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1. Introduction

Consider a linear ordinary differential equation, like for example

x(1− x)f ′(x)− f(x) = 0.

The leading coefficient polynomial x(1− x) of the equation is of special interest because
every point ξ which is a singularity of some solution of the differential equation is also
a root of this polynomial. However, the converse is in general not true. In the example
above, the root ξ = 1 indicates the singularity of the solution x/(1− x), but there is no
solution which has a singularity at the other root ξ = 0. To see this, observe that after
differentiating the equation, we can cancel (“remove”) the factor x from it. The result is
the higher order equation

(1− x)f ′′(x)− 2f ′(x) = 0,

whose solution space contains the solution space of the original equation. Such a calcu-
lation is called desingularization. The factor x is said to be removable.

Given a differential equation, it is of interest to decide which factors of its leading
coefficient polynomial are removable, and to construct a higher order equation in which
all the removable factors are removed. A classical algorithm, which is known since the end
of the 19th century [14,11], proceeds by taking the least common left multiple of the given
differential operator with a suitably constructed auxiliary operator. This algorithm is
summarized in Section 2 below. At the end of the 20th century, the corresponding problem
for linear recurrence equations was studied and algorithms for identifying removable
factors have been found and their relations to “singularities” of solutions have been
investigated [3,4,1]. Also some steps towards a unified theory for desingularization of Ore
operators have been made [10,9]. Possible connections to Ore closures of an operator
ideal have been noted in [10] and within the context of order-degree curves [9,7,8]. These
will be further developed in a future paper.

Our contribution in the present article is a three-fold generalization of the classical
desingularization algorithm for differential equations. Our main result (Theorem 6 below)
says that (a) instead of the particular auxiliary operator traditionally used, almost every
other operator of appropriate order also does the job, (b) also the case is covered where a
multiple root can’t be removed completely but only its multiplicity can be reduced, and
(c) the technique works not only for differential operators but for every Ore algebra. Code
fragments in the Maple library (e.g., the function DEtools/Homomorphisms/AppCheck)
indicate that some people have already observed before us that taking lclm with a random
operator tends to remove removable factors and used this as a heuristic. We give here
for the first time a rigorous justification of this phenomenon.

For every removable factor p there is a smallest n ∈ N such that removing p from
the operator requires increasing the order of the operator by at least n. Classical desin-
gularization algorithms compute for each factor p an upper bound for this n, and then
determine whether or not it is possible to remove p at the cost of increasing the order
of the operator by at most n. In the present paper, we do not address the question of
finding bounds on n but only discuss the second part: assuming some n ∈ N is given as
part of the input, we consider the task of removing as many factors as possible without
increasing the order of the operator by more than n. Of course, for Ore algebras where
it is known how to obtain bounds on n, these bounds can be combined with our result.

Recall the notion of Ore algebras [13]. Let K be a field of characteristic zero. Let
σ : K[x] → K[x] be a ring automorphism that leaves the elements of K fixed, and let
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δ : K[x] → K[x] be a K-linear map satisfying the law δ(uv) = δ(u)v + σ(u)δ(v) for
all u, v ∈ K[x]. The algebra K[x][∂] consists of all polynomials in ∂ with coefficients
in K[x] together with the usual addition and the unique (in general noncommutative)
multiplication satisfying ∂u = σ(u)∂+ δ(u) for all u ∈ K[x] is called an Ore algebra. The
field K is called the constant field of the algebra. Every nonzero element L of an Ore
algebra K[x][∂] can be written uniquely in the form

L = `0 + `1∂ + · · ·+ `r∂
r

with `0, . . . , `r ∈ K[x] and `r 6= 0. We call deg∂(L) := r the order of L and lc∂(L) := `r
the leading coefficient of L. Roots of the leading coefficient `r are called singularities
of L. Prominent examples of Ore algebras are the algebra of linear differential operators
(with σ = id and δ = d

dx ; we will write D instead of ∂ in this case) and the algebra of
linear recurrence operators (with σ(x) = x+ 1 and δ = 0; we will write S instead of ∂ in
this case).

We shall suppose that the reader is familiar with these definitions and facts, and
will make free use of well-known facts about Ore algebras, as explained, for instance,
in [13,6,2]. In particular, we will make use of the notion of least common left multiples
(lclm) of elements of Ore algebras: L ∈ K(x)[∂] is a common left multiple of P,Q ∈
K(x)[∂] if we have L = UP = V Q for some U, V ∈ K(x)[∂], it is called a least common left
multiple if there is no common left multiple of lower order. Least common left multiples
are unique up to left-multiplication by nonzero elements of K(x). By lclm(P,Q) we
denote a least common left multiple whose coefficients belong to K[x] and share no
common divisors in K[x]. Note that lclm(P,Q) is unique up to (left-)multiplication by
nonzero elements of K. Efficient algorithms for computing least common left multiples
are available [5].

2. The Differential Case

In order to motivate our result, we begin by recalling the classical results concerning
the desingularization of linear differential operators. See the appendix of [1] for further
details on this case.

Let L = `0 +`1D+ · · ·+`rD
r ∈ K[x][D] be a differential operator of order r. Consider

the power series solutions of L. It can be shown that x - `r if and only if L admits r
power series solutions with valuation α, for α = 0, . . . , r − 1. Therefore, if x | `r, then
this factor is removable if and only if there exists some left multiple M of L, say with
deg∂(M) = s, such that M admits a power series solution with valuation α for every
α = 0, . . . , s− 1. This is the case if and only if L has r linearly independent power series
solutions with integer exponents 0 ≤ α1 < α2 < · · · < αr, because in this case (and only
in this case) we can construct a left multiple M of L with power series solutions xα+ · · ·
for each α = 0, . . . ,max{α1, . . . , αr}−1, by adding power series of the missing valuations
to the solution space of L.

These observations suggest the following desingularization algorithm for operators L ∈
K[x][∂] with x | lc∂(L). First find the set {α1, . . . , α`} ⊆ N of all exponents αi for which
there exist power series solutions xαi + · · · . If ` < r, return “not desingularizable” and
stop. Otherwise, let m = max{α1, . . . , α`} and let e1, e2, . . . , em−` be those nonnegative
integers which are at most m but not among the αi. Return the operator

M = lclm(L,A),
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where

A := lclm(xD − e1, xD − e2, . . . , xD − em−`).
Note that among the solutions of A there are the monomials xe1 , xe2 , . . . , xem−` , and
that the solutions of M are linear combinations of solutions of A and solutions of L.
Therefore, by the choice of the ej and the remarks made above, M is desingularized.

Example 1. Consider the operator

L = (x− 1)(x2 − 3x+ 3)xD2 − (x2 − 3)(x2 − 2x+ 2)D

+ (x− 2)(2x2 − 3x+ 3) ∈ K[x][D].

This operator has power series solutions with minimal exponents α = 0 and α = 3. Their
first terms are

1 + x+ 1
2x

2 − 1
8x

4 − 19
120x

5 − 119
720x

6 + · · · ,
x3 + x4 + x5 + x6 + · · · .

The missing exponents are e1 = 1 and e2 = 2. Therefore we take

A := lclm(xD − 1, xD − 2) = x2D2 − 2xD + 2

and calculate

M = lclm(L,A) = (x5 − 2x4 + 4x3 − 9x2 + 12x− 6)D4

− (x5 − 2x4 + x3 − 12x2 + 24x− 24)D3

− (3x3 + 9x2)D2 + (6x2 + 18x)D − (6x+ 18).

Note that we have x - lc∂(M), as predicted.

In the form sketched above, the algorithm applies only to the singularity 0. In order
to get rid of a different singularity, move this singularity to 0 by a suitable change of
variables, then proceed as described above, and after that undo the change of variables.
Note that by removing the singularity 0 we will in general introduce new singularities at
other points.

3. Removable Factors

We now turn from the algebra of linear differential operators to arbitrary Ore algebras.
In the general case, removability of a factor of the leading coefficient is defined as follows.

Definition 2. Let L ∈ K[x][∂] and let p ∈ K[x] be such that p | lc∂(L) ∈ K[x].
We say that p is removable from L at order n if there exists some P ∈ K(x)[∂] with
deg∂(P ) = n and some v, w ∈ K[x] with gcd(p, w) = 1 such that PL ∈ K[x][∂] and
σ−n(lc∂(PL)) = w

vp lc∂(L). We then call P a p-removing operator for L, and PL the
corresponding p-removed operator. p is simply called removable from L if it is removable
at order n for some n ∈ N.

Example 3. (1) In the example from the introduction, we have L = x(1− x)D− 1 ∈
K[x][D]. An x-removing operator is P = 1

xD: we have PL = (1 − x)D2 − 2D.
Because of deg∂(P ) = 1 we say that x is removable at order 1.
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If P is a p-removing operator then so is QP , for every Q ∈ K[x][∂] with

gcd(lc∂(Q), σdeg∂(P )+deg∂(Q)(p)) = 1. In particular, note that the definition per-

mits to introduce some new factors w into the leading coefficient while p is being

removed. For instance, in our example also 2−3x
x D is an x-removing operator for L.

(2) The definition does not imply that the leading coefficient of a p-removed operator

is coprime with σn(p). In general, it only requires that the multiplicity is reduced.

As an example, consider the operator

L = x2(x− 2)(x− 1)D2 + 2x(x2 − 3x+ 1)D − 2 ∈ K[x][D]

and p = x. The operator P = x4−x3−4x2+2x−2
(x−2)x D − (x2 + 5x + 3) ∈ K(x)[D] is a

p-removing operator because the leading coefficient of

PL = x(x− 1)(x4 − x3 − 4x2 + 2x− 2)D3

− (x6 − 4x5 − x4 + 22x3 − 18x2 + 18x− 6)D2

− 2(x5 − x4 − 8x3 + 8x2 − 3x+ 6)D

+ 2(x2 + 5x+ 3)

contains only one copy of p while there are two of them in L. This is called partial

desingularization. Observe that the definition permits to remove some factors v

from the leading coefficient in addition to p.

(3) In the shift case, or more generally, in an Ore algebra where σ is not the identity,

the leading coefficient changes when an operator is multiplied by a power of ∂ from

the left. The application of σ−n in the definition compensates for this change. As

an example, consider the operator

L = x(x+ 1)(5x− 2)S2 − 2x(5x2 − 2x− 9)S

+ (x− 4)(x+ 2)(5x+ 3) ∈ K[x][S]

and p = x + 1. The operator P = 5x3+13x2−18x−24
(x+2)(5x+3) S − 2(5x3+28x2+23x−24)

(x+2)(5x+3) is a

p-removing operator because the leading coefficient of

PL = (x+ 1)(5x3 + 13x2 − 18x− 24)S3

− 2(x+ 1)(10x3 + 21x2 − 58x+ 24)S2

+ (25x4 + 60x3 − 217x2 − 84x+ 288)S

− 2(x− 4)(5x3 + 28x2 + 23x− 24)

does not contain σ(p) = x+ 2. It is irrelevant that it contains x+ 1.

As indicated in the examples, when removing a factor p from an operator L, Def. 2

allows that we introduce other factors w, coprime to p. We are also always allowed to

remove additional factors v besides p. The freedom for having v and w is convenient but

not really necessary. In fact, whenever there exists an operator P ∈ K(x)[∂] of order n

such that σ−n(lc∂(PL)) = w
vp lc∂(L), then there also exists an operator Q ∈ K(x)[∂]

of order n such that σ−n(lc∂(QL)) = 1
p lc∂(L). To see this, note that by the extended

Euclidean algorithm there exist s, t ∈ K[x] such that sw + tp = 1. Set Q = σn(sv)P +
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σn(t)∂n. Then

σ−n(lc∂(QL)) = sv σ−n(lc∂(PL)) + t σ−n(lc∂(∂nL))

= sv
w

vp
lc∂(L) +

tp

p
lc∂(L) =

1

p
lc∂(L),

as desired. This argument is borrowed from [1]. The same argument can also be used to
show the existence of operators that remove all the removable factors in one stroke:

Lemma 4. Let L ∈ K[x][∂], let n ∈ N, and let lc∂(L) = pe11 p
e2
2 · · · pemm be a factorization

of the leading coefficient into irreducible polynomials. For each i = 1, . . . ,m, let ki ≤ ei
be maximal such that pi is removable from L at order n. Then there exists an operator
P ∈ K(x)[∂] of order n such that σ−n(lc∂(PL)) = 1

p
k1
1 p

k2
2 ···p

km
m

lc∂(L).

Proof. By the remark preceding the lemma, we may assume that for every i there exists
an operator Pi ∈ K(x)[∂] of order n with PiL ∈ K[x][∂] and σ−n(lc∂(PiL)) = p−kii lc∂(L)
(i.e., w = v = 1).

Next, observe that when p and q are two coprime factors of lc∂(L) which both are
removable at order n, then also their product pq is removable at order n. Indeed, if P,Q ∈
K(x)[∂] are such that deg∂(P ) = deg∂(Q) = n, PL,QL ∈ K[x][∂], σ−n(lc∂(PL)) =
1
p lc∂(L), and σ−n(lc∂(QL)) = 1

q lc∂(L), and if s, t ∈ K[x] are such that sq+ tp = 1, then

for R := σn(s)P + σn(t)Q we have σ−n(lc∂(RL)) = 1
pq lc∂(L), as desired.

The claim of the lemma now follows by induction on m, taking p = pe11 · · · p
em−1

m−1 and
q = pemm . 2

4. Desingularization by Taking Least Common Left Multiples

As outlined in Section 2, the classical algorithm for desingularizing differential op-
erators relies on taking the lclm of the operator to be desingularized with a suitably
chosen auxiliary operator. Our contribution consists in a three-fold generalization of this
approach: first, we show that it works in every Ore algebra and not just for differential
operators, second, we show that almost every operator qualifies as an auxiliary operator
in the lclm and not just the particular operator used traditionally, and third, we show
that the approach also covers partial desingularization. From the second fact it follows
directly that taking the lclm with a random operator of appropriate order removes, with
high probability, all the removable singularities of the operator under consideration and
not just a given one.

Consider an operator L ∈ K[x][∂] in an arbitrary Ore algebra, and let p | lc∂(L) be a
factor of its leading coefficient. Assume that this factor is removable at order n. Our goal
is to show that for almost all operators A ∈ K[∂] of order n with constant coefficients
the operator lclm(L,A) is p-removed.

One way of computing the least common left multiple of two operators L,A ∈ K[x][∂]
with deg∂(L) = r and deg∂(A) = n (and not necessarily with constant coefficients)
is as follows. Make an ansatz with undetermined coefficients u0, . . . , un, v0, . . . , vr and
compare coefficients of ∂i (i = 0, . . . , n+ r) in the equation

(u0 + · · ·+ un−1∂
n−1 + un∂

n)L = (v0 + · · ·+ vr−1∂
r−1 + vr∂

r)A.
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This leads to a system of homogeneous linear equations over K(x) for the undetermined
coefficients, which has more variables than equations and therefore must have a nontrivial
solution. For each solution, the operator on either side of the equation is a common left
multiple of L and A.

For most choices of A the solution space will have dimension #vars − #eqns = 1,
and in this case, for every nontrivial solution we have un 6= 0. In particular the least
common left multiple M = lclm(L,A) has then order r + n. The singularities of M are
then the roots of σn(lc∂(L)) plus the roots of un minus the common roots of u0, . . . , un,
which are divided out because we defined the notation lclm(L,A) to refer to a least
common left multiple with polynomial coefficients that share no common factors. It is
not obvious at this point why removable factors should appear among these common
factors of u0, . . . , un. To see that they systematically do, consider a p-removing operator
P ∈ K(x)[∂] of order n, and observe that the operators 1, ∂, . . . , ∂n−1, ∂n generate the
same K(x)-vector space as 1, ∂, . . . , ∂n−1, P . If we use the latter basis in the ansatz for
the lclm, i.e., do coefficient comparison in

(u0 + · · ·+ un−1∂
n−1 + unP )L = (v0 + · · ·+ vr−1∂

r−1 + vr∂
r)A,

then every nontrivial solution vector (u0, . . . , un, v0, . . . , vr) of the resulting linear system
gives rise to a common left multiple of L and A in K[x][∂] whose singularities are the roots
of lc∂(PL) = σn( 1

p lc∂(L)) plus the roots of un minus the common roots of u0, . . . , un.
This argument shows that the removable factor p will have disappeared in the lclm unless
it is reintroduced by un. The main technical difficulty to be addressed in the following
is to show that this can happen only for very special choices of A. For the proof of this
result we need the following lemma.

Lemma 5. Let F be a field. Let n,m ∈ N, let v1, . . . , vn ∈ Fn+m be linearly independent
over K, and let w1, . . . , wm ∈ F [x1, . . . , xn]n+m be defined by

w1 =



x1
...

xn

1

0
...
...

0



, w2 =



0

x1
...

xn

1

0
...

0



, . . . . . . , wm =



0
...
...

0

x1
...

xn

1



.

Then ∆ := det(w1, . . . , wm, v1, . . . , vn) ∈ F [x1, . . . , xn] is not the zero polynomial.

Proof. Simultaneous induction on n and m: We show that the lemma holds for (n,m) if
it holds for (n− 1,m) and for (n,m− 1).

As induction base, observe first that the lemma holds for n = 1, m arbitrary: proceed-
ing from the bottom up, use the columns w1, . . . , wm to eliminate the nonzero entries
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of v1, of which there must be at least one. Each elimination of some coordinate of v1 in-
troduces a multiple of x1 in the next coordinate. Since each coordinate except for the first
can be reduced by some wi, this procedure turns v into a vector of the form (p, 0, . . . , 0)T ,
for some nonzero polynomial p ∈ F [x1]. We thus have ∆ = ±p 6= 0.

Observe secondly, still for the induction base, that the lemma also holds for n arbi-
trary and m = 1. To see this, note that the coordinates 1, x1, . . . , xn of w1 are linearly
independent over F . By Lapace-expanding the determinant ∆ along w1, we see that it
is zero if and only if all the n × n-minors of (v1, . . . , vn) ∈ F (n+1)×n are zero. But in
this case, by Cramer’s rule, v1, . . . , vn would be linearly dependent, which by assumption
they are not. So ∆ 6= 0.

Now let (n,m) ∈ N2 with n ≥ 2,m ≥ 2 be given. Let v1, . . . , vn ∈ Fn+m be linearly
independent. Write vi = (v1,i, . . . , vn+m,i) for the coefficients. For a vector u ∈ Fn+m, we
write ū for the vector in Fn+m−1 obtained from u by chopping off the first coordinate.

Case 1. v1,1 = v1,2 = · · · = v1,n = 0. In this case, the vectors v̄i ∈ Fn+(m−1) must be
linearly independent. By expanding along the first row, we have

∆ = x1 det(w̄2, . . . , w̄m, v̄1, . . . , v̄n).

The determinant on the right is nonzero by applying the lemma with n and m − 1.
Therefore the determinant on the left is also nonzero.

Case 2. If at least one of the v1,j is nonzero, then we may assume without loss of
generality that v1,1 = 1 and v1,2 = v1,3 = · · · = v1,n = 0, by performing suitable column
operations on (v1, . . . , vn) ∈ F (n+m)×n. Then the vectors v̄2, . . . , v̄n ∈ F (n−1)+m obtained
from the vi by chopping the first coordinate are linearly independent. Expanding along
the first row, we now have

∆ = x1 [[poly]] + v1,1 ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 x1 0 · · · 0 v2,2 · · · v2,n

x3 x2
. . .

. . .
...

...
...

...
. . .

. . .
. . . 0

...
...

...
. . .

. . . x1
...

...

xn
. . . x2

...
...

1
. . . x3

...
...

0
. . .

. . .
...

...
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . . xn

...
...

0 · · · · · · 0 1 vn+m,2 · · · vn+m,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By setting x1 = 0, the first term on the right hand side disappears, and so do the entries
x1 in the determinant of the second term. By applying the lemma with m and n− 1, the
determinant on the right with x1 set to zero is a nonzero polynomial in x2, . . . , xn. Since
also v1,1 6= 0, the whole right hand side is nonzero for x1 = 0. Consequently, when x1 is
not set to zero, it cannot be the zero polynomial. 2
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Theorem 6 (Main result). Let K[x][∂] be an Ore algebra, let L ∈ K[x][∂] be an operator
of order r, and let n ∈ N. Let p ∈ K[x] be an irreducible polynomial which appears with
multiplicity e in lc∂(L) and let k ≤ e be maximal such that pk is removable from L at
order n. Let A = a0+a1∂+ · · ·+an−1∂n−1+∂n in K[a0, . . . , an−1][∂], where a0, . . . , an−1
are new constants, algebraically independent over K. Then the multiplicity of σn(p) in
lc∂(lclm(L,A)) is e− k.

Proof. Let P0, . . . , Pn ∈ K(x)[∂] be such that each Pi has order i and removes from L
all the factors of lc∂(L) that can possibly be removed by an operator of order i. Such
operators exist by Lemma 4. Consider an ansatz

u0P0L+ u1P1L+ · · ·+ unPnL = v0A+ v1∂A+ · · ·+ vr∂
rA

with unknown ui, vj ∈ K[a0, . . . , an−1][x]. Compare coefficients with respect to powers
of ∂ on both sides and solve the resulting linear system using Cramer’s rule. This gives
a polynomial solution vector with

un = det
(
[P0L], [P1L], · · · [Pn−1L], [A], [∂A], · · · , [∂r−1A]

)
,

where the notation [U ] refers to the coefficient vector of the operator U (padded with
zeros, if necessary, to dimension r + n).

If σn(p) | un, then the columns of the determinant are linearly dependent when viewed
as elements of F [a0, . . . , an−1] with F = K[x]/〈σn(p)〉. Then Lemma 5 implies that
already [P0L], . . . , [Pn−1L] are linearly dependent modulo σn(p). In other words, there
are polynomials u0, . . . , un−1 ∈ K[x] of degree < deg(p), not all zero, such that the linear
combination u0P0L+ · · ·+un−1Pn−1L has content σn(p). If d ∈ {0, . . . , n−1} is maximal
such that ud 6= 0, then this means that 1

σn(p) (u0P0 + · · ·+udPd) is an operator of order d

which removes from L one factor σn−d(p) more than Pd does, in contradiction to the
assumption that Pd removes as much as possible.

This proves that σn(p) - un, and in particular un 6= 0. Since Pn is assumed to remove
all removable factors, and in particular k copies of p, and since un does not re-introduce
any copy of p, it follows that the multiplicity of σn(p) in lc∂(unPnL) = lc(lclm(L,A)) is
e− k, as claimed. 2

The theorem continues to hold when the indeterminates a0, . . . , an−1 are replaced by
values in K which do not form a point on the zero set of the determinant polynomial
un mod σn(p), as discussed in the proof. As this is not the zero polynomial and we assume
throughout that K has characteristic zero, it follows that almost all choices of A ∈ K[∂]
will successfully remove all the factors of lc∂(L) that are removable at order deg∂(A).

The theorem thus justifies the following very simple probabilistic algorithm for remov-
ing, with high probability, as many factors as possible from a given operator L ∈ K[x][∂]
at a given order n:
• Pick an operator A ∈ K[∂] of order n at random.
• Return lclm(L,A).
This is a Monte Carlo algorithm: it always terminates but with low probability may
return an incorrect answer. For a deterministic algorithm, don’t take the operators A at
random but use an operator with symbolic constant coefficients a0, . . . , an−1, as in the
theorem. The leading coefficient of lclm will then have all removable factors removed,
and some additional factors involving the symbolic coefficients. Now instatiate these
coefficients with some elements of K for which they don’t evaluate to one of the factors
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of σn(lc∂(L)). Almost any choice will do. By taking the choices from some enumeration
of Zn, for example, it is guaranteed that we will encounter a choice that works after
finitely many attempts.

The Monte Carlo version of the algorithm is included in the new ore_algebra package
for Sage [12], and works very efficiently thanks to the efficient implementation of least
common left multiples also available in this package. This package has been used for the
calculations in the following concluding examples. The computation time for all these
examples is negligible.

Example 7. (1) For L ∈ Q[x][D] from Example 1 and the “randomly chosen” opera-
tor A = D2 +D + 1 we have

lclm(L,A) = (x7 − 4x6 + 6x5 − 4x4 + x3 + 6x− 6)D4

− (2x6 − 9x5 + 15x4 − 11x3 + 3x2 − 24)D3

− (x7 − 4x6 + 6x5 − 4x4 + x3 + 6x− 6)D

+ (2x6 − 9x5 + 15x4 − 11x3 + 3x2 − 24).

This is not the same result as in Example 1, but it does have the required property
x - lc∂(lclm(L,A)).

(2) This is an example for the recurrence case. Let

L = 2(x+ 3)2(59x+ 94)S3 − (2301x3 + 15171x2 + 32696x+ 22876)S2

− 5(59x3 + 330x2 + 600x+ 359)S − (59x+ 153)(x+ 1)2.

Among the factors of (x + 3) and (59x + 94) of the leading coefficient, the lat-
ter is removable at order 1 and the former is not removable. Accordingly, for the
“randomly chosen” operator A = S − 2 we have

lclm(L,A) = 2(x+ 4)2(8909x3 + 57087x2 + 119629x+ 81711)S4

+ (· · ·)S3 + (· · ·)S2 + (· · ·)S + (· · ·),

where (· · ·) stands for some other polynomials. Note that the leading coefficient is
coprime to σ(59x+ 94) = 59x+ 153.

(3) As an example for partial desingularization, consider the operator L = x3D3 −
3x2D2 − 2xD + 10 ∈ Q[x][D]. Of the three copies of x in the leading coefficient,
one is removable at order 2, another one at order 4, and the third is not removable.
In perfect accordance, we find for example

lc∂(lclm(L,D + 2)) = x3(4x3 + 6x2 − 2x− 5),

lc∂(lclm(L,D2 + 1)) = x2(x6 + 10x4 + 40x2 + 80),

lc∂(lclm(L,D3 + 3D2 − 1)) = x2(x8 − 30x6 + · · ·+ 2160x+ 1920),

lc∂(lclm(L,D4 −D2 + 1)) = x(x10 − 10x8 + 120x6 − 720x4 − 3200),

lc∂(lclm(L,D5 +D − 1)) = x(x12 − 3x11 + · · ·+ 25600x− 22400).

(4) There are unlucky choices for A. For example, consider

L = (x− 7)(x2 − 2x− 12)S2 − (3x3 − 23x2 − 23x+ 291)S

+ 2(x− 6)(x2 − 13) ∈ Q[x][S].

10



The factor x − 7 is removable, as can be seen, for example, from the fact that
lc∂(lclm(L, S − 1)) = 2x2 − x− 51 is coprime to σ(x− 7) = x− 6. However, if we
take A = S − 9

4 , then

lclm(L,A) = 4(x− 7)(x− 6)(5x− 28)S3

− (x− 7)(3092− 1138x+ 105x2)S2

+ (x− 5)(6081− 2080x+ 175x2)S

− 18(x− 6)(x− 5)(5x− 23),

which has x − 6 in the leading coefficient. (It is irrelevant that also x − 7 appears
as a factor.)

(5) Finally, as an example in an unusual Ore algebra, consider Q[x][∂] with σ : Q[x]→
Q[x] defined by σ(x) = x2 and δ : Q[x]→ Q[x] defined by δ(x) = 1− x. Let

L = (2x+ 1)∂2 + (x2 + 3x− 1)∂ − (2x4 + 2x3 + x2 + 1).

The factor 2x+ 1 is removable at order 1. For example, for A = ∂ − 1 we find that
lclm(L,A) equals

(2x3 + 4x2 + 4x− 1)∂3 − (2x6 − x4 − 4x3 − 3x2 + x+ 5)∂2

− (2x9 + 4x8 + 6x7 + 4x6 + 2x5 + 3x4 + 2x3 + 3x2 + 3x− 2)∂

+ (2x9 + 4x8 + 6x7 + 6x6 + 2x5 + 2x4 − 4x3 − 4x2 + 4).

As expected, the leading coefficient does not contain σ(lc∂(L)) = 2x2 + 1.
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