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ABSTRACT
Continuing a series of articles in the past few years on cre-
ative telescoping using reductions, we develop a new algo-
rithm to construct minimal telescopers for algebraic func-
tions. This algorithm is based on Trager’s Hermite reduction
and on polynomial reduction, which was originally designed
for hyperexponential functions and extended to the algebraic
case in this paper.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algebraic Algorithms

General Terms
Algorithms, Theory

Keywords
Algebraic function, Integral basis, Trager’s Reduction, Tele-
scoper

1. INTRODUCTION
The classical question in symbolic integration is whether

the integral of a given function can be written in “closed
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form”. In its most restricted form, the question is whether
for a given function f belonging to some domain D there
exists another function g, also belonging to D, such that
f = g′. For example, if D is the field of rational functions,
then for f = 1/x2 we can find g = −1/x, while for f = 1/x
no suitable g exists. When no g exists in D, there are sev-
eral other questions we may ask. One possibility is to ask
whether there is some extension E of D such that in E there
exists some g with g′ = f . For example, in the case of ele-
mentary functions, Liouville’s principle restricts the possible
extensions E, and there are algorithms which construct such
extensions whenever possible. Another possibility is to ask
whether for some modification f̃ ∈ D of f there exists a
g ∈ D such that f̃ = g′. Creative telescoping is a question
of this type. Here we are dealing with domains D containing
functions in several variables, say x and t, and the question
is whether there is a linear differential operator P , nonzero
and free of x, such that there exists a g ∈ D with P · f = g′,
where g′ denotes the derivative of g with respect to x. Typ-
ically, g itself has the form Q · f for some operator Q (which
may be zero and need not be free of x). In this case, we call
P a telescoper for f , and Q a certificate for P .

Creative telescoping is the backbone of definite integra-
tion, because P · f = (Q · f)′ implies, for instance, P ·∫ 1

0
f(x, t)dx = (Q · f)(1) − (Q · f)(0). A telescoper P for

f thus gives rise to an annihilating operator for the definite
integral F (t) =

∫ 1

0
f(x, t)dx.

Example 1 (Manin [20]). The algebraic function

f(x, t) =
1√

x(x− 1)(x− t)
does not admit an elementary integral with respect to x.
However, we have P · f = (Q · f)′ for

P = 4(t− 1)tD2
t + 4(2t− 1)Dt + 1, Q =

2x(x− 1)

t− x .

This implies

P ·
∫ 1

0

f(x, t)dx =
[2x(x− 1)

t− x f(x, t)
]x=1

x=0
,

so the integral F (t) =
∫ 1

0
1√

x(x−1)(x−t)
dx satisfies the differ-

ential equation

4(t− 1)t F ′′(t) + 4(2t− 1)F ′(t) + F (t) = 0.



In the common case when the right hand side collapses
to zero, we say that the integral has “natural boundaries”.
Readers not familiar with creative telescoping are referred to
the literature [21, 25, 27, 26, 18, 16] for additional motiva-
tion, theory, algorithms, implementations, and applications.

There are several ways to find telescopers for a given
f ∈ D. In recent years, an approach has become popular
which has the feature that it can find a telescoper without
also constructing the corresponding certificate. This is in-
teresting because certificates tend to be much larger than
telescopers, and in some applications, for instance when an
integral has natural boundaries, only the telescoper is of
interest. This approach was first formulated for rational
functions f ∈ C(t, x) in [1] and later generalized to ratio-
nal functions in several variables [3, 19], to hyperexponen-
tial functions [2] and, for the shift case, to hypergeometric
terms [7, 14] and binomial sums [4]. In the present paper,
we will extend the approach to algebraic functions.

The basic principle of the general approach is as follows.
Assume that the x-constants Constx(D) = { c ∈ D : c′ = 0 }
form a field and that D is a vector space over the field of
x-constants. Assume further that there is some Constx(D)-
linear map [·] : D → D such that for every f ∈ D there exists
a g ∈ D with f − [f ] = g′. Such a map is called a reduction.
For example, inD = C(t, x) Hermite reduction [13] produces
for every f ∈ D some g ∈ D such that f−g′ is either zero or
a rational function with a square-free denominator. In this
case, we can take [f ] = f − g′. In order to find a telescoper,
we can compute [f ], [∂t · f ], [∂2

t · f ], . . . , until we find that
they are linearly dependent over Constx(D). Once we find
a relation p0[f ] + · · · + pr[∂

r
t · f ] = 0, then, by linearity,

[p0f + · · ·+ pr∂
r
t · f ] = 0, and then, by definition of [·], there

exists a g ∈ D such that (p0 + · · ·+ pr∂
r
t ) · f = g′. In other

words, P = p0 + · · ·+ pr∂
r
t is a telescoper.

There are two ways to guarantee that this method ter-
minates. The first requires that we already know for other
reasons that a telescoper exists. The idea is then to show
that the reduction [·] has the property that when f ∈ D is
such that there exists a g ∈ D with g′ = f , then [f ] = 0. If
this is the case and P = p0 + · · ·+pr∂

r
t is a telescoper for f ,

then P · f is integrable in D, so [P · f ] = 0, and by linear-
ity [f ], . . . , [∂rt · f ] are linearly dependent over Constx(D).
This means that the method won’t miss any telescoper. In
particular, this argument has the nice feature that we are
guaranteed to find a telescoper of smallest possible order r.
This approach was taken in [7]. The second way consists
in showing that the Constx(D)-vector space generated by
{ [∂it · f ] : i ∈ N } has finite dimension. This approach was
taken in [1, 2]. It has the nice additional feature that ev-
ery bound for the dimension of this vector space gives rise
to a bound for the order of the telescoper. In particular, it
implies the existence of a telescoper.

In this paper, we show that Trager’s Hermite reduction for
algebraic functions directly gives rise to a reduction-based
creative telescoping algorithm via the first approach (Sec-
tion 4). We will combine Trager’s Hermite reduction with
a second reduction, called polynomial reduction (Section 5),
to obtain a reduction-based creative telescoping algorithm
for algebraic functions via the second approach (Section 6).
This gives a new bound for the order of the telescopers, and
in particular an independent proof for their existence.

A few years ago, Chen et al. [9] have already considered
the problem of creative telescoping for algebraic functions.

They have pointed out that by canceling residues of the
integrand, a given creative telescoping problem can be re-
duced to a creative telescoping problem for a function with
no residues, which may be much smaller than the original
function. For this smaller function, however, they still need
to construct a certificate. With some regularity assumption
on certificates, Bostan et al. [3] gave a telescoping algorithm
for multivariate rational functions using Griffiths-Dwork re-
duction, which then leads to a reduction-based telescoping
algorithm for algebraic functions by Theorem 6 of [9]. The
algorithms presented in the present paper can find minimal
telescopers for bivariate algebraic functions without any reg-
ularity assumption on certificates. Our results also translate
into a certificate-free creative telescoping algorithm for ra-
tional functions in three variables.

2. ALGEBRAIC FUNCTIONS
Throughout the paper, let C be a field of characteristic

zero, K = C(t), and K̄ the algebraic closure of K. We
consider algebraic functions over K. For some absolutely
irreducible polynomial m ∈ K[x, y], we consider the field
A = K(x)[y]/〈m〉. If n = degym, then every element of A
can be written uniquely in the form f = f0 + f1y + · · · +
fn−1y

n−1 for some f0, . . . , fn−1 ∈ K(x).
The element y ∈ A is a solution of the equation m = 0, be-

cause in A we have m = 0 by construction. The polynomial
m also admits n distinct solutions in the field

K̄〈〈x− a〉〉 :=
⋃

r∈N\{0}

K̄(( (x− a)1/r ))

of formal Puiseux series around a ∈ K̄. There are also n
distinct solutions in the field

K̄〈〈x−1〉〉 :=
⋃

r∈N\{0}

K̄((x−1/r))

of formal Puiseux series around ∞. Since K̄〈〈x−1〉〉 and the
K̄〈〈x − a〉〉 are fields, we can associate to every f ∈ A and
every a ∈ K̄∪{∞} in a natural way n distinct series objects
with fractional exponents, by plugging any of the n distinct
series solutions of m into the representation f = f0 + · · · +
fn−1y

n−1. In other words, for every a ∈ K̄ ∪ {∞} there are
n distinct natural ring homomorphisms from A to K〈〈x−a〉〉
or K〈〈x−1〉〉, respectively.

In the field A as well as the fields K̄〈〈x−a〉〉 and K̄〈〈x−1〉〉,
we have natural differentiations with respect to x. For a se-
ries, differentiation is defined termwise using the usual rules(
(x − a)ν+n

)′
= (ν + n)(x − a)ν+n−1 and

(
(x−1)ν+n

)′
=

−(ν + n)(x−1)ν+n+1. For the elements of A, note first that
m(x, y) = 0 implies

m(x, y)′ = (
d

dx
m)(x, y) + (

d

dy
m)(x, y)y′ = 0, (1)

so y′ = −( d
dx
m)(x, y)/( d

dy
m)(x, y). Regarding m as element

of K(x)[y] and observing that 0 < degy
d
dy
m < n, we have

gcd(m, d
dy
m) = 1 in K(x)[y], so d

dy
m is invertible in A =

K(x)[y]/〈m〉. Note that we have x′ = 1 and c′ = 0 for all
c ∈ K = C(t), in particular also t′ = 0. The derivative
of an arbitrary element f ∈ A, say f = p(x, y) for some
p ∈ K(x)[y] of degree less than n, is

f ′ = (
d

dx
p)(x, y) + (

d

dy
p)(x, y)y′.



Thus we have an action of the algebraK(x)[∂x] of differential
operators on A.

The derivations on A and on the series domains are com-
patible in the sense that for every f ∈ A, the series associ-
ated to f ′ are precisely the derivatives of the series associ-
ated to f .

In the context of creative telescoping, we will also need
to differentiate with respect to t. The action of K(x)[∂x]
on A and on the series domains is extended to an action
of K(x)[∂x, ∂t] on A and on the series domains. On A, the
action of ∂t is defined as the unique derivation with ∂t ·t = 1
and ∂t · x = 0, analogously to the construction above. For
the series domains, ∂t acts on the coefficients (which are ele-
ments of K̄) in the natural way, and does not affect x. Since
each particular element c ∈ K̄ belongs to a finite algebraic
extension of K, the result ∂t · c is uniquely determined. The
actions of the larger operator algebra K(x)[∂x, ∂t] on A and
on the series domains are compatible to each other.

In this paper, the notation f ′ will always refer to the
derivative ∂x · f with respect to x, not with respect to t.

Trager’s Hermite reduction for algebraic functions rests on
the notion of integral bases. Let us recall the relevant defi-
nitions and properties. Although the elements of a Puiseux
series ring K̄〈〈x− a〉〉 are formal objects, the series notation
suggests certain analogies with complex functions. Terms
(x − a)α or ( 1

x
)α are called integral if α ≥ 0. A series in

K̄〈〈x − a〉〉 or K̄〈〈x−1〉〉 is called integral if it only contains
integral terms. A non-integral series is said to have a pole
at the reference point. Note that in this terminology also
1/
√
x has a pole at 0. Note also that the terminology only

refers to x but not to t.
Integrality at a ∈ K̄ is not preserved by differentiation,

but if f is integral at a, then so is (x − a)f ′. On the other
hand, integrality at infinity is preserved by differentiation,
we even have the stronger property that when f is integral
at infinity, then not only f ′ but also xf ′ = (x−1)−1f ′ is
integral at infinity.

An element f ∈ A = K(x)[y]/〈m〉 is called (locally) in-
tegral at a ∈ K̄ ∪ {∞} if for every series associated to y
the corresponding series for f is integral. The element f
is called (globally) integral if it is locally integral at every
a ∈ K̄ (“at all finite places”). This is the case if and only if
the minimal polynomial of f in K[x, y] is monic with respect
to y. Because of Chevalley’s theorem [10, page 9, Corollary
3], any non-constant algebraic function has at least one pole.
Equivalently, an element f is integral at all a ∈ K̄ ∪ {∞} if
and only if it is constant.

For an element f ∈ A to have a “pole” at a ∈ K̄ ∪ {∞}
means that f is not locally integral at a; to have a “double
pole” at a means that (x − a)f (or 1

x
f if a = ∞) is not

integral; to have a “double root” at a means that f/(x− a)2

(or f/( 1
x

)2 = x2f if a =∞) is integral, and so on.
The set of all globally integral elements f ∈ A forms a

K[x]-submodule of A. A basis {ω1, . . . , ωn} of this module
is called an integral basis for A. Such bases exist, and al-
gorithms are known for computing them [24, 22, 15]. For a
fixed a ∈ K̄, let K̄(x)a be the ring of rational functions p/q
with q(a) 6= 0, and write K̄(x)∞ for the ring of all rational
functions p/q with degx(p) ≤ degx(q). Then the set of all
f ∈ A which are locally integral at some fixed a ∈ K̄ ∪ {∞}
forms a K̄(x)a-module. A basis of this module is called a
local integral basis at a for A. Also local integral bases can

be computed.
An integral basis {ω1, . . . , ωn} is always also aK(x)-vector

space basis of A. A key feature of integral bases is that they
make poles explicit. Writing an element f ∈ A as a linear
combination f =

∑n
i=1 fiωi for some fi ∈ K(x), we have

that f has a pole at a ∈ K̄ if and only if at least one of the
fi has a pole there.

Lemma 2. Let {ω1, . . . , ωn} be a local integral basis of A
at a ∈ K̄ ∪ {∞}. Let f ∈ A and f1, . . . , fn ∈ K(x) be such
that f =

∑n
i=1 fiωi. Then f is integral at a if and only if

each fiωi is integral at a.

Proof. The direction “⇐” is obvious. To show “⇒”, suppose
that f is integral at a. Then there exist w1, . . . , wn ∈ K̄(x)a
such that f =

∑n
i=1 wiωi. Thus

∑n
i=1(wi − fi)ωi = 0, and

then wi = fi for all i, because ω1, . . . , ωn is a vector space
basis of A. As elements of K̄(x)a, the fi are integral at a,
and hence also all the fiωi are integral at a.

The lemma says in particular that poles of the fi in a
linear combination

∑n
i=1 fiωi cannot cancel each other.

Lemma 3. Let {ω1, . . . , ωn} be an integral basis of A. Let
e ∈ K[x] and M = ((mi,j))

n
i,j=1 ∈ K[x]n×n be such that

e ω′i =

n∑
j=1

mi,jωj

for i = 1, . . . , n and gcd(e,m1,1, . . . ,mn,n) = 1. Then e is
squarefree.

Proof. Let a ∈ K̄ be a root of e. We show that a is not a mul-
tiple root. Since ωi is integral, it is in particular locally inte-
gral at a. Therefore (x− a)ω′i is locally integral at a. Since
ω1, . . . , ωn is an integral basis, it follows that (x−a)mi,j/e ∈
K̄(x)a for all i, j. Because of gcd(e,m1,1, . . . ,mn,n) = 1, no
factor x− a of e can be canceled by all the mi,j . Therefore
the factor x− a can appear in e only once.

Lemma 4. Let {ω1, . . . , ωn} be a local integral basis at in-
finity of A. Let e ∈ K[x] and M = ((mi,j))

n
i,j=1 ∈ K[x]n×n

be defined as in Lemma 3. Then degx(mi,j) < degx(e) for
all i, j.

Proof. Since every ωi is locally integral at infinity, so is ev-
ery xω′i. Since ω1, . . . , ωn is an integral basis at infinity,
it follows that xmi,j/e ∈ K̄(x)∞ for all i, j. This means
that 1 + degx(mi,j) ≤ degx(e) for all i, j, and therefore
degx(mi,j) < degx(e), as claimed.

A K(x)-vector space basis {ω1, . . . , ωn} of A is called nor-
mal at a ∈ K̄ ∪ {∞} if there exist r1, . . . , rn ∈ K(x) such
that {r1ω1, . . . , rnωn} is a local integral basis at a. Trager
shows how to construct an integral basis which is normal at
infinity from a given integral basis and a given local integral
basis at infinity [24].

Although normality is a somewhat weaker condition on a
basis than integrality, it also excludes the possibility that
poles in the terms of a linear combination of basis elements
can cancel:

Lemma 5. Let {ω1, . . . , ωn} be a basis of A which is nor-
mal at some a ∈ K̄ ∪ {∞}. Let f =

∑n
i=1 fiωi for some

f1, . . . , fn ∈ K(x). Then f has a pole at a if and only if
there is some i such that fiωi has a pole at a.



Proof. Let r1, . . . , rn ∈ K(x) be such that r1ω1, . . . , rnωn is
a local integral basis at a. By f =

∑n
i=1(fir

−1
i )(riωi) and

by Lemma 2, f is integral at a iff all fir
−1
i riωi = fiωi are

integral at a.

3. HERMITE REDUCTION
We now recall the Hermite reduction for algebraic func-

tions [24, 12, 6]. Let {ω1, . . . , ωn} be an integral basis for A.
Further let e,mi,j ∈ K[x] (1 ≤ i, j ≤ n) be such that
eω′i =

∑n
j=1mi,jωi and gcd(e,m1,1,m1,2, . . . ,mn,n) = 1.

For describing the Hermite reduction we fix an integrand
f ∈ A and represent it in the integral basis, i.e., f =∑n
i=1(fi/D)ωi with D, f1, . . . , fn ∈ K[x]. The purpose is to

find g, h ∈ A such that f = g′ + h and h =
∑n
i=1(hi/D

∗)ωi
with h1, . . . , hn ∈ K[x] and D∗ denoting the squarefree part
of D. As differentiating the ωi can introduce denominators,
namely the factors of e, it is convenient to consider those de-
nominators from the very beginning on, which means that
we shall assume e | D. Note that gcd(D, f1, . . . , fn) can
then be nontrivial. Let v ∈ K[x] be a nontrivial squarefree
factor of D of multiplicity µ > 1. Then D = uvµ for some
u ∈ K[x] with gcd(u, v) = 1 and gcd(v, v′) = 1. One step of
the Hermite reduction is as follows:

n∑
i=1

fi
uvµ

ωi =

( n∑
i=1

gi
vµ−1

ωi

)′
+

n∑
i=1

hi
uvµ−1

ωi, (2)

where gi, hi ∈ K[x] and degx(gi) < degx(v). The existence
of such gi’s and hi’s follows from the crucial fact that the
elements si := uvµ(v1−µωi)

′ with i ∈ {1, . . . , n} form a local
integral basis at each root of v [24, page 46]. By a repeated
application of such reduction steps, one can decompose any
f ∈ A as f = g′ + h where the denominators of the coeffi-
cients of h are squarefree and the coefficients of g are proper
rational functions (i.e., their numerators have smaller degree
than their denominators).

It was observed that Hermite reduction itself often takes
less time than the construction of an integral basis. If Her-
mite reduction is applied to some other basis, for instance
the standard basis {1, y, . . . , yn−1}, it either succeeds or it
runs into a division by zero. Bronstein [5] noticed that when
a division by zero occurs, then the basis can be replaced by
some other basis that is a little closer to an integral basis,
just as much as is needed to avoid this particular division by
zero. After finitely many such basis changes, the Hermite
reduction will come to an end and produce a correct output.
This variant is known as lazy Hermite reduction.

4. TELESCOPING VIA REDUCTIONS:
FIRST APPROACH

Recall from the introduction that reduction-based creative
telescoping requires some K-linear map [·] : A→ A with the
property that f− [f ] is integrable in A for every f ∈ A. This
is sufficient for the correctness of the method, but additional
properties are needed in order to ensure that the method
terminates.

As also explained already in the introduction, one possi-
bility consists in showing that [f ] = 0 whenever f is inte-
grable. Trager showed that his Hermite reduction has this
property [24, page 50, Theorem 1]. As this result was never
published elsewhere, and for the sake of completeness, we
reproduce his proof here.

Lemma 6. Let W = {ω1, . . . , ωn} be an integral basis for
A that is normal at infinity. Let g =

∑n
i=1 giωi ∈ A be

such that all its coefficients gi ∈ K(x) are proper rational
functions. If an integral element f ∈ A has a pole at infinity,
then also f + g has a pole at infinity.

Proof. Since f is assumed to be integral we can write it as
f = f1ω1 + · · · + fnωn with fi ∈ K[x]. If f has a pole at
infinity, there is at least one index i such that fiωi has a
pole at infinity. There are two cases why this can happen.

(a) The polynomial fi has positive degree. This means
that fi + gi has a pole at infinity, because the gi are
proper rational functions. Thus (fi + gi)ωi has a pole
at infinity, because ωi has no poles at finite places and
therefore no root at infinity.

(b) The integral basis element ωi is not constant and fi
is not zero. Hence ωi has a pole at infinity, and this
also implies that (fi+gi)ωi has a pole at infinity, again
employing the fact that gi is a proper rational function.

In both cases, therefore, f + g =
∑n
i=1(fi + gi)ωi has a pole

at infinity by Lemma 5.

Theorem 7. Suppose that f ∈ A has at least a double root
at infinity (i.e., every series in K̄〈〈x−1〉〉 associated to f
only contains monomials (1/x)α with α ≥ 2). Let W =
{ω1, . . . , ωn} be an integral basis for A that is normal at in-
finity. If f = g′ + h is the result of the Hermite reduction
with respect to W , then h = 0 if and only if f is integrable
in A.

Proof. The direction “⇒” is trivial. To show the implication
“⇐” assume that f is integrable in A. From f = g′ + h it
follows that then also h is integrable in A; let H ∈ A be
such that H ′ = h. In order to show that h = 0, we show
that H is constant. To this end, it suffices to show that it
has neither finite poles nor a pole at infinity; the claim then
follows from Chevalley’s theorem.

It is clear that H has no finite poles because h has at
most simple poles (i.e., all series associated to h have only
exponents ≥ −1). This follows from the facts that the ωi
are integral and that the coefficients of h have squarefree
denominators.

If H has a pole at infinity, then by Lemma 6 also g +
H must have a pole at infinity, because Hermite reduction
produces g =

∑
i giωi with proper rational functions gi. On

the other hand, since f = g′ + h = (g + H)′ has at least a
double root at infinity by assumption, g + H must have at
least a single root at infinity. This is a contradiction.

Note that the condition in Theorem 7 that f has a double
root at infinity is not a restriction at all, as it can always
be achieved by a suitable change of variables. Let a ∈ C
be a regular point; this means that all series in K̄〈〈x − a〉〉
associated to f are formal power series. By the substitution
x→ a+ 1/x the regular point a is moved to infinity. From∫

f(x) dx =

∫
f

(
1

x
+ a

)(
− 1

x2

)
dx

we see that the new integrand has a double root at infinity.
Moreover, since the action of ∂t on series domains is de-

fined coefficient-wise, it follows that when f has at least a
double root at infinity (with respect to x), then this is also



true for ∂t ·f, ∂2
t ·f, ∂3

t ·f, . . . , and then also for every K-linear
combination p0f + p1∂t · f + · · ·+ pr∂

r
t · f . Thus Theorem 7

implies that p0 +p1∂t+ · · ·+pr∂
r
t is a telescoper for f if and

only if [p0f + p1∂t · f + · · ·+ pr∂
r
t · f ] = 0.

We already know for other reasons [26, 11, 9] that tele-
scopers for algebraic functions exist, and therefore the re-
duction-based creative telescoping procedure with Hermite
reduction with respect to an integral basis that is normal
at infinity as reduction function succeeds when applied to
an integrand f ∈ A that has a double root at infinity. In
particular, the method finds a telescoper of smallest possi-
ble order. Again, if f has no double root at infinity, we can
produce one by a change of variables. Note that a change
of variables x → a + 1/x with a ∈ C has no effect on the
telescoper.

Example 8. We consider the algebraic function f = y/x2

where y is a solution of the third-degree polynomial equation
m(x, y) = y3 + y + x + t = 0. An integral basis for A =
K(x)[y]/〈m〉 that is normal at infinity is given by ω1 = 1,
ω2 = y, ω3 = y2. (This means that employing lazy Hermite
reduction avoids completely the computation of an integral
basis in this example.)

By solving Equation (1) for y′ we obtain

y′ =
−6y2 + 9(t+ x)y − 4

27x2 + 54tx+ 27t2 + 4
.

Then for the differentiation matrix 1
e
M , a simple calculation

yieldsω′1ω′2
ω′3

 =
1

e

 0 0 0

−4 9(t+ x) −6

12(t+ x) 4 18(t+ x)

ω1

ω2

ω3


with e = 27x2 + 54xt + 27t2 + 4. Thus we write f =∑3
i=1(fi/D)ωi with f1 = f3 = 0, f2 = e, and D = x2e.

After a single step the Hermite reduction delivers the result

f =

(
− y

x︸ ︷︷ ︸
= g0

)′
+

−6y2 + 9(x+ t)y − 4

x(27x2 + 54xt+ 27t2 + 4)︸ ︷︷ ︸
= h0

.

As the Hermite remainder h0 is nonzero, Theorem 7 tells us
that f is not integrable in A. Hence we continue by applying
Hermite reduction to

∂t · f =
−6y2 + 9(x+ t)y − 4

x2(27x2 + 54xt+ 27t2 + 4)
.

Note that we could as well take ∂t ·h0 instead of ∂t ·f , which
in general should result in a faster algorithm. Again after a
single reduction step, the decomposition ∂t · f = g′1 + h1 is
obtained, where

g1 =
6y2 − 9ty + 4

x(27t2 + 4)

h1 =
6
(
(9x+ 27t)y2 − (27xt+ 27t2 − 2)y + 6x+ 18t

)
x(27t2 + 4)(27x2 + 54xt+ 27t2 + 4)

.

Since h0 and h1 are linearly independent over K = C(t), we
continue with ∂2

t · f . This time however, it is preferable to
start the Hermite reduction with ∂t · h1, which is given by

1

x(27t2 + 4)2(27x2 + 54xt+ 27t2 + 4)2
.

Setting v = 27x2 + 54xt+ 27t2 + 4 = e and doing one reduc-
tion step, the Hermite remainder h2 is found to be(

6
(
(−729xt−1539t2 +96)y2 +(1215xt2−144x+1215t3−

306t)y − 486xt− 1026t2 + 64
)) / (

x(27t2 + 4)2e
)
.

The corresponding integrable part g2 is not displayed here
for space reasons.

Now one can find a linear dependence between h0, h1, h2

that gives rise to the telescoper (27t2 + 4)∂2
t + 81t∂t + 24,

which is indeed the minimal one for this example.

5. POLYNOMIAL REDUCTION
Recall that instead of requesting that [f ] = 0 if and only

if f is integrable (first approach), we can also justify the ter-
mination of reduction-based creative telescoping by showing
that the K-vector space generated by { [∂itf ] : i ∈ N } has
finite dimension (second approach). If [·] is just the Her-
mite reduction, we do not necessarily have this property.
We therefore introduce below an additional reduction, called
polynomial reduction, which we apply after Hermite reduc-
tion. We then show that the combined reduction (Hermite
reduction followed by polynomial reduction) has the desired
dimension property for the space of remainders. As a result,
we obtain a new bound on the order of the telescoper, which
is similar to those in [9, 8].

In this approach, we use two integral bases. First we use
a global integral basis in order to perform Hermite reduc-
tion. Then we write the remainder h with respect to some
local integral basis at infinity and perform the polynomial
reduction on this representation.

Throughout this section let W = (ω1, . . . , ωn)T ∈ An

be such that {ω1, . . . , ωn} is a global integral basis of A,
and let e ∈ K[x] and M = (mi,j) ∈ K[x]n×n be such that
eW ′ = MW and gcd(e,m1,1,m1,2, . . . ,mn,n) = 1. The Her-
mite reduction described in Section 3 decomposes an input
element f ∈ A into the form

f = g′ + h = g′ +

n∑
i=1

hi
de
ωi, g, h ∈ A,

with hi, d ∈ K[x] such that gcd(d, e) = gcd(hi, de) = 1 and
d is squarefree.

Lemma 9. If h is integrable in A, then d is in K.

Proof. Suppose that h is integrable in A, i.e., there exist
a, bi ∈ K[x] such that h =

(
1
a

∑n
i=1 biωi

)′
. Then

h =

n∑
i=1

hi
de
ωi =

n∑
i=1

(( bi
a

)′
ωi +

bi
ae

n∑
j=1

mi,jωj

)
.

We show that a is constant. Otherwise, for any irreducible
factor p of a, we would have that h has a pole of multiplicity
greater than 1 at the roots of p. This contradicts the fact
that d, e are squarefree. Thus, d is a constant.

By the extended Euclidean algorithm, we compute ui, vi ∈
K[x] such that hi = uid+vie and degx(vi) < degx(d). Then
the Hermite remainder h decomposes as

n∑
i=1

hi
de
ωi =

n∑
i=1

ui
e
ωi +

n∑
i=1

vi
d
ωi. (3)



We now introduce the polynomial reduction whose goal is
to confine the ui to a finite-dimensional vector space over K.
Similar reductions have been introduced and used in creative
telescoping for hyperexponential functions [2] and hyperge-
ometric terms [7]. Let V = (ν1, . . . , νn)T ∈ An be such
that its entries form a K(x)-basis of A, and let a ∈ K[x]
and B = (bi,j) ∈ K[x]n×n be such that aV ′ = BV and
gcd(a, b1,1, b1,2, . . . , bn,n) = 1. Let p = (p1, . . . , pn) ∈ K[x]n.
Then

(pV )′ =

n∑
i=1

(piνi)
′ =

ap′ + pB

a
V. (4)

This motivates us to introduce the following definition.

Definition 10. Let the map φV : K[x]n → K[x]n be defined
by φV (p) = ap′ + pB for any p ∈ K[x]n. We call φV the
map for polynomial reduction with respect to V , and call
the subspace im(φV ) = {φV (p) | p ∈ K[x]n} the subspace
for polynomial reduction with respect to V .

Note that, by construction and because of Lemma 9, q ∈
K[x]n is in im(φV ) if and only if q

a
V is integrable in A.

We can always view an element of K[x]n (resp. K[x]n×n)
as a polynomial in x with coefficients in Kn (resp. Kn×n).
In this sense we use the notation lc(·) for the leading coeffi-
cient and lt(·) for the leading term of a vector (resp. matrix).
For example, if p ∈ K[x]n is of the form

p = p(r)xr + · · ·+ p(1)x+ p(0), p(i) ∈ Kn,

then degx(p) = r, lc(p) = p(r), and lt(p) = p(r)xr. Let
{e1, . . . , en} be the standard basis of Kn. Then the module
K[x]n viewed as a K-vector space is generated by

S :=
{
eix

j
∣∣ 1 ≤ i ≤ n, j ∈ N

}
.

We define K[x]nµ := {p ∈ K[x]n | degx(p) ≤ µ}; as a K-
vector space it is generated by

Sµ :=
{
eix

j
∣∣ 1 ≤ i ≤ n, 0 ≤ j ≤ µ

}
.

Any element p ∈ K[x]nµ can be expressed in the basis Sµ as a

vector ~p ∈ Kn(µ+1) (in the following the decoration~ always
indicates such a typecast).

Definition 11. Let NV be the K-subspace of K[x]n gener-
ated by {

t ∈ S
∣∣ t 6= lt(p) for all p ∈ im(φV )

}
.

Then K[x]n = im(φV ) ⊕ NV . We call NV the standard
complement of im(φV ). For any p ∈ K[x]n, there exist p1 ∈
K[x]n and p2 ∈ NV such that

p

a
V = (p1V )′ +

p2
a
V.

This decomposition is called the polynomial reduction of p
with respect to V .

Proposition 12. Let a ∈ K[x] and B ∈ K[x]n×n be such
that aV ′ = BV , as before. If degx(B) ≤ degx(a) − 1, then
NV is a finite-dimensional K-vector space.

Proof. In addition to the proof of the assertion, we also ex-
plain how to determine the dimension and a basis for NV , for
later use. For brevity, let µ := degx(a)− 1. We distinguish
two cases.

Case 1. Assume that degx(B) < µ. For any p ∈ K[x]n

of degree s > 0, we have

lt
(
φV (p)

)
= s lc(a) lc(p)xs+µ.

Thus all monomials eix
j ∈ S with 1 ≤ i ≤ n and j ≥

µ + 1 are not in NV . Let ~B1, . . . , ~Bn be the columns of B,
expressed in the basis Sµ. Let C(B) be the K-subspace
of K[x]nµ generated by these column vectors. If q ∈ im(φV ),
then q = φV (p) = pB for some p ∈ Kn, which implies that ~q

is a linear combination of ~Bi’s. Then K[x]nµ = C(B)⊕NV .
So dimK(NV ) = (µ + 1)n − dimK(C(B)) and a basis of
NV can be computed by looking at the echelon form of the
matrix

(
~B1, . . . , ~Bn

)
.

Case 2. Assume that degx(B) = µ. For any p ∈ K[x]n

of degree s, we have

lt
(
φV (p)

)
= lc(p)(s lc(a)In + lc(B))xs+µ.

Let ` be the largest nonnegative integer such that −` lc(a)
is an eigenvalue of lc(B) ∈ Kn×n. Then for any s > `,
the matrix Js = s lc(a)In + lc(B) is invertible. So any
monomial eix

j with j > ` + µ is not in NV for any i =
1, . . . , n. Let p =

∑n
i=1

∑`
j=0 pi,jeix

j . Then φV (p) belongs

to K[x]n`+µ. In the basis S`+µ, we can express φV (p) as
a vector of length n(`+ µ+ 1) with entries linear in the

pi,j ’s. This vector can be written in the form M`
~P , where

~P = (p1,0, p2,0, . . . , pn,`)
T and M` ∈ Kn(`+µ+1)×n(`+1). Ev-

ery q ∈ K[x]n`+µ can be expressed as a vector ~q ∈ Kn(`+µ+1).
Then q ∈ im(φv) if and only if ~q is in the column space ofM`.
Therefore,

K[x]n`+µ = C(M`)⊕NV .

This implies that dimK(NV ) = n(`+µ+1)− rank(M`), and
a basis of NV can be computed by looking at the echelon
form of the matrix M`.

In general, the condition degx(B) ≤ degx(a)− 1 may not
hold for an arbitrary basis V of A. The following lemma
shows that we can perform a simple change of basis to make
the condition hold.

Lemma 13. Let W = {ω1, . . . , ωn} be an integral basis of A
such that it is also normal at infinity. Then there exist non-
negative integers τ1, . . . , τn such that

V := {ν1, . . . , νn} with νi = x−τiωi

is a basis of A which is normal at 0 and integral at all other
places (including infinity).

Proof. It is clear that such a basis V will be normal at zero,
because multiplying the generators by the rational functions
xτi brings it back to a global integral basis, which is in par-
ticular a local integral basis at zero. It is also clear that such
a basis will be integral at every other point a ∈ K̄ \ {0},
because the multipliers x−τi are locally units at such a. Fi-
nally, since the original basis is normal at infinity, there exist
rational functions u1, . . . , un such that {u1ω1, . . . , unωn} is
a local integral basis at infinity. Since ui can be written as
ui = x−τi ũi with τi ∈ Z and ũi being a unit in C̄(x)∞, we
see that also V is a local integral basis at infinity. The in-
tegers τi can only be nonnegative because the ωi’s have no
finite poles and therefore each of them is either constant or
has a pole at infinity by Chevalley’s theorem.



Combining the Hermite reduction and polynomial reduc-
tion, we get the following theorem.

Theorem 14. Let W be an integral basis of A that is normal
at infinity. Let T := diag(x−τ1 , . . . , x−τn) ∈ K(x)n×n be
such that V = TW is integral at infinity. Let e ∈ K[x],
λ ∈ N, and B,M ∈ K[x]n×n be such that eW ′ = MW and
xλeV ′ = BV . Then any element f ∈ A can be decomposed
into

f = g′ +
1

d
PW +

1

xλe
QV, (5)

where g ∈ A, d ∈ K[x] is squarefree and gcd(d, e) = 1,
P,Q ∈ K[x]n with degx(P ) < degx(d) and Q ∈ NV , which
is a finite-dimensional K-vector space. Moreover, P,Q are
zero if and only if f is integrable in A.

Proof. After performing the Hermite reduction on f , we get

f = g̃′ +
1

d
PW +

1

e
UW,

where P = (v1, . . . , vn) ∈ K[x]n and U = (u1, . . . , un) ∈
K[x]n with ui, vi introduced in (3). By Lemma 13, there
exists T := diag(x−τ1 , . . . , x−τn) ∈ K(x)n×n such that V =
TW is integral at infinity. By the same lemma it follows that
V is also normal at 0 and integral at all other places. Note
that we can choose T as the identity matrix if degx(M) ≤
degx(e)− 1. By taking derivatives, we get

V ′ =

(
T ′ + T

M

e

)
T−1V =

B

a
V,

where a = xλe for some λ ∈ N and B ∈ K[x]n×n. Since
V is locally integral at infinity, degx(B) ≤ degx(a) − 1 by
Lemma 4. By expanding in terms of the new basis V , we
get

1

e
UW =

1

a
ŨV,

where Ũ = xλUT−1 ∈ K[x]n. Next, we decompose Ũ into

Ũ = φV (Ũ1) + Ũ2 with Ũ1, Ũ2 ∈ K[x]n and Ũ2 ∈ NV . Then
we get

1

e
UW = (Ũ1V )′ +

1

a
Ũ2V.

We then get the decomposition (5) by setting g = g̃ + Ũ1V
and Q = U2.

Assume that f is integrable. Then Lemma 9 implies that
d ∈ K. Since degx(P ) < degx(d), we have P = 0. Then

1

xλe
QV =

n∑
i=1

(aiνi)
′

for some ai ∈ K[x]. So Q ∈ im(φV ). Since im(φV ) ∩NV =
{0}, it follows that Q = 0.

The decomposition in (5) is called an additive decomposi-
tion of f with respect to x.

6. TELESCOPING VIA REDUCTIONS:
SECOND APPROACH

We now discuss how to compute telescopers for algebraic
functions via Hermite reduction and polynomial reduction.

Let W,V, e, λ,M,B be as in Theorem 14. To construct a
telescoper for f ∈ A, we first consider the additive decompo-
sitions of the successive derivatives ∂it · f for i ∈ N. Assume
that

∂t ·W =
1

ẽ
M̃W and ∂t · V =

1

xλ̃ẽ
B̃V,

where ẽ ∈ K[x], M̃, B̃ ∈ K[x]n×n, and λ̃ ∈ N. Since ∂t
and ∂x commute, Proposition 7 in [8] implies that ẽ | e and

xλ̃ẽ | xλe, as polynomials in K[x]. So we can just take ẽ = e

and λ̃ = λ by multiplying M̃, B̃ by some factors of xλe. A
direct calculation yields ∂t · f = (∂t · g)′ + h, where

h =

(
∂t ·

P

d
+
PM̃

de

)
W +

(
∂t ·

Q

xλe
+

QB̃

x2λe2

)
V.

This implies that the squarefree part of the denominator of
h divides xde. Applying Hermite reduction and polynomial
reduction to h yields

h = g̃′1 +
1

d
P1W +

1

xλe
Q1V,

where P1, Q1 ∈ K[x]n with degx(P1) < degx(d) and Q1 ∈
NV . Repeating this discussion, we get the following lemma.

Lemma 15. For any i ∈ N, the derivative ∂it · f has an
additive decomposition of the form

∂it · f = g′i +
1

d
PiW +

1

xλe
QiV,

where gi ∈ A, Pi, Qi ∈ K[x]n with degx(Pi) < degx(d) and
Qi ∈ NV .

As application of the above lemma, we can compute the
minimal telescoper for f by finding the first linear depen-
dence among the (Pi, Qi) over K. We also obtain an upper
bound for the order of telescopers.

Corollary 16. Every f ∈ A has a telescoper of order at
most ndegx(d) + dimK(NV ).

Example 17. We continue with Example 8, by applying the
polynomial reduction to the Hermite remainders h0, h1, h2.
The matrix M computed before satisfies the degree condition
of Proposition 12, so no change of basis is needed. First we
compute polynomials ui, vi ∈ K[x, y] such that for i = 0, 1, 2
we have

hi =
ui
e

+
vi
d

=
ui

27x2 + 54xt+ 27t2 + 4
+
vi
x
.

By noting that degx(ui) = 1 and degx(e) = 2, we see that
the map for the polynomial reduction φ(p) = ep′ + pM can
only be applied for p ∈ Kn so that it turns into φ(p) = pM .
This means that we reduce xy2 using the third row of M
and xy using its second row. A straightforward calculation
reveals that h0, h1, and h2 all reduce to 0. Hence we are left
with finding a K-linear combination among the vi:

v0 =
−6y2 + 9yt− 4

27t2 + 4
,

v1 =
6
(
27y2t− (27t2 − 2)y + 18t

)
(27t2 + 4)2

,

v2 =
6
(
(96− 1539t2)y2 + (1215t3 − 306t)y − 1026t2 + 64

)
(27t2 + 4)3

.

As expected, we obtain the same telescoper as in Example 8.



7. THE D-FINITE CASE
With algebraic functions being settled, it is natural to

wonder about a possible reduction-based creative telescop-
ing algorithm for D-finite functions. Recall that in this set-
ting we consider an operator L ∈ K(x)[∂x] instead of a min-
imal polynomial m ∈ K[x, y] and instead of an algebraic
field extension K(x)[y]/〈m〉 we consider the K(x)[∂x]-left-
module A = K(x)[∂x]/〈L〉. Then the element 1 ∈ A is a
solution of L because L · 1 = L = 0 in A by construction.
If n = deg∂x L, then the general element of A has the form

f = f0+f1∂x+· · ·+fn−1∂
n−1
x for some f0, . . . , fn−1 ∈ K(x).

Very much as in the algebraic case, there is a natural way to
associate certain series objects to the elements of A. Based
on these series objects, a notion of integrality was proposed
last year [17], and an algorithm for computing integral bases
has been given for so-called Fuchsian operators L.

It turns out that the Hermite reduction of Section 3 also
works in this setting, if we say that a term (x−a)α log(x)β in
a generalized series solution is integral if and only if α ≥ 0.
Note that then log(x) will be considered integral at zero, de-
spite the singularity of the complex function at this point.
This has the somewhat counterintuitive consequence that
log(x) is integral at every a ∈ K̄ ∪{∞} although it does not
have a pole anywhere. For algebraic functions, this is not
possible by Chevalley’s theorem, and this fact enters in an
essential way in the proofs of Sections 4 and 5. The lack of
Chevalley’s theorem is not an artefact of a (possibly wrong)
treatment of logarithmic terms. Because of the Fuchs rela-
tion [23, p. 241] there exist operators L ∈ K(x)[∂x] whose
series solutions at any point a ∈ K̄ ∪ {∞} have no loga-
rithmic terms, only nonnegative exponents, and which are
nevertheless not constant.

For the time being, the existence of such operators is a
severe obstruction to a possible generalization of the termi-
nation arguments for reduction-based creative telescoping
from algebraic functions to Fuchsian D-finite functions. We
hope to explore this topic further in the future.
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