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ABSTRACT
For a given ideal 𝐼 ⊆ K[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚] in a polynomial ring

with𝑛+𝑚 variables, we want to find all elements that can be written

as 𝑓 − 𝑔 for some 𝑓 ∈ K[𝑥1, . . . , 𝑥𝑛] and some 𝑔 ∈ K[𝑦1, . . . , 𝑦𝑚],
i.e., all elements of 𝐼 that contain no term involving at the same

time one of the 𝑥1, . . . , 𝑥𝑛 and one of the 𝑦1, . . . , 𝑦𝑚 . For principal

ideals and for ideals of dimension zero, we give a algorithms that

compute all these polynomials in a finite number of steps.
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1 INTRODUCTION
The problem under consideration is as follows. Given an ideal 𝐼 of

a polynomial ring K[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚], we want to know all

elements of 𝐼 that can be written in the form 𝑓 − 𝑔 for some 𝑓 ∈
K[𝑥1, . . . , 𝑥𝑛] and some 𝑔 ∈ K[𝑦1, . . . , 𝑦𝑚]. Such a polynomial 𝑓 −𝑔
is called separated because it contains no monomials that involve

at the same time one of the 𝑥1, . . . , 𝑥𝑛 and one of the 𝑦1, . . . , 𝑦𝑚 .

It is not hard to see that the pairs (𝑓 , 𝑔) ∈ K[𝑥1, . . . , 𝑥𝑛] ×
K[𝑦1, . . . , 𝑦𝑚] such that 𝑓 −𝑔 is a separated element of an ideal 𝐼 of

K[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚] form a unital K-algebra with component-

wise addition and multiplication. Indeed, (1, 1) is clearly an element,
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and if (𝑓 , 𝑔), (𝑓 ′, 𝑔′) are elements, then so are (𝑓 + 𝑓 ′, 𝑔 + 𝑔′) and
(𝑓 𝑓 ′, 𝑔𝑔′), the latter because 𝑓 𝑓 ′ −𝑔𝑔′ = (𝑓 −𝑔) 𝑓 ′ +𝑔(𝑓 ′ −𝑔′) ∈ 𝐼 .
We denote the set of all these pairs (𝑓 , 𝑔) by 𝐴(𝐼 ) and call it the

algebra of separated elements of 𝐼 . Given a basis of the ideal 𝐼 , we

want to compute a set of generators of 𝐴(𝐼 ).
Equations with separated variables have been studied at least

since the 1950s [5, 6, 10–15]. Early authors studied the algebraic

curves defined by polynomials of the form 𝑓 (𝑥) − 𝑔(𝑦), and in par-

ticular the question under which circumstances such a polynomial

is irreducible, and the structure of the corresponding function fields.

Later, other aspects of the problem entered into the focus, for in-

stance the problem of finding integer roots of polynomials with

separated variables [4] or the relation of the separation problem to

the problem of decomposing polynomials [2, 3, 7, 16].

The problem of finding separated polynomials in polynomial

ideals has various applications. One application is the intersection of

K-algebras. For example, computing K[𝑢1, . . . , 𝑢𝑛] ∩K[𝑣1, . . . , 𝑣𝑚]
for given polynomials

𝑢1, . . . , 𝑢𝑛, 𝑣1, . . . , 𝑣𝑚 ∈ K[𝑡1, . . . , 𝑡𝑘 ]

is equivalent to finding all the separated polynomials 𝑓 − 𝑔 in the

ideal

⟨𝑥1−𝑢1, . . . , 𝑥𝑛−𝑢𝑛, 𝑦1−𝑣1, . . . , 𝑦𝑚−𝑣𝑚⟩∩K[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚] .

Our own motivation comes from a different direction. In a study

of generating functions for lattice walk enumeration, Bousquet-

Melou [8] finds the solution of a certain functional equation using

an interesting elimination technique. She has certain power se-

ries 𝑢1, . . . , 𝑢𝑛 in K[𝑧] [[𝑡]] and certain power series 𝑣1, . . . , 𝑣𝑚 in

K[𝑧−1] [[𝑡]] and needs to combine them to a series that is free of 𝑧.

To do so, she finds polynomials 𝑓 and 𝑔 such that 𝑓 (𝑢1, . . . , 𝑢𝑛) =
𝑔(𝑣1, . . . , 𝑣𝑚), and concludes that both sides of this equation belong

to K[𝑧] [[𝑡]] ∩ K[𝑧−1] [[𝑡]] = K[[𝑡]]. We see the development of

algorithmic tools for finding separated polynomials as a key step

in turning Bousquet-Melou’s technique into a general algorithm

for solving functional equations.

For ideals 𝐼 of a bivariate polynomial ring K[𝑥,𝑦], the problem
is well understood. An algorithm for computing generators 𝐼 ∩
(K[𝑥] + K[𝑦]) was presented in [9]. Let us briefly sketch how this

algorithm works.

Since every ideal 𝐼 ⊆ K[𝑥,𝑦] is the intersection 𝐼0 ∩ 𝐼1 of a 0-

dimensional ideal 𝐼0 and a principal ideal 𝐼1, and because𝐴(𝐼0∩𝐼1) =
𝐴(𝐼0) ∩ 𝐴(𝐼1), it is sufficient to solve the problem for such ideals,

and to be able to intersect the corresponding algebras. The algebra

of separated polynomials of 𝐼0 can be determined by first computing
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generators 𝑝 , 𝑞 of its elimination ideals. The elements of K[𝑥] ·
𝑝 +K[𝑦] · 𝑞 are clearly separated, however, they do not necessarily

make up all of 𝐼0 ∩ (K[𝑥] + K[𝑦]). For finding the remaining ones

it is sufficient to make an ansatz whose degrees are bounded by

the degrees of 𝑝 and 𝑞, reducing it, and solving a system of linear

equations.

If 𝐼1 is generated by some 𝑝 ∈ K[𝑥,𝑦] \ (K[𝑥]∪K[𝑦]), then𝐴(𝐼1)
is simple, i.e. generated by single element. Its generator corresponds

to a separated polynomial 𝑓 − 𝑔 that divides every other separated

multiple of 𝑝 . To determine 𝑓 −𝑔, it is sufficient to know the degrees

of 𝑓 and 𝑔. Finding 𝑓 − 𝑔 then reduces to linear algebra. It turns

out that there is always a grading on K[𝑥,𝑦] such that lt(𝑓 ) − lt(𝑔)
is the minimal separated multiple of the corresponding highest

homogeneous component of 𝑝 . The problem of finding a degree

bound for the minimal separated multiple of 𝑝 is thereby reduced

to computing a separated multiple of a homogeneous polynomial.

It can be shown that a homogeneous bivariate polynomial has a

separated multiple if and only if it is, possibly up to a rescaling of

the variables, a product of pairwise distinct cyclotomic polynomials.

This can be checked by inspecting its roots.

Finally, the computation of the intersection of 𝐴(𝐼0) and 𝐴(𝐼1)
is based on the fact that 𝐴(𝐼0) has finite co-dimension as a K-linear
subspace of K[𝑥] × K[𝑦] and that 𝐴(𝐼1) is generated by a single

element of K[𝑥] × K[𝑦]. Any element of 𝐴(𝐼0 ∩ 𝐼1) is therefore a
polynomial in the generator of 𝐴(𝐼1), and (all) such polynomials

can be found by (repeatedly) making an ansatz and solving a system

of linear equations.

The present paper is about the separation problem for ideals

𝐼 of K[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚] for arbitrary 𝑛 and𝑚. Our main re-

sult (Thm. 7 and Corollary 9 below) is a constructive proof that

shows that 𝐴(𝐼 ) is simple when 𝐼 is a principal ideal generated by

an element of K[𝑋,𝑌 ] \ (K[𝑋 ] ∪ K[𝑌 ]). We show that the com-

putation of its generator can be reduced to the bivariate problem.

This generalizes the corresponding result from [9]. Observing that

the case of 0-dimensional ideals can be treated in the same way as

for bivariate polynomials, this then implies that we can proceed as

in [9] to compute a finite set of generators for 𝐴(𝐼 ) whenever 𝐼 is
the intersection of a principal ideal and an ideal of dimension zero

(Sect. 3). This implies in particular that 𝐴(𝐼 ) is finitely generated

for such ideals.

However, in general 𝐴(𝐼 ) is not finitely generated, as shown in

Example 5.1 of [9]. This indicates that an extension of the tech-

niques from the case 𝑛 = 𝑚 = 1 to the case of arbitrary 𝑛 and𝑚

is not straightforward, because there cannot be an algorithm that

computes for every given ideal a complete list of generators of𝐴(𝐼 )
in a finite number of steps. In Sect. 4, we propose two procedures

for enumerating generators of 𝐴(𝐼 ). We do not know if there is a

procedure that terminates whenever 𝐴(𝐼 ) is finitely generated.

Throughout the paper, K denotes a computable field of charac-

teristic zero. It is assumed that there is a way to check for a given

element of K whether it is a root of unity. This is a fair assump-

tion when K is a number field or a rational function field over a

number field. We write 𝑋 for 𝑥1, . . . , 𝑥𝑛 and 𝑌 for 𝑦1, . . . , 𝑦𝑚 and

consider the polynomial ring K[𝑋,𝑌 ] in 𝑛 +𝑚 variables. When 𝑝

is a polynomial in the variable 𝑣 , we denote the coefficient of 𝑣𝑘 in

𝑝 by [𝑣𝑘 ]𝑝 for any 𝑘 ∈ N.

2 PRINCIPAL IDEALS
Consider a principal ideal 𝐼 = ⟨𝑝⟩ ⊆ K[𝑋,𝑌 ]. If the generator

belongs to K[𝑋 ] or to K[𝑌 ], then the separation problem is not

interesting. Let us exclude this case and assume that 𝑝 ∈ K[𝑋,𝑌 ] \
(K[𝑋 ] ∪ K[𝑌 ]). Our goal is to obtain information about 𝐴(𝐼 ) us-
ing our understanding of the case 𝑛 = 𝑚 = 1. Consider the ring

homomorphism

𝜙 : K[𝑋,𝑌 ] → K(𝑋,𝑌 ) [𝑠, 𝑡]

which maps each 𝑥𝑖 to 𝑠𝑥𝑖 and each 𝑦 𝑗 to 𝑡𝑦 𝑗 . The codomain is a

bivariate polynomial ring. Therefore, if 𝑃 = 𝜙 (𝑝) and 𝐼 is the ideal
generated by 𝑃 in K(𝑋,𝑌 ) [𝑠, 𝑡], we know that the algebra 𝐴(𝐼 ) is
simple, and we can compute a generator (𝐹,𝐺) ∈ K(𝑋,𝑌 ) [𝑠] ×
K(𝑋,𝑌 ) [𝑡]. If 𝐴(𝐼 ) is trivial, then so is 𝐴(𝐼 ), because 𝜙 maps any

nontrivial element of 𝐴(𝐼 ) to a nontrivial element of 𝐴(𝐼 ). Suppose
now that 𝐴(𝐼 ) is nontrivial, and let (𝐹,𝐺) be a generator. As every
nonzero K(𝑋,𝑌 )-multiple of a generator is again a generator, we

may assume that (𝐹,𝐺) is such that 𝐹 and𝐺 have no denominators

and that 𝐹 − 𝐺 has no factor in K[𝑋,𝑌 ]. Moreover, if (𝐹,𝐺) is a
generator, then so is (𝐹 + 𝑢,𝐺 + 𝑢) for every 𝑢 ∈ K(𝑋,𝑌 ), because
(1, 1) is an element of the algebra. We may therefore further assume

that (𝐹,𝐺) is such that [𝑠0]𝐹 = 0. We can alternatively assume that

[𝑡0]𝐺 = 0, but we cannot in general assume that [𝑠0]𝐹 and [𝑡0]𝐺
both are zero. However, we can achieve this situation by a change of

variables, and it will be convenient to do so. The following lemma

provides the justification.

Lemma 1. Let 𝑄 ∈ K𝑛+𝑚 , and let ℎ : K[𝑋,𝑌 ] → K[𝑋,𝑌 ] be
the translation by 𝑄 . Then ℎ induces an isomorphism of K-algebras
between 𝐴(𝐼 ) and ℎ(𝐴(𝐼 )). In particular, ℎ(𝐴(𝐼 )) = 𝐴(ℎ(𝐼 )) and a
set of generators of 𝐴(ℎ(𝐼 ))) can be obtained from a set of generators
of 𝐴(𝐼 ) by applying ℎ to both components of each generator.

Proof. Observe that ℎ maps K[𝑋 ] to K[𝑋 ] and K[𝑌 ] to K[𝑌 ],
and that ℎ is invertible. Therefore,

(𝑓 , 𝑔) ∈ 𝐴(𝐼 ) ⇐⇒ (ℎ(𝑓 ), ℎ(𝑔)) ∈ 𝐴(ℎ(𝐼 ))

for all 𝑓 ∈ K[𝑋 ] and all 𝑔 ∈ K[𝑌 ]. The claim follows.

If 𝑄 is a point on which 𝑝 vanishes, then ℎ(𝑝) is a polyno-

mial with no constant term. According to the lemma, it suffices

to compute 𝐴(⟨ℎ(𝑝)⟩), so we may assume without loss of gener-

ality that 𝑝 (0) = 0. We will then also have 𝑃 (0) = 0, and then

(𝐹 − 𝐺) |𝑠=0,𝑡=0 = 0, so [𝑠0]𝐹 = [𝑡0]𝐺 , as desired. If K is not al-

gebraically closed, a point 𝑄 ∈ K𝑛+𝑚 for which 𝑝 (𝑄) = 0 may

not exist. We may have to replace K by some algebraic extension

K(𝛼) in order to ensure the existence of a suitable 𝑄 . By the fol-

lowing lemma, such algebraic extensions of the coefficient field are

harmless.

Lemma 2. Let 𝐼 ⊆ K[𝑋,𝑌 ], let 𝛼 be algebraic over K, and let
𝐽 ⊆ K(𝛼) [𝑋,𝑌 ] be the ideal generated by 𝐼 in K(𝛼) [𝑋,𝑌 ]. If 𝐴(𝐽 ) is
generated by a single element asK(𝛼)-algebra, then it has a generator
with coefficients in K, and this generator also generates 𝐴(𝐼 ) as K-
algebra.

Proof. Let 𝑝1, . . . , 𝑝ℓ ∈ K[𝑋,𝑌 ] ⊆ K(𝛼) [𝑋,𝑌 ] be ideal genera-
tors of 𝐼 and consider a generator (𝑓 , 𝑔) of 𝐴(𝐽 ). We may assume



that (𝑓 , 𝑔) is not a K(𝛼)-multiple of (1, 1), because otherwise 𝐴(𝐽 )
is trivial and there is nothing to show.

There are 𝑞1, . . . , 𝑞ℓ ∈ K(𝛼) [𝑋,𝑌 ] such that

𝑓 − 𝑔 = 𝑞1𝑝1 + · · · + 𝑞ℓ𝑝ℓ .
If 𝛼 is of degree 𝑑 , then 1, 𝛼, . . . , 𝛼𝑑−1

is a K-vector space basis

of K(𝛼). Write 𝑓 − 𝑔 =
∑𝑑−1

𝑖=0
(𝑓𝑖 − 𝑔𝑖 )𝛼𝑖 for certain 𝑓𝑖 ∈ K[𝑋 ] and

𝑔𝑖 ∈ K[𝑌 ], and write 𝑞 𝑗 =
∑𝑑−1

𝑖=0
𝑞𝑖, 𝑗𝛼

𝑖
for certain 𝑞𝑖, 𝑗 ∈ K[𝑋,𝑌 ],

so that

𝑑−1∑︁
𝑖=0

(𝑓𝑖 − 𝑔𝑖 )𝛼𝑖 =
𝑑−1∑︁
𝑖=0

(𝑞𝑖,1𝑝1 + · · · + 𝑞𝑖,ℓ𝑝ℓ )𝛼𝑖 .

Since 𝑝1, . . . , 𝑝ℓ are free of 𝛼 , we can compare coefficients and

find that (𝑓𝑖 , 𝑔𝑖 ) ∈ 𝐴(𝐽 ). As (𝑓 , 𝑔) is an algebra generator, each

(𝑓𝑖 , 𝑔𝑖 ) can be expressed as a polynomial of (𝑓 , 𝑔) with coefficients

in K(𝛼). As the degrees of nontrivial powers of (𝑓 , 𝑔) exceed those

of (𝑓 , 𝑔), and therefore also those of (𝑓𝑖 , 𝑔𝑖 ), we have in fact (𝑓𝑖 , 𝑔𝑖 ) =
𝑢𝑖 (𝑓 , 𝑔) +𝑣𝑖 (1, 1) for certain𝑢𝑖 , 𝑣𝑖 ∈ K(𝛼). Since (𝑓 , 𝑔) is not aK(𝛼)-
multiple of (1, 1), at least one (𝑓𝑖 , 𝑔𝑖 ) is not aK(𝛼)-multiple of (1, 1),
and we can write (𝑓 , 𝑔) as a K(𝛼)-linear combination of (1, 1) and
this (𝑓𝑖 , 𝑔𝑖 ). Then (𝑓𝑖 , 𝑔𝑖 ) is a generator of 𝐴(𝐽 ) with coefficients

in K.
By 𝑓𝑖 −𝑔𝑖 = 𝑞𝑖,1𝑝1 + · · · +𝑞𝑖,ℓ𝑝ℓ , we have (𝑓𝑖 , 𝑔𝑖 ) ∈ 𝐴(𝐼 ). Together

with𝐴(𝐼 ) ⊆ 𝐴(𝐽 ), this implies that (𝑓𝑖 , 𝑔𝑖 ) is also a generator of𝐴(𝐼 ).

Assuming that 𝐹,𝐺 are such that [𝑠0]𝐹 = [𝑡0]𝐺 = 0, the question

is now what a generator (𝐹,𝐺) of 𝐴(𝐼 ) implies about 𝐴(𝐼 ). Our
answer to this question is Theorem 7, which says that if 𝐴(𝐼 ) is
nontrivial, then a generator of 𝐴(𝐼 ) can be obtained from (𝐹,𝐺). In
preparation for the proof of this theorem, we need a few lemmas.

Lemma 3. Let 𝐹 ∈ K[𝑋,𝑌 ] [𝑠] be such that [𝑠0]𝐹 = 0. Let the
polynomials 𝑢0, . . . , 𝑢𝑘 ∈ K[𝑋,𝑌 ] be such that 𝑢0 +𝑢1𝐹 + · · · +𝑢𝑘𝐹𝑘
has a factor 𝑝 in K[𝑋,𝑌 ]. Suppose that 𝑝 is not a common factor of
𝑢0, . . . , 𝑢𝑘 . Then 𝑝 | 𝐹 .

Proof. Without loss of generality, we may assume that 𝑝 is ir-

reducible. (If it isn’t, replace 𝑝 by one of its irreducible factors.)

We show that the assumption 𝑝 ∤ 𝐹 implies that 𝑝 is a com-

mon factor of 𝑢0, . . . , 𝑢𝑘 . Because of [𝑠0]𝐹 = 0, the image of 𝐹

in (K[𝑋,𝑌 ]/⟨𝑝⟩) [𝑠] is a polynomial of positive degree. Therefore,

the images of 1, 𝐹 , . . . , 𝐹𝑘 in (K[𝑋,𝑌 ]/⟨𝑝⟩) [𝑠] are linearly indepen-

dent over K[𝑋,𝑌 ]/⟨𝑝⟩. As the image of 𝑢0 + 𝑢1𝐹 + · · · + 𝑢𝑘𝐹𝑘 in

(K[𝑋,𝑌 ]/⟨𝑝⟩) [𝑠] is assumed to be zero, the images of 𝑢0, . . . , 𝑢𝑘
must be zero, which means 𝑝 | 𝑢𝑖 for all 𝑖 , as promised.

Lemma 4. Let (𝐹,𝐺) ∈ K[𝑋,𝑌 ] [𝑠] × K[𝑋,𝑌 ] [𝑡] be such that
[𝑠0]𝐹 = [𝑡0]𝐺 = 0. Suppose that 𝐹 −𝐺 has no factor in K[𝑋,𝑌 ]. Let
𝑢0, . . . , 𝑢𝑘 ∈ K(𝑋,𝑌 ) be such that

𝑢0

(
1

1

)
+ 𝑢1

(
𝐹

𝐺

)
+ · · · + 𝑢𝑘

(
𝐹𝑘

𝐺𝑘

)
∈ K[𝑋,𝑌 ] [𝑠] × K[𝑋,𝑌 ] [𝑡] .

Then 𝑢0, . . . , 𝑢𝑘 are in fact in K[𝑋,𝑌 ].

Proof. Suppose otherwise and let 𝑑 ∈ K[𝑋,𝑌 ] be the least

common denominator of 𝑢0, . . . , 𝑢𝑘 and 𝑝 be an irreducible factor

of 𝑑 . Then

𝑝 | 𝑑𝑢0 + 𝑑𝑢1𝐹 + · · · + 𝑑𝑢𝑘𝐹𝑘

and

𝑝 | 𝑑𝑢0 + 𝑑𝑢1𝐺 + · · · + 𝑑𝑢𝑘𝐺𝑘

and 𝑝 ∤ 𝑑𝑢𝑖 for at least one 𝑖 . By the previous lemma, this implies

𝑝 | 𝐹 and 𝑝 | 𝐺 . But then 𝑝 | 𝐹 − 𝐺 , in contradiction to the

assumption.

Lemma 5. Let 𝐹 ∈ K[𝑋,𝑌 ] [𝑠] be such that [𝑠0]𝐹 = 0. Let 𝑘
be a positive integer. Suppose that [𝑠𝑖 ]𝐹𝑘 is in K[𝑋 ] for every 𝑖 >
(𝑘 − 1) deg𝑠 𝐹 . Then 𝐹 ∈ K[𝑋 ] [𝑠].

Proof. Write 𝐹 = 𝑐1𝑠+· · ·+𝑐𝑑𝑠𝑑 with𝑑 = deg𝑠 𝐹 and 𝑐1, . . . , 𝑐𝑑 ∈
K[𝑋,𝑌 ]. We have [𝑠𝑑𝑘 ]𝐹𝑘 = 𝑐𝑘

𝑑
, which can only be in K[𝑋 ] if 𝑐𝑑

is. For 𝑖 = 1, . . . , 𝑑 − 1, the coefficient of 𝑠𝑑𝑘−𝑖 in 𝐹𝑘 is

𝑘𝑐𝑘−1

𝑑
𝑐𝑑−𝑖 + 𝑝 (𝑐𝑑−𝑖+1

, 𝑐𝑑−𝑖+2
, . . . , 𝑐𝑑 )

for a certain polynomial 𝑝 . This follows from the multinomial theo-

rem. By induction on 𝑖 , it implies that also 𝑐1, 𝑐2, . . . , 𝑐𝑑−1
belong

to K[𝑋 ], as claimed.

Lemma 6. Let (𝐹,𝐺) ∈ K[𝑋,𝑌 ] [𝑠] × K[𝑋,𝑌 ] [𝑡] be such that
[𝑠0]𝐹 = [𝑡0]𝐺 = 0. Suppose that 𝐹 −𝐺 has no factor in K[𝑋,𝑌 ]. Let
𝑢0, . . . , 𝑢𝑘 ∈ K[𝑋,𝑌 ] be such that

𝑢0

(
1

1

)
+ 𝑢1

(
𝐹

𝐺

)
+ · · · + 𝑢𝑘

(
𝐹𝑘

𝐺𝑘

)
∈ K[𝑋 ] [𝑠] × K[𝑌 ] [𝑡] .

Then 𝐹 ∈ K[𝑋 ] [𝑠], 𝐺 ∈ K[𝑌 ] [𝑠], and 𝑢0, . . . , 𝑢𝑘 ∈ K.

Proof. The deg𝑠 𝐹 highest order terms of 𝐹𝑘 (w.r.t. 𝑠) exceed

the highest order terms of the lower powers of 𝐹 . (Note that the

𝑢0, . . . , 𝑢𝑘 do not contain 𝑠 .) Since 𝑢0 +𝑢1𝐹 + · · · +𝑢𝑘𝐹𝑘 belongs to

K[𝑋 ] [𝑠] by assumption, neither𝑢𝑘 nor the coefficients of the deg𝑠 𝐹

highest order terms of 𝐹𝑘 can contain 𝑌 . Therefore, by Lemma 5, 𝐹

belongs to K[𝑋 ] [𝑠].
As the 𝑠-degrees of the powers of 𝐹 are pairwise distinct, it

follows furthermore that none of the 𝑢0, . . . , 𝑢𝑘 can contain any 𝑌 .

By the same reasoning, we get that 𝐺 belongs to K[𝑌 ] [𝑡] and
that none of the 𝑢0, . . . , 𝑢𝑘 can contain any 𝑋 , so in fact, we have

𝑢0, . . . , 𝑢𝑘 ∈ K.

Theorem 7. Let 𝑝 ∈ K[𝑋,𝑌 ]\(K[𝑋 ]∪K[𝑌 ]) be such that 𝑝 (0) =
0. Let 𝐼 = ⟨𝑝⟩, 𝑃 = 𝜙 (𝑝), and 𝐼 = ⟨𝑃⟩ ⊆ K(𝑋,𝑌 ) [𝑠, 𝑡]. Suppose that
𝐴(𝐼 ) is not trivial and let (𝐹,𝐺) ∈ K(𝑋,𝑌 ) [𝑠] × K(𝑋,𝑌 ) [𝑡] be a
generator such that 𝐹 and𝐺 have no denominator, 𝐹 −𝐺 has no factor
in K[𝑋,𝑌 ], and 𝐹 |𝑠=0 = 𝐺 |𝑡=0 = 0. Then 𝐴(𝐼 ) is nontrivial if and
only if 𝐹 ∈ K[𝑋 ] [𝑠] and 𝐺 ∈ K[𝑌 ] [𝑡] and 𝐹 |𝑠=1 ≠ 𝐺 |𝑡=1. In this
case, (𝐹 |𝑠=1,𝐺 |𝑡=1) is a generator of 𝐴(𝐼 ).

Proof. “⇐”: If 𝐹 and 𝐺 are as in the assumption, then 𝐹 − 𝐺
is a K(𝑋,𝑌 ) [𝑠, 𝑡]-multiple of 𝑃 , say 𝐹 − 𝐺 = 𝑄𝑃 for some 𝑄 ∈
K(𝑋,𝑌 ) [𝑠, 𝑡]. Since 𝑃 has no factor in K[𝑋,𝑌 ] and 𝐹 −𝐺 has no de-

nominator, it follows that𝑄 has no denominator. Therefore, setting

𝑠 = 1 and 𝑡 = 1 shows that 𝐹 |𝑠=1 − 𝐺 |𝑡=1 is a separated multiple

of 𝑝 and therefore an element of 𝐼 . It follows that 𝐴(𝐼 ) contains
(𝐹 |𝑠=1,𝐺 |𝑡=1). It remains to show that this is not a K-multiple of

(1, 1). If it were, then 𝐹 |𝑠=1 − 𝐺 |𝑡=1 = 0, which is excluded by

assumption on 𝐹 and 𝐺 .



“⇒”: If 𝐴(𝐼 ) is nontrivial, it contains some pair (𝑓 , 𝑔) ∈ K[𝑋 ] ×
K[𝑌 ] that is not a K-multiple of (1, 1). Then (𝜙 (𝑓 ), 𝜙 (𝑔)) is a non-
trivial element of 𝐴(𝐼 ). Then there are 𝑢0, . . . , 𝑢𝑘 ∈ K(𝑋,𝑌 ) such
that (

𝜙 (𝑓 )
𝜙 (𝑔)

)
= 𝑢0

(
1

1

)
+ 𝑢1

(
𝐹

𝐺

)
+ · · · + 𝑢𝑘

(
𝐹𝑘

𝐺𝑘

)
.

The left hand side has no denominator in K[𝑋,𝑌 ], because 𝑓 and
𝑔 are polynomials. Therefore, by Lemma 4, 𝑢0, . . . , 𝑢𝑘 belong to

K[𝑋,𝑌 ]. Next, by Lemma 6, it follows that 𝐹 ∈ K[𝑋 ] [𝑠], 𝐺 ∈
K[𝑌 ] [𝑡], and 𝑢0, . . . , 𝑢𝑘 ∈ K.

It remains to show that 𝐹 |𝑠=1 ≠ 𝐺 |𝑡=1. If they were equal, then

they would be in K, because 𝐹 |𝑠=1 does not contain 𝑌 and 𝐺 |𝑡=1

does not contain 𝑋 . Then (𝐹 |𝑠=1,𝐺 |𝑡=1) would be a K-multiple of

(1, 1), and

𝑢0

(
1

1

)
+ 𝑢1

(
𝐹 |𝑠=1

𝐺 |𝑡=1

)
+ · · · + 𝑢𝑘

( (𝐹 |𝑠=1)𝑘

(𝐺 |𝑡=1)𝑘

)
would also be a K-multiple of (1, 1). This is impossible, because

(𝑓 , 𝑔) is assumed not to be a K-multiple of (1, 1).
This completes the argument for the direction “⇒”. In this argu-

ment, we have shown that every element of 𝐴(𝐼 ) can be written as

a polynomial in (𝐹 |𝑠=1,𝐺 |𝑡=1). This construction also implies the

additional claim about the generator of 𝐴(𝐼 ).

Example 8. (1) If 𝐼 is generated by 𝑥2

1
+2𝑥1𝑥2+𝑥2

2
+𝑥1𝑦+𝑥2𝑦+

𝑦2, then both𝐴(𝐼 ) and𝐴(𝐼 ) are nontrivial. They are generated
by ((𝑥1 + 𝑥2)3, 𝑦3) and ((𝑥1 + 𝑥2)3𝑠3, 𝑦3𝑡3), respectively.

(2) If 𝐼 is generated by 𝑥2

1
+ 𝑥1𝑥2 + 𝑥2

2
+ 𝑥1𝑦 + 𝑥2 + 𝑦2, then 𝐴(𝐼 )

and 𝐴(𝐼 ) both are trivial.

There is no example where𝐴(𝐼 ) is trivial but𝐴(𝐼 ) is not, because
𝜙 maps nontrivial elements of 𝐴(𝐼 ) to nontrivial elements of 𝐴(𝐼 ).
Conversely, we have also not found any example of a principal ideal

𝐼 where 𝐴(𝐼 ) is trivial but 𝐴(𝐼 ) is not, and we suspect that no such

example exists. However, as we will see in Example 22, there are

such examples when 𝐼 is not principal.

Corollary 9. For every 𝑝 ∈ K[𝑋,𝑌 ]\(K[𝑋 ]∪K[𝑌 ]), the algebra
𝐴(⟨𝑝⟩) is simple.

Proof. We argue that all assumptions in Thm. 7 are “without

loss of generality.” First, by Lemmas 1 and 2, we can assume that

𝑝 (0) = 0. If 𝐴(⟨𝑝⟩) is trivial, there is nothing to prove. If 𝐴(⟨𝑝⟩) is
not trivial, then so is 𝐴(⟨𝑃⟩). If (𝐹,𝐺) is any generator of 𝐴(⟨𝑃⟩),
then so is every 𝛼 (𝐹,𝐺) + 𝛽 (1, 1) for any choice 𝛼 ∈ K(𝑋,𝑌 ) \ {0}
and 𝛽 ∈ K(𝑋,𝑌 ). By a suitable choice of 𝛼 and 𝛽 , we can meet

the assumptions imposed on (𝐹,𝐺) in Thm. 7. According to the

theorem, then (𝐹 |𝑠=1,𝐺 |𝑡=1) is a generator of 𝐴(𝐼 ).

The assumption that 𝑝 does not belong to K[𝑋 ] or to K[𝑌 ] is
necessary. For example, if 𝑝 ∈ K[𝑋 ], the algebra𝐴(𝐼 ) consists of all
(𝑓 + 𝑐, 𝑐) where 𝑓 ∈ K[𝑋 ] · 𝑝 and 𝑐 ∈ K, and while this is a concise

description of 𝐴(𝐼 ), such an algebra need not be finitely generated.

To see this, consider 𝑝 = 𝑥1𝑥2 ∈ K[𝑥1, 𝑥2]. The 𝑥2-degree of any

nontrivial power of any nontrivialK[𝑥1, 𝑥2]-multiple of 𝑝 will be at

least 2, so every element 𝑥𝑘
1
𝑥2 of the algebra can only be a K-linear

combination of generators. Because of dimK 𝑥1𝑥2K[𝑥1] = ∞, there

must be infinitely many generators.

We have just seen that the algebra 𝐴(𝐼 ) is simple whenever

the ideal 𝐼 is generated by a polynomial 𝑝 of K[𝑋,𝑌 ] that is not
an element of K[𝑋 ] ∪ K[𝑌 ]. We now give a characterization of

the generator of 𝐴(𝐼 ) in terms of certain divisibility relations. It is

based on the following generalization of a theorem by Fried and

MacRae [15]. For a proof we refer to [16]. See also [2].

Theorem 10. Let 𝑓 , 𝐹 ∈ K[𝑋 ] and 𝑔,𝐺 ∈ K[𝑌 ] be non-constant
polynomials. The following are equivalent:

(1) There exists ℎ ∈ K[𝑡] such that 𝐹 = ℎ(𝑓 ) and 𝐺 = ℎ(𝑔).
(2) 𝑓 − 𝑔 divides 𝐹 −𝐺 in K[𝑋,𝑌 ].
Let 𝐹 −𝐺 ∈ 𝐼 ∩ (K[𝑋 ] + K[𝑌 ]) such that (𝐹,𝐺) ∈ 𝐴(𝐼 ). If 𝐴(𝐼 )

is simple and generated by (𝑓 , 𝑔) ∈ K[𝑋 ] × K[𝑌 ], then (𝐹,𝐺) =

(ℎ(𝑓 ), ℎ(𝑔)) for some ℎ ∈ K[𝑡]. The previous theorem implies that

𝑓 − 𝑔 divides 𝐹 −𝐺 in K[𝑋,𝑌 ]. As a consequence of Corollary 9

and Theorem 10 we therefore have the following.

Corollary 11. Let 𝑝 ∈ K[𝑋,𝑌 ]. If 𝑝 has a separated multiple,
then it has one that divides any other of its separated multiples.

If 𝑝 has a separated multiple and the corresponding algebra is

generated by (𝑓 , 𝑔), then 𝑓 −𝑔 is referred to as theminimal separated
multiple of 𝑝 . It is unique up to a multiplicative constant.

3 IDEALS OF DIMENSION ZERO
For ideals of dimension zero, the technique proposed in [9] for the

case 𝑛 = 𝑚 = 1 generalizes more or less literally to arbitrary 𝑛

and𝑚. We therefore give only an informal summary here and refer

to [9] for a more formal discussion.

If 𝐼 ⊆ K[𝑋,𝑌 ] has dimension zero, then it contains a nonzero uni-

variate polynomial for each of the variables. Denote these polyno-

mials by 𝑝1, . . . , 𝑝𝑛, 𝑞1, . . . , 𝑞𝑚 . Being univariate, these polynomials

are in particular separated. This implies that 𝐴(𝐼 ) contains at least
all pairs (𝑝, 𝑞) where 𝑝 is a K[𝑋 ]-linear combination of 𝑝1, . . . , 𝑝𝑛
and 𝑞 is a K[𝑌 ]-linear combination of 𝑞1, . . . , 𝑞𝑚 . If (𝑓 , 𝑔) is any
other element of 𝐴(𝐼 ), we can add an arbitrary K[𝑋 ]-linear combi-

nation of 𝑝1, . . . , 𝑝𝑛 to 𝑓 and an arbitrary K[𝑌 ]-linear combination

of 𝑞1, . . . , 𝑞𝑚 to 𝑔 and obtain another element of𝐴(𝐼 ). It is therefore
enough to search for elements (𝑓 , 𝑔) of𝐴(𝐼 ) with deg𝑥𝑖

𝑓 < deg𝑥𝑖
𝑝𝑖

and deg𝑦 𝑗
𝑔 < deg𝑦 𝑗

𝑞 𝑗 for all 𝑖 and 𝑗 . This restricts the search to a

finite dimensional vector space. We can make an ansatz with un-

determined coefficients for 𝑓 and 𝑔, compute its normal form with

respect to a Gröbner basis of 𝐼 , equate its coefficients to zero and

solve the resulting linear system for the unknown coefficients in K.
The solutions together with the 𝑝1, . . . , 𝑝𝑛 and their 𝑋 -multiples

as well as the 𝑞1, . . . , 𝑞𝑚 and their 𝑌 -multiples then form a set of

generators of 𝐴(𝐼 ).
Example 12. Let 𝐼 ⊆ K[𝑥1, 𝑥2, 𝑦1, 𝑦2] be the ideal generated by

𝑥1 + 𝑥2 + 𝑦1 + 𝑦2,

𝑥1𝑥2 + 𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2 + 𝑦1𝑦2,

𝑥1𝑥2𝑦1 + 𝑥1𝑥2𝑦2 + 𝑥1𝑦1𝑦2 + 𝑥2𝑦1𝑦2,

𝑥1𝑥2𝑦1𝑦2 − 1.

Its elimination ideals are

𝐼 ∩ K[𝑥1, 𝑥2] = ⟨𝑥3

1
+ 𝑥2

1
𝑥2 + 𝑥1𝑥

2

2
+ 𝑥3

2
, 𝑥4

2
+ 1⟩,

𝐼 ∩ K[𝑦1, 𝑦2] = ⟨𝑦3

1
+ 𝑦2

1
𝑦2 + 𝑦1𝑦

2

2
+ 𝑦3

2
, 𝑦4

2
+ 1⟩.



Denoting the two generators of 𝐼 ∩ K[𝑥1, 𝑥2] by 𝑝1, 𝑝2, respectively,
polynomial division shows that this ideal is generated as a K-algebra
by 𝑥𝑖

1
𝑥
𝑗

2
𝑝1 for 𝑖 = 0, 1, 2 and 𝑗 = 0, 1, 2, 3 and 𝑥𝑖

1
𝑥
𝑗

2
𝑝2 for 𝑖 = 0, 1, 2, 3

and 𝑗 = 0, 1, 2. Similarly, we get a finite set of generators for the other
elimination ideal.

It remains to check whether 𝐴(𝐼 ) contains any elements (𝑝, 𝑞)
where all terms in 𝑝 have 𝑥1-degree less than 3 and 𝑥2-degree less
than 4, and all terms in 𝑞 have 𝑦1-degree less than 3 and 𝑦2-degree
less than 4. It turns out that the following pairs form a basis of the
K-vector space of all these elements:(
𝑥2

1
+ 𝑥2

2

−𝑦2

1
− 𝑦2

2

)
,

(
𝑥1 + 𝑥2

−𝑦1 − 𝑦2

)
,

(
𝑥1𝑥2

𝑦2

1
+ 𝑦1𝑦2 + 𝑦2

2

)
,

(
𝑥2

1
𝑥2 + 𝑥1𝑥

2

2

−𝑦2

1
𝑦2 − 𝑦1𝑦

2

2

)
,

(
𝑥2

1
𝑥2

2

𝑦2

1
𝑦2

2

)
.

These pairs together with the generators of the two elimination ideals
form a finite set of generators of 𝐴(𝐼 ).

As a K-linear subspace of K[𝑋 ] × K[𝑌 ], the algebra 𝐴(𝐼 ) for an
ideal 𝐼 of dimension zero has finite co-dimension. From the algebra

generators of 𝐴(𝐼 ) computed as described above, we can obtain a

basis of a vector space 𝑉 such that 𝑉 ⊕ 𝐴(𝐼 ) = K[𝑋 ] × K[𝑌 ], and
for every (𝑓 , 𝑔) ∈ K[𝑋 ] × K[𝑌 ] we can compute a pair ( ˜𝑓 , 𝑔) ∈ 𝑉
such that (𝑓 , 𝑔) − ( ˜𝑓 , 𝑔) ∈ 𝐴(𝐼 ). This amounts to Lemma 2.4 of [9].

In the case 𝑛 =𝑚 = 1, every ideal can be written as the intersec-

tion of an ideal of dimension zero and a principal ideal. This is no

longer true in the general case. However, if an ideal 𝐼 ⊆ K[𝑋,𝑌 ]
happens to be the intersection of an ideal 𝐼0 ⊆ K[𝑋,𝑌 ] of dimen-

sion zero and a principal ideal 𝐼1 ⊆ K[𝑋,𝑌 ], then we can continue

as in Sect. 4 of [9] and obtain a finite set of generators for 𝐴(𝐼 ).
Algorithm 4.3 of [9] relies on 𝐴(𝐼0 ∩ 𝐼1) = 𝐴(𝐼0) ∩ 𝐴(𝐼1) and

uses that 𝐴(𝐼0) has finite codimension and 𝐴(𝐼1) is generated by a

single element. It makes an ansatz for a polynomial in the generator

of 𝐴(𝐼1), then finds an equivalent element in 𝑉 and forces that

element to zero. This results in a system of linear equations for the

coefficients of the ansatz, whose solutions give rise to elements of

𝐴(𝐼0) ∩𝐴(𝐼1). The search is repeated with an ansatz of larger and

larger degree, but always excluding all monomials that are N-linear
combinations of degrees of generators found earlier. Since (N, +) is
a noetherian monoid, after finitely many repetitions there are no

monomials left and the list of generators is complete.

The correctness of this algorithm does not depend on the as-

sumption 𝑛 =𝑚 = 1 but extends literally to the case of arbitrary 𝑛

and𝑚. We can therefore record the following corollary to Thm. 7.

Corollary 13. Let 𝐼 ⊆ K[𝑋,𝑌 ] be such that 𝐼 = 𝐼0 ∩ 𝐼1 for some
ideal 𝐼0 of dimension zero and some principal ideal 𝐼1 whose generator
is not in K[𝑋 ] ∪ K[𝑌 ]. Then 𝐴(𝐼 ) is finitely generated, and there is
an algorithm for computing a finite set of generators.

Example 14. As a minimalistic example, consider the ideal 𝐼 =
𝐼0 ∩ 𝐼1 ⊆ K[𝑥1, 𝑥2, 𝑦1, 𝑦2] with

𝐼0 = ⟨𝑥1 − 1, 𝑥2 − 1, 𝑦1 − 2, 𝑦2 − 2⟩ and 𝐼1 = ⟨𝑥2

1
+ 𝑥1𝑦2 + 𝑦2

2
⟩.

The algebra 𝐴(𝐼0) is generated by (𝑥1 − 1, 0), (𝑥2 − 1, 0), (0, 𝑦1 −
2), (0, 𝑦2 − 2), and the algebra 𝐴(𝐼1) is generated by 𝑔 = (𝑥3

1
, 𝑦3

2
). We

need to find all univariate polynomials 𝑝 such that 𝑝 (𝑔) ∈ 𝐴(𝐼0).
Modulo the K-vector space 𝐴(𝐼0), the element 𝑔 itself is equivalent

to (0, 7), and the element𝑔2 is equivalent to (0, 63). Therefore,𝑔2−9𝑔 is
an element of 𝐴(𝐼0). This reduces the search to polynomials involving

only odd powers of 𝑔. As the element 𝑔3 is equivalent modulo 𝐴(𝐼0)
to (0, 511), we find the additional element 𝑔3 − 73𝑔 of 𝐴(𝐼 ). Since
2N + 3N = N \ {0, 1} and 𝐴(𝐼0) does not contain any element of the
form 𝛼𝑔 + 𝛽 , we can conclude that 𝐴(𝐼 ) = K[𝑔2 − 9𝑔,𝑔3 − 73𝑔].

4 ARBITRARY IDEALS
For an arbitrary ideal 𝐼 of K[𝑋,𝑌 ], the algebra of separated polyno-
mials is in general not finitely generated. It is therefore impossible

to give an algorithm that computes a complete basis in a finite

number of steps. The best we can hope for is a procedure that enu-

merates a set of generators and runs forever if 𝐴(𝐼 ) is not finitely
generated, yet terminates if 𝐴(𝐼 ) is finitely generated. Unfortu-

nately, we cannot offer such a procedure. However, if we drop the

latter requirement, it is not hard to come up with an algorithmic

solution.

For any fixed 𝑑 ∈ N, we can find all (𝑓 , 𝑔) ∈ 𝐴(𝐼 ) where 𝑓 and 𝑔
have total degree at most 𝑑 by linear algebra, similar as in the case

of zero dimensional ideals. Make an ansatz

𝑓 =
∑︁

𝑒1+···+𝑒𝑛≤𝑑
𝛼𝑒1,...,𝑒𝑛𝑥

𝑒1

1
· · · 𝑥𝑒𝑛𝑛 ,

𝑔 =
∑︁

𝑒1+···+𝑒𝑚≤𝑑
𝛽𝑒1,...,𝑒𝑚𝑦

𝑒1

1
· · ·𝑦𝑒𝑚𝑚

with undetermined coefficients 𝛼𝑒1,...,𝑒𝑛 , 𝛽𝑒1,...,𝑒𝑛 and compute the

normal form of 𝑓 −𝑔 with respect to a Gröbner basis of 𝐼 . The result

will be a polynomial in 𝑋,𝑌 whose coefficients are K-linear combi-

nations of the undetermined coefficients. Force these coefficients

to zero and solve the resulting linear system. The result translates

into a basis of the K-vector space of all pairs (𝑓 , 𝑔) ∈ 𝐴(𝐼 ) with 𝑓
and 𝑔 of total degree at most 𝑑 . By repeating this computation for

𝑑 = 1, 2, 3, . . . indefinitely, we will get a set of generators of 𝐴(𝐼 ).
In fact, these generators generate 𝐴(𝐼 ) not only as K-algebra but
even as K-vector space. This is more than we want. We can elimi-

nate some of the redundance in the output by discarding from the

ansatz all terms that are powers of leading terms of generators that

have been found in earlier iterations, but the approach nevertheless

seems brutal as the size of the linear system will grow rapidly with

increasing 𝑑 .

An alternative procedure for enumerating algebra generators of

𝐴(𝐼 ) uses Gröbner bases instead of linear algebra. For this procedure,
we reuse the idea of Sect. 2 and exploit the fact that we know how

to compute a (finite) set of generators of 𝐴(𝐼 ) for every ideal 𝐼 of a

bivariate polynomial ring.

Like in Sect. 2, we consider the homomorphism

𝜙 : K[𝑋,𝑌 ] → K(𝑋,𝑌 ) [𝑠, 𝑡]

which maps each 𝑥𝑖 to 𝑠𝑥𝑖 and each 𝑦 𝑗 to 𝑡𝑦 𝑗 . Let 𝑝1, . . . , 𝑝ℓ ∈
K[𝑋,𝑌 ] be generators of 𝐼 ⊆ K[𝑋,𝑌 ], let 𝑃𝑖 = 𝜙 (𝑝𝑖 ) for 𝑖 = 1, . . . , ℓ ,

and let 𝐼 be the ideal generated by 𝑃1, . . . , 𝑃ℓ in K(𝑋,𝑌 ) [𝑠, 𝑡]. The
algebra 𝐴(𝐼 ) is finitely generated. Let 𝐵1, . . . , 𝐵𝑢 be a choice of gen-

erators. The homomorphism𝜙 maps every element of𝐴(𝐼 ) to an ele-
ment of𝐴(𝐼 ), and every such element can bewritten as a polynomial

in 𝐵1, . . . , 𝐵𝑢 with coefficients inK(𝑋,𝑌 ). Therefore, in order to find
elements of 𝐴(𝐼 ), we search for elements of K(𝑋,𝑌 ) [𝐵1, . . . , 𝐵𝑢 ]
that become elements of 𝐴(𝐼 ) after setting 𝑠 and 𝑡 to 1. This can be

done effectively as soon as we can solve the following problem:



Problem 15. Given: generators 𝑝1, . . . , 𝑝ℓ of 𝐼 and some elements
(𝐹1,𝐺1), . . . , (𝐹𝑘 ,𝐺𝑘 ) of 𝐴(𝐼 )

Find: a K-vector space basis of the set of all elements of 𝐴(𝐼 ) that
can be obtained from a K(𝑋,𝑌 )-linear combination of (𝐹1,𝐺1), . . . ,
(𝐹𝑘 ,𝐺𝑘 ) by setting 𝑠 and 𝑡 to 1.

With an algorithm for solving this problem, we can get a proce-

dure that enumerates generators of 𝐴(𝐼 ). For 𝑑 = 1, 2, . . . in turn,

the procedure calls the algorithm with all monomials in 𝐵1, . . . , 𝐵𝑢
of degree at most 𝑑 as (𝐹1,𝐺1), . . . , (𝐹𝑘 ,𝐺𝑘 ).

In the remainder of this section, we discuss an algorithm for

solving Problem 15. We first give a high-level description of the

algorithm and prove that the approach is sound and complete. After-

wards, we show that each of the steps can be effectively computed.

Algorithm 16. Input/Output: as specified in Problem 15

1 Compute a basis of the K[𝑋,𝑌 ]-module

𝑀 := spanK(𝑋,𝑌 ) (𝐹1 −𝐺1, . . . , 𝐹𝑘 −𝐺𝑘 ) ∩ ⟨𝜙 (𝑝1), . . . , 𝜙 (𝑝ℓ )⟩︸                 ︷︷                 ︸
⊆K[𝑋,𝑌 ] [𝑠,𝑡 ]

.

Write the elements 𝐹−𝐺 of𝑀 in the form (𝐹,𝐺), so that𝑀 becomes
a submodule of K[𝑋,𝑌 ] [𝑠] × K[𝑋,𝑌 ] [𝑡]. (Include the pair (1, 1)
among the generators.)

2 Compute bases of the K[𝑋 ]-module

𝑀𝑋 := { (𝐹,𝐺) ∈ 𝑀 : 𝐹 ∈ K[𝑋 ] [𝑠] }

and the K[𝑌 ]-module

𝑀𝑌 := { (𝐹,𝐺) ∈ 𝑀 : 𝐺 ∈ K[𝑌 ] [𝑡] }.

3 Compute a basis of the K-vector space𝑀𝑋 ∩𝑀𝑌 .
4 Set 𝑠 = 𝑡 = 1 in the basis elements and return the result.

Theorem 17. Alg. 16 is sound and complete.

Proof. Soundness. We show that every pair (𝑓 , 𝑔) in the output

indeed belongs to 𝐴(𝐼 ). If (𝑓 , 𝑔) is an element of the output, then

it is clear from Step 3 and the definition of𝑀𝑋 , 𝑀𝑌 that 𝑓 ∈ K[𝑋 ]
and 𝑔 ∈ K[𝑌 ]. We need to show that 𝑓 − 𝑔 ∈ 𝐼 . Let 𝐹,𝐺 be the

polynomials from which 𝑓 and 𝑔 are obtained by setting 𝑠 and 𝑡

to 1. Then (𝐹,𝐺) is an element of𝑀 , therefore 𝐹 −𝐺 is an element

of ⟨𝜙 (𝑝1), . . . , 𝜙 (𝑝𝑙 )⟩, and therefore 𝑓 − 𝑔 is an element of 𝐼 .

Completeness. We show that if (𝑓 , 𝑔) ∈ 𝐴(𝐼 ) is such that the

corresponding (𝐹,𝐺) ∈ K(𝑋,𝑌 ) [𝑠]×K(𝑋,𝑌 ) [𝑡] is aK(𝑋,𝑌 )-linear
combination of the elements (𝐹1,𝐺1), . . . , (𝐹𝑘 ,𝐺𝑘 ), then it is a K-
linear combination of the output pairs. By assumption, 𝐹 − 𝐺 ∈
spanK(𝑋,𝑌 ) (𝐹1 −𝐺1, . . . , 𝐹𝑘 −𝐺𝑘 ). Also, since 𝑓 − 𝑔 ∈ 𝐼 , we have
𝐹 −𝐺 ∈ ⟨𝜙 (𝑝1), . . . , 𝜙 (𝑝𝑙 )⟩. Therefore, (𝐹,𝐺) belongs to the module

𝑀 computed in Step 1. Moreover, we have 𝐹 ∈ K[𝑋 ] [𝑠] and 𝐺 ∈
K[𝑌 ] [𝑡] because 𝑓 ∈ K[𝑋 ] and 𝑔 ∈ K[𝑌 ], so (𝐹,𝐺) ∈ 𝑀𝑋 ∩𝑀𝑌 .

The claim follows.

Step 4 of Alg. 16 is trivial, and Step 2 is a standard application of

Gröbner bases. For example, in order to get a basis of𝑀𝑋 , it suffices

to compute a Gröbner basis of𝑀 with respect to a TOP term order

that eliminates 𝑌 , and to discard from it all elements which have a

𝑌 in the first component [1, Definition 3.5.2]. Steps 1 and 3 require

more explanation.

For Step 1, we divide the problem into two substeps. First we

compute a basis of the K[𝑋,𝑌 ]-module

𝑁 := spanK(𝑋,𝑌 ) (𝐹1 −𝐺1, . . . , 𝐹𝑘 −𝐺𝑘 ) ∩ K[𝑋,𝑌 ] [𝑠, 𝑡],

and then we obtain a basis of𝑀 by computing the intersection of

this 𝑁 with the ideal generated by 𝜙 (𝑝1), . . . , 𝜙 (𝑝ℓ ) inK[𝑋,𝑌 ] [𝑠, 𝑡].
The two substeps are provided by the following lemmas.

Lemma 18. For any given 𝑞1, . . . , 𝑞𝑘 ∈ K[𝑋,𝑌 ] [𝑠, 𝑡], we can com-
pute a basis of the K[𝑋,𝑌 ]-module

spanK(𝑋,𝑌 ) (𝑞1, . . . , 𝑞𝑘 ) ∩ K[𝑋,𝑌 ] [𝑠, 𝑡] .

Proof. As only finitely many monomials appear in 𝑞1, . . . , 𝑞𝑘 ,

we can view them as elements of a finitely generated K[𝑋,𝑌 ]-
submodule of K[𝑋,𝑌 ] [𝑠, 𝑡]. We may identify this submodule with

K[𝑋,𝑌 ]𝑛 for some 𝑛. In this identification, spanK(𝑋,𝑌 ) (𝑞1, . . . , 𝑞𝑘 )
is a certain subspace of K(𝑋,𝑌 )𝑛 . Let 𝐴 ∈ K(𝑋,𝑌 )𝑚×𝑛

be a matrix

whose kernel is this subspace. Such a matrix exists and can be

easily constructed by means of linear algebra. As multiplying 𝐴 by

a nonzero element of K(𝑋,𝑌 ) does not change the kernel, we may

assume that 𝐴 belongs to K[𝑋,𝑌 ]𝑚×𝑛
. Let 𝑎1, . . . , 𝑎𝑛 ∈ K[𝑋,𝑌 ]𝑚

be its columns. Then

spanK(𝑋,𝑌 ) (𝑞1, . . . , 𝑞𝑘 ) ∩ K[𝑋,𝑌 ]𝑛 = Syz(𝑎1, . . . , 𝑎𝑚).

The computation of a basis of the syzygy module is a standard

application of Gröbner bases.

Lemma 19. Let 𝑁 be a finitely generated K[𝑋,𝑌 ]-submodule of
K[𝑋,𝑌 ] [𝑠, 𝑡] and let 𝐽 be an ideal of K[𝑋,𝑌 ] [𝑠, 𝑡]. Then 𝑁 ∩ 𝐽 is a
finitely generated submodule of K[𝑋,𝑌 ] [𝑠, 𝑡], and we can compute a
basis of it from a module basis of 𝑁 and an ideal basis of 𝐽 .

Proof. Let 𝑛1, . . . , 𝑛𝑟 be module generators of 𝑁 and 𝑝1, . . . , 𝑝𝑘
be ideal generators of 𝐽 . An element 𝑞 of K[𝑋,𝑌 ] [𝑠, 𝑡] belongs to
𝑁 ∩ 𝐽 if and only if there are 𝛼1, . . . , 𝛼𝑟 ∈ K[𝑋,𝑌 ] and 𝛽1, . . . , 𝛽𝑘 ∈
K[𝑋,𝑌 ] [𝑠, 𝑡] such that

𝑞 = 𝛼1𝑛1 + · · · + 𝛼𝑟𝑛𝑟
= 𝛽1𝑝1 + · · · + 𝛽𝑘𝑝𝑘 .

By taking the difference of these two representations of 𝑞, we see

that the relevant tuples (𝛼1, . . . , 𝛼𝑟 , 𝛽1, . . . , 𝛽𝑘 ) are precisely the

elements of

Syz(𝑛1, . . . , 𝑛𝑟 ,−𝑝1, . . . ,−𝑝𝑘 ) ∩ K[𝑋,𝑌 ]𝑟 × K[𝑋,𝑌 ] [𝑠, 𝑡]𝑘 .

We can first compute a Gröbner basis of the syzygy module in

K[𝑋,𝑌 ] [𝑠, 𝑡]𝑟+𝑘 , then discard the lower 𝑘 coordinates, and then

eliminate 𝑠 and 𝑡 . This yields a basis of the K[𝑋,𝑌 ]-module that

contains a tuple (𝛼1, . . . , 𝛼𝑟 ) ∈ K[𝑋,𝑌 ]𝑟 if and only if 𝛼1𝑛1 + · · · +
𝛼𝑟𝑛𝑟 ∈ 𝑁 ∩ 𝐽 . A basis of this module thus translates into a basis of

𝑁 ∩ 𝐽 .

We now turn to Step 3 of Alg. 16, where we have to compute

the intersection of a finitely generated K[𝑋 ]-submodule 𝑀𝑋 of

K[𝑋,𝑌 ] [𝑠, 𝑡]2
with a finitely generated K[𝑌 ]-submodule 𝑀𝑌 of

K[𝑋,𝑌 ] [𝑠, 𝑡]2
. The result is a K-vector space, and the task is to

compute a basis of this vector space.



Let 𝑏1, . . . , 𝑏𝑢 be a basis of 𝑀𝑋 and 𝑐1, . . . , 𝑐𝑣 be a basis of 𝑀𝑌 .

Like in the proof of Lemma 18, we seek 𝛼1, . . . , 𝛼𝑢 ∈ K[𝑋 ] and
𝛽1, . . . , 𝛽𝑣 ∈ K[𝑌 ] such that

𝛼1𝑏1 + · · · + 𝛼𝑢𝑏𝑢 = 𝛽1𝑐1 + · · · + 𝛽𝑣𝑐𝑣 . (1)

If we can get hold of a finite set of monomials that contains all

the monomials which can possibly appear in 𝛼1, . . . , 𝛼𝑢 , 𝛽1, . . . , 𝛽𝑣 ,

then we can find 𝛼1, . . . , 𝛼𝑢 , 𝛽1, . . . , 𝛽𝑣 by making an ansatz with

undetermined coefficients, plugging it into the above equation,

comparing coefficients, and solving a linear system over K. Every
solution vector translates into a solution (𝛼1, . . . , 𝛼𝑢 , 𝛽1, . . . , 𝛽𝑣) ∈
K[𝑋 ]𝑢 × K[𝑌 ]𝑣 of equation (1), and every such solution translates

into an element 𝛼1𝑏1 + · · · +𝛼𝑢𝑏𝑢 of the intersection𝑀𝑋 ∩𝑀𝑌 . The

following lemma tells us how to find the required monomials.

Lemma 20. Let (𝛼1, . . . , 𝛼𝑢 , 𝛽1, . . . , 𝛽𝑣) ∈ K[𝑋 ]𝑢 ×K[𝑌 ]𝑣 be a so-
lution of (1), let 𝑖 ∈ {1, . . . , 𝑣}, and let 𝜏 = 𝑦𝑒1

1
· · ·𝑦𝑒𝑚𝑚 be a monomial

appearing in 𝛽𝑖 . Let 𝐺 be a Gröbner basis of

Syz(𝑏1, . . . , 𝑏𝑢 ,−𝑐1, . . . ,−𝑐𝑣) ⊆ K[𝑋,𝑌 ]𝑢+𝑣

with respect to a TOP order that eliminates 𝑌 . Then there exists a
monomial 𝜎 = 𝑥

𝜀1

1
· · · 𝑥𝜀𝑛𝑛 and an element 𝑔 ∈ 𝐺 such that the first 𝑢

components are free of 𝑌 and the (𝑢 + 𝑖)th component contains the
monomial 𝜎𝜏 .

Proof. A vector in K[𝑋 ]𝑢 × K[𝑌 ]𝑣 is a solution of (1) if and

only if it belongs to the syzygy module. The given solution 𝑞 must

therefore reduce to zero modulo𝐺 . By the choice of the term order,

only elements of 𝐺 whose first 𝑢 components are free of 𝑌 will

be used during the reduction. Call these elements 𝑔1, . . . , 𝑔ℓ . Again

by the choice of the term order, these elements of 𝐺 will only

be multiplied by elements of K[𝑋 ] during the reduction, i.e., we

will have 𝑞 = 𝑞1𝑔1 + · · · + 𝑞ℓ𝑔ℓ for certain 𝑞1, . . . , 𝑞ℓ ∈ K[𝑋 ]. The
(𝑢+𝑖)th component of 𝑞 contains the monomial 𝜏 , so this monomial

appears in a K[𝑋 ]-linear combination of the (𝑢 + 𝑖)th components

of 𝑔1, . . . , 𝑔ℓ . As K[𝑋 ]-linear combinations cannot create new 𝑌 -

monomials, some K[𝑋 ]-multiple of 𝜏 must already appear in at

least one of the 𝑔1, . . . , 𝑔ℓ .

With the help of this lemma, we obtain for each 𝑖 ∈ {1, . . . , 𝑣}
a finite list of candidates of monomials that may appear in 𝛽𝑖 . Ap-

plying the lemma again with the roles of 𝑋 and 𝑌 exchanged, we

can also obtain for each 𝑖 ∈ {1, . . . , 𝑢} a finite list of candidates of
monomials that may appear in 𝛼𝑖 . This is all we need in order to

complete Step 3 of Alg. 16.

Example 21. Let us use Alg. 16 to search for a nontrivial element
of 𝐴(𝐼 ) for the ideal

𝐼 = ⟨𝑦2

1
− 𝑥2𝑦2, 𝑥

2

2
− 𝑥1𝑦1, 𝑥

4

1
𝑥2𝑦1 − 𝑥2𝑦1𝑦

4

2
⟩.

The corresponding ideal 𝐼 has dimension 0, and 𝐴(𝐼 ) contains (𝑠6, 0)
and (0, 𝑡6). Taking these elements as (𝐹1,𝐺1) and (𝐹2,𝐺2), we find

in Step 1 that𝑀 is generated by the following vectors:(
0

𝑥2𝑦
4

1
𝑡6 − 𝑥1𝑦

3

1
𝑦2𝑡

6

)
,

(
𝑥4

2
𝑦1𝑠

6 − 𝑥1𝑥
3

2
𝑦2𝑠

6

0

)
,

(
𝑥3

1
𝑥3

2
𝑠6

𝑦3

1
𝑦3

2
𝑡6

)
,(

𝑥6

2
𝑦6

2
𝑠6

𝑦12

1
𝑡6

)
,

(
𝑥7

2
𝑦5

2
𝑠6

𝑥1𝑦
11

1
𝑡6

)
,

(
𝑥8

2
𝑦4

2
𝑠6

𝑥2

1
𝑦10

1
𝑡6

)
,

(
𝑥9

2
𝑦3

2
𝑠6

𝑥3

1
𝑦9

1
𝑡6

)
,(

𝑥10

2
𝑦2

2
𝑠6

𝑥4

1
𝑦8

1
𝑡6

)
,

(
𝑥11

2
𝑦2𝑠

6

𝑥5

1
𝑦7

1
𝑡6

)
,

(
𝑥12

2
𝑠6

𝑥6

1
𝑦6

1
𝑡6

)
,

(
1

1

)
.

In Step 2, we find

𝑀𝑋 =

〈(
0

𝑥2𝑦
4

1
𝑡6 − 𝑥1𝑦

3

1
𝑦2𝑡

6

)
,

(
𝑥3

1
𝑥3

2
𝑠6

𝑦3

1
𝑦3

2
𝑡6

)
,

(
𝑥12

2
𝑠6

𝑥6

1
𝑦6

1
𝑡6

)
,

(
1

1

)〉
and

𝑀𝑌 =

〈(
𝑥4

2
𝑦1𝑠

6 − 𝑥1𝑥
3

2
𝑦2𝑠

6

0

)
,

(
𝑥3

1
𝑥3

2
𝑠6

𝑦3

1
𝑦3

2
𝑡6

)
,

(
𝑥6

2
𝑦6

2
𝑡6

𝑦12

1
𝑡6

)
,

(
1

1

)〉
Step 3 yields

𝑀𝑋 ∩𝑀𝑌 = spanK

((
𝑥3

1
𝑥3

2
𝑠6

𝑦3

1
𝑦3

2
𝑡6

)
,

(
1

1

))
,

and the final result is (𝑥3

1
𝑥3

2
, 𝑦3

1
𝑦3

2
).

At the end of the day, Alg. 16 also has to solve a linear system, but

it can be expected that the size of these linear systems grows more

moderately than in the naive approach sketched at the beginning of

the section. On the other hand, Alg. 16 achieves this size reduction

via Gröbner basis computations, so it is not clear which of the

two approaches is better. It is noteworthy however that the two

approaches are not equivalent. For example, if 𝐴(𝐼 ) happens to be

trivial, then 𝐴(𝐼 ) is trivial as well, and therefore detected by the

reduction to the bivariate case. The approach based exclusively on

linear algebra cannot detect that.

Unlike in the case of principal ideals, it is easy to find examples

where 𝐴(𝐼 ) is trivial but 𝐴(𝐼 ) is not.

Example 22. Consider the ideal 𝐼 ⊆ 𝐾 [𝑥1, 𝑥2, 𝑦1, 𝑦2] generated by
−𝑥1+𝑦1+𝑥1𝑥2𝑦2−𝑥2𝑦1𝑦2 and−𝑥1+𝑦1+𝑥2

1
𝑦1−𝑥1𝑦

2

1
. As its generating

set is a Gröbner basis, it is clear that 𝐼 cannot contain any separated
polynomials, because in order to reduce a separated polynomial to
zero, the Gröbner basis would need elements with a leading term
only involving 𝑥1, 𝑥2 or only involving 𝑦1, 𝑦2. On the other hand,
for the ideal 𝐼 = ⟨−𝑠𝑥1 + 𝑡𝑦1 + 𝑠2𝑡𝑥1𝑥2𝑦2 − 𝑠𝑡2𝑥2𝑦1𝑦2,−𝑠𝑥1 + 𝑡𝑦1 +
𝑠2𝑡𝑥2

1
𝑦1 − 𝑠𝑡2𝑥1𝑦

2

1
⟩ ⊆ K(𝑥1, 𝑥2, 𝑦1, 𝑦2) [𝑠, 𝑡] we have 𝐼 = ⟨𝑠𝑥1 − 𝑡𝑦1⟩

and therefore 𝐴(𝐼 ) is different from K((1, 1)).

5 CONCLUSION
We made some progress on the problem of separating variables in

multivariate polynomial ideals. While the algorithm for ideals of

dimension zero generalizes smoothly from the bivariate case to the

multivariate case, we did not find a straightforward generalization

of the construction for principal ideals. Instead, we showed that

it is possible to reduce the multivariate case to the bivariate case

by merging variables. As a result, we obtain that the algebra of

separated polynomials is simple for every principal ideal generated

by a polynomial involving at least one variable from each of the

two groups of variables. It follows furthermore that the algebra



is finitely generated for every ideal that is the intersection of a

principal ideal and an ideal of dimension zero. For arbitrary ideals,

however, the algebra may not be finitely generated. In this case,

we can enumerate generators of the algebra, but it remains open

whether it is possible to arrange the enumeration in such a way that

it terminates whenever the algebra happens to be finitely generated.
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