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ABSTRACT

For a given ideal I C K[x1,...,%n, Y1, ..., Ym] in a polynomial ring
with n+m variables, we want to find all elements that can be written
as f — g for some f € K[xy,...,x,] and some g € K[y1,...,ym],
i.e., all elements of I that contain no term involving at the same
time one of the xi, ..., x, and one of the y1, . .., yp,. For principal
ideals and for ideals of dimension zero, we give a algorithms that
compute all these polynomials in a finite number of steps.
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1 INTRODUCTION

The problem under consideration is as follows. Given an ideal I of
a polynomial ring K[x1,...,xn, y1,...,Ym], we want to know all
elements of I that can be written in the form f — g for some f €
K[x1,...,xn] and some g € K[y1, ..., ym]. Such a polynomial f —g
is called separated because it contains no monomials that involve
at the same time one of the x1, ..., x, and one of the y1, ..., ym.

It is not hard to see that the pairs (f,g) € K[xi1,...,x5] X
Kl[y1, ..., ym] such that f — g is a separated element of an ideal I of
K([x1,...,%n, Y1, ..., ym] form a unital K-algebra with component-
wise addition and multiplication. Indeed, (1, 1) is clearly an element,
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and if (f,g), (f',¢’) are elements, then so are (f + f/,g +¢’) and
(ff’.99'). the latter because ff’ —gg" = (f —g)f +9(f' —g') € L
We denote the set of all these pairs (f,g) by A(I) and call it the
algebra of separated elements of I. Given a basis of the ideal I, we
want to compute a set of generators of A(I).

Equations with separated variables have been studied at least
since the 1950s [5, 6, 10-15]. Early authors studied the algebraic
curves defined by polynomials of the form f(x) — g(y), and in par-
ticular the question under which circumstances such a polynomial
is irreducible, and the structure of the corresponding function fields.
Later, other aspects of the problem entered into the focus, for in-
stance the problem of finding integer roots of polynomials with
separated variables [4] or the relation of the separation problem to
the problem of decomposing polynomials [2, 3, 7, 16].

The problem of finding separated polynomials in polynomial
ideals has various applications. One application is the intersection of
K-algebras. For example, computing K[uy, ..., us] NK[o1,...,0m]
for given polynomials

Uly .. s Un, U1, ..., 0m EK[tl,...,tk]

is equivalent to finding all the separated polynomials f — g in the
ideal

(X1=U1, . Xn=Un, Y101, - - s Ym—Om) NK[Xx1, .. ., X0, Y1, - -, Ym ]

Our own motivation comes from a different direction. In a study
of generating functions for lattice walk enumeration, Bousquet-
Melou [8] finds the solution of a certain functional equation using
an interesting elimination technique. She has certain power se-
ries uy, ..., up in K[z][[¢]] and certain power series v1, . .., 0y, in
K[z~1][[#]] and needs to combine them to a series that is free of z.
To do so, she finds polynomials f and g such that f(us,...,u,) =
g(v1, .. .,9m), and concludes that both sides of this equation belong
to K[2][[t]] N K[z7'][[t]] = K[[t]]. We see the development of
algorithmic tools for finding separated polynomials as a key step
in turning Bousquet-Melou’s technique into a general algorithm
for solving functional equations.

For ideals I of a bivariate polynomial ring K[x, y], the problem
is well understood. An algorithm for computing generators I N
(K[x] + K[y]) was presented in [9]. Let us briefly sketch how this
algorithm works.

Since every ideal I € K[x,y] is the intersection Iy N I; of a 0-
dimensional ideal I and a principal ideal I1, and because A(IpNI;) =
A(Iy) N A(Ih), it is sufficient to solve the problem for such ideals,
and to be able to intersect the corresponding algebras. The algebra
of separated polynomials of Iy can be determined by first computing
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generators p, q of its elimination ideals. The elements of K[x] -
p +K[y] - q are clearly separated, however, they do not necessarily
make up all of Iy N (K[x] + K[y]). For finding the remaining ones
it is sufficient to make an ansatz whose degrees are bounded by
the degrees of p and g, reducing it, and solving a system of linear
equations.

If I; is generated by some p € K[x, y] \ (K[x]UK[y]), then A(I;)
is simple, i.e. generated by single element. Its generator corresponds
to a separated polynomial f — g that divides every other separated
multiple of p. To determine f —g, it is sufficient to know the degrees
of f and g. Finding f — g then reduces to linear algebra. It turns
out that there is always a grading on K[x, y| such that 1t(f) — 1t(g)
is the minimal separated multiple of the corresponding highest
homogeneous component of p. The problem of finding a degree
bound for the minimal separated multiple of p is thereby reduced
to computing a separated multiple of a homogeneous polynomial.
It can be shown that a homogeneous bivariate polynomial has a
separated multiple if and only if it is, possibly up to a rescaling of
the variables, a product of pairwise distinct cyclotomic polynomials.
This can be checked by inspecting its roots.

Finally, the computation of the intersection of A(Iy) and A(I;)
is based on the fact that A(Iy) has finite co-dimension as a K-linear
subspace of K[x] x K[y] and that A(I;) is generated by a single
element of K[x] X K[y]. Any element of A(Ip N I1) is therefore a
polynomial in the generator of A(I1), and (all) such polynomials
can be found by (repeatedly) making an ansatz and solving a system
of linear equations.

The present paper is about the separation problem for ideals
I of K[x1,...,Xn, Y1,...,Ym] for arbitrary n and m. Our main re-
sult (Thm. 7 and Corollary 9 below) is a constructive proof that
shows that A(I) is simple when I is a principal ideal generated by
an element of K[X, Y] \ (K[X] UK[Y]). We show that the com-
putation of its generator can be reduced to the bivariate problem.
This generalizes the corresponding result from [9]. Observing that
the case of 0-dimensional ideals can be treated in the same way as
for bivariate polynomials, this then implies that we can proceed as
in [9] to compute a finite set of generators for A(I) whenever I is
the intersection of a principal ideal and an ideal of dimension zero
(Sect. 3). This implies in particular that A(I) is finitely generated
for such ideals.

However, in general A(I) is not finitely generated, as shown in
Example 5.1 of [9]. This indicates that an extension of the tech-
niques from the case n = m = 1 to the case of arbitrary n and m
is not straightforward, because there cannot be an algorithm that
computes for every given ideal a complete list of generators of A(I)
in a finite number of steps. In Sect. 4, we propose two procedures
for enumerating generators of A(I). We do not know if there is a
procedure that terminates whenever A(I) is finitely generated.

Throughout the paper, K denotes a computable field of charac-
teristic zero. It is assumed that there is a way to check for a given
element of K whether it is a root of unity. This is a fair assump-
tion when K is a number field or a rational function field over a
number field. We write X for x1,...,x, and Y for yy,...,ym and
consider the polynomial ring K[X, Y] in n + m variables. When p
is a polynomial in the variable v, we denote the coefficient of o¥ in
p by [vk]p for any k € N.

2 PRINCIPAL IDEALS

Consider a principal ideal I = (p) € K[X,Y]. If the generator
belongs to K[X] or to K[Y], then the separation problem is not
interesting. Let us exclude this case and assume that p € K[X, Y]\
(K[X] UK[Y]). Our goal is to obtain information about A(I) us-
ing our understanding of the case n = m = 1. Consider the ring
homomorphism

¢: K[X, Y] - K(X,Y)[s, t]

which maps each x; to sx; and each y; to ty;. The codomain is a
bivariate polynomial ring. Therefore, if P = ¢(p) and I is the ideal
generated by P in K(X, Y)[s, t], we know that the algebra A(I) is
simple, and we can compute a generator (F,G) € K(X,Y)[s] x
K(X,Y)[t]. If A(]) is trivial, then so is A(I), because ¢ maps any
nontrivial element of A(I) to a nontrivial element of A(I). Suppose
now that A(I) is nontrivial, and let (F, G) be a generator. As every
nonzero K(X, Y)-multiple of a generator is again a generator, we
may assume that (F, G) is such that F and G have no denominators
and that F — G has no factor in K[X, Y]. Moreover, if (F,G) is a
generator, then so is (F + u, G + u) for every u € K(X,Y), because
(1, 1) is an element of the algebra. We may therefore further assume
that (F, G) is such that [s°]F = 0. We can alternatively assume that
[£°1G = 0, but we cannot in general assume that [s°]F and [t°]G
both are zero. However, we can achieve this situation by a change of
variables, and it will be convenient to do so. The following lemma
provides the justification.

LEMMA 1. Let Q € K™™ and let h: K[X,Y] — K[X,Y] be
the translation by Q. Then h induces an isomorphism of K-algebras
between A(I) and h(A(I)). In particular, h(A(I)) = A(h(I)) and a
set of generators of A(h(I))) can be obtained from a set of generators
of A(I) by applying h to both components of each generator.

ProoF. Observe that h maps K[X] to K[X] and K[Y] to K[Y],
and that A is invertible. Therefore,

(f.9) €A) = (h(f).h(g)) € A(h(]))
for all f € K[X] and all g € K[Y]. The claim follows. =

If Q is a point on which p vanishes, then h(p) is a polyno-
mial with no constant term. According to the lemma, it suffices
to compute A((h(p))), so we may assume without loss of gener-
ality that p(0) = 0. We will then also have P(0) = 0, and then
(F — G)|s=0.0=0 = 0, so [s°]F = [t°]G, as desired. If K is not al-
gebraically closed, a point Q € K™ for which p(Q) = 0 may
not exist. We may have to replace K by some algebraic extension
K () in order to ensure the existence of a suitable Q. By the fol-
lowing lemma, such algebraic extensions of the coefficient field are
harmless.

LEmMA 2. Let I C K[X,Y], let a be algebraic over K, and let
J € K()[X, Y] be the ideal generated by I in K(a)[X, Y]. IfA(]J) is
generated by a single element as K(a)-algebra, then it has a generator
with coefficients in K, and this generator also generates A(I) as K-

algebra.

Proor. Let py,...,pr € K[X, Y] € K()[X, Y] be ideal genera-
tors of I and consider a generator (f, g) of A(J). We may assume



that (f, g) is not a K(a)-multiple of (1, 1), because otherwise A(J)
is trivial and there is nothing to show.
There are q1, . ..,qr € K(a)[X, Y] such that

f-g9=qpr+---+qepe.

If « is of degree d, then 1,q¢,..., a%"1 is a K-vector space basis

of K(a). Write f —g = Z;.i:_ol (f; — gi)a* for certain f; € K[X] and
gi € K[Y], and write g; = Z?:_Ol qi jo' for certain q; j € K[X, Y],
so that

d-1 d-1 .
Z(ﬁ' —-gia' = Z(Qi,lpl +otgiepr)at.
i=0 i=0

Since p1,...,pe are free of @, we can compare coefficients and
find that (f;,g9;) € A(J). As (f,g) is an algebra generator, each
(fi, gi) can be expressed as a polynomial of (f, g) with coefficients
in K(a). As the degrees of nontrivial powers of (f, g) exceed those
of (f, g), and therefore also those of (f;, gi), we have in fact (f;, gi) =
ui(f,9)+0i(1,1) for certain u;, v; € K(a). Since (f, g) is not a K(a)-
multiple of (1, 1), at least one (f;, g;) is not a K(a)-multiple of (1, 1),
and we can write (f, g) as a K(«)-linear combination of (1, 1) and
this (fi,gi). Then (f;, gi) is a generator of A(J) with coefficients
in K.

By fi—gi = qi,ip1+- - - +qiepe, we have (fi, gi) € A(I). Together
with A(I) € A(J), thisimplies that (f;, g;) is also a generator of A(I).
n

Assuming that F, G are such that [s°]F = [t°]G = 0, the question
is now what a generator (F,G) of A(I) implies about A(I). Our
answer to this question is Theorem 7, which says that if A(I) is
nontrivial, then a generator of A(I) can be obtained from (F, G). In
preparation for the proof of this theorem, we need a few lemmas.

LEMMA 3. Let F € K[X,Y][s] be such that [s°]F = 0. Let the
polynomialsug, . .., u, € K[X,Y] be such thatug+uiF+- - - +up F¥
has a factor p in K[X, Y]. Suppose that p is not a common factor of
ug, ..., ug. Thenp | F.

Proor. Without loss of generality, we may assume that p is ir-
reducible. (If it isn’t, replace p by one of its irreducible factors.)
We show that the assumption p { F implies that p is a com-
mon factor of u, ..., u. Because of [sO]F = 0, the image of F
in (K[X,Y]/{p))[s] is a polynomial of positive degree. Therefore,
the images of 1, F, ..., F in (K[X,Y]/{p))[s] are linearly indepen-
dent over K[X, Y]/(p). As the image of up + usF + - - - + uka in
(K[X, Y]/{p))[s] is assumed to be zero, the images of uy, ..., uj
must be zero, which means p | u; for all i, as promised. m

LEMMA 4. Let (F,G) € K[X,Y][s] x K[X,Y][t] be such that
[s°1F = [t°]G = 0. Suppose that F — G has no factor in K[X, Y]. Let
ug, ..., up € K(X,Y) be such that

1 F Fk
uo| | +up G +- U Gk e K[X, Y][s] xK[X,Y][t].
Then uy, . .., ug are in fact in K[X, Y].

ProorF. Suppose otherwise and let d € K[X, Y] be the least
common denominator of u, . .., u; and p be an irreducible factor

of d. Then
p | dug +durF + - - - + du F¥

and
p | dug +duyG + - - - + du G

and p t du; for at least one i. By the previous lemma, this implies
p | Fand p | G. But then p | F — G, in contradiction to the
assumption. m

LEMMA 5. Let F € K[X,Y][s] be such that [s°]F = 0. Let k
be a positive integer. Suppose that [s"|Fk is in K[X] for every i >
(k —1)deg, F. Then F € K[X][s].

Proor. Write F = ¢1s+: - -+cdsd withd = deg, Fandecy,...,cq4 €
K[X, Y]. We have [s%]Fk = cs, which can only be in K[X] if ¢z
is. Fori=1,...,d — 1, the coefficient of s%k=1 in Fk is

k-1
key ™ cqi+plca—it1, Ca-i+2s - €d)

for a certain polynomial p. This follows from the multinomial theo-
rem. By induction on i, it implies that also ¢, ¢2, ..., cy_1 belong
to K[X], as claimed. =

LEMMA 6. Let (F,G) € K[X,Y][s] x K[X,Y][t] be such that
[s°1F = [t°]G = 0. Suppose that F — G has no factor in K[X, Y]. Let
u, . . ., ug € K[X,Y] be such that

k
uo(i) +uy ((F}) +eeet ”k(gk) € K[X][s] xK[Y][t].
Then F € K[X][s], G € K[Y][s], and uo, ..., u; € K.

Proor. The deg, F highest order terms of FK (wrt. s) exceed
the highest order terms of the lower powers of F. (Note that the
uo, - . ., Uy do not contain s.) Since ug + u1 F +- - - + uka belongs to
K[X][s] by assumption, neither uy nor the coefficients of the deg, F
highest order terms of F¥ can contain Y. Therefore, by Lemma 5, F
belongs to K[X][s].

As the s-degrees of the powers of F are pairwise distinct, it
follows furthermore that none of the uy, . .., u; can contain any Y.

By the same reasoning, we get that G belongs to K[Y][¢] and
that none of the uy, . ..,y can contain any X, so in fact, we have
up,....up €K, m

TaEOREM 7. Letp € K[X, Y]\ (K[X]JUK][Y]) be such that p(0) =
0. LetI = (p), P = ¢(p), and I = (P) C K(X,Y)[s, t]. Suppose that
A(I) is not trivial and let (F,G) € K(X,Y)[s] x K(X,Y)[t] be a
generator such that F and G have no denominator, F — G has no factor
inK[X,Y], and Fls=0 = Gls=0 = 0. Then A(I) is nontrivial if and
only if F € K[X][s] and G € K[Y][t] and F|s=1 # Glt=1. In this
case, (F|s=1,G|s=1) is a generator of A(I).

Proor. “=”: If F and G are as in the assumption, then F — G
is a K(X,Y)[s, t]-multiple of P, say F — G = QP for some Q €
K(X,Y)[s, t]. Since P has no factor in K[X, Y] and F — G has no de-
nominator, it follows that Q has no denominator. Therefore, setting
s = 1 and ¢t = 1 shows that F|s=; — G|;=1 is a separated multiple
of p and therefore an element of I. It follows that A(I) contains
(Fls=1, Gl¢=1)- It remains to show that this is not a K-multiple of
(1,1). If it were, then F|s=1 — G|t=1 = 0, which is excluded by
assumption on F and G.



“=”:If A(I) is nontrivial, it contains some pair (f,g) € K[X] x
K[Y] that is not a K-multiple of (1, 1). Then (¢(f), #(g)) is a non-
trivial element of A(I). Then there are uo, ...,u; € K(X,Y) such

that .
(i) =ol) (o) + -+ )

The left hand side has no denominator in K[X, Y], because f and
g are polynomials. Therefore, by Lemma 4, uy, ..., u belong to
K[X,Y]. Next, by Lemma 6, it follows that F € K[X][s], G €
K[Y][t], and uy,...,u; € K.

It remains to show that F|s=; # G|;=1. If they were equal, then
they would be in K, because F|s=; does not contain Y and G|;=1
does not contain X. Then (F|s=1, G|t=1) would be a K-multiple of

(1,1), and
u (1)+u (F|S=1)+--~+u ((F|s:1)k)
\1) "Gl \(Gle=)*

would also be a K-multiple of (1, 1). This is impossible, because
(f, g) is assumed not to be a K-multiple of (1,1).

This completes the argument for the direction “=". In this argu-
ment, we have shown that every element of A(I) can be written as
a polynomial in (F|s=1, G|;=1). This construction also implies the
additional claim about the generator of A(I). =

EXAMPLE 8. (1) IfI is generated byx% +2x1X2 +x§ +x1y+x2y+
y?, then both A(I) and A(I) are nontrivial. They are generated
by ((x1 + x2)%,y%) and ((x1 + x2)3s3, 4313), respectively.

(2) If I is generated by xf +x1x2 + xg +x1y + x2 + y%, then A(I)
and A(I) both are trivial.

There is no example where A([) is trivial but A(I) is not, because
¢ maps nontrivial elements of A(I) to nontrivial elements of A(I).
Conversely, we have also not found any example of a principal ideal
I where A(I) is trivial but A(I) is not, and we suspect that no such
example exists. However, as we will see in Example 22, there are
such examples when I is not principal.

CororLARY 9. Foreveryp € K[X, Y]\ (K[X]UK]Y]), the algebra
A((p)) is simple.

Proor. We argue that all assumptions in Thm. 7 are “without
loss of generality”” First, by Lemmas 1 and 2, we can assume that
p(0) = 0.If A({p)) is trivial, there is nothing to prove. If A({p)) is
not trivial, then so is A({(P)). If (F, G) is any generator of A((P)),
then so is every a(F, G) + f(1,1) for any choice @ € K(X,Y) \ {0}
and f € K(X,Y). By a suitable choice of a and f, we can meet
the assumptions imposed on (F,G) in Thm. 7. According to the
theorem, then (F|s=1, G|;=1) is a generator of A(I). m

The assumption that p does not belong to K[X] or to K[Y] is
necessary. For example, if p € K[X], the algebra A(I) consists of all
(f +¢,¢) where f € K[X] - p and ¢ € K, and while this is a concise
description of A(I), such an algebra need not be finitely generated.
To see this, consider p = x1x2 € K[x1,x2]. The xp-degree of any
nontrivial power of any nontrivial K[x1, x2]-multiple of p will be at
least 2, so every element x{cxz of the algebra can only be a K-linear
combination of generators. Because of dimg x1x2K[x;] = oo, there
must be infinitely many generators.

We have just seen that the algebra A(I) is simple whenever
the ideal I is generated by a polynomial p of K[X, Y] that is not
an element of K[X] U K[Y]. We now give a characterization of
the generator of A(I) in terms of certain divisibility relations. It is
based on the following generalization of a theorem by Fried and
MacRae [15]. For a proof we refer to [16]. See also [2].

THEOREM 10. Let f,F € K[X] and g,G € K[Y] be non-constant
polynomials. The following are equivalent:

(1) There exists h € K[t] such that F = h(f) and G = h(g).

(2) f —gdividesF — G inK[X,Y].

Let F - G € IN (K[X] + K[Y]) such that (F,G) € A(I). If A(])
is simple and generated by (f,g) € K[X] x K[Y], then (F,G) =
(h(f),h(g)) for some h € K[t]. The previous theorem implies that
f — g divides F — G in K[X, Y]. As a consequence of Corollary 9
and Theorem 10 we therefore have the following.

CoroLLARY 11. Let p € K[X,Y]. If p has a separated multiple,
then it has one that divides any other of its separated multiples.

If p has a separated multiple and the corresponding algebra is
generated by (f, g), then f—g is referred to as the minimal separated
multiple of p. It is unique up to a multiplicative constant.

3 IDEALS OF DIMENSION ZERO

For ideals of dimension zero, the technique proposed in [9] for the
case n = m = 1 generalizes more or less literally to arbitrary n
and m. We therefore give only an informal summary here and refer
to [9] for a more formal discussion.

IfI € K[X, Y] has dimension zero, then it contains a nonzero uni-
variate polynomial for each of the variables. Denote these polyno-
mials by p1,...,pn, q1, - - ., ¢m- Being univariate, these polynomials
are in particular separated. This implies that A(I) contains at least
all pairs (p, q) where p is a K[X]-linear combination of p1,..., pn
and q is a K[Y]-linear combination of g1, ..., qm. If (f,g) is any
other element of A(I), we can add an arbitrary K[X]-linear combi-
nation of p1, ..., p, to f and an arbitrary K[Y]-linear combination
of q1,...,qm to g and obtain another element of A(I). It is therefore
enough to search for elements (f, g) of A(I) with deg, f < deg,, pi
and degyj g< degyj q; for all i and j. This restricts the search to a
finite dimensional vector space. We can make an ansatz with un-
determined coefficients for f and g, compute its normal form with
respect to a Grobner basis of I, equate its coefficients to zero and
solve the resulting linear system for the unknown coefficients in K.
The solutions together with the py, ..., p, and their X-multiples
as well as the q1, . .., gm and their Y-multiples then form a set of
generators of A(I).

ExaMPLE 12. LetI C K[x1, X2, Y1, y2] be the ideal generated by
X1+ X2+ Y1 + Y2,
x1x2 + X1Y1 + X1Y2 + X2y1 + X2Y2 + Y192,
X1X2Y1 + X1X2Y2 + X1Y1Y2 + X2Y1Y2,
x1x2y1y2 — 1.
Its elimination ideals are
INK[x1,x2] = (x? + x%xz +x1x§ + xg,xé1 + 1),

INK[y 2] = W3 + yiyz +y1vl + 3. ys + 1),



Denoting the two generators of I N K[x1,x2] by p1, pa, respectively,
polynomial division shows that this ideal is generated as a K-algebra
byxix)py fori=0,1,2and j=0,1,2,3 and x}x)p, fori=0,1,2,3
and j = 0, 1,2. Similarly, we get a finite set of generators for the other
elimination ideal.

It remains to check whether A(I) contains any elements (p, q)
where all terms in p have x1-degree less than 3 and x3-degree less
than 4, and all terms in q have y;-degree less than 3 and y2-degree
less than 4. It turns out that the following pairs form a basis of the
K-vector space of all these elements:

U b o Ui e G
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These pairs together with the generators of the two elimination ideals
form a finite set of generators of A(I).

As a K-linear subspace of K[X] x K[Y], the algebra A(I) for an
ideal I of dimension zero has finite co-dimension. From the algebra
generators of A(I) computed as described above, we can obtain a
basis of a vector space V such that V & A(I) = K[X] x K[Y], and
for every (f,g) € K[X] x K[Y] we can compute a pair (f, g ev
such that (f, g) — (f, g) € A(I). This amounts to Lemma 2.4 of [9].

In the case n = m = 1, every ideal can be written as the intersec-
tion of an ideal of dimension zero and a principal ideal. This is no
longer true in the general case. However, if an ideal I € K[X, Y]
happens to be the intersection of an ideal Iy € K[X, Y] of dimen-
sion zero and a principal ideal I; C K[X, Y], then we can continue
as in Sect. 4 of [9] and obtain a finite set of generators for A(I).

Algorithm 4.3 of [9] relies on A(Ip N I1) = A(lp) N A(l1) and
uses that A(Ip) has finite codimension and A(I;) is generated by a
single element. It makes an ansatz for a polynomial in the generator
of A(I;), then finds an equivalent element in V and forces that
element to zero. This results in a system of linear equations for the
coefficients of the ansatz, whose solutions give rise to elements of
A(Ip) N A(I1). The search is repeated with an ansatz of larger and
larger degree, but always excluding all monomials that are N-linear
combinations of degrees of generators found earlier. Since (N, +) is
a noetherian monoid, after finitely many repetitions there are no
monomials left and the list of generators is complete.

The correctness of this algorithm does not depend on the as-
sumption n = m = 1 but extends literally to the case of arbitrary n
and m. We can therefore record the following corollary to Thm. 7.

CoroLLARY 13. Let I € K[X, Y] be such thatI = Iy N I; for some
ideal Iy of dimension zero and some principal ideal I whose generator
is not in K[X] UK[Y]. Then A(I) is finitely generated, and there is
an algorithm for computing a finite set of generators.

ExAMPLE 14. As a minimalistic example, consider the ideal I =
Iy N € K[x1, x2, Y1, y2] with

Io=(x1—1,x2—1,y1—2,y2—2) and Ilz(xf+x1yg+y§).

The algebra A(ly) is generated by (x1 — 1,0), (x2 — 1,0), (0,y1 —
2), (0,y2 — 2), and the algebra A(I;) is generated by g = (xf, yg). We
need to find all univariate polynomials p such that p(g) € A(lp).
Modulo the K-vector space A(Ip), the element g itself is equivalent
to(0,7), and the elementg2 is equivalent to (0, 63). Therefore, gz—9g is
an element of A(Ip). This reduces the search to polynomials involving

only odd powers of g. As the element g° is equivalent modulo A(Iy)
to (0,511), we find the additional element g> — 73g of A(I). Since
2N + 3N =N\ {0, 1} and A(Iy) does not contain any element of the
form ag + f, we can conclude that A(I) = K[¢* - 99, ¢° — 73g].

4 ARBITRARY IDEALS

For an arbitrary ideal I of K[X, Y], the algebra of separated polyno-
mials is in general not finitely generated. It is therefore impossible
to give an algorithm that computes a complete basis in a finite
number of steps. The best we can hope for is a procedure that enu-
merates a set of generators and runs forever if A(I) is not finitely
generated, yet terminates if A(I) is finitely generated. Unfortu-
nately, we cannot offer such a procedure. However, if we drop the
latter requirement, it is not hard to come up with an algorithmic
solution.

For any fixed d € N, we can find all (f,g) € A(I) where f and g
have total degree at most d by linear algebra, similar as in the case
of zero dimensional ideals. Make an ansatz
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with undetermined coefficients ae, .. e,, Pe,....e, and compute the
normal form of f —g with respect to a Grobner basis of I. The result
will be a polynomial in X, Y whose coeflicients are K-linear combi-
nations of the undetermined coefficients. Force these coefficients
to zero and solve the resulting linear system. The result translates
into a basis of the K-vector space of all pairs (f, g) € A(I) with f
and g of total degree at most d. By repeating this computation for
d =1,2,3,... indefinitely, we will get a set of generators of A(I).
In fact, these generators generate A(I) not only as K-algebra but
even as K-vector space. This is more than we want. We can elimi-
nate some of the redundance in the output by discarding from the
ansatz all terms that are powers of leading terms of generators that
have been found in earlier iterations, but the approach nevertheless
seems brutal as the size of the linear system will grow rapidly with
increasing d.

An alternative procedure for enumerating algebra generators of
A(I) uses Grobner bases instead of linear algebra. For this procedure,
we reuse the idea of Sect. 2 and exploit the fact that we know how
to compute a (finite) set of generators of A(I) for every ideal I of a
bivariate polynomial ring.

Like in Sect. 2, we consider the homomorphism

$: K[X, Y] - K(X,Y)[s, £]

which maps each x; to sx; and each y; to ty;. Let p1,...,p; €
K[X, Y] be generators of I € K[X, Y], let P; = ¢(p;) fori=1,...,¢,
and let I be the ideal generated by Py, ..., Py in K(X, Y)[s, t]. The
algebra A(J) is finitely generated. Let By, ..., By, be a choice of gen-
erators. The homomorphism ¢ maps every element of A(I) to an ele-
ment of A(I), and every such element can be written as a polynomial
in By, ..., By, with coefficients in K(X, Y). Therefore, in order to find
elements of A(I), we search for elements of K(X,Y)[By,...,By]
that become elements of A(I) after setting s and ¢ to 1. This can be
done effectively as soon as we can solve the following problem:



PROBLEM 15. Given: generators p1, . .., pr of I and some elements
(F1,G1), . .., (Fi, Gy) of A(I)

Find: a K-vector space basis of the set of all elements of A(I) that
can be obtained from a K(X, Y)-linear combination of (F1,G1), ...,
(F, Gy) by setting s and t to 1.

With an algorithm for solving this problem, we can get a proce-
dure that enumerates generators of A(I). Ford = 1,2,... in turn,
the procedure calls the algorithm with all monomials in By, ..., By
of degree at most d as (F1, Gy), .. ., (F, Gg).

In the remainder of this section, we discuss an algorithm for
solving Problem 15. We first give a high-level description of the
algorithm and prove that the approach is sound and complete. After-
wards, we show that each of the steps can be effectively computed.

ALGORITHM 16. Input/Output: as specified in Problem 15
1 Compute a basis of the K[ X, Y]-module

M = spang(x.y) (Fi = G, .-, Fg = Gi) 0 (1), .., $(pe)) -
—_—
CK[X,Y][s.t]
Write the elements F—G of M in the form (F, G), so that M becomes
a submodule of K[X, Y] [s] X K[X, Y][t]. (Include the pair (1,1)
among the generators.)
2 Compute bases of the K[X]-module

My :={(F,G) e M: F e K[X][s] }
and the K[Y]-module
My = {(F,G) e M: G € K[Y][t] }.

3 Compute a basis of the K-vector space Mx N My.
4 Sets =t =1 in the basis elements and return the result.

THEOREM 17. Alg. 16 is sound and complete.

PRrOOF. Soundness. We show that every pair (f, g) in the output
indeed belongs to A(I). If (f, g) is an element of the output, then
it is clear from Step 3 and the definition of My, My that f € K[X]
and g € K[Y]. We need to show that f — g € I. Let F, G be the
polynomials from which f and g are obtained by setting s and ¢
to 1. Then (F, G) is an element of M, therefore F — G is an element
of (¢(p1),...,9(pp)), and therefore f — g is an element of I.

Completeness. We show that if (f,g) € A(I) is such that the
corresponding (F,G) € K(X,Y)[s] xK(X, Y)[t] isa K(X, Y)-linear
combination of the elements (Fy, Gy), ..., (Fx, Gg), then it is a K-
linear combination of the output pairs. By assumption, F — G €
spang x vy (F1 = G1, ..., Fx — Gy). Also, since f — g € I, we have
F-G € {p(p1),...,9(p1)). Therefore, (F, G) belongs to the module
M computed in Step 1. Moreover, we have F € K[X][s] and G €
K[Y][t] because f € K[X] and g € K[Y], so (F,G) € Mx N My.
The claim follows. =

Step 4 of Alg. 16 is trivial, and Step 2 is a standard application of
Grobner bases. For example, in order to get a basis of My, it suffices
to compute a Grébner basis of M with respect to a TOP term order
that eliminates Y, and to discard from it all elements which have a
Y in the first component [1, Definition 3.5.2]. Steps 1 and 3 require
more explanation.

For Step 1, we divide the problem into two substeps. First we
compute a basis of the K[X, Y]-module

N = spanK(X’Y)(Fl -G1,....Fr —Gp) NK[X,Y][s, t],

and then we obtain a basis of M by computing the intersection of
this N with the ideal generated by ¢ (p1), ..., d(pr) in K[X, Y] [s, £].
The two substeps are provided by the following lemmas.

LEmMA 18. For any given qy, ..., qr € K[X, Y][s, t], we can com-
pute a basis of the K[X, Y]-module

spang x y)(q1, - - -, qx) N K[X, Y] [s, ¢].

PROOF. As only finitely many monomials appear in ¢y, .. ., g,
we can view them as elements of a finitely generated K[X, Y]-
submodule of K[X, Y] [s, t]. We may identify this submodule with
K[X, Y]™ for some n. In this identification, spang (x.y) (g1, -+, qx)
is a certain subspace of K(X, Y)". Let A € K(X, Y)™*" be a matrix
whose kernel is this subspace. Such a matrix exists and can be
easily constructed by means of linear algebra. As multiplying A by
a nonzero element of K(X, Y) does not change the kernel, we may
assume that A belongs to K[X, Y]™*". Let ay, .. .,an € K[X,Y]™
be its columns. Then

spang (x y)(q1, .- qx) NK[X, Y]" = Syz(a1,....am).

The computation of a basis of the syzygy module is a standard
application of Grobner bases. =

LEMMA 19. Let N be a finitely generated K[X, Y]|-submodule of
K[X,Y][s, t] and let ] be an ideal of K[X,Y][s,t]. Then NN J isa
finitely generated submodule of K[X, Y][s, t], and we can compute a
basis of it from a module basis of N and an ideal basis of J.

ProOF. Let ny,...,n, be module generators of N and py, ..., pg
be ideal generators of J. An element g of K[X, Y][s, t] belongs to
N N Jif and only if there are a1, ...,ar € K[X,Y] and f1, ..., b €
K[X, Y] [s, t] such that

qg=aint+---+o,yn,
=pip1+- -+ Prpk-

By taking the difference of these two representations of g, we see
that the relevant tuples (a1,...,ar, f1,..., fi) are precisely the
elements of

Syz(ni, ..., np—p1, ..., —pr) NK[X, Y]" X K[X, Y][s, t]¥.

We can first compute a Grobner basis of the syzygy module in
K[X,Y][s, t]”k , then discard the lower k coordinates, and then
eliminate s and t. This yields a basis of the K[X, Y]-module that
contains a tuple (a1,...,a,) € K[X, Y] ifand only if ayng +--- +
arny € N N J. A basis of this module thus translates into a basis of
NNJ. =

We now turn to Step 3 of Alg. 16, where we have to compute
the intersection of a finitely generated K[X]-submodule Mx of
K[X, Y][s, t]? with a finitely generated K[Y]-submodule My of
K[X, Y][s, t]?. The result is a K-vector space, and the task is to
compute a basis of this vector space.



Let by,..., by be a basis of My and cy,...,c, be a basis of My.
Like in the proof of Lemma 18, we seek a1, ...,a, € K[X] and
Bi, ..., By € K[Y] such that

0{1b1+-~'+0(ubu:ﬁ161+-~-+ﬂycv. (l)

If we can get hold of a finite set of monomials that contains all
the monomials which can possibly appear in a1, ..., ay, f1, . - ., Pos
then we can find a4, ..., ay, B1, . . ., fo by making an ansatz with
undetermined coefficients, plugging it into the above equation,
comparing coefficients, and solving a linear system over K. Every
solution vector translates into a solution (a1, ..., ay, f1, ..., fo) €
K[X]* x K[Y]? of equation (1), and every such solution translates
into an element a1b1 +- - - + ay by, of the intersection My N My. The
following lemma tells us how to find the required monomials.

LEMMA 20. Let (a1, ..., 0u, P15 .., Po) € K[X]¥ XK[Y]? be a so-
lution of (1), leti € {1,...,0}, and letT = yfl -~y be a monomial
appearing in f;. Let G be a Grobner basis of

Syz(by,...,by,—c1,...,—¢cy) € K[X, Y]***
with respect to a TOP order that eliminates Y. Then there exists a
monomial o = xfl -+ xi" and an element g € G such that the first u
components are free of Y and the (u + i)th component contains the
monomial o7.

Proor. A vector in K[X]* x K[Y]? is a solution of (1) if and
only if it belongs to the syzygy module. The given solution ¢ must
therefore reduce to zero modulo G. By the choice of the term order,
only elements of G whose first u components are free of Y will
be used during the reduction. Call these elements g1, .. ., g,. Again
by the choice of the term order, these elements of G will only
be multiplied by elements of K[X] during the reduction, i.e., we
will have g = q1g1 + - - - + qegy for certain qy, ..., g, € K[X]. The
(u+1i)th component of q contains the monomial 7, so this monomial
appears in a K[X]-linear combination of the (u + i)th components
of g1,...,9¢. As K[X]-linear combinations cannot create new Y-
monomials, some K[X]-multiple of 7 must already appear in at
least one of the g1,...,gp. m

With the help of this lemma, we obtain for each i € {1,...,0}
a finite list of candidates of monomials that may appear in ;. Ap-
plying the lemma again with the roles of X and Y exchanged, we
can also obtain for each i € {1,...,u} a finite list of candidates of
monomials that may appear in ¢;. This is all we need in order to
complete Step 3 of Alg. 16.

ExAMPLE 21. Let us use Alg. 16 to search for a nontrivial element

of A(I) for the ideal
I = (y% - xoy2, X2 — x1y1, X} x2y1 — x241Y5)-

The corresponding ideal I has dimension 0, and A(I) contains (s°,0)
and (0, t°). Taking these elements as (F1, G1) and (Fa, G2), we find

in Step 1 that M is generated by the following vectors:
( 0 ) (xgyls(’ —xlxgyzs(’) (x?xgsé)
Xy it® — X1yt )’ 0 Ayjygee)
) () () e

1246 | 1146 >\ 424,1046 |’ \ 4:3,,946
Yot X1yt xXjy;t X1y t

4,846 I’\ +5.7:6 I\ ,6,66 1]
x{ypt Xy, t x]yot 1

In Step 2, we find

0=t ste) (g L )
X = s s s
x2yt® = x1yjyat®) \y3y3e6 ) \xbydre ) \1
and
Mo = x3y15® — x15y25° x3xas0\ (x5ySt8\ (1
y = 0 s | ozge 1
YiY; Y
Step 3 yields

x%x§s6 1
Mx N My = spany 336 |1]]
Y Yyt

and the final result is (x?xg, y?yg).

At the end of the day, Alg. 16 also has to solve a linear system, but
it can be expected that the size of these linear systems grows more
moderately than in the naive approach sketched at the beginning of
the section. On the other hand, Alg. 16 achieves this size reduction
via Grobner basis computations, so it is not clear which of the
two approaches is better. It is noteworthy however that the two
approaches are not equivalent. For example, if A(I) happens to be
trivial, then A(I) is trivial as well, and therefore detected by the
reduction to the bivariate case. The approach based exclusively on
linear algebra cannot detect that.

Unlike in the case of principal ideals, it is easy to find examples
where A(I) is trivial but A(I) is not.

ExamPLE 22. Consider the ideal I C K|[x1, x2, y1, y2] generated by
—X1+Y1+X1X2Y2—X2Y1Y2 and —X1+Y1 +xfy1 —X1 y% Asits generating
set is a Grobner basis, it is clear that I cannot contain any separated
polynomials, because in order to reduce a separated polynomial to
zero, the Grobner basis would need elements with a leading term
only involving x1,x2 or only involving y1,y2. On the other hand,
for the ideal I = (—sx1 + ty; + sztxlxzyg - stzxgylyg, —sx1 + 1ty +
sztxfyl - stleyf) C K(x1,x2,y1,y2)[s, t] we have I = (sx1 — ty1)
and therefore A(I) is different from K((1, 1)).

5 CONCLUSION

We made some progress on the problem of separating variables in
multivariate polynomial ideals. While the algorithm for ideals of
dimension zero generalizes smoothly from the bivariate case to the
multivariate case, we did not find a straightforward generalization
of the construction for principal ideals. Instead, we showed that
it is possible to reduce the multivariate case to the bivariate case
by merging variables. As a result, we obtain that the algebra of
separated polynomials is simple for every principal ideal generated
by a polynomial involving at least one variable from each of the
two groups of variables. It follows furthermore that the algebra



is finitely generated for every ideal that is the intersection of a
principal ideal and an ideal of dimension zero. For arbitrary ideals,
however, the algebra may not be finitely generated. In this case,
we can enumerate generators of the algebra, but it remains open
whether it is possible to arrange the enumeration in such a way that

it terminates whenever the algebra happens to be finitely generated.
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