC’08, pages 261–268, 2008.

[86] Markus Rosenkranz and Georg Regensburger. Solving and factoring boundary problems for

linear ordinary differential equations in differential algebras. Journal of Symbolic Computation,

43(8):515–544, 2008.

[87] Anna A. Ryabenko. A definite summation of hypergeometric terms of special kind. Programming

and Computer Software, 37(4):187–191, 2011.

[88] Carsten Schneider. Symbolic Summation in Difference Fields. PhD thesis, RISC-Linz, Johannes

Kepler Universität Linz, 2001.

[89] Carsten Schneider. Finding telescopers with minimal depth for indefinite nested sum and product

expressions. In Proceedings of ISSAC’05, pages 285–292, July 2005.

[90] Carsten Schneider. A refined difference field theory for symbolic summation. Journal of Symbolic

Computation, 43:611–644, 2008.

[91] Carsten Schneider. Simplifying multiple sums in difference fields. In Johannes Blümlein and
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