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Quadrant Walks Starting Outside the Quadrant
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Abstract. We investigate a functional equation which resembles the functional equa-
tion for the generating function of a lattice walk model for the quarter plane. The
interesting feature of this equation is that its orbit sum is zero while its solution is not
algebraic. The solution can be interpreted as the generating function of lattice walks
in Z2 starting at (−1,−1) and subject to the restriction that the coordinate axes can be
crossed only in one direction. We also consider certain variants of the equation, all of
which seem to have transcendental solutions. In one case, the solution is perhaps not
even D-finite.
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1 Introduction

The investigation of lattice walks with small steps restricted to a quadrant has made
astonishing progress during the past years [7, 11, 4, 16, 5, 9, 1, 2, 10]. The central problem
in this context is to decide for a given step set S ⊆ {−1, 0, 1}2 \ {(0, 0)} whether the
generating function F(x, y, t) = ∑∞

n=0 ∑n
i,j=0 ai,j,nxiyjtn counting the number ai,j,n of walks

in N2 starting at (0, 0), ending at (i, j), and consisting of exactly n steps, each step taken
from S, is D-finite. If so, it is further of interest whether it is even algebraic. Although
it is not obvious at first glance, it is meanwhile well understood how the finiteness of a
certain group associated to associated to the model implies its algebraicity [12, 17, 19].

For simplicity, let us focus on the step set S = {←,→, ↑, ↓}. If Q(x, y, t) is the gener-
ating function for this model, the combinatorial definition translates into the functional
equation

(1− (x + y + x̄ + ȳ)t)Q(x, y, t) = 1− x̄tQ(0, y, t)− ȳtQ(x, 0, t),

where we write x̄ = 1/x and ȳ = 1/y for short. The group of the model can be used
to solve this equation. In the present example, it is generated by the rational maps
Φ = ((x

y) 7→ (x̄
y)) and Ψ = ((x

y) 7→ (x
ȳ)) under composition, i.e., G = {id, Φ, Ψ, Φ ◦ Ψ}.

The idea for solving the functional equation is to let the elements of the group act on
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it to get four copies of the equation, and then take a linear combination of these four
copies with the aim of canceling the terms Q(· · · ) appearing on the right. This leads to

(1− (x + y + x̄ + ȳ)t)
(
xyQ(x, y, t)− x̄yQ(x̄, y, t)− xȳQ(x, ȳ, t) + x̄ȳQ(x̄, ȳ, t)

)
= xy− x̄y− xȳ + x̄ȳ.

The expression on the right is the orbit sum. Divide by 1− (x + y + x̄ + ȳ)t and observe
next that xyQ(x, y, t) is the only term on the left whose exponents with respect to x and
y are positive, while for all terms xiyjtn appearing in any of the other terms on the left
we have i < 0 or j < 0. Therefore, by extracting the positive part, we can eliminate the
unwanted terms Q(x̄, y, t), Q(x, ȳ, t), Q(x̄, ȳ, t) and get

xyQ(x, y, t) = [x>][y>]
xy− x̄y− xȳ + x̄ȳ

1− (x + y + x̄ + ȳ)t
. (Q)

Since extracting the positive part preserves D-finiteness [18], Q(x, y, t) is D-finite.
The step sets {←, ↓,↗} (Kreweras), {→, ↑,↙} (reverse Kreweras), {←,→, ↓, ↑,↗,

↙} (double Kreweras), and {←,↙,→,↗} (Gessel) also have a certain finite group of
rational maps associated to them, but the approach above for solving the functional
equations for the generating functions fails, because the orbit sum turns out to be zero
in these cases. Using more sophisticated arguments, it can be shown that the generating
functions for these models are not only D-finite but in fact algebraic [7, 3]. In fact, the
generating function happens to be algebraic if and only if the orbit sum vanishes.

The equivalence between zeroness of the orbit sum and algebraicity of the generating
function is not an accident, but it can be explained [16, Sec. 8 and Sect. 9.1]. However, as
we shall show in this paper, the equivalence does not hold in all circumstances. Consider
the following slight variation of the functional equation quoted above for the step set
{←,→, ↑, ↓}:

(1− (x + y + x̄ + ȳ)t)F(x, y, t) = x̄ȳ− x̄tF(0, y, t)− ȳtF(x, 0, t). (F)

The only difference is that we replaced the inhomogeneous term 1 by x̄ȳ. If we now
multiply the equation by xy, as above, then let the group elements act on the equation,
as above, and then take the weighted sum of the resulting equations, as above, we get

(1− (x + y + x̄ + ȳ)t)
(
xyF(x, y, t)− x̄yF(x̄, y, t)− xȳF(x, ȳ, t) + x̄ȳF(x̄, ȳ, t)

)
= 0,

and it is not clear how to proceed from here.
It is clear that any solution F(x, y, t) ∈ Q[x, x̄, y, ȳ][[t]] will have the form x̄ȳt0 + · · · ,

so before we proceed, we should clarify what we mean by the expressions F(0, y, t) and
F(x, 0, t) on the right hand side of (F). There are several options. A natural interpre-
tation is F(0, y, t) = [x0]F(x, y, t) and F(x, 0, t) = [y0]F(x, y, t). We consider this case in
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Section 2. Other interpretations also include certain restrictions on the other variable.
For example, we could choose to read F(0, y, t) as [x0][y<]F(x, y, t) (keeping only neg-
ative exponents of y), as [x0][y≥]F(x, y, t) (keeping only nonnegative exponents of y),
as [x0][y≤]F(x, y, t) (keeping only nonpositive exponents of y), or as [x0][y>]F(x, y, t)
(keeping only positive exponents of y), and analogously for F(x, 0, t). For some of these
interpretations, we can show that the solution of the functional equation is D-finite. For
some of them, we can show that the correctness of a guessed differential equation for the
specialization F(1, 1, t) of the solution F(x, y, t) implies the transcendence of the solution
(Sections 3 and 4). One case seems to be more complicated. In this case, we conjecture
that the solution is not even D-finite (Section 5).

2 Four Compartments

With the interpretation F(0, y, t) = [x0]F(x, y, t) and F(x, 0, t) = [y0]F(x, y, t), the solution
F(x, y, t) of the functional equation (F) counts walks that start at (−1,−1) and move
through the plane Z2 subject to the restriction that the axes of the coordinate system can
be passed only in one direction (west to east or south to north, respectively). We claim
that the generating function F(x, y, t) counting walks in this model is D-finite. To show
this, define F1 = [x<][y<]F, F2 = [x<][y≥]F, F3 = [x≥][y<]F, and F4 = [x≥][y≥]F, so that
F = F1 + F2 + F3 + F4.

F1

F2

F3

F4

The equation for F translates into the following system of functional equations for
F1, F2, F3, F4, where we write S = x + y + x̄ + ȳ:

F1 = x̄ȳ + StF1 − t[x̄]F1 − t[ȳ]F1

F2 = t[ȳ]F1 + StF2 − t[x̄]F2 − ȳt[y0]F2

F3 = t[x̄]F1 + StF3 − t[ȳ]F3 − x̄t[x0]F3

F4 = t[x̄]F2 + t[ȳ]F3︸ ︷︷ ︸
initial conditions

+ StF4︸︷︷︸
recurrence

− x̄t[x0]F4 − ȳt[y0]F4︸ ︷︷ ︸
boundary conditions

.

The equation for F1 does not depend on F2, F3, F4 and can therefore be solved directly. In
fact, we have F1(x, y, t) = x̄ȳQ(x̄, ȳ, t) for the Q(x, y, t) from equation (Q).
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Knowing F1, we can solve the second equation for F2 by the same technique. Noting
that [ȳ]F1 is independent of y, the result is

F2(x, y, t) = ȳ[x<][y>]
t(y[ȳ]F1(x, y, t)− y[ȳ]F1(x̄, y, t)− ȳ[ȳ]F1(x, y, t) + ȳ[ȳ]F1(x̄, y, t))

1− St

= tȳ[x<][y>]
(y− ȳ)[ȳ](F1(x, y, t)− F1(x̄, y, t))

1− St
,

so F2 is D-finite because it is the positive/negative part of a D-finite series. Moreover,
using F1(x, y, t) = x̄ȳQ(x̄, ȳ, t) and (Q) we get

F1(x, y, t)− F1(x̄, y, t) = [y<]
xy− x̄y− xȳ + x̄ȳ

1− St
,

which can be used to simplify the expression for F2(x, y, t) further to

F2(x, y, t) = tȳ[x<]
((

[y>]
y− ȳ
1− St

)(
[ȳ]

xy− x̄y− xȳ + x̄ȳ
1− St

))
.

Because of symmetry, we have F3(x, y, t) = F2(y, x, t), so this one is D-finite too, and
we can directly proceed to the equation for F4, which we can now solve in terms of the
known functions F2, F3, again by letting the group elements act, forming a weighted sum,
dividing by 1− St and extracting the positive part. The result is

F4(x, y, t) = x̄ȳt[x>][y>]
G(x, y, t)− G(x̄, y, t)− G(x, ȳ, t) + G(x̄, ȳ, t)

1− St
,

with G(x, y, t) = xy[x̄]F2(x, y, t) + xy[ȳ]F3(x, y, t). We already see at this point that F4
is D-finite, because it is the positive part of a D-finite series, so we can conclude that
F = F1 + F2 + F3 + F4 is D-finite, because it is the sum of four D-finite series. Moreover,
using the expression for F2 derived above, we can state F4 explicitly as

F4(x, y, t) = x̄ȳt2[y>]
((

[x̄]
(y− ȳ)[ȳ]

xy− x̄y− xȳ + x̄ȳ
1− St

1− St
)(
[x>]

x− x̄
1− St

))
+x̄ȳt2[x>]

((
[ȳ]

(x− x̄)[x̄]
xy− x̄y− xȳ + x̄ȳ

1− St
1− St

)(
[y>]

y− ȳ
1− St

))
.

The expressions we found for F1, F2, F3, F4 are small enough that we succeeded to use the
techniques from [5] and Koutschan’s package [15] to construct a certified annihilating
operator for F(1, 1, t). We suppress the computational details here and refer the inter-
ested reader to the Mathematica session posted on the website of this paper [8]. The
bottom line is that the coefficient sequence of F(1, 1, t) satisfies the recurrence

(2 + n)(4 + n)(6 + n)(−1 + 2n + n2)an+2

− 4(3 + n)(−18 + 4n + 9n2 + 2n3)an+1

− 16(1 + n)(2 + n)(3 + n)(2 + 4n + n2)an = 0.
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This recurrence has only asymptotic solutions of the form 4nn−1 and (−4)nn−3 (as can
be found using [13, 14]). Neither of these forms can arise from an algebraic series, so
F(1, 1, t) must be transcendental.

In summary, we have shown that for the interpretation F(0, y, t) = [x0]F(x, y, t) and
F(x, 0, t) = [y0]F(x, y, t), the solution F(x, y, t) of the functional equation (F) is D-finite
but not algebraic.

3 A Large and a Small Compartment

We now turn to the variant of (F) in which F(0, y, t) is interpreted as [x0][y≥]F(x, y, t),
and F(x, 0, t) likewise. In this case, the equation describes a model in which only the
nonnegative part of each axis forms a semipermeable barrier in the sense that walks can
enter the non-negative quadrant, but they can not leave it. Walks in this model can freely
move around in the complement of the north-east quadrant, which is a three quarter
plane, and once they leave this area, they are locked in the north-east quadrant. It is
therefore natural to write the generating function F(x, y, t) for this model as F = F1 + F2
where F1 = [x<]F + [x≥][y<]F keeps track of the three quarter plane and F2 = [x≥][y≥]F
takes care of the remaining quarter plane.

F1

F2

It is known [6, 20] that the generating function C(x, y, t) for simple walks avoiding the
positive quadrant is D-finite. Hence also F1(x, y, t) = x̄ȳC(x, y, t) is D-finite. The series
F2 counts walks in the quarter plane with initial conditions prescribed by the sections
of F1:

F2 = t[x̄][y≥]F1 + t[ȳ][x≥]F1︸ ︷︷ ︸
initial conditions

+ StF2︸︷︷︸
recurrence

− x̄t[x0]F2 − ȳt[y0]F2︸ ︷︷ ︸
boundary conditions

.

This is again a functional equation which we can solve like in the introduction, the result
being a positive part expression in terms of F1:

F2 = x̄ȳt[x>][y>]
H(x, y, t) + H(y, x, t)

1− St
,

with H(x, y, t) = (x̄ − x)[x̄]
(
ȳ[y≤]F1(x, ȳ, t) − y[y≥]F1(x, y, t)

)
. This implies that F2 is

D-finite, so F = F1 + F2 is D-finite as well.
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Unfortunately, in this case we were not able to derive a certified annihilating operator
for F(1, 1, t) from this expression. Owing to the size of the equations describing F1, the
computations were too expensive. However, it is easy to guess an annihilating operator
L from the first few terms of F(1, 1, t). We found a convincing candidate of order 11
with polynomial coefficients of degree 89. It is posted on our website [8]. Assuming that
this guessed operator L is correct, we can show that F(1, 1, t) is transcendental. The key
observation is that the guessed operator can be written as L = lclm(L1, . . . , L6), where
L1, . . . , L6 are certain irreducible operators. The factors L1, . . . , L6 are also posted on our
website [8]. It turns out that L1, . . . , L5 only have algebraic solutions, while L6 has a
logarithmic singularity and therefore can not have any nonzero algebraic solution. The
factorization L = lclm(L1, . . . , L6) means that we have F(1, 1, t) = f1 + · · · + f6 where
each fi is a solution of Li. Since f1, . . . , f5 are algebraic and f6 is not, it follows that
F(1, 1, t) is not algebraic unless the term f6 is zero. In this case however F(1, 1, t) would
already be annihilated by lclm(L1, . . . , L5), and it can be checked that this is not the case.

In summary, we have shown that for the interpretation F(0, y, t) = [x0][y≥]F(x, y, t)
and F(x, 0, t) = [y0][x≥]F(x, y, t), the solution F(x, y, t) of the functional equation (F)
is D-finite. Moreover, under the hypothesis that a guessed annihilating operator for
F(1, 1, t) is correct, we can also show that F(1, 1, t) is transcendental.

4 A Small and a Large Compartment

We now turn to the two variants of (F) where F(x, 0, t) and F(0, y, t) are interpreted
as [x<][y0]F(x, y, t) and [x0][y<]F(x, y, t), and as [x≤][y0]F(x, y, t) and [x0][y≤]F(x, y, t),
respectively. In these models the negative and non-positive part, respectively, of each
axis forms a semipermeable barrier for the walks. In both of these models walks start in
the south-west quadrant, they may leave it, but once left, they do not enter it again. Only
in the second model walks that end on the origin can neither be extended by a west step
nor a south step. Let F1 = [x<y<]F and F2 = F− F1.

F1

F2

As in Section 2, we have F1(x, y, t) = x̄ȳQ(x̄, ȳ) for the Q(x, y, t) from equation (Q).
If F(x, 0, t) = [x<y0]F(x, y, t) and F(0, y, t) = [x0y<]F(x, y, t) (the left-most case on the
previous figure) we can show D-finiteness of F2 using the analytic method [19, 20]. The
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argument presented in [20] is based on the decomposition F2 = FU
2 + FD

2 + FL
2 with

FD
2 = ∑i≥0 xiyi[xiyi]F2 and FL

2 = ∑i≥0,j≤i−1 xiyj[xiyj]F2 and FU
2 (x, y, t) = FL

2 (y, x, t).

F1 FL
2

FU
2

FD
2

The functions FD
2 and FL

2 satisfy the equations

FD
2 = 2t(x̄ + y) ∑

i≥0
xiyi−1[xiyi−1]FL

2 − 2tx̄ȳ[x0ȳ]FL
2

FL
2 = t[x̄]F1 + t(x + ȳ)FD

2︸ ︷︷ ︸
initial conditions

+ StFL
2︸︷︷︸

recurrence

− t(x̄ + y) ∑
i≥0

xiyi−1[xiyi−1]FL
2

+ tx̄ȳ[x0ȳ]FL
2 − tx̄[x0]FL

2︸ ︷︷ ︸
boundary conditions

.

Eliminating the term involving the infinite sum gives the equation

(1− St)FL
2 = t[x̄]F1 + (tx + tȳ− 1

2)FD
2 − tx̄[x0]FL

2 . (∗)

From here on, we can follow the derivation in [20] step by step and obtain an expression
of the form

FD
2 (xy, x̄, t) = A(y)

∮
B(y, z)[ȳ]F1

(
yC(z), 1/C(z), t

)
dz,

where A, B, and C are certain algebraic functions, the integral is taken around the unit
circle, and t is viewed as a fixed small positive real number. The interested reader will
find on our website [8] a Maple session in which this derivation is worked out in full
detail, and where also explicit expressions for A, B, and C are provided. What matters
here is that the D-finiteness of F1 together with the algebraicity of A, B, C implies the D-
finiteness of FD

2 . Knowing this we can solve the functional equation (∗) for [x0]FL
2 after

setting x to a root X(y, t) ∈ Q[y, ȳ][[t]] of the polynomial 1− St ∈ Q[x, x̄, y, ȳ, t] in order
to eliminate the left hand side. The resulting expression

[x0]FL
2 = X(y, t)[x̄]F1 + X(y, t)(X(y, t) + ȳ− 1

2t
)FD

2 (X(y, t), y, t)

certifies that [x0]FL
2 is D-finite. With the knowledge that F1, FD

2 , and [x0]FL
2 are D-finite,

it follows from (∗) that FL
2 is D-finite. Then FU

2 (x, y, t) = FL
2 (y, x, t) is D-finite as well,

and it finally follows that F2 = FD
2 + FL

2 + FU
2 and F = F1 + F2 are D-finite, as claimed.
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Like in the previous section, we were not able to construct a certified annihilating op-
erator for the series F(1, 1, t) but only have a convincing guess. Assuming however that
this guess is correct, we can again show that the series F(1, 1, t) must be transcendental.
The reasoning is like in the previous section: the guessed operator now has order 10 and
can be written as the least common left multiple of four irreducible operators, exactly
one of them admits transcendental solutions and therefore only has transcendental so-
lutions. The lclm of the remaining operators does not annihilate F(1, 1, t), so F(1, 1, t)
must be transcendental. The operators are available on our website [8].

Unfortunately, we are not able to prove D-finiteness of the solution for the interpre-
tation of F(0, y, t) and F(x, 0, t) as [x0][y≤]F(x, y, t) and [y0][x≤]F(x, y, t), respectively. If
we proceed as above, we are led to an expression of the form

FD
2 (xy, x̄, t) = A(y)

∮
B(y, z)

(
[ȳ]F1

(
yC(z), 1/C(z), t

)
− [y0]FD

2 (xy, x̄, t)
)

dz,

where A, B, and C are again algebraic functions, the integral is taken around the unit
circle, and t is viewed as a fixed small positive real number. As we do not know whether
[y0]FD

2 (xy, x̄, t) is D-finite, we are stuck at this point. It does seem however that the
solution F(x, y, t) is D-finite also in this case, at least for x = y = 1. We have found
a convincing candidate for an annihilating operator of order 13 by guessing. Again,
this operator can be written as the least common left multiple of irreducible operators
L1, . . . , L6, available on our website, so we can write F(1, 1, t) = f1 + · · ·+ f6 for certain
solutions fi of the irreducible right factors Li. The difference to the earlier cases is that
now several of the Li have transcendental solutions, so in order to show that F(1, 1, t) is
not algebraic, we must show that their sum is not algebraic. This can be done by con-
structing an operator P which annihilates all but one of the transcendental summands fi,
so that P · F(1, 1, t) can be written as a sum of one transcendental series and some alge-
braic series, which asserts that P · F(1, 1, t) is transcendental. But then F(1, 1, t) must be
transcendental as well, because if it were algebraic, so would be P · F(1, 1, t).

In summary, we have shown that for the interpretation F(0, y, t) = [x0][y<]F(x, y, t)
and F(x, 0, t) = [y0][x<]F(x, y, t), the solution F(x, y, t) of the functional equation (F) is
D-finite. Moreover, under the hypothesis that guessed annihilating operators for the
solutions at x = y = 1 are correct, we can also show that these series are transcendental.
For the interpretation F(0, y, t) = [x0][y≤]F(x, y, t) and F(x, 0, t) = [y0][x≤]F(x, y, t), we
have no proof that the solution F(x, y, t) is D-finite, but we have a guessed equation for
F(1, 1, t) whose correctness implies the transcendence of the solution.
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5 No Compartments

One other variant of (F) is when we read F(0, y, t) as [x0][y>]F(x, y, t), and F(x, 0, t)
likewise. In this model the positive part of each axis forms a semipermeable barrier for
the walks.

In contrast to the models before there is no natural division of the domain into com-
partments that cannot be left once entered. Even though a walk may pass through the
positive part of either axis only in one direction, it can still escape from the first quad-
rant through the origin. It is arguably for this reason that this model appears to be more
difficult than the others. Indeed, we have not been able to solve it.

Computer experiments with the first 2000 series terms suggest that the coefficient
sequence of F(1, 1, t) grows asymptotically like c4nn−1/3 for n → ∞ and some constant
c ≈ 1.91. Moreover, for the number an of walks of length 2n starting and ending at
(−1,−1), we find, based on 6300 sequence terms, a conjectured asymptotic behaviour of
the form c4nn−5/3 for n → ∞ and some nonzero constant c. Even if these growth rates
are correct, they cannot even be used to exclude algebraicity of the generating functions.

We have also searched for candidates for algebraic and differential equations by
guessing based on almost 98000 sequence terms (modulo 45007), but did not find any.
This implies that such equations, if they exist, must be extraordinarily large. We are
tempted to conjecture that they do not exist, i.e., that the solution F(x, y, t) of (F) is
not D-finite for the interpretation under consideration. The terms we computed can be
found on our website.

6 Conclusion

We investigated the functional equation

(1− (x + y + x̄ + ȳ)t)F(x, y, t) = x̄ȳ− x̄tF(0, y, t)− ȳtF(x, 0, t)

and its solution F(x, y, t) in Q[x, x̄, y, ȳ][[t]] for different interpretations of F(0, y, t) and
F(x, 0, t). For F(0, y, t) = [x0]F and F(x, 0, t) = [y0]F we answered the main questions:
we proved that F is D-finite, and we showed that it is not algebraic. In [16, Sec. 8] it
was shown that the orbit-sum is zero if and only if the generating function is algebraic.
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The reasoning is based on the assumption that the generating function is analytic in a
neighbourhood of the origin. Since this is not the case for the examples discussed here,
there is no conflict with our observations.

For other interpretations there are several open points which would deserve further
consideration. One point is the pending proof of the guessed operators on which the
transcendence arguments of Sections 3–4 rely. In the second case considered in Section 4,
not only the guessed operator but also D-finiteness in general remains to be proven.
Another open issue is the clarification of the nature of the solution in Section 5: is it
really non-D-finite? Besides answering these open questions, there are some natural
extensions and generalizations which could be addressed. For example, we have only
considered analogous interpretations for F(x, 0, t) and F(0, y, t) in this paper, but mixed
cases such as F(x, 0, t) = [y0][x>]F(x, y, t) and F(0, y, t) = [x0][y≤]F(x, y, t) might also
be interesting. First experiments suggest that some combinations are D-finite. Another
possible variation concerns the starting point. There are other points besides (−1,−1)
which lead to a zero orbit sum, for example (−1, 1). Can the starting point affect the
nature of the solution? Finally, we have restricted ourselves to the case of simple walks,
and it would be interesting to see what happens for other step sets.
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